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We discuss the existence and uniqueness of a T0-quasi-metric space qU defined by the
following three conditions: (i) qU is bicomplete and supseparable, (ii) every isometry
between two finite subspaces of qU extends to an isometry of qU onto itself, and
(iii) qU contains an isometric copy of every supseparable T0-quasi-metric space.
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1. Introduction

We establish the existence and uniqueness of an asymmetric analogue of the (universal ultrahomogeneous separable
complete) Urysohn metric space U. Indeed we show the existence and uniqueness (up to isometry) of a T0-quasi-metric
space qU possessing the following properties:

(a) qU is bicomplete and supseparable;
(b) qU is ultrahomogeneous, that is, every isometry between two finite subspaces of qU extends to an isometry of qU onto

itself;
(c) qU is q-universal, that is, it contains an isometric copy of every supseparable T0-quasi-metric space.

Naturally our arguments are related to the metric theory (presented for instance in [12,11]), but in general we have
to work more carefully to compensate for the possible asymmetry and the nontrivial zero values of the distance function.
In some sense our approach replaces functions by function pairs, similarly as the one in [6]. In this way we are able to
follow essentially the classical metric theory, as it was for instance developed in [11].
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2. Preliminary remarks

For the basic concepts used from the theory of asymmetric topology we refer the reader to [2] and [8]. For the conve-
nience of the reader and in order to fix our terminology we recall the following concepts.

Definition 1. Let X be a set and let d : X × X → [0,∞) be a function mapping into the set [0,∞) of the nonnegative reals.
Then d is called a quasi-pseudometric on X if

(a) d(x, x) = 0 whenever x ∈ X ,
(b) d(x, z) � d(x, y) + d(y, z) whenever x, y, z ∈ X .3

We shall say that d is a T0-quasi-pseudometric or T0-quasi-metric provided that d also satisfies the following condition:
For each x, y ∈ X ,

d(x, y) = 0 = d(y, x) implies that x = y.

We observe that T0-quasi-metrics are called di-metrics and T0-quasi-metric spaces are called di-spaces in [6].

Remark 1. Let d be a quasi-pseudometric on a set X , then d−1 : X × X → [0,∞) defined by d−1(x, y) = d(y, x) whenever
x, y ∈ X is also a quasi-pseudometric, called the conjugate quasi-pseudometric of d. Other notations instead of d−1 have been
used, for instance in [6] the quasi-pseudometric conjugate of d is denoted by dt .

As usual, a quasi-pseudometric d on X such that d = d−1 is called a pseudometric. Note that for any (T0-)quasi-
pseudometric d, ds = sup{d,d−1} = d ∨ d−1 is a pseudometric (metric).

We observe that for any quasi-pseudometric d on a set X we have that |d(x, y) − d(a,b)| � ds(x,a) + ds(y,b) whenever
x, y,a,b ∈ X .

Let (X,d) be a quasi-pseudometric space. For each x ∈ X and ε > 0, Bd(x, ε) = {y ∈ X : d(x, y) < ε} denotes the open
ε-ball at x. The collection of all “open” balls yields a base for a topology τ (d). It is called the topology induced by d on X .

Given a,b ∈ R, we shall put a .− b = max{a − b,0}.
A map f : (X,d) → (Y , e) between two quasi-pseudometric spaces (X,d) and (Y , e) is called an isometric map provided

that e( f (x), f (y)) = d(x, y) whenever x, y ∈ X . A bijective isometric map will be called an isometry. Observe that if f : X →
Y is an isometric map between two quasi-pseudometric spaces X and Y and if X is a T0-quasi-metric space, then f is
injective (see [9, Lemma 4]).

Two quasi-pseudometric spaces (X,d) and (Y , e) will be called isometric provided that there exists a (bijective) isometry
f : (X,d) → (Y , e). A map f : (X,d) → (Y , e) between two quasi-pseudometric spaces (X,d) and (Y , e) is called nonexpan-
sive provided that e( f (x), f (y)) � d(x, y) whenever x, y ∈ X .

Next we list the four properties of quasi-pseudometric spaces that will turn out to be crucial for our present investiga-
tions:

A quasi-pseudometric space is called bicomplete provided that the pseudometric space (X,ds) is complete. It is well
known that each T0-quasi-metric space (X,d) has a unique up to isometry T0-quasi-metric bicompletion ( X̃, d̃), in which
X is τ ((̃d)s)-densely embedded (see for example [8, p. 278]).

A quasi-pseudometric space (X,d) is called supseparable provided that the pseudometric space (X,ds) is separa-
ble (equivalently, the topology τ (d) has a countable base; compare [7, Theorem 4] and use the fact that each quasi-
pseudometrizable space with a countable network has a countable base [7, p. 60]). We shall call a set supdense in X if
it is dense in X with respect to the topology τ (ds).

The following result is obvious.

Lemma 1. Let (X,dX ) and (Y ,dY ) be bicomplete and supseparable T0-quasi-metric spaces. Let S X and SY be countable supdense
subspaces of X resp. Y such that there is an isometry f : S X → SY . Then the unique supcontinuous (that is, ds

X − ds
Y -continuous)

extension of f to a map f̂ : X → Y yields a (bijective) isometry.

Proof. We sketch a proof (compare [8, p. 278]) of the result, which uses standard arguments. Given x ∈ X we can extend f
from S X to f̃ on X by finding a sequence (xn)n∈N from S X converging to x with respect to the topology τ (ds

X ) and setting
f̃ (x) equal to the τ (ds

Y )-limit of ( f (xn))n∈N . Then f̃ is well defined and an isometry from (X,dX ) onto (Y ,dY ). �
As already stated in the introduction, a T0-quasi-metric space X is called ultrahomogeneous if each isometry between

two finite subspaces of X can be extended to an isometry of X onto itself.

3 In some cases we need to replace [0,∞) by [0,∞] (where for a d attaining the value ∞, the triangle inequality is interpreted in the obvious way).
In such a case we shall speak of an extended quasi-pseudometric. In the following we sometimes apply concepts from the theory of quasi-pseudometrics to
extended quasi-pseudometrics (without changing the usual definitions of these concepts).
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A supseparable T0-quasi-metric space is called q-universal if it contains an isometric copy of each supseparable T0-quasi-
metric space.

In the first part of this article we shall show that there is an up to isometry unique bicomplete supseparable T0-quasi-
metric space that is ultrahomogeneous and q-universal. We shall call it the Urysohn T0-quasi-metric space and denote it
by qU.

We shall say that a T0-quasi-metric space X satisfies the (quasi-metric)4 one-point-extension property if for any finite
subspace A of X the isometric embedding i : A → X can be extended to an isometric embedding A ∪ {ω} → X where
A ∪ {ω} is an arbitrary T0-quasi-metric one-point-extension of A.

During the proof of our main result of this article (Theorem 2) we shall establish the following related auxiliary results:
A bicomplete supseparable T0-quasi-metric space is q-universal and ultrahomogeneous if and only if it satisfies the

(quasi-metric) one-point-extension property (Theorem 1).
Two bicomplete supseparable T0-quasi-metric spaces X and Y that have the (quasi-metric) one-point-extension property

are isometric (Lemma 9).

3. The construction due to Katětov modified for a T0-quasi-metric space

Katětov’s construction for a metric space (X,d) is described in [5, Fact 1.3] and [11, p. 139]. Related discussions can be
found in [4,10].

For the following, let a function f : (X,d) → [0,∞) be called Katětov provided that | f (x) − f (y)| � d(x, y) � f (x) + f (y)

whenever x, y ∈ X . By K (X,d) we shall denote the set of all Katětov functions on (X,d). As usual we shall assume that
K (X,d) carries the metric k( f , g) = supx∈X | f (x) − g(x)| whenever f , g ∈ K (X,d). Then (K (X,d),k) is a complete metric
space, called the Katětov space.

We shall now generalize the concept of a Katětov function on a metric space to the concept of a Katětov function pair
on a quasi-pseudometric space.

Let (X,d) be a quasi-pseudometric space. Furthermore let Q (X,d) be the set of all pairs of functions f = ( f1, f2) where
for i = 1,2, f i : X → [0,∞) satisfy the two conditions:

(a) f is tight, that is, d(x, y) � f2(x) + f1(y) whenever x, y ∈ X . (Let us note that in [6] instead of “tight” the term “ample”
was used.)

(b) f is nonexpansive, that is

f1(x) − f1(y) � d−1(x, y) and f2(x) − f2(y) � d(x, y) whenever x, y ∈ X .

The terminology in (b) is readily explained by equipping [0,∞) with the T0-quasi-metric u(x, y) = x .− y whenever
x, y ∈ [0,∞).

Each element in Q (X,d) will be called a Katětov pair on (X,d). Operations on pairs are applied to each component
separately if nothing else is stated. For instance it is readily checked that Q (X,d) is convex and max{ f , g} ∈ Q (X,d)

whenever f , g ∈ Q (X,d).

Remark 2. Note that we do not require that our pairs are minimal tight (that is, extremal) with respect to the pointwise
product order on function pairs (compare [6, Lemmas 6 and 3]).

Hence in general our pairs ( f1, f2) do not have the property that supy∈X (d(x, y)
.− f1(y)) = f2(x) and supy∈X (d(y, x) .−

f2(y)) = f1(x) whenever x ∈ X (+), since these two conditions imply that the pair f = ( f1, f2) is minimal tight:
Indeed (compare [1]) let g � f , i.e. g1 � f1 and g2 � f2, where f satisfies the above equalities (+), and g is a tight

function pair. Then for each x ∈ X , f2(x) � supy∈X (d(x, y)
.− f1(y)) � supy∈X (d(x, y)

.− g1(y)) � g2(x) by tightness of g . So
g2 = f2. Similarly g1 = f1 and therefore the pair f is minimal tight.

We define an (extended) T0-quasi-metric D on Q (X,d) as follows:

D
(
( f1, f2), (g1, g2)

) = sup
x∈X

(
f1(x) .− g1(x)

) ∨ sup
x∈X

(
g2(x) .− f2(x)

)
whenever f , g ∈ Q (X,d).

The definition of D is related to the definition of the Hausdorff quasi-pseudometric on the set P0(X) of all nonempty
subsets of X (see [6, Remark 4]). It is easy to see that D is an extended T0-quasi-metric. Indeed it will follow from
Corollary 1 below that D is even a T0-quasi-metric on Q (X,d). (In the following we shall call (Q (X,d), D) the Katětov
pairspace of (X,d).)

It is readily checked that for each a ∈ X , the function pair fa(x) = (d(a, x),d(x,a)) whenever x ∈ X satisfies conditions (a)
and (b) and hence belongs to Q (X,d). In fact we show next that in an obvious way we can interpret any T0-quasi-metric
space (X,d) as a subspace of its Katětov pairspace (Q (X,d), D). Although the setting is slightly different, the next two

4 Normally “quasi-metric” will be clear from the context so that we can delete it.
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proofs are essentially contained in [6] (compare also for instance [3]). Since they are short, but nevertheless important, we
include them here for the convenience of the reader.

Lemma 2. (Compare [6, Lemma 1].) Let (X,d) be a quasi-pseudometric space. For any a,b ∈ X we have d(a,b) = D( fa, fb).
Therefore, e X : (X,d) → (Q (X,d), D) defined by e X (a) = fa whenever a ∈ X is an isometric map. In the case that (X,d) is a

T0-quasi-metric space, e X is injective.

Proof. Obviously supx∈X (d(a, x) − d(b, x)) = d(a,b), as we see by setting x = b and using the triangle inequality. Similarly
supx∈X (d(x,b) − d(x,a)) = d(a,b) whenever a,b ∈ X . Hence e X is an isometric map. If for a,b ∈ X we have that (e X (a))2 =
(e X (b))2, then 0 = d(b,b) = d(b,a) and 0 = d(a,a) = d(a,b). Consequently a = b by the T0-property and e X is injective. We
could also use the result [9, Lemma 4] mentioned in Section 2. �
Lemma 3. (Compare [6, Lemma 8].) Let f ∈ Q (X,d) and a ∈ X. Then D( f , fa) = f1(a) and D( fa, f ) = f2(a).

Proof. We have f1(a) � supx∈X ( f1(x) − d(a, x)), because d(a,a) = 0. Furthermore for any x ∈ X , f1(x) − f1(a) � d−1(x,a),
since f1 is nonexpansive on (X,d−1). Thus f1(x) − d(a, x) � f1(a) whenever x ∈ X . So supx∈X ( f1(x) − d(a, x)) = f1(a).
Furthermore d(x,a) − f2(x) � f1(a) whenever x ∈ X , since f is tight. So supx∈X (( fa)2(x) .− f2(x)) � f1(a). According to the
definition of D , certainly D( f , fa) = f1(a).

Similarly one verifies that f2(a) = supx∈X ( f2(x) − d(x,a)) and supx∈X (d(a, x) .− f1(x)) � f2(a). In particular D( fa, f ) =
f2(a) according to the definition of D . �
Remark 3. Note that an important application of Lemma 3 yields D( fx, f y) = ( fx)1(y) = ( f y)2(x) = d(x, y) whenever
x, y ∈ X .

Corollary 1. For any f , g ∈ Q (X,d) and a ∈ X we have D( f , g) � D( f , fa) + D( fa, g) = f1(a) + g2(a). Indeed D is a bicomplete
T0-quasi-metric on Q (X,d).

Proof. By Lemma 3 we only need to prove that the space (Q (X,d), D) under consideration is bicomplete. So let us con-
sider a Ds-Cauchy-sequence (( fn)1, ( fn)2)n∈N in Q (X,d). Since for each x ∈ X , (( fn)1(x))n∈N and (( fn)2(x))n∈N are Cauchy
sequences in ([0,∞), us), these sequences converge to, say f1(x), resp. f2(x). It is readily checked that ( f1, f2) belongs to
Q (X,d) and that the sequence Ds((( fn)1, ( fn)2), ( f1, f2)) (where n ∈ N) converges to 0. Hence we are done. �
Lemma 4. Given an arbitrary T0-quasi-metric space (X,d), for any function pair f = ( f1, f2) ∈ Q (X,d) and any a ∈ X the following
conditions are equivalent:

(a) f2(a) = 0.
(b) d(a, x) � f1(x) and f2(x) � d(x,a) whenever x ∈ X.
(c) D( fa, f ) = 0.

Proof. By definition of D , conditions (b) and (c) are obviously equivalent. We still show explicitly the equivalence of (a)
and (b), although it would also follow from Lemma 3, which shows that conditions (a) and (c) are equivalent:

(a) → (b): By tightness of f we have d(a, x) � f2(a) + f1(x) whenever x ∈ X . Thus d(a, x) � f1(x) whenever x ∈ X , since
f2(a) = 0. Furthermore by nonexpansivity of f , f2(x)− f2(a) � d(x,a) whenever x ∈ X . Thus f2(x) � d(x,a) whenever x ∈ X ,
since f2(a) = 0.

(b) → (a): Set x = a. Then f2(a) � d(a,a) = 0 and thus f2(a) = 0. �
Analogously to Lemma 4 we can prove the following result:

Lemma 5. Given any T0-quasi-metric space (X,d), for any function pair f = ( f1, f2) ∈ Q (X,d) and any a ∈ X the following condi-
tions are equivalent:

(a) f1(a) = 0.
(b) d(x,a) � f2(x) and f1(x) � d(a, x) whenever x ∈ X.
(c) D( f , fa) = 0.

Corollary 2. Given any T0-quasi-metric space (X,d), any function pair f ∈ Q (X,d) and any a ∈ X, we have that f1(a) = f2(a) = 0
if and only if f = fa .

Proof. The result immediately follows from the two preceding results. �
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It is easy to check that for any quasi-pseudometric space (X,d) we have that ( f1, f2) ∈ Q (X,d) implies that
(

f1+ f2
2 ,

f1+ f2
2 ) ∈ Q (X, d+d−1

2 ). The proofs of the following results are obvious, too.

Remark 4. Let (X,d) be a T0-quasi-metric space.
(a) Then the map s : (Q (X,d), D) → (Q (X,d−1), D−1) defined by s(( f1, f2)) = ( f2, f1) whenever ( f1, f2) ∈ Q (X,d) is

an isometry.
Hence the Katětov pairspace (Q (X,d), D) of (X,d) is isometric to the conjugate of the Katětov pairspace (Q (X,d−1), D)

of (X,d−1).
(b) Let (X,m) be a metric space. Then for each f : X → [0,∞) we have f ∈ K (X,m) if and only if ( f , f ) ∈ Q (X,m).

Furthermore the subspace {( f , f ): f ∈ K (X,m)} of (Q (X,m), D) is isometric to (K (X,m),k).

Of course the concept of a Katětov function pair is motivated by the following observation:

Remark 5. Let (X,d) be a T0-quasi-metric space and f = ( f1, f2) ∈ Q (X,d) be such that f �= fx whenever x ∈ X . Then we
can obtain a T0-quasi-metric one-point-extension X+ = X ∪ { f } of X by extending d to X+ as follows: d( f , x) = f1(x) and
d(x, f ) = f2(x) whenever x ∈ X , and d( f , f ) = 0. [Considering the various cases, we see that the statement that d so defined
satisfies the triangle inequality on X+ is a consequence of the fact that f ∈ Q (X,d). Hence d is a T0-quasi-metric on X+ ,
because it is not possible that f1(x) = f2(x) = 0 for some x ∈ X , since f �= fx whenever x ∈ X (see Corollary 2).]

On the other hand, given a T0-quasi-metric one-point-extension X+ = X ∪ {ω} with quasi-metric d of X+ , we can set
f1(x) = d(ω, x) and f2(x) = d(x,ω) whenever x ∈ X in order to obtain ( f1, f2) ∈ Q (X,d) such that ( f1, f2) �= fx whenever
x ∈ X .

Lemma 6. (Compare [5, Fact 1.4].) If X is a subspace of a quasi-pseudometric space (Y ,d), then (Q (X,d), D) can be interpreted as a
subspace of (Q (Y ,d), D). Indeed for any pair f ∈ Q (X,d) we define an extension fY of f to Y by ( fY )2(y) = inf{d(y, x) + f2(x):
x ∈ X} and ( fY )1(y) = inf{ f1(x) + d(x, y): x ∈ X} whenever y ∈ Y . (We shall say that the pair fY is controlled by the subspace X.)

Proof. We verify that fY extends f . This is obvious, since f is nonexpansive on X and since d(y, y) = 0 whenever y ∈ X .
Therefore ( fY )1(y) = f1(y) and ( fY )2(y) = f2(y) whenever y ∈ X by definition of fY .

We next check that fY belongs to Q (Y ,d). Let x, y ∈ Y . Then for each r ∈ X we have d(x, r) + f2(r) � d(x, y) + d(y, r) +
f2(r). Thus infr∈X (d(x, r) + f2(r)) � d(x, y) + infr∈X (d(y, r) + f2(r)). Hence ( fY )2(x) − ( fY )2(y) � d(x, y).

Similarly, f1(r)+d(r, y) � f1(r)+d(r, x)+d(x, y) whenever r ∈ X . Hence infr∈X ( f1(r)+d(r, y))− infr∈X ( f1(r)+d(r, x)) �
d(x, y). Consequently ( fY )1(y) − ( fY )1(x) � d−1(y, x). Thus (( fY )1, ( fY )2) is nonexpansive on Y .

Let x, y ∈ Y and ε > 0. By definition of (( fY )1, ( fY )2) there are a1,a2 ∈ X such that f1(a1) + d(a1, y) − ε � ( fY )1(y) and
d(x,a2) + f2(a2) − ε � ( fY )2(x).

Hence d(x, y) � d(x,a2)+d(a2,a1)+d(a1, y) � d(x,a2)+ ( f2(a2)+ f1(a1))+d(a1, y) � ( fY )2(x)+ ( fY )1(y)+2ε . It follows
that (( fY )1, ( fY )2) is tight on Y .

We finally check that Φ( f ) = fY where f ∈ Q (X,d) is an isometric map: Let f , g ∈ Q (X,d). Obviously by the first
established property, supy∈Y (( fY )1(y)

.− (gY )1(y)) � supx∈X ( f1(x) .− g1(x)).
Let y ∈ Y and ε > 0. Then there is t ∈ X such that g1(t) + d(t, y) < (gY )1(y) + ε . Moreover ( fY )1(y) � f1(t) + d(t, y) by

definition of fY . Thus ( fY )1(y) − (gY )1(y) � f1(t) − g1(t) + ε by adding these two inequalities.
Therefore supy∈Y (( fY )1(y)

.− (gY )1(y)) � supx∈X ( f1(x) .− g1(x)). Similarly

sup
y∈Y

(
(gY )2(y)

.− ( fY )2(y)
) = sup

x∈X

(
g2(x) .− f2(x)

)
.

Hence D( f , g) = D(Φ( f ),Φ(g)). We have shown that Φ : Q (X,d) → Q (Y ,d) is an isometric map. �
Lemma 7. (Compare [5, Fact 1.6].) Let (X,d) be a T0-quasi-metric space and let φ : X → X be an isometry. Let us now identify (X,d)

with the afore-mentioned subspace of (Q (X,d), D) (see Lemma 2).
Then Φ( f ) = f ◦ φ−1 whenever f ∈ Q (X,d) defines an isometry Φ : (Q (X,d), D) → (Q (X,d), D) which extends φ and is

unique with this property.

Proof. Given x ∈ X , we have that for each y ∈ X , Φ( fx)(y) = ( fx ◦ φ−1)(y) = (d(x, φ−1(y)),d(φ−1(y), x)) = (d(φ(x), y),

d(y, φ(x))) = fφ(x)(y). Therefore Φ( fx) = fφ(x) and Φ restricted to { fx: ∈ X} is equal to φ.
It is obvious that Φ is surjective, since for any g ∈ Q (X,d), we have that g ◦ φ ∈ Q (X,d) and g = (g ◦ φ) ◦ (φ−1).

We also get that D(Φ( f ),Φ(g)) = D( f ◦ φ−1, g ◦ φ−1) = D( f , g) whenever f , g ∈ Q (X,d). Thus Φ : Q (X,d) → Q (X,d)

is an isometric map. The map Φ is injective, since Q (X,d) is a T0-space and Φ is an isometric map (see [9, Lemma 4]).
We conclude that Φ is an isometry.

Suppose that Ψ : Q (X,d) → Q (X,d) is an isometry extending φ, which we assume to be defined on { fx: x ∈ X}.
Then, by Lemma 3, for each x ∈ X we have (Ψ ( f ))1(φ(x)) = D(Ψ ( f ),Ψ ( fx)) = D( f , fx) = f1(x). Hence (Ψ ( f ))1 ◦ φ = f1

and thus (Ψ ( f ))1 = f1 ◦ φ−1. Similarly one shows that (Ψ ( f ))2 = f2 ◦ φ−1. Thus Ψ ( f ) = f ◦ φ−1. �
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Lemma 8. If (X,d) is a supseparable T0-quasi-metric space (with a countable supdense subset E in X ), then the space (F (X), D),
defined in the first lines of the following proof, is also a supseparable T0-quasi-metric space.

Proof. Let F (X) = { f X ∈ Q (X,d): A ⊆ X , A finite, f ∈ Q (A,d)}. Hence F (X) consists of all Katětov function pairs on X
controlled by finite subspaces of X (see Lemma 6). Of course, we equip F (X) with the restriction of the T0-quasi-metric D
of Q (X,d), which for convenience we also denote by D .

Let EQ be the set of those elements f X where f ∈ Q (A,d), A is a finite subset of E . Hence EQ consists of the Katětov
function pairs on X controlled by pairs defined on any finite subspace of E . It is obvious that EQ is supseparable by Lemma
6, since otherwise there would be a finite subspace F of E such that the metric space (Q (F ), Ds) would not be separable,
which however contradicts separability of the usual topology on the reals. We shall show that EQ is supdense in F (X).

Let f ∈ F (X) and ε > 0. Then there is a finite A ⊆ X that controls f . Since (X,ds) is a metric (and hence Hausdorff)
space there is a bijection φ : A → B where B is a finite subset of E and such that ds(a, φ(a)) < ε/2 whenever a ∈ A. For
each a ∈ A and i ∈ {1,2} find a number gi(φ(a)) ∈ [0,∞) such that |gi(φ(a)) − f i(a)| < ε/2, by setting gi(φ(a)) = f i(φ(a)).

For convenience in the following we shall denote the (canonical, controlled) extension g X of g from B to X by g
(compare Lemma 6). Obviously g ∈ EQ .

Let x ∈ X . Case 1: Suppose that g2(x) � f2(x). Then for some a ∈ A, we have f2(x) = d(x,a) + f2(a) by definition of f X .
Then g2(x) − f2(x) � d(x, φ(a)) + g2(φ(a)) − d(x,a) − f2(a) � ds(a, φ(a)) + |g2(φ(a)) − f2(a)| < ε . Thus |g2(x) − f2(x)| < ε .

Case 2: Suppose that f2(x) > g2(x). Then there is a ∈ A such that g2(x) = d(x, φ(a)) + g2(φ(a)) by definition of g X . Then
f2(x) − g2(x) � d(x,a) + f2(a) − d(x, φ(a)) − g2(φ(a)) � ds(a, φ(a)) + | f2(a) − g2(φ(a))| < ε . Thus | f2(x) − g2(x)| < ε in this
case, too.

Similarly one shows that | f1(x) − g1(x)| < ε whenever x ∈ X . Consequently Ds( f , g) � ε . It follows that the statement
holds. �
Remark 6. Let (X,d) be a T0-quasi-metric space. Note that for each x ∈ X , fx on X is controlled by the subspace {x} of X .
So X embeds via x �→ e X (x) indeed isometrically into the subspace F (X) of Q (X,d) (compare Lemma 2).

Example 1 (Amalgamation). Given two finite T0-quasi-metric spaces (X,dX ) and (Y ,dY ) and an isometry i from a subspace
A ⊆ X to a subspace B ⊆ Y , there exists a T0-quasi-metric space Z = X ∪i Y , the coproduct of X and Y amalgamated
along i or A, such that X and Y are both T0-quasi-metric subspaces of Z and such that for all a ∈ A, i(a) coincides with
a in Z : Making use of this identification between the elements of A and B , for x ∈ X \ Y and y ∈ Y \ X we set that
dZ (x, y) = infa∈A{dX (x,a) + dY (i(a), y)} and dZ (y, x) = infa∈A{dY (y, i(a)) + dX (a, x)}, while the subspaces X and Y of Z
carry their T0-quasi-metrics dX and dY , respectively.

Proof. The triangle inequality dZ (x, z) � dZ (x, y) + dZ (y, z) (x, y, z ∈ Z) on Z is readily verified: Essentially we have to
consider two cases, since all other nontrivial cases are analogous: Either the path x, y, z crosses into the other subspace
twice in a row, or only once.

Case 1: We are going to show that dX (x1, x2) � dZ (x1, y′) + dZ (y′, x2) with x1, x2 ∈ X \ Y and y′ ∈ Y \ X .
Indeed say dZ (x1, y′) = dX (x1,a) + dY (i(a), y′) and dZ (y′, x2) = dY (y′, i(b)) + dX (b, x2). Then dX (x1, x2) � dX (x1,a) +

dX (a,b)+dX (b, x2) = dX (x1,a)+dY (i(a), i(b))+dX (b, x2) � dX (x1,a)+dY (i(a), y′)+dY (y′, i(b))+dX (b, x2) and the triangle
inequality holds.

Case 2: We want to prove that dZ (x, y) � dZ (x, y′) + dY (y′, y) where x ∈ X \ Y , y′ ∈ Y \ X and y ∈ Y .
Assume that dZ (x, y′) = dX (x, x′) + dY (i(x′), y′). Then dZ (x, y) � dX (x, x′) + dY (i(x′), y) � dX (x, x′) + dY (i(x′), y′) +

dY (y′, y) = dZ (x, y′) + dY (y′, y). Hence the inequality is verified in this case, too.
Note that dZ satisfies the T0-property: Consider the only interesting case that x ∈ X \Y and y ∈ Y \ X , and that dX (x, z1)+

dY (i(z1), y) = 0 and dY (y, i(z2))+dX (z2, x) = 0. Then 0 = dY (i(z1), i(z2)) = dX (z1, z2) and 0 = dX (z2, z1). Hence z1 = z2, and
then x = z2, i(z2) = y and consequently i(x) = y, which contradicts our choice of x and y. We conclude that this case cannot
occur. �

Let us formally repeat a definition from Section 2.

Definition 2. We say that a T0-quasi-metric space X has the (quasi-metric) one-point-extension property (∗) if whenever
A ⊆ X is a finite subspace of X and A′ = A ∪ {b′} is (an abstract) T0-quasi-metric one-point-extension of A, the isometric
embedding f : A → X extends to an isometric embedding f̃ : A′ → X .

In the following we essentially modify Pestov’s approach [11, p. 140] from the metric setting by stressing Katětov’s ideas
in order to obtain our main results. We observe that while many arguments follow closely their metric counterparts, some
new ideas seem to be required in the proof of Lemma 11.

Lemma 9. Let X and Y be two supseparable bicomplete T0-quasi-metric spaces each of which satisfies the one-point-extension prop-
erty (∗). Then X and Y are isometric. Moreover, if A and B are finite subspaces of X and Y , respectively, and i : A → B is an isometry,
then i extends to an isometry f : X → Y .
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Proof. Choose countable supdense subsets S X of X and SY of Y , and enumerate them as follows: S X = {xi: i ∈ N} and
SY = {yi: i ∈ N}.

Let f0 = i be the start of the induction. The result of the n-th inductive step will be an isometric map fn with finite
domain, extending the isometric map fn−1 and such that {x1, . . . , xn} ⊆ dom fn and {y1, . . . , yn} ⊆ im fn . Finally, the map
f (xn) = fn(xn) for all n ∈ N, is an isometry between S X and SY whose restriction to A is i. The unique extension of f by
supcontinuity to X establishes an isometry between X and Y with the desired properties (see Lemma 1).

Suppose that for some n ∈ N ∪ {0} an isometric map fn has already been constructed in such a way that, for n positive,
the domain dom fn is finite and contains the set {x1, . . . , xn}∪dom fn−1, the restriction of fn to the domain of fn−1 coincides
with the latter isometric map, and the image im fn contains {y1, . . . , yn}.

Step n + 1 of the induction is split into two substeps.
If xn+1 /∈ dom fn , then, using the one-point-extension property (∗), one can find a point y ∈ Y \ im fn in such a way that

the mapping f̃n defined by f̃n(a) = fn(a) if a ∈ dom fn and f̃n(a) = y if a = xn+1 is an isometric map. If xn+1 ∈ dom fn , then
nothing happens and we set f̃n = fn .

If yn+1 /∈ im( f̃n) then, again by the one-point-extension property (∗), one can find an x ∈ X \ dom f̃n so that the bijection
fn+1(a) = f̃n(a) if a ∈ dom f̃n and fn+1(a) = yn+1 if a = x is an isometric map. Again in the case where yn+1 ∈ im( f̃n) we
simply put fn+1 = f̃n .

Clearly for each n, dom fn+1 is finite, fn+1|dom fn = fn , {x1, . . . , xn+1} ⊆ dom fn+1 and {y1, . . . , yn+1} ⊆ im fn+1, which
completes the proof. �
Theorem 1. A bicomplete supseparable T0-quasi-metric space X is ultrahomogeneous and q-universal if and only if it has the one-
point-extension property (∗).

Proof. Suppose that X is a bicomplete supseparable ultrahomogeneous q-universal T0-quasi-metric space. Let A ⊆ X be a
finite subspace, and let A′ = A ∪ {b′} be any abstract T0-quasi-metric one-point-extension of A. Because of q-universality
of X , there is a copy A′′ of A′ in X . Hence there is an isometry between A and the copy of A contained in A′′ . Since X
is ultrahomogeneous, that map extends to an isometry j of X onto itself. Hence j−1(A′′) yields a subspace of X isometric
to A′ containing A. So X has the one-point-extension property (∗).

Assume that the bicomplete supseparable T0-quasi-metric space X has the one-point-extension property (∗). According
to Lemma 9 X is ultrahomogeneous. If Y is any countable T0-quasi-metric space, an isometric embedding of Y into X
is constructed by an obvious induction using the one-point-extension property of X . Finally in the case of an arbitrary
supseparable T0-quasi-metric space Y an isometric embedding from a countable supdense subspace of Y into X can be
extended to an isometric embedding of Y into the bicomplete space X by a standard argument, and so X is q-universal. �
Theorem 2. An ultrahomogeneous q-universal subseparable bicomplete T0-quasi-metric space exists and is unique up to isometry.

Proof. Let X and Y be two such spaces. They possess the one-point-extension property by Theorem 1 and, starting with
the trivial isometry between any two singletons in X resp. Y and using Lemma 9, one concludes that there is an isometry
between X and Y . Hence the uniqueness of the space under consideration is proved. In the following we shall deal with
the existence of such a space, which will finally be established in Theorem 3. �

The following property generalizes the one-point-extension property (∗).

Definition 3. Let us say that a T0-quasi-metric space (X,d) has the (quasi-metric) approximate one-point-extension property if
for every finite subspace A ⊆ X , every abstract T0-quasi-metric one-point-extension A′ = A ∪ {b′} with quasi-metric dA′ and
every ε > 0 there exists b ∈ X such that

sup
a∈A

(
dA′

(
b′,a

) .− d(b,a)
) ∨ sup

a∈A

(
d(a,b)

.− dA′
(
a,b′)) < ε

and

sup
a∈A

(
d(b,a)

.− dA′
(
b′,a

)) ∨ sup
a∈A

(
dA′

(
a,b′) .− d(a,b)

)
< ε.

Of course, the preceding definition could be stated more concisely with the help of | · |. But the given formulation has
the advantage that it stresses the connection with the distance D used throughout this article.

Lemma 10. The bicompletion ( X̃,d) of a T0-quasi-metric space X with the approximate one-point-extension property has the approx-
imate one-point-extension property.

Proof. Let A be a finite T0-quasi-metric subspace of the bicompletion X̃ of X and let A′ = A ∪ {b′} be an abstract T0-quasi-
metric one-point-extension of A. Let ε > 0. By density of the set X in the metric space ( X̃,ds), we find a bijection i : A → X
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such that ds(a, i(a)) < ε/3 for all a ∈ A. Amalgamate the T0-quasi-metric space A′ and A ∪ i(A) along A and consider the
subspace B = i(A) ∪ {b′} of the amalgam Z . Since X has the approximate one-point-extension property, there is an element
b ∈ X with

sup
a∈A

(
dZ

(
b′, i(a)

) .− d
(
b, i(a)

)) ∨ sup
a∈A

(
d
(
i(a),b

) .− dZ
(
i(a),b′)) < ε/3

and

sup
a∈A

(
d
(
b, i(a)

) .− dZ
(
b′, i(a)

)) ∨ sup
a∈A

(
dZ

(
i(a),b′) .− d

(
i(a),b

))
< ε/3.

Consequently

sup
a∈A

(
dA′

(
b′,a

) .− d(b,a)
) ∨ sup

a∈A

(
d(a,b)

.− dA′
(
a,b′)) < ε,

since for instance

sup
a∈A

(
dA′

(
b′,a

) .− d(b,a)
)
� sup

a∈A

[(
dA′

(
b′,a

) .− dZ
(
b′, i(a)

))

+ (
dZ

(
b′, i(a)

) .− d
(
b, i(a)

)) + (
d
(
b, i(a)

) .− d(b,a)
)]

< ε.

Here for the first difference of the sum we can use the following argument: |dA′ (b′,a) − dZ (b′, i(a))| = |dZ (b′,a) −
dZ (b′, i(a))| � (dZ )s(a, i(a)) = ds(a, i(a)).

Similarly we also see that

sup
a∈A

(
d(b,a)

.− dA′
(
b′,a

)) ∨ sup
a∈A

(
dA′

(
a,b′) .− d(a,b)

)
< ε.

We conclude that X̃ has the approximate one-point-extension property. �
Lemma 11. A bicomplete T0-quasi-metric space (X,d) with the approximate one-point-extension property possesses the one-point-
extension property.

Proof. Let A ⊆ X be a finite subspace of X and let A′
1 = A ∪ {b′} be an abstract T0-quasi-metric one-point-extension of A

with T0-quasi-metric dA′
1
. For the following induction we also set A0 = A and K1 = 1.

We shall choose a ds-Cauchy sequence (bn)n∈N of elements of X in such a way that for all a ∈ A the sequence
(d(a,bn))n∈N converges to dA′

1
(a,b′), as well as the sequence (d(bn,a))n∈N converges to dA′

1
(b′,a). Hence, denoting by c

the τ (ds)-limit of (bn)n∈N in X , which exists by bicompleteness of X , the subspace A ∪ {c} of X and A′
1 are isometric

T0-quasi-metric spaces. Hence we shall conclude that (X,d) has the one-point-extension property (∗).
The construction is by induction on i ∈ N. At step i � 1 we are given a positive constant Ki and a T0-quasi-metric

one-point-extension A′
i = {b′} ∪ Ai−1 of the subspace Ai−1 of X where Ai−1 = A ∪ {b1, . . . ,bi−1}.

For i � 2 take as constant Ki = max{dA′
i
(b′,bi−1),dA′

i
(bi−1,b′)} where we observe that for i � 2, Ki is positive, since dA′

i

is a T0-quasi-metric.
For i � 1 we approximate by bi ∈ X such that |dA′

i
(b′,a)−d(bi,a)| < Ki

2 and |d(a,bi)−dA′
i
(a,b′)| < Ki

2 whenever a ∈ Ai−1.
Of course, bi exists, since X has the approximate one-point-extension property.

For i � 1 we set Ai = Ai−1 ∪ {bi} and take the amalgam Z ′
i+1 (with carrier set A′

i+1) of Ai and A′
i along Ai−1. Now

we use a modification of a trick due to Urysohn that will finally assure convergence of the constructed sequence (bi)i∈N .
A modification of the method of Urysohn seems necessary, since a T0-quasi-metric may attain nontrivial zero-distances.

For i � 1 we modify the space Z ′
i+1 by setting dA′

i+1
(b′,bi) = min{dZ ′

i+1
(b′,bi),2−i} and dA′

i+1
(bi,b′) = min{dZ ′

i+1
(bi,b′),

2−i}. No other distances are changed, that is, dA′
i+1

= dZ ′
i+1

otherwise. In particular for each i � 1, (A′
i,dA′

i
) is a subspace of

(A′
i+1,dA′

i+1
) and the subset Ai of (A′

i+1,dA′
i+1

) carries the T0-quasi-metric inherited from X .

Note that for each i � 2 we have Ki � 2−(i−1) by the definition of dA′
i
(b′,bi−1) and dA′

i
(bi−1,b′). Observe that by defini-

tion of K1 the latter inequality also holds for i = 1.
It remains to show that for each i � 1, dA′

i+1
is a T0-quasi-metric. The T0-axiom is obviously satisfied, since dZ ′

i+1
is a

T0-quasi-metric. So we need only to verify the triangle inequality for dA′
i+1

. Note that moving from Z ′
i+1 to A′

i+1 we have
changed at most two distances. Because dZ ′

i+1
itself satisfies the triangle inequality, it suffices to consider the case that we

reduce the distances of Z ′
i+1 to the ones given by dA′

i+1
in exactly one instance in that inequality; of course, if we reduce

on the left-hand side of the triangle inequality, it remains satisfied.
Then obviously we have only to consider four nontrivial cases, one of which we deal next in detail:
For i � 1 we have to show for instance that for any a ∈ Ai−1, d(bi,a) � dA′

i+1
(bi,b′)+dA′

i+1
(b′,a) where dA′

i+1
(bi,b′) = 2−i .

But this is satisfied, since for i � 1 we have, by the approximation assumption, 2−i � Ki
2 > d(bi,a)−dA′

i
(b′,a) = d(bi,a)−

dA′ (b′,a) where a ∈ Ai−1.

i+1
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Similarly, one can show that for any a ∈ Ai−1, d(a,bi) � dA′
i+1

(a,b′) + dA′
i+1

(b′,bi) and dA′
i+1

(b′,a) � dA′
i+1

(b′,bi) + d(bi,a)

and dA′
i+1

(a,b′) � d(a,bi) + dA′
i+1

(bi,b′). Thus dA′
i+1

is indeed a T0-quasi-metric whenever i � 1.

Hence we have finished the description of our induction. It remains to verify that (bi)i∈N is a ds-Cauchy sequence in X .
For each i � 1, by the approximation assumption we have |d(bi+1,bi) − dA′

i+1
(b′,bi)| <

Ki+1
2 . Thus d(bi+1,bi) �

dA′
i+1

(b′,bi) + Ki+1
2 � 2−i + Ki+1

2 � 2 · 2−(i+1) + 2−(i+1) = 3 · 2−(i+1) . Analogously d(bi,bi+1) � 3 · 2−(i+1) whenever i � 1.

We conclude that (bi)i∈N is a Cauchy sequence on (X,ds).
By the approximation conditions, we obviously have, dA′

1
(b′, x) = limn→∞ d(bn, x) and dA′

1
(x,b′) = limn→∞ d(x,bn) when-

ever x ∈ A. Let c be the τ (ds)-limit of (bn)n∈N in X . Then dA′
1
(b′, x) = d(c, x) and dA′

1
(x,b′) = d(x, c) whenever x ∈ A.

We conclude that X indeed has the one-point-extension property. �
We are now ready to complete the proof of Theorem 2. Starting with an arbitrary (nonempty) T0-quasi-metric

space X , one can form an increasing sequence of iterated T0-quasi-metric extensions of the form X, F (X), F 2(X) =
F (F (X)), . . . , F n(X) = F (F n−1(X)), . . . . Furthermore set F ω(X) = ⋃∞

i=1 F n(X) (compare Lemma 8). Then F ω(X) is, in
a natural way, a T0-quasi-metric space, containing an isometric copy of X (compare Remark 6).

Lemma 12. Let A be a finite subspace of a T0-quasi-metric space (X,d) and let A′ = A ∪ {b′} be an abstract T0-quasi-metric one-
point-extension of A. Then the isometric embedding a �→ e X (a) of A into F (X) (see Lemma 2 and Remark 6) extends to an isometric
embedding A′ → F (X).

Proof. The Katětov function pair fb′ (a) = (dA′ (b′,a),dA′ (a,b′)) (where a ∈ A) on A controls a function pair f ∈ Q (X,d)

according to Lemma 6. We have D( fa, f ) = f2(a) = dA′ (a,b′) and D( f , fa) = f1(a) = dA′ (b′,a) whenever a ∈ A by Lemma 3
and the definition of f . Hence { fa: a ∈ A} ∪ { f } is a subspace of F (X) isometric to A′ . �
Theorem 3. Let X be an arbitrary (nonempty) supseparable T0-quasi-metric space. The bicompletion of the space F ω(X) yields a copy
of qU.

Proof. Given a finite subspace S of F ω(X), there is n ∈ N such that S ⊆ F n(X). As a consequence of Lemma 12 the Katětov
function pairs on F n(X) representing the abstract one-point-extensions of S belong to F n+1(X) ⊆ F ω(X). Hence F ω(X)

has the one-point-extension property, which is also true for its bicompletion by Lemmas 10 and 11. Since that bicompletion
is supseparable as a consequence of Lemma 8, the proof of Theorem 2 is finished. �

It is natural to study the conjugate and the supremum space of the Urysohn T0-quasi-metric space qU. So let us consider
the space qU with its quasi-metric, say, D .

We first note that (qU, D−1) is isometric to (qU, D), because (qU, D−1) is obviously supseparable, bicomplete, and also
has the one-point-extension property, as the following simple argument shows: Let (A,d) be a finite subspace of (qU, D−1)

with isometric embedding i and let (A′,d′) be an abstract T0-quasi-metric one-point-extension of (A,d). Then by the
one-point-extension property of (qU, D) the isometric embedding i : (A,d−1) → (qU, D) extends to an isometric embedding
j : (A′, (d′)−1) → (qU, D). Obviously j is also an isometric embedding of (A′,d′) into (qU, D−1) extending i. Hence (qU, D−1)

has the one-point-extension property and we are done.
The supremum space (qU, Ds) requires a more detailed investigation. Obviously the space (qU, Ds) is a complete and

separable metric space. By q-universality each separable metric space is isometric to a subspace of (qU, D), hence, as a
metric space, to a subspace of (qU, Ds). In particular U is isometric to a subspace of (qU, Ds). On the other hand observe
that (qU, Ds) is a separable metric space and therefore embeds isometrically into U.

However it follows from Example 2 below that (qU, Ds) is not a (metric) ultrahomogeneous space. In fact we shall
show that (qU, Ds) does not have the (metric) one-point-extension property (compare [11, Theorem 3.4.4]). Hence (qU, Ds)

cannot be isometric to the universal ultrahomogeneous separable complete Urysohn metric space U.

Example 2. Let A = {0,1,2} be equipped with the T0-quasi-metric d where d(x, y) = 0 if x � y and d(x, y) = 1 other-
wise. Then ds is the discrete metric on A. Extend ds to a metric m on A′ = A ∪ {ω} such that m(ω,0) = 1 = m(2,ω) and
m(ω,1) = 2. One readily checks that m is a metric on A′ .

In order to reach a contradiction suppose that there is a T0-quasi-metric d′ on A′ such that d′ restricted to A equals
d and (d′)s = m. Then 1 + 0 = (d′)s(ω,0) + d(0,1) � d′(ω,0) + d′(0,1) � d′(ω,1). Similarly 0 + 1 = d(1,2) + (d′)s(2,ω) �
d′(1,2) + d′(2,ω) � d′(1,ω). Therefore 1 � (d′)s(ω,1) = m(ω,1) = 2. We have reached a contradiction and conclude that d′
does not exist.

With the help of Example 2 we can now establish that (qU, Ds) does not have the (metric) one-point-extension property:
By q-universality of (qU, D), the T0-quasi-metric space (A,d) of Example 2 embeds isometrically into (qU, D) by some
map i. So (A,ds) embeds isometrically by that map i into (qU, Ds). Let (A′,m) be the abstract (metric) one-point-extension
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of (A,ds) constructed in Example 2. In order to reach a contradiction, suppose that i extends to an isometric embedding j
of (A′,m) into (qU, Ds). Then D restricted to j(A′) × j(A′) would yield a T0-quasi-metric such that ( j(A), D) is isometric
to (A,d) and such that ( j(A′), Ds) is isometric to (A′,m), but such a D on j(A′) × j(A′) does not exist according to the
argument given in Example 2.
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