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Abstract This paper presents the parametric optimization on surface quality characteristics (Ra,

Rz and Rt) in hard turning of EN31 steel using multilayer coated carbide insert (TiN/TiCN/

Al2O3) and also finds correlations. The experiments have been conducted based on Taguchi’s L9

orthogonal array. Multiple linear regression analysis has been utilized to find the correlations.

The integrated multi-response optimization approach using CQL concept in WPCA coupled with

Taguchi technique has been implemented. Based on the S/N ratio, the optimal process parameters

for surface roughness i.e. Ra and Rz are the depth of cut at level 3 (0.5 mm), the cutting speed at

level 3 (140 m/min), and the feed at level 1 (0.04 mm/rev). The optimal process parameters for Rt

are found to be the depth of cut at level 3 (0.5 mm), the cutting speed at level 2 (100 m/min), and the

feed at level 1 (0.04 mm/rev). Feed and depth of cut are found to be the significant cutting param-

eters affecting the responses at 95% confidence limit from ANOVA study. The first order model

presented high correlation coefficient between the experimental and predicted values. The optimal

parametric combination for multi-response (Ra, Rz and Rt) becomes d3–v3–f1 and is greatly

improved.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Due to the development of newer engineering materials and

targets to obtain higher productivity with good surface quality,
the research in the area of cutting tool materials is continuing.
The essential requirements or desirable properties for cutting

tool materials include high hardness, high hot-hardness, high
mechanical strength, stiffness and transverse rupture strength
(TRS), high fracture toughness, chemical stability, high fatigue

resistance, high heat resistance, high thermal shock resistance,
adequate lubricity, resistance to adhesion and diffusion respec-
tively. The thermal conductivity property of the tool material
should be low at the surface to resist incoming of heat and high

at the core to quickly dissipate the heat entered. High perfor-
mance in all of these attributes simultaneously is generally not
possible. The variation in the requirement of thermal conduc-

tivity has caught the attention of researchers for development
of coated carbide tools. This has brought a revolution in metal
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cutting industry over last 30 years and developed bilayer and
multilayer coated carbide inserts.

Nowadays, hardened steels about 60 HRC are successfully

machined by both mixed ceramic and CBN tools and slowly
replace traditional grinding operations. The main advantages
of hard turning include reduction of manufacturing cycles

and costs, decrease of setup time, reduction of number of nec-
essary machine tools, achievement of comparable surface fin-
ish, elimination of part distortion caused by heat treatment,

elimination of environmentally harmful coolant, low capital
investment cost and low energy consumption [1]. Despite the
high potential of hard machining with respect to time, cost
and environment, industrial application of this technology is

still limited. This is due to the uncertainties related to the sur-
face integrity, part accuracy and economical feasibility. Con-
sidering these challenges, research in field of hard turning

will definitely be worthwhile.

2. Literature review and objectives

2.1. Performance of coated carbide, ceramic and CBN insert in
hard machining

Rech [2] studied various uncoated and coated carbide inserts
such as PVD TiN, TiAlN and TiAlN + MoS2 and its tribolog-

ical performance during machining. The TiN and (Ti,Al)N
+MoS2 coatings were observed to be best for enhancement
of tribological characteristics compared to uncoated carbide

tools i.e. reduction of the tool-chip contact area, reduction
of secondary shear zone thickness and of the interface temper-
ature during the machining of 27MnCr5 steels. Lim et al. [3]
revealed that coating on cutting tool surface provides higher

crater wear resistance at high cutting speed and feed. Reduc-
tion of tool wear has been observed for TiN coated HSS tool
than uncoated tool in turning hot rolled medium carbon steel.

Gökkaya and Nalbant [4] studied various coated and uncoated
carbide insert in dry turning AISI 1015 steel. The result
revealed that lower surface roughness was obtained using

CVD multilayer coated tool outermost with TiN compared
to uncoated, coated with AlTiN and coated with TiAlN using
the PVD technique. Wang [5] observed that marginal reduc-
tion of cutting force occurred during turning mild steel with

the use of multilayer hard surface coatings CVD (TiC + Al2-
O3 + TiN) compared to uncoated carbide insert. Grzesik
and Zalisz [6] observed that abrasion, fracture, plastic flow,

material transfer and tribochemical effects involved in dry
hard machining of AISI 5140 steel (60 HRC) using mixed cera-
mic insert. Singh and Rao [7] found that feed rate is the signif-

icant factor for surface roughness followed by nose radius and
cutting velocity during finish hard turning of AISI 52100 steel
using mixed ceramic inserts (Al2O3 + TiCN). Yusof et al. [8]

compared the machining performance of wiper coated ceramic
tool (TiN coating with mixed Al2O3/TiCN substrate) and con-
ventional ceramic for D2 steel (54–55 HRC). Wiper tool pro-
vides slightly shorter tool life but with good finer surface

finish compared to conventional tool. Paiva et al. [9] per-
formed hard turning of AISI 52100 steel using TiN coated
mixed ceramic tool (Al2O3 + TiC). Parametric conditions

such as cutting speed of approximately 238 m/min, feed rate
of 0.08 mm/rev and depth of cut of 0.32 mm provide maximum
material removal rate with good surface quality during
machining. Gaitonde et al. [10] experimentally observed that
TiN coated wiper ceramic insert (Al2O3 + TiC) performed
better in context to surface roughness and tool wear, while

the conventional ceramic insert was beneficial in decreasing
the machining force, power and specific cutting force during
hard turning of D2 steel (59–61 HRC). Zhang et al. [11] inves-

tigated the surface integrity of hardened bearing steel (62–
63 HRC) using CBN insert and superior surface integrity
was generated. For surface roughness, feed rate was found to

be the most influencing impact in machining. Özel et al. [12]
studied on hard turning of AISI H13 hot work tool steel
(55 HRC) using CBN inserts. For surface roughness, work-
piece hardness, cutting edge geometry, feed rate and cutting

speed were found to be statistically significant. Particularly,
honed edge geometry and lower workpiece surface hardness
yield better surface roughness, lower tangential and radial

forces during machining. Jacobson [13] studied the surface
integrity aspects during hard turning of M50 steels (61 HRC)
using ceramic and CBN insert. Effective rake angle and tool

nose radius influence on residual stress. Higher negative rake
angle and smaller nose radius create a more compressive resid-
ual stress profile. The hot pressed ceramic produced a better

surface than the whisker ceramic. Yallese et al. [14] investi-
gated on hard turning of X200Cr12 steel (60 HRC) using cera-
mic and CBN insert and 180 m/min cutting speed was found to
be limiting factor for both inserts. CBN tool induced lower

surface roughness than ceramic insert under limiting criteria
of wear. The recommended optimal cutting speed was
observed to be 120 m/min implementing CBN tool and 60 m/

min cutting speed for ceramic insert respectively. Sahoo and
Sahoo [15] studied some comparative performance of uncoated
and outer multilayer TiN and ZrCN coated carbide insert dur-

ing hard machining of AISI 4340 steel and also economically
justified.

2.2. Optimization and modeling aspects in machining

Noordin et al. [16] performed turning operation of AISI 1045
steel (187 BHN) using multilayer coated carbide insert (TiCN/
Al2O3/TiN) of two types i.e. CNMG120408-FN and

TNMG120408-FN through Central composite design (CCD)
and response surface methodology (RSM). Most significant
factor for surface roughness and the tangential force is

observed to be feed during analysis. Risbood et al. [17] studied
during turning operation using TiN coated tools and revealed
that neural network model sufficiently predicts the surface fin-

ish with reasonable degree of accuracy. Suresh et al. [18] per-
formed turning operation of mild steel workpiece using TiN
coated carbide inserts and developed surface roughness predic-
tion model through RSM. Experimental findings revealed that

surface roughness decreases with an increase of cutting speed
and increased as feed increases. Surface roughness increases
as the depth of cut and nose radius increases. Using genetic

algorithm (GA) technique, optimal machining condition was
obtained. Davim [19] studied machining operation using car-
bide insert on surface roughness using Taguchi method and

found a correlation with multiple linear regression analysis.
Study concluded that cutting speed and interaction between
cutting speed/feed had the higher impact on surface roughness

followed by feed. Depth of cut did not show significance on
surface roughness. Dabnun et al. [20] conducted dry machining



Figure 1 Lathe (HMT, NH22).
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of glass ceramic using uncoated carbide insert through facto-
rial DOE and response surface methodology and developed
surface roughness model. For surface roughness, feed rate

was observed to be most dominant factor followed by cutting
speed and depth of cut. Nian et al. [21] performed multi-
response optimization during turning using normalized Tagu-

chi loss function. For multi-responses such as tool life, cutting
force, and surface finish, the most significant cutting parame-
ters were feed rate and cutting speed. Datta et al. [22] per-

formed submerged arc welding using full factorial design and
developed RSM model. Multi-response optimization has been
done using Gray-based Taguchi method and was improved
through this methodology. Haq et al. [23] utilized gray based

orthogonal array method to optimize multi-responses in dril-
ling Al/SiC metal matrix composite that were greatly
improved. Lin [24] optimized multi-responses i.e. tool life, cut-

ting force, and surface roughness during turning using gray
relational analysis coupled with Taguchi method that are
greatly improved. Tzeng et al. [25] optimized process parame-

ters in turning of high carbon high chromium tool steel
(25 HRC) with TiN coated carbide insert through Gray rela-
tional analysis. From the study, depth of cut was found to

be the most significance parameter on the roughness average
and the cutting speed was the most dominant parameter on
the roughness maximum and the roundness. Sahoo and Sahoo
[26] performed hard turning of 4340 steel (HRC 47 ± 1) using

multilayer coated carbide insert and developed mathematical
model and multi-response parametric optimization through
response surface methodology and gray-based Taguchi

method. Sahoo and Sahoo [27] investigated experimental and
optimization study in turning of D2 steel using TiN coated car-
bide insert through Taguchi technique and response surface

methodology for development of model. Sahoo et al. [28] stud-
ied dry turning of AISI 1040 steel using coated carbide insert
through Taguchi’s design of experiment and developed model

using regression analysis. Multi-optimization of process
parameter has been done through gray relational analysis
and model adequacy has been checked and found to be statis-
tically significant.

From the literature review, multilayer coated carbide
inserts outperform over uncoated carbide inserts in the range
of lower hardness of workpiece. The cost of these inserts is

quite less compared to PCBN and ceramic. However their
implementation to machine hardened steel under dry environ-
ment in the range of HRC 50–60 is lacking. Very little investi-

gations have been carried out to judge the performances.
Design of experiment and statistical methods have commonly
been used for analysis, prediction and optimization in machin-
ing. The Taguchi approach is found to be popular for solving

optimization problems in metal machining for single objective
function. In shop floor, surface qualities are considered to be
the most important parameters for judging machinability.

Hence seeking a multiresponse optimization technique to pre-
dict a set of optimum process parameters to obtain better sur-
face finish simultaneously will be worthwhile. It is observed

from literature that the use of multi-response optimization
approach like principal component analysis has rarely been
adopted in hard turning applications.

Hence, the present work has been focused to study the per-
formance of multilayer coated carbide tools in hard machining
under different parametric ranges. Furthermore, optimization
of process parameter for multiple surface quality characteris-
tics (Ra, Rz and Rt) is essential for successful implementation
of hard turning instead of cylindrical grinding. Thus, the
objective of paper was to optimize the process parameter indi-

vidually and simultaneously for surface quality characteristics
such as Ra, Rz and Rt in hard turning of EN 31 steel
(55 HRC) using multilayer coated carbide inserts (TiN/

TiCN/Al2O3) under dry environment through Taguchi and
weighted principal component analysis (WPCA). Correlations
have been developed using multiple linear regression analysis.

3. Experimental procedures

The workpiece material taken was EN 31 steel in the form of

round bar of 40 mm diameter and 120 mm long hardened to
55 HRC. The test specimen is especially used as bearing mate-
rial. The conventional high rigid lathe (HMT, NH 22) of 2040

maximum spindle speed and 11 kW power was used for exper-
imentation under dry cutting environment (Fig. 1). The multi-
layer coated carbide insert (TiN/TiCN/Al2O3) of ISO
geometry CNMG 120408 was used and mounted with a ISO

designation PCLNR 2525M12 tool holder. The insert with
tool holder has the nose radius of 0.8 mm and major cutting
edge angle or approach angle of 95� with back rake angle of

�6�. The surface roughness parameters (Ra, Rz and Rt in
microns) were measured by surface roughness tester (Taylor
Hobson, Surtronic 25) where sampling length and assessment

were taken as 0.8 mm and 4 mm respectively. Ra is called
the arithmetic surface roughness average; Rz and Rt are the
maximum peak-to-valley height within sampling length and
assessment length respectively. The measurements have been

taken at four different locations of the workpiece and average
values are recorded. The workpiece specimens were cleaned
first to remove the rust layer to achieve the required diameter.

4. Determination of optimal process parameters for individual

performance characteristics

In this section, optimal process parameters for individual per-
formance characteristics i.e. Ra, Rz and Rt are obtained. The
experimental results are assessed using signal-to-noise ratio (S/

N) and analysis of variance (ANOVA). The optimal parame-
ters are judged based on the results of mean S/N ratio table
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of each parameter and significant influence of parameters on
responses by ANOVA analysis. Further, the optimal parame-
ters are verified by confirmation run.

4.1. Orthogonal array experimental design

For the experiment, three process parameters with three levels

are selected which are shown in Table 1. For the full factorial
design, it requires twenty-seven experimental runs which con-
sume lots of time and cost. To avoid this, Taguchi proposed

a special designed orthogonal array called L9 where nine exper-
iments could be conducted. The experimental layout for the
three cutting parameters using the L9 orthogonal array is

shown in Table 2.

4.2. Analysis of signal-to-noise ratio

There are three categories for evaluating signal-to-noise ratios

(S/N). They are the lower-the-better, the Higher-the-better and
the nominal-the-better. For the performance characteristics of
surface roughness, lower-the-better is taken for obtaining opti-
Table 1 Process parameters and their levels.

Parameters Notation Unit Levels of parameters

Level 1 Level 2 Level 3

Depth of cut d mm 0.1 0.3 0.5

Cutting speed v m/min 60 100 140

Feed f mm/rev 0.04 0.08 0.12

Table 2 Taguchi L9 standard orthogonal array.

Run no. Factor d Factor v Factor f

1 1 1 1

2 1 2 2

3 1 3 3

4 2 1 2

5 2 2 3

6 2 3 1

7 3 1 3

8 3 2 1

9 3 3 2

Table 3 Experimental results and corresponding S/N ratios.

Run Process parameters and levels Experimenta

d v f Ra

1 0.1 60 0.04 0.73

2 0.1 100 0.08 0.95

3 0.1 140 0.12 1.19

4 0.3 60 0.08 0.68

5 0.3 100 0.12 0.81

6 0.3 140 0.04 0.35

7 0.5 60 0.12 0.85

8 0.5 100 0.04 0.22

9 0.5 140 0.08 0.31
mal machining performances. A lower-the-better criterion (in
dB) is used for surface roughness as follows [29]:

S=NLB ¼ �10log10
1

n

Xn
i¼1

y2i

 !
ð1Þ

where y is the value of surface roughness for the ith test in that

trial.
Table 3 shows the experimental results and corresponding

S/N ratios of surface roughness for Ra, Rz and Rt calculated

through Eq. (1). Next step is to calculate the mean S/N ratio at
different levels of process parameters. For example, the mean
S/N ratio for the depth of cut at levels 1, 2 and 3 can be calcu-

lated by averaging the S/N ratios for the experiments 1–3, 4–6,
and 7–9 respectively and so on for other parameters such as
cutting speed and feed. Tables 4–6 represent the mean S/N
ratio for each level of the cutting parameters called mean S/

N response table for surface roughness parameters such as
Ra, Rz and Rt. Signal represents the desirable values and noise
l results Signal-to-noise ratios

Rz Rt Ra Rz Rt

3.04 4.54 2.7335 �9.6575 �13.1411

3.22 5.65 0.4455 �10.1571 �15.041

3.56 6.85 �1.5109 �11.029 �16.7138

2.14 3.12 3.3498 �6.6083 �9.8831

2.75 3.95 1.8303 �8.7867 �11.9319

1.43 2.65 9.1186 �3.1067 �8.4649

2.55 3.12 1.4116 �8.1308 �9.8831

1.23 1.9 13.1515 �1.7981 �5.5751

1.46 2.72 10.1728 �3.2871 �8.6914

Table 4 Response table mean S/N ratio for Ra.

Symbol Process

parameters

Mean S/N ratio Rank

Level-

1

Level-

2

Level-

3

Max–

Min

d Depth of cut 0.556 4.7663 8.2453 7.6893 2

v Cutting

speed

2.4983 5.1425 5.9268 3.4285 3

f Feed 8.3346 4.656 0.577 7.7576 1

Total mean S/N ratio = 4.5225

Table 5 Response table mean S/N ratio for Rz.

Symbol Process

parameters

Mean S/N ratio Rank

Level-1 Level-

2

Level-

3

Max–

Min

d Depth of

cut

�10.281 �6.167 �4.405 5.876 1

v Cutting

speed

�8.132 �6.914 �5.808 2.325 3

f Feed �4.854 �6.684 �9.315 4.461 2

Total mean S/N ratio = �6.6129



Table 6 Response table mean S/N ratio for Rt.

Symbol Process parameters Mean S/N ratio Rank

Level-1 Level-2 Level-3 Max–Min

d Depth of cut �14.965 �10.093 �8.05 6.915 1

v Cutting speed �10.969 �10.849 �11.29 0.441 3

f Feed �9.06 �11.205 �12.843 3.783 2

Total mean S/N ratio = �11.0362
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Figure 2 Effect of depth of cut on surface roughness parameters

(Ra, Rz and Rt).
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Figure 3 Effect of cutting speed on surface roughness param-
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Figure 4 Effect of feed on surface roughness parameters (Ra, Rz

and Rt).
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represents the undesirable values. Therefore, highest S/N ratio
gives the optimal parametric combination for the responses.

Thus, from mean S/N response table, the optimal process
parameters for surface roughness i.e. Ra and Rz are the depth
of cut at level 3 (0.5 mm), the cutting speed at level 3 (140 m/
min), and the feed at level 1 (0.04 mm/rev) respectively. Simi-

larly the optimal process parameters for Rt are found to be
the depth of cut at level 3 (0.5 mm), the cutting speed at level
2 (100 m/min), and the feed at level 1 (0.04 mm/rev) respec-

tively. Figs. 2–4 show the effect of process parameters such
as depth of cut, cutting speed and feed on surface roughness
parameters such as Ra, Rz and Rt respectively. Surface rough-

ness parameters decrease with increase in depth of cut up to
0.2 mm and then increase with rise of depth of cut. Substantial
decrease of surface roughness is noticed with rise of cutting

speeds and may be due to drop of cutting forces in hard
machining which brings the stability of machining system. Fur-
thermore, surface roughness increases with increase of feed

because radial force is prominent in hard machining which
thus enhances vibrations and dynamic stability in the cutting
zone and thus degrades the surface quality of the machined
surface.

4.3. Analysis of variance

Analysis of variance is used to provide the information about

significance of process parameters affecting the responses.
ANOVA is calculated at 95% confidence limit. Tables 7–9
show the results of ANOVA for all surface quality character-

istics i.e. Ra, Rz and Rt. From the results, it can be concluded
that the feed and depth of cut are the significant cutting
parameters affecting the responses as their P-value (Probabil-

ity of significance) is less than 0.05. Cutting speed has been
found to be the insignificant parameter for all surface rough-
ness characteristics (Ra, Rz and Rt).



Table 7 ANOVA for S/N ratio of Ra.

Source DF SS MS F P Remarks

d 2 88.955 44.477 26.4 0.036 Significant

v 2 19.361 9.681 5.75 0.148 Insignificant

f 2 90.35 45.175 26.81 0.036 Significant

Error 2 3.37 1.685

Total 8 202.036

Table 8 ANOVA for S/N ratio of Rz.

Source DF SS MS F P Remarks

d 2 54.555 27.278 53.24 0.018 Significant

v 2 8.112 4.056 7.92 0.112 Insignificant

f 2 30.177 15.088 29.45 0.033 Significant

Error 2 1.025 0.512

Total 8 93.869

Table 9 ANOVA for S/N ratio of Rt.

Source DF SS MS F P Remarks

d 2 75.735 37.868 163.93 0.006 Significant

v 2 0.312 0.156 0.67 0.597 Insignificant

f 2 21.59 10.795 46.73 0.021 Significant

Error 2 0.462 0.231

Total 8 98.099

Table 11 Results of confirmation experiment for Rt.

Initial process

parameters

Optimal process

parameters

Prediction Experiment

Level d2–v2–f2 d3–v2–f1 d3–v2–f1

Rt 3.61 1.9

S/N ratio (dB)

for Rt

�11.1501 �5.8866 �5.575

Improvement of S/N Ratio for Rt = 5.5751

Table 12 Normalized experimental data.

Sl. No Normalized data for surface roughness characteristics

Ra Rz Rt

Ideal 1 1 1

1 0.3013 0.4046 0.4185

2 0.2315 0.3819 0.3362

3 0.1848 0.3455 0.2773

4 0.3235 0.5747 0.6089

5 0.2716 0.4472 0.481

6 0.6285 0.8601 0.7169

7 0.2588 0.4823 0.6089

8 1 1 1

9 0.7096 0.8424 0.6985

Table 13 Check for correlation.

Sl.

No

Correlation between

responses

Pearson correlation

coefficient

Comment

1 Ra and Rz 0.966 Both are

correlated

2 Ra and Rt 0.906 Both are

correlated

3 Rz and Rt 0.932 Both are

correlated
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4.4. Confirmation tests

The next step is to conduct confirmation test to predict and
verify the improvements of performance characteristics using
the optimal level of process parameters. Tables 10 and 11 show

the results of confirmation experiment. The predicted S/N
ratio, ĉ, using the optimal level of the process parameters
can be calculated as [30] follows:

ĉ ¼ cm þ
Xo
i¼1

ð�ci � cmÞ ð2Þ

where cm is the total mean of the S/N ratio, �ci is the mean S/N
ratio at the optimal level, and o is the number of the main
Table 10 Results of confirmation experiment for Ra and Rz.

Initial process parameters

Level d2–v2–f2

Ra 0.75

Rz 2.51

S/N Ratio (dB) for Ra 2.4987

S/N Ratio (dB) for Rz �7.9934

Improvement of S/N Ratio for Ra = 8.5581

Improvement of S/N Ratio for Rz = 5.3227
design parameters that significantly affect the performance

characteristics.
Good agreement between the predicted machining perfor-

mance and actual machining performance is shown. The
improvement of S/N ratio from initial process parameters to

optimal process parameters is 8.5581 for Ra and 5.3227 for
Optimal process parameters

Prediction Experiment

d3–v3–f1 d3–v3–f1

0.28

1.36

13.4617 11.0568

�1.8412 �2.6707



Table 14 Results of principal component analysis (PCA).

W1 W2 W3

Eigen value 2.8695 0.0999 0.0306

Eigen vector �0.578 0.553 0.601

�0.583 0.235 �0.778

�0.571 �0.8 0.186

AP (accountability proportion) 0.957 0.033 0.01

CAP (cumulative accountability

proportion)

0.957 0.99 1.000

Table 15 Individual principal components.

Sl. No Individual principal components

Z1 Z2 Z3

Ideal �1.732 �0.012 0.009

1 �0.6489 �0.0731 �0.0558

2 �0.5484 �0.0511 �0.0954

3 �0.4665 �0.0384 �0.1061

4 �0.8697 �0.1731 �0.1394

5 �0.6923 �0.1295 �0.0952

6 �1.274 �0.0238 �0.158

7 �0.7784 �0.2306 �0.1064

8 �1.732 �0.012 0.009

9 �1.3001 0.0315 �0.0989

Table 16 Calculated MPI and CQL.

Sl. No MPI CQL S/N ratio of CQL

Ideal �1.6587 0 –

1 �0.6239 1.0339 �0.2895

2 �0.5274 1.1304 �1.0646

3 �0.4487 1.2091 �1.6492

4 �0.8394 0.8184 1.7406

5 �0.6677 0.9901 0.0864

6 �1.2215 0.4363 7.2042

7 �0.7536 0.9042 0.8747

8 �1.6578 0 –

9 �1.2441 0.4137 7.6662
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Rz respectively. Similarly, the improvement of S/N ratio from
initial process parameters to optimal process parameters is
5.5751 for Rt. Based on the result of the confirmation test,

the surface roughness (Ra) is decreased 2.68 times, Rz is
decreased 1.85 times and Rt is decreased 1.9 times respectively
in hard turning of EN31 steel using multilayer coated carbide

insert under dry cutting environment.

5. Correlations

The correlations between the process parameters (depth of cut,
cutting speed and feed) and the measured Ra, Rz and Rt were
obtained by multiple linear regression analysis. The equations

obtained were as follows:

Ra ¼ 0:7033� 1:2416 d� 0:0017 vþ 6:4583 f

R2 ¼ 95:2%; R2ðadjÞ ¼ 92:3% ð3Þ

Rz ¼ 3:0006� 3:8167 d� 0:0053 vþ 13:1667 f

R2 ¼ 93:2%; R2ðadjÞ ¼ 89:2% ð4Þ

Rt ¼ 3:9483� 7:75 dþ 0:006 vþ 20:125 f

R2 ¼ 91:8%; R2ðadjÞ ¼ 86:9% ð5Þ
The first order model presented high correlation coefficient

(R2 = 0.952, 0.932 and 0.918) explaining 95.2%, 93.2% and
91.8% of the variability in the Ra, Rz and Rt respectively.

Higher R2 (coefficient of correlation) indicates the goodness
of fit for the model to the actual data and high statistical sig-
nificance of the model [31]. R2 adjusted statistic analysis has

been included in the model because greater R2 value may not
indicate the accuracy of model. The R2 and adjusted R2 values
are very close and do not differ so much. The R2 adj values for
Ra, Rz and Rt are 92.3%, 89.2% and 86.9% respectively

which indicates 92.3%, 89.2% and 86.9% of variability are
explained by the model after considering the significant fac-
tors. It concludes that unnecessary terms are not included in

the model. It indicates good correlations between the experi-
mental and predicted values of surface quality characteristics.

6. Multi-response optimization using weighted PCA

Multi-response parametric optimization for three surface qual-
ity characteristics i.e. Ra, Rz and Rt has been done using

weighted principal component analysis (WPCA) coupled with
Taguchi method. The study applied WPCA to eliminate
response correlation and to evaluate independent or uncorre-

lated quality indices called principal components which were
aggregated by WPCA to compute overall quality index
denoted as Multi-Response Performance Index (MPI). A com-
bined quality loss (CQL) was then estimated which was opti-

mized (minimized) finally. The study combined WPCA and
Taguchi method for predicting optimal setting. Optimal result
was verified through confirmatory test [32].

The experimental data are normalized first (Table 12) con-
sidering lower-the-better criteria i.e. Xi*(k) = [min Xi (k)/Xi
(k)] where Xi*(k) is the normalized data of the kth element in

the ith sequence. Then, the correlations between the responses
are checked. Table 13 represents Pearson’s correlation coeffi-
cient between the responses. All responses are correlated to
each other due to non-zero value of correlation coefficients.
Principal component analysis (Eigen value, Eigen vector,

accountability proportion and cumulative accountability pro-
portion) is applied in order to eliminate the response correla-
tion and shown in Table 14.

Then correlated responses are converted to uncorrelated
quality indices called individual principal component (Z1, Z2
and Z3) and shown in Table 15.

Accountability proportion of individual principal compo-
nents has been treated as individual priority weights. Next,
Multi-Response Performance Index (MPI) is calculated using
the following equation:

MPI ¼ Z1� 0:957þ Z2� 0:033þ Z3� 0:01 ð6Þ
It is observed that the MPI values are negative. The concept

of CQL has been introduced which is the absolute deviation of
MPI from its ideal value and modulus of its yields positive

value. The modulus of deviation facilitates computing signal



Table 18 Results of confirmation experiment for multi-

responses.

Initial process

parameters

Optimal process

parameters

Experiment

Level d2–v2–f2 d3–v3–f1

Ra 0.75 0.28

Rz 2.51 1.36

Rt 3.61 1.81

S/N ratio of

CQL

0.6415 16.3232

Improvement of S/N ratio of CQL = 15.6817 dB

Table 17 Response table mean S/N ratio of CQL.

Symbol Process parameters Mean S/N ratio Rank

Level-1 Level-2 Level-3 Max–Min

d Depth of cut �1.0012 3.0105 4.2705 5.2717 1

v Cutting speed 0.7753 �0.4891 4.4071 �0.2294 2

f Feed 3.4574 2.7808 �0.2294 3.6867 3
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to noise (S/N) ratio and is shown in Table 16. This CQL is
treated as the single response objective function to minimize

it. Thus a multi-response optimization problem is converted
into a single response optimization problem which can be
solved by Taguchi method. Next, the mean response S/N ratio

of CQL is calculated for each level of parameters using tradi-
tional Taguchi method and shown in Table 17. Optimal para-
metric combination is derived from Table 17 taking higher

value of mean S/N ratio of CQL. Thus the predicted optimal
parametric combination becomes d3–v3–f1 i.e. depth of cut
(0.5 mm), cutting speed (140 m/min) and feed (0.04 mm/rev)
respectively. The three surface roughness characteristics i.e.

Ra, Rz and Rt at optimal level are found to be 0.28 lm,
1.36 lm and 1.81 lm respectively.

Finally, optimal results are verified by some confirmation

run. From confirmation experiment (Table 18), it shows the
improvement of quality characteristics. Also the improvement
of S/N ratio of CQL is found to be 15.6817 dB which shows

the feasibility of the weighted principal component analysis.
Therefore, it can be explained that high value of depth of cut
and cutting speed and low value of feed lower the surface
roughness in hard turning of EN31 steel using multilayer

coated carbide insert under dry environment.

7. Conclusions

Application of the Taguchi parameter design and weighted
principal component in the individual and simultaneous opti-
mization of responses in hard turning of EN 31 bearing steel

using multilayer coated carbide insert has been studied. The
following conclusions are made of the present study:

� Feed and depth of cut are found to be the significant cutting
parameters affecting the responses at 95% confidence limit.
Cutting speed has been found to be the insignificant param-

eter for all surface roughness characteristics (Ra, Rz and
Rt).
� Surface roughness increases with increase of feed rate and
depth of cut. Decreasing trends of surface roughness are
noticed with increase of cutting speed. The measured arith-
metic surface roughness average (Ra) is quite less than 1.6

microns indicating comparable cylindrical grinding opera-
tion for finishing the hardened components.

� Based on the S/N analyses, the optimal process parameters

for surface roughness i.e. Ra and Rz are the depth of cut at
level 3 (0.5 mm), the cutting speed at level 3 (140 m/min),
and the feed at level 1 (0.04 mm/rev). Similarly, the optimal

process parameters for Rt are found to be depth of cut at
level 3 (0.5 mm), cutting speed at level 2 (100 m/min) and
feed at level 1 (0.04 mm/rev) respectively.

� The improvement of S/N ratio from initial process param-
eters to optimal process parameters is 8.5581 for Ra, 5.3227
for Rz and 5.5751 for Rt respectively.

� Based on the result of the confirmation test, the surface

roughness (Ra) is decreased 2.68 times, Rz is decreased
1.85 times and Rt is decreased 1.9 times respectively in hard
turning of EN31 steel using multilayer coated carbide insert

under dry environment.
� The first order model presented high correlation coefficient
(R2 = 0.952, 0.932 and 0.918) explaining 95.2%, 93.2% and

91.8% of the variability in the Ra, Rz and Rt respectively
and indicates good correlations between the experimental
and predicted values of surface quality characteristics.

� Concept of CQL has been utilized to the objective function.

This facilitates the computation of S/N ratio using Taguchi
as its value remains always positive. The optimal parametric
combination for multi-response (Ra, Rz and Rt) becomes

d3–v3–f1 i.e. depth of cut: 0.5 mm, cutting speed: 140 m/
min and feed: 0.04 mm/rev and is greatly improved.

� The integrated optimization approach using WPCA cou-

pled with Taguchi technique is found to be efficient and
suitable in connection with correlated multi-response opti-
mization in hard machining.
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