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Abstract

We show equivalence of pure point diffraction and pure point dynamical spectrum for measurable dynamical systems built from
locally finite measures on locally compact Abelian groups. This generalizes all earlier results of this type. Our approach is based
on a study of almost periodicity in a Hilbert space. It allows us to set up a perturbation theory for arbitrary equivariant measurable
perturbations.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article on établit une équivalence entre le spectre purement ponctuel de diffraction et le spectre purement ponctuel
dynamique pour des systèmes dynamiques mesurables sur des groupes abéliens localement compacts de mesures finies. L’approche
adoptée utilise la notion de presque périodicité dans un espace de Hilbert. On peut ainsi introduire une théorie des perturbations
dans le cas de perturbations mesurables équivariantes arbitraires.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

This paper deals with mathematical diffraction theory and its relationship to dynamical systems. Our main
motivation comes from the study of aperiodic order.

The study of (dis)order is a key issue in mathematics and physics today. Various regimes of disorder have attracted
particular attention in recent years. A most prominent one is long range aperiodic order or, for short, aperiodic order.
There is no axiomatic framework for aperiodic order yet. It is commonly understood to mean a form of (dis)order at the
very border between periodicity and disorder. While giving a precise meaning to this remains one of the fundamental
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mathematical challenges in the field, a wide range of distinctive feature has been studied in such diverse fields as
combinatorics, discrete geometry, harmonic analysis, K-theory and Schrödinger operators (see e.g. the monographs
and proceeding volumes [6,19,31,33,38,44]).

Part of this research is certainly triggered by the actual discovery of physical substances exhibiting this form of
disorder twenty five years ago [39,20]. These substances were discovered experimentally by their unusual and rather
striking diffraction patterns. These exhibit a (large) pure point component (meaning order) with symmetries incom-
patible with periodicity (meaning aperiodicity). Of course, the discovery of quasicrystals by diffraction experiments
lead to a particular interest in diffraction theory of aperiodic order. Besides this externally motivation, there also is a
strong intrinsic mathematical interest in diffraction theory.

In order to be more precise on this point, let us shortly and with some grains of salt describe mathematical
diffraction theory (see Section 4 for details). In mathematical diffraction theory, the solid in question is modeled
by a measure. The diffraction is then described by the Fourier transform of this measure. The basic intuition is now
that order in the original measure will show up as a (large) pure point component in its Fourier transform. A partic-
ular instance of this intuition is given by the Poisson summation formula. To extend this intuition has been a driving
force of the conceptual mathematical study of diffraction for aperiodic order (see e.g. Lagarias’ article [22]). Let us
emphasize that this conceptual mathematical question has already attracted attention before the dawn of quasicrystals,
as can be seen e.g. in Meyer’s book [30] or the corresponding chapters in Queffélec’s book [35].

As mentioned already, we will be concerned with the connection of diffraction theory and dynamical systems.
Recall that (dis)order is commonly modeled by dynamical systems. The elements of the dynamical system then
represent the various manifestations of the ‘same’ form of disorder. This dynamical system then induces a unitary
representation of the translation group. The spectrum of the dynamical system is the spectrum of this unitary repre-
sentation. Starting with the work of Dworkin [11], it has been shown in various degrees of generality [17,18,40,42]
that the dynamical spectrum contains the diffraction spectrum (see [35] for a similar statement as well). On the other
hand, by the work of van Enter and Miȩkisz [12] it is clear that in general the dynamical spectrum may be strictly
larger than the diffraction spectrum.

In view of the results of [12], it is most remarkable that the two spectra are yet equivalent once it comes to pure point
spectrum. More precisely, pure point dynamical spectrum is equivalent to pure point diffraction spectrum. This type
of result has been obtained by various groups in recent years [23,2,15]. First Lee/Moody/Solomyak [23] showed the
equivalence for uniquely ergodic dynamical systems of point sets in Euclidean space satisfying a strong local regularity
condition viz finite local complexity. Their result was then extended by Gouéré [15] and by Baake/Lenz [2] to more
general contexts. In particular, it was freed from the assumptions of unique ergodicity and finite local complexity.
While there is some overlap between [15] and [2], these works are quite different in terms of models and meth-
ods. Gouéré deals with measurable point processes in Euclidean space, using Palm measures and Bohr/Besicovich
almost periodicity. Thus, his result is set in the measurable category. Baake/Lenz leave the context of points altogether
by dealing with translation bounded measures on locally compact Abelian groups. Their results are then, however,
restricted to a topological context. In fact, a key step in their setting is to replace the combinatorial analysis of [23] by
a suitable application of the Stone/Weierstrass theorem.

Given this state of affairs it is natural to ask whether the corresponding results of [15] and [2] on dynamical systems
can be unified. This amounts to developing a diffraction theory based on measure dynamical systems in the measurable
category. This is not only of theoretical interest. It is also relevant for perturbation theory. More precisely, one may
well argue that aperiodic order is topological in nature and, hence, a treatment of aperiodic order in the topological
category suffices. However, a more realistic treatment should allow for perturbations as well. By their very nature,
these perturbations should not be restricted to the topological category. They should rather be as general as possible.
In order to accommodate this a measurable framework seems highly desirable. The overall aim of this article is then
to provide such a framework. More precisely, the aims are to:

• develop a diffraction theory for measure dynamical systems unifying the corresponding treatments of [15,14]
and [2],

• set up a measurable perturbation theory for these systems.

Along our way, we will actually present,
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• a new method of proving the equivalence of pure point diffraction and pure point dynamical spectrum based on a
stability result for the pure point subspace of a unitary representation.

This stability result may be of independent interest. Its proof is close in spirit to considerations of [15] by relying
on almost periodicity on Hilbert space. It also ties in well with other recent work focusing on almost periodicity in the
study of pure point diffraction [4,27,32,41,43].

The paper is organized as follows:
In Section 2, we discuss some general facts concerning the point spectrum of a strongly continuous unitary repre-

sentation. The main abstract result, Theorem 2.3, gives a stability result for the pure point subspace. This result is then
applied to measure dynamical systems and gives Corollary 2.5. This corollary establishes that the subspace belonging
to the point spectrum is invariant under composition with bounded functions. These results are the main abstract new
ingredients in our reasoning. They may be useful in other situations as well. The dynamical systems we are dealing
with are introduced in Section 3. They are built from locally finite measures on locally compact Abelian (LCA)
groups. We study a dense set of functions on the corresponding L2-space and use it to obtain strong continuity of the
associated representation of G in Theorem 3.6. The setting for diffraction theory is discussed in Section 4. As shown
there, the topological approach of [2] can be extended to a measurable setting, once a certain finiteness assumption is
made. In particular, there is an abstract way to define the autocorrelation measure, Proposition 4.1. We then come to
the relationship between diffraction and the spectral theory of the dynamical systems in Section 5. The crucial link is
provided by Theorem 5.3 which states that the Fourier transform of the autocorrelation is a spectral measure for a sub-
representation. When combined with the abstract results of Section 2, this gives Theorem 5.5 showing the equivalence
of the two notions of pure point spectrum. In Section 6 we use our results to briefly set up a perturbation theory.

2. Point spectrum of strongly continuous unitary representations and measurable dynamical systems

In this section, we discuss the pure point subspace of a strongly continuous unitary representation. We obtain an
abstract stability result for this subspace and apply it to dynamical systems.

Let G be a locally compact, σ -compact, Abelian group. The dual group of G is denoted by Ĝ, and the pairing
between a character λ ∈ Ĝ and an element t ∈ G is written as (λ, t), which, of course, is a number on the unit circle
(see [7,13,36] for further background on harmonic analysis).

A unitary representation T of G in the Hilbert space H is a group homomorphism into the group of unitary
operators on H. It is called strongly continuous if the map G → H, t �→ T tf , is continuous for each f ∈ H. As usual,
the inner product on a Hilbert space is denoted by 〈·,·〉.

A non-zero f ∈ H is called an eigenfunction of T if there exists a λ ∈ Ĝ with T tf = (λ, t)f for every t ∈ G. The
closure of the linear span of all eigenfunctions of T will be denoted by Hpp(T ). T is said to have pure point spectrum,
if Hpp(T ) = H.

For a strongly continuous T there exists by Stone’s Theorem (compare [29]) a map,

ET : Borel sets on Ĝ → Projections on H,

with

• ET (∅) = 0, ET (G) = Identity,
• ET (A) = ⊕

ET (Aj ) whenever A is the disjoint union of the Borel sets Aj , j ∈ N,

such that 〈
f,T tf

〉 = ∫
Ĝ

(λ, t) d
〈
f,ET (λ)f

〉 =:
∫
Ĝ

(λ, t) dρf (λ),

where ρf is the measure on Ĝ defined by ρf (B) := 〈f,ET (B)f 〉. Because of its properties ET is called a projection
valued measure.

A continuous function p on G with values in a Banach space (X,‖ · ‖) (e.g. X = C or X = H) is called almost
periodic if for every ε > 0, the set {

t ∈ G:
∥∥p(t + s) − p(s)

∥∥ < ε for all s ∈ G
}
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is relatively dense in G. Here, a subset S of G is called relatively dense if there exists a compact subset K of G with
S +K = G. If p(t) = T tx for some x ∈ H, and a strongly continuous T then the almost periodicity of p is equivalent
to the closure p(G) of p(G) being compact.

We can now formulate the following characterization of Hpp(T ).

Lemma 2.1. Let T be a strongly continuous unitary representation of G on H. Then, the following assertions are
equivalent for f ∈ H:

(i) The map G → H, t �→ T tf , is almost periodic.
(ii) The map G → C, t �→ 〈f,T tf 〉, is almost periodic.

(iii) ρf is a pure point measure.
(iv) f belongs to Hpp(T ).

Proof. The equivalence of (iii) and (iv) is standard. The equivalence of (ii) and (iii) follows by a result of Wiener as
t �→ 〈f,T tf 〉 is the Fourier transform of ρf . The implication (i) ⇒ (ii) is clear. It remains to show (ii) ⇒ (i): A direct
calculation gives ∥∥f − T tf

∥∥2 = 2〈f,f 〉 − 〈
f,T tf

〉 − 〈
f,T tf

〉
� 2

∣∣〈f,f 〉 − 〈
f,T tf

〉∣∣.
Now, the desired result follows. �

For our further analysis, we need some more pieces of notation. A measure ρ on Ĝ is said to be supported on the
subset S of Ĝ if there exists a measurable subset S′ of S with ρ(Ĝ \ S′) = 0. For a subgroup S of Ĝ equipped with
the discrete topology (which may not be the topology induced by G!), the dual group Ŝ is compact. The injective
group homomorphism S → Ĝ, λ �→ λ, induces the group homomorphism G → Ŝ, t �→ (λ �→ (λ, t)). The latter
will be denoted by j . It has dense range. Conversely, if T is a compact group and j :G → T is a continuous group
homomorphism with dense range, then T̂ can naturally be considered to be a subgroup of Ĝ with the discrete topology
via i : T̂ → Ĝ, i(λ)(t) := (λ, j (t)).

Lemma 2.2. Let a strongly continuous unitary representation T of G on H and f ∈ H be given.

(a) If f belongs to Hpp(T ) with ρf supported on the subgroup S of Ĝ and j :G → Ŝ is the canonical group homo-
morphism, then t �→ T tf can be lifted to a continuous map on Ŝ, i.e. there exists a continuous map u : Ŝ → H
with u ◦ j (t) = T tf for every t ∈ G.

(b) Let T be a compact group and j :G → T a continuous group homomorphism with dense range. If u : T → H is
continuous with u ◦ j (t) = T tf for every t ∈ G, then f belongs to Hpp(T ) and ρf is supported on i(T̂).

Proof. (a) As f belongs to Hpp(T ) and ρf is supported on S, we have f = ∑
λ∈S cλfλ with fλ which are either 0

or normalized eigenfunctions to λ. Then,
∑

λ∈S |cλ|2 < ∞ as the fλ are pairwise orthogonal. As |(σ,λ)| has modulus
one for each λ ∈ S and σ ∈ Ŝ and σ �→ (σ,λ) is continuous, the map, u : Ŝ → H,

u(σ ) :=
∑
λ∈S

(σ,λ)cλfλ,

can easily be seen to have the desired properties.
(b) By u ◦ j (t) = T tf , we infer that {T tf : t ∈ G} is contained in u(T), which is compact as u is continuous and

T is compact. Hence, f belongs to Hpp(T ). Moreover, by ρ̂f (t) = 〈f,T tf 〉 = 〈f,u ◦ j (t)〉, we infer that ρ̂f (t) can
be lifted to a continuous function g on T. Note that g is positive definite as ρ̂f (t) is positive definite and j has dense
range. Since T is a compact group and g is positive definite and continuous, we can write:

g =
N∑

akχk.
k=1
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Here, N = ∞ or N ∈ N and the χk belong to T̂ and the sum on the right converges uniformly. Evaluating g on j (t)

for some t ∈ G we then obtain:

ρ̂f (t) =
N∑

k=1

akχk ◦ j (t).

Since the (inverse) Fourier transform is continuous in the uniform topology, we obtain by taking the inverse Fourier
transform

ρf =
N∑

k=1

akδ−i(χk),

with the sum on the right converging in the vague topology. This gives that ρf is supported on i(T̂) ⊂ Ĝ. �
These lemmas yield the following abstract stability result for Hpp(T ).

Theorem 2.3. Let T be a strongly continuous unitary representation of G on H. Let C : H → H be continuous with
T tCf = CT tf for each t ∈ G and f ∈ H. Then, C maps Hpp(T ) into Hpp(T ). If f belongs to Hpp(T ) and ρf is
supported on the subgroup S of Ĝ, then so is ρCf .

Remark. Let us emphasize that C is not assumed to be linear.

Proof. Choose f ∈ Hpp(T ) arbitrary. Let A := {T tCf : t ∈ G} and B := {T tf : t ∈ G}. Then, B is compact by the
Lemma 2.1. As C is continuous and commutes with T this yields that A = C(B) is compact as well. Then, by
Lemma 2.1 again, Cf belongs to Hpp(T ).

It remains to show the statement about ρCf : Equip S with the discrete topology and denote its compact dual group
by T. As ρf is supported in S, part (a) of the previous lemma shows that t �→ T tf can be lifted to a continuous map u

on T. As C is continuous, t �→ CT tf = T tCf , then lifts to the continuous map C ◦ u : T → H. By (b) of the previous
lemma, ρCf is then supported in S as well. �

We now come to an application of these considerations to measurable dynamical systems. Let a measurable space
(Ω,ΣΩ) consisting of a set Ω and a σ -algebra ΣΩ on it be given. Let

α :G × Ω → Ω,

be an action which is measurable in each variable. Then (Ω,α) is called a measurable dynamical system. Let m be a
G-invariant probability measure on Ω and denote the set of square integrable functions on Ω , with respect to m, by
L2(Ω,m). This space is equipped with the inner product 〈f,g〉 := ∫

f (ω)g(ω)dm(ω). The action α induces a unitary
representation T of G on L2(Ω,m) in the obvious way, namely T th is given by (T th)(ω) := h(α−t (ω)).

Let Cc(C) be the set of continuous functions on C with compact support. Then, the following holds:

Lemma 2.4. Let (Ω,ΣΩ) be a measure space with a probability measure m. For each g ∈ Cc(C), the map
Cg :L2(Ω,m) → L2(Ω,m), f �→ g ◦ f , is uniformly continuous.

Proof. Choose ε > 0 arbitrary. As g is uniformly continuous, there exists a δ > 0 such that∣∣g(x) − g(y)
∣∣2 � ε

2
whenever |x − y| � δ.

Set M := max{|g(x)|: x ∈ C}. By a direct Tchebycheff type estimate we have for arbitrary h,h′ ∈ L2(Ω,m),

m(Ωδ,h,h′) � ‖h − h′‖2

δ2
,

where

Ωδ,h,h′ = {
ω ∈ Ω:

∣∣h(ω) − h′(ω)
∣∣ � δ

}
.
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Setting Dh,h′ := |g ◦ h − g ◦ h′| we obtain∫
Ω

D2
h,h′ dm(ω) =

∫
Ωδ,h,h′

D2
h,h′ dm +

∫
Ω\Ωδ,h,h′

D2
h,h′ dm � m(Ωδ,h,h′)4M2 + m(Ω \ Ωδ,h,h′)

ε

2

� 4M2‖h − h′‖2

δ2
+ ε

2
.

This finishes the proof. �
Corollary 2.5. Let (Ω,α) be a measurable dynamical system and m an α-invariant probability measure on Ω such
that the associated unitary representation is strongly continuous. Then, for arbitrary f ∈ Hpp(T ) and g ∈ Cc(C), the
function g ◦ f belongs to Hpp(T ) and if ρf is supported on the subgroup S of Ĝ, so is ρg◦f .

Proof. This follows from the previous lemma and Theorem 2.3. �
We also note the following result on compatibility of almost periodicity with products, which is a slight general-

ization of Lemma 1 in [2] and Lemma 3.7 in [23].

Lemma 2.6. Let (Ω,α) be a measurable dynamical system and m an α-invariant probability measure on Ω such that
the associated unitary representation is strongly continuous. Let f and g be bounded functions in Hpp(T ) such that
ρf and ρg are supported on the subgroup S of Ĝ. Then, fg is a bounded function in Hpp(T ) and ρfg is supported
on S as well.

Proof. It is shown in Lemma 1 of [2] that the product of bounded functions in Hpp(T ) belongs again to Hpp(T ).
Here, we give a different proof, which shows the statement on the support of the spectral measures as well. By (a)
of Lemma 2.2, there exist continuous maps uf : Ŝ → L2(Ω,m) and ug : Ŝ → L2(Ω,m) with uf ◦ j (t) = T tf and
ug ◦ j (t) = T tg for all t ∈ G. Then, using the boundedness of f and g, we can easily infer that

u := uf ug : Ŝ → L2(Ω,m)

is continuous. By construction we have u ◦ j (t) = T t (fg) for all t ∈ G. Thus, the desired statement follows from (b)
of Lemma 2.2. �
3. Measure dynamical systems

In this section, we introduce the measurable dynamical systems we are dealing with. These will be dynamical
systems of measures on groups. These systems are interesting objects in their own right. Moreover, as discussed in
the next section, they provide an adequate framework for diffraction theory.

Let G be the fixed σ -compact LCA group. The set of continuous functions on G with compact support is
denoted by Cc(G). It is equipped with the locally convex limit topology induced by the canonical embeddings
CK(G) ↪→ Cc(G), where CK(G) is the space of complex continuous functions with support in K ⊂ G compact.
The support of ϕ ∈ Cc(G) is denoted by supp(ϕ). The set M(G) is then defined to be the dual of the space of Cc(G)

i.e. the space of continuous linear functionals on Cc(G). The elements of M(G) can be considered as complex mea-
sures. The total variation |μ| of an element of M(G) is again an element of M(G) and in fact a positive regular Borel
measure characterized by

|μ|(ϕ) = sup
{∣∣μ(ψ)

∣∣: ψ ∈ Cc(G) real valued with |ψ | � ϕ
}
,

for every nonnegative ϕ ∈ Cc(G). Moreover, there exist a measurable u : G → C with |u(t)| = 1 for |μ|-almost every
t ∈ G with

μ(ϕ) =
∫

uϕ d|μ|,
for every ϕ ∈ Cc(G). This allows us in particular to define the restriction of μ to subsets of G in the obvious way.
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The space M(G) carries the vague topology. This topology equals the weak-∗ topology of Cc(G)∗, i.e., it is the
weakest topology which makes all functionals μ �→ μ(ϕ), ϕ ∈ Cc(G), continuous. Thus, if we define:

f :Cc(G) → {
functions on M(G)

}
, ϕ �→ fϕ, by fϕ(μ) :=

∫
G

ϕ(−s) dμ(s),

then the topology is generated by {
f −1

ϕ (O): ϕ ∈ Cc(G), O ⊂ C open
}
.

Here, the reader might wonder about the sign in the definition of fϕ . This sign is not necessary. However, it does not
matter either as G → G, s �→ s−1, is a homeomorphism. It will simplify some formulae later on.

We will be concerned with measurable dynamical systems consisting of elements of M(G). Thus, we need a
σ -algebra on M(G) and an action of G. These will be provided next. We start with the σ -algebra. As discussed
above, M(G) is a topological space. Thus, it carries a natural σ -algebra, namely the Borel σ -algebra generated by
the open sets. Denote this algebra by ΣM(G).

Remark. If G has a countable basis of the topology then the restriction of the Borel σ -algebra to the set M(G)+
of nonnegative measures is the σ -algebra Σ ′ generated by {f −1

ϕ (O) ∩ M(G)+: ϕ ∈ Cc(G), O ⊂ C open}. This is
a consequence of the well-known second countability of the vague topology on M(G)+ (see Chapter IV, Section 31
in [5]). A proof can be given along the following line: The set M(G)+ with the vague topology is a second countable
metric space and a metric can be given as

d(μ, ν) :=
∑
n∈N

|fϕn(μ) − fϕn(ν)|
2n(1 + |fϕn(μ) − fϕn(ν)|) ,

with a suitable dense set {ϕn: n ∈ N} in Cc(G). The definition of the metric shows that all balls Bs(μ) := {ν ∈
M(G)+: d(μ, ν) < s}, μ ∈ M(G)+, s � 0, belong to Σ ′. This is then true for countable unions of such balls as well
and the statement follows.

Lemma 3.1. The map fϕ ◦ | · | is measurable for every ϕ ∈ Cc(G). In particular, the map M(G) → M(G), μ �→ |μ|,
is measurable.

Proof. It suffices to show that fϕ ◦ | · | is measurable for every ϕ ∈ Cc(G) with ϕ � 0. Standard theory (see Chapter 6
in [34] and Proposition 1 in [2]) gives:

fϕ

(|μ|) = sup
{∣∣fψϕ(μ)

∣∣: ψ ∈ Cc(G), ‖ψ‖∞ � 1
}
.

As μ �→ |fψϕ(μ)| is continuous, fϕ ◦ | · | is then semicontinuous and hence measurable. �
As for the action of G on M(G), there is a natural action of G on M(G) given by:

α :G × M(G) → M(G), αt (μ) := δt ∗ μ,

where δt is the unit point measure at t ∈ G. Here, the convolution μ ∗ ν of two convolvable elements of M(G) is the
measure defined by (μ ∗ ν)(ϕ) := ∫

G×G
ϕ(s + t) dμ(t) dν(s).

The map α is measurable in each variable, as shown in the next lemma.

Lemma 3.2.

(a) For fixed μ ∈ M(G), the map G → M(G), t �→ αtμ, is continuous, hence also measurable.
(b) For fixed t ∈ G, the map M(G) → M(G), μ �→ αtμ, is continuous, hence also measurable.

Proof. This is straightforward. �
Putting this together, we see that M(G) equipped with the Borel σ -algebra and the natural action of G by shifts is

a measurable dynamical system.
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As discussed in Section 2, every α-invariant probability measure m on M(G) induces a unitary representation T

of G on L2(M(G),m).
For further understanding of this unitary representation, it will be crucial to control it by a suitable set of functions.

This set of functions is introduced next.

Definition 3.3. Consider the algebra generated by the set:{
g ◦ fϕ : g ∈ Cc(C), ϕ ∈ Cc(G)

}
.

Let A(G) be the closure of this algebra in the algebra of all continuous bounded functions on M(G) equipped with
the supremum norm. An α-invariant probability measure m on M(G) is said to satisfy the denseness assumption (D)
if the algebra A(G) is dense in L2(M(G),m).

Note that condition (D) means that the set of finite products of functions of the form g ◦fϕ , g ∈ Cc(C), ϕ ∈ Cc(G),
is total in L2(M(G),m).

We now discuss two instances in which condition (D) holds.

Proposition 3.4. Let m be an α-invariant probability measure on M(G). If the restriction of the σ -algebra of M(G)

to the support of m is generated by the set {f −1
ϕ (O): ϕ ∈ Cc(G),O ⊂ C open}, then (D) holds. In particular, (D)

holds whenever G has a countable basis of topology and m is supported on the set of nonnegative measures.

Proof. As C has a countable basis of the topology, the σ -algebra on M(G) is then generated by the set
{f −1

ϕ (K): ϕ ∈ Cc(G), K ⊂ C compact}. In particular, the corresponding set of products of characteristic functions,{
1K ◦ fϕ : ϕ ∈ Cc(G), K ⊂ C compact

}
,

is total in L2(M(G),m). Here, 1S denotes the characteristic function of S. Therefore, it suffices to show that all
functions of the form 1K ◦ fϕ,ϕ ∈ Cc(G), K ⊂ C compact, can be approximated by functions of the form g ◦ fϕ with
g ∈ Cc(C). This can be done by choosing, for K ⊂ C compact, a compact L ⊂ C containing K and a sequence (gn)

of nonnegative functions in Cc(C) such that gn converge pointwise to 1K , are all supported in L and are uniformly
bounded by, say, 1.

The ‘in particular’ statement now follows from the last remark. �
Proposition 3.5. The condition (D) is satisfied whenever m is supported on a compact α-invariant subset of M(G).

Proof. This follows by a Stone/Weierstrass type argument (see [2] as well): The algebra in question separate the
points, does not vanish identically anywhere and is closed under complex conjugation. The algebra is then dense in
the set of continuous functions on the compact support of m. Hence, it is dense in L2(M(G),m) as well. �
Remark. The previous propositions imply that (D) holds in all the settings considered for diffraction so far. More
precisely, the setting of uniformly discrete point sets discussed e.g. in the survey article [22] and its generalization to
translation bounded measures [2] deal with compact subsets of M(G). On the other hand the point process setting
first introduced by [15] deals with Rd and hence admits a countable basis of topology.

Theorem 3.6. Let m be an α-invariant probability measure on M(G), which satisfies (D). Then, the representation
T is strongly continuous.

Proof. As T t is unitary for every t ∈ G, it is bounded with norm 1 uniformly in t ∈ G. By (D), it therefore suffices to
show continuity of t �→ T tf for f a finite product of functions of the form g ◦ fϕ with ϕ ∈ Cc(G) and g ∈ Cc(C). It
suffices to show continuity at t = 0. As

T t (f1f2) − f1f2 = (
T tf1

)
T tf2 − f1f2 = (

T tf1
)(

T tf2 − f2
) + (

T tf1 − f1
)
f2,
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and functions of the form g ◦ fϕ with g ∈ Cc(C) and ϕ ∈ Cc(G) are bounded, it suffices to consider f = g ◦ fϕ .
Let K be an arbitrary compact neighborhood of 0 ∈ G. Let L be a compact set in G with L ⊃ K − suppϕ and
ψ ∈ Cc(G) nonnegative with ψ ≡ 1 on L. Then,∣∣ϕ(t − s) − ϕ(−s)

∣∣ � ψ(−s)
∥∥ϕ(t − ·) − ϕ(−·)∥∥∞,

for every s ∈ G and t ∈ K and, in particular,∣∣fϕ(α−tμ) − fϕ(μ)
∣∣ �

∫
G

∣∣ϕ(t − s) − ϕ(−s)
∣∣d|μ|(s) �

∥∥ϕ(t − ·) − ϕ(−·)∥∥∞fψ

(|μ|), (∗)

for every t ∈ K . As μ �→ fψ(|μ|) is measurable, the set,

ΩN := {
μ ∈ M(G): fψ

(|μ|) � N
}
,

is measurable for each N ∈ N. Obviously, these sets are increasing and cover M(G). Thus, for each ε > 0, there exists
N(ε) ∈ N with m(M(G) \ ΩN(ε)) � ε. Invoking (∗), we then get:∥∥T tg ◦ fϕ − g ◦ fϕ

∥∥2 =
∫

M(G)

∣∣g ◦ fϕ(α−tμ) − g ◦ fϕ(μ)
∣∣2

dm(μ)

=
∫

ΩN(ε)

| · |2 dm(μ) +
∫

M(G)\ΩN(ε)

| · |2 dm(μ)

� B(t, ε) + ε4‖g‖2∞,

with

B(t, ε) := sup
{∣∣g(x) − g(y)

∣∣2: |x − y| � N(ε)
∥∥ϕ(t − ·) − ϕ(−·)∥∥∞

}
.

As g is uniformly continuous, B(t, ε) becomes arbitrarily small for t close to 0 and ε fixed. This easily shows the
desired continuity. �

For our further consideration, we will need a certain finiteness assumption on the probability measure m.
This assumption is well known in the theory of stochastic processes. It is given in the next definition.

Definition 3.7. The α-invariant probability measure m on M(G) is called square integrable if fϕ ◦ | · | : M(G) → C

belongs to L2(M(G),m) for every ϕ ∈ Cc(G).

Lemma 3.8. Let m be an α-invariant square integrable probability measure m on M(G). Then, the map
Cc(G) → L2(M(G),m), ϕ �→ fϕ , is continuous.

Proof. We have to show that CK(G) → L2(M(G),m), ϕ �→ fϕ , is continuous for every compact K in G. Let ψ � 0
be a function in Cc(G) with ψ ≡ 1 on K . Then, ∣∣ϕ(s)

∣∣ � ψ(s)‖ϕ‖∞
for every ϕ ∈ CK(G). This gives:

‖fϕ‖2 =
∫ ∣∣∣∣

∫
ϕ(−s) dω(s)

∣∣∣∣2

dm(ω) �
∫ ∣∣∣∣

∫
ψ(−s)‖ϕ‖∞ d|ω|(s)

∣∣∣∣2

dm(ω)

= ‖ϕ‖2∞
∫ ∣∣fψ

(|ω|)∣∣2
dm(ω),

and the desired continuity follows. �
Remark. Note that the lemma gives another proof for the strong continuity of T in the case of square
integrable measures m satisfying (D). More precisely, for ϕ ∈ Cc(G) and g ∈ Cc(C), the map G → L2(M(G),m),
t �→ T t (g ◦ fϕ) can be composed into the continuous maps G → Cc(G), t �→ ϕ(· − t), f :Cc(G) → L2(M(G),m),
and Cg : L2(M(G),m) → L2(M(G),m),h �→ g ◦ h.
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Definition 3.9. Let m be square integrable. Then, U is defined to be the closure of {fϕ : ϕ ∈ Cc(G)} in L2(M(G),m).

Lemma 3.10. Let m be square integrable. Then, U is a T -invariant subspace.

Proof. This is immediate from T tfϕ = fϕt with ϕt (s) = ϕ(t − s). �
4. Diffraction theory and the autocorrelation measure

In this section, we present a basic setup for diffraction theory for our measure dynamical systems. Before we
actually start with the mathematical formulation, we shortly discuss the physical context of our setting and the rela-
tionship of the presented material to earlier work. For recent surveys we refer the reader to [1,25,26].

In the simplest models for diffraction of a solid, the solid in question is modeled by a subset Λ of Euclidean space,
which describes the positions of the atoms of the solid. The diffraction of an incoming beam is then governed by
interference of beams scattered by different points of the solid. Thus, the relevant set is the set of differences between
points of Λ or rather differences averaged according to occurrence. This yields the so-called autocorrelation measure
γΛ of Λ given by:

γΛ := lim
n→∞

1

|Bn|
∑

x,y∈Bn∩Λ

δx−y = lim
n→∞

1

|Bn|δΛ∩Bn ∗ δ−Λ∩Bn.

Here, Bn is the ball around the origin with radius n, |Bn| is its volume, δx denotes the point measure at x and the limit
is assumed to exist. The diffraction of Λ is then described by the Fourier transform of γΛ (see e.g. [9,16,17] for further
details on this approach). In order to obtain existence of the limit, one usually introduces a framework of dynamical
systems and uses an ergodic theorem.

In fact, as shown recently [15,14] (see [2] as well), it is possible to express the limit by a closed formula. This opens
up the possibility to define the autocorrelation by this closed formula irrespective whether the dynamical system is
ergodic or not. This approach has been taken in [2]. In fact, as argued in [2,3], it is more appropriate to work with
measures than with point sets. This lead to the notion of measure dynamical system. In the framework of aperiodic
order, it is natural to restrict attention to topological dynamical systems and this is what has been analyzed in [2,3].
However, as discussed in the introduction both from the mathematical point of view and from the point of view of
perturbation theory, it is natural to leave the topological category and develop diffraction theory in the measurable
category. This is done next. While our overall line of reasoning certainly owes to [2], we have to overcome various
technical issues. More precisely, as [2] deals with a topological situation and compact spaces, all functions fϕ (defined
above) were uniformly bounded there. This is not the case here anymore. To remedy this, we use the assumption of
square integrability.

We start by introducing some further notation: For a measure μ on G and a set B ⊂ G, we denote by μB the
restriction of μ to B . For a function ζ on G we define ζ̃ by ζ̃ (s) := ζ(−s). For a measure μ on G we define the
measure μ̃ by μ̃(ϕ) := μ(ϕ̃).

Lemma 4.1. Let m be an α-invariant square integrable probability measure m on M(G). Let a function σ ∈ Cc(G)

be given with
∫
G

σ(t) dt = 1. For ϕ ∈ Cc(G), define:

γσ,m(ϕ) :=
∫
Ω

∫
G

∫
G

ϕ(s − t)σ (t) dω(s) dω(t) dm(ω).

Then, the following holds:

(a) The map γσ,m :Cc(G) → C is continuous, i.e., γσ,m ∈ M(G).
(b) For ϕ,ψ ∈ Cc(G), the equation (ϕ̃ ∗ ψ ∗ γσ,m)(t) = 〈fϕ,T tfψ 〉 holds.
(c) The measure γσ,m does not depend on σ ∈ Cc(G), provided

∫
G

σ dt = 1.
(d) The measure γσ,m is positive definite.
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Proof. (a) We have to show that γσ,m restricted to CK(G) is continuous for every compact K in G. Choose ψ ∈ Cc(G)

nonnegative with ψ ≡ 1 on supp(σ ) + K . Thus,∣∣ϕ(s − t)σ (t)
∣∣ � ψ(s)‖ϕ‖∞|σ |(t),

for all ϕ ∈ CK(G) and s, t ∈ G. For ϕ ∈ CK(G) we can then estimate:∣∣γσ,m(ϕ)
∣∣ �

∣∣∣∣
∫
Ω

∫
G

∫
G

∣∣ϕ(s − t)σ (t)
∣∣d|ω|(t) d|ω|(s) dm(ω)

∣∣∣∣
�

∫
Ω

∫
G

∫
G

ψ(s)‖ϕ‖∞
∣∣σ(t)

∣∣d|ω|(t) d|ω|(s) dm(ω)

= ‖ϕ‖∞
∫
Ω

fψ̃

(|ω|)f|̃σ |
(|ω|)dm(ω),

and the statement follows.
(b) This follows by a direct computation (see Proposition 6 of [2] as well).
(c) Fix ϕ ∈ Cc(G). By α-invariance of m, we find that the map σ �→ γσ,m(ϕ) is α-invariant and hence a multiple

of Haar measure on G. This shows the claim.
(d) This is a direct consequence of (b). �
The preceding lemma allows us to associate to any square integrable probability measure an autocorrelation and a

diffraction measure. They are defined next.

Definition 4.2. Let m be an α-invariant square integrable probability measure m on M(G). Then, the measure
γm := γσ,m for σ ∈ Cc(G) with

∫
G

σ(t) dt = 1 is called the autocorrelation. As γm is positive definite, its Fourier
transform γ̂ exists and is a positive measure on Ĝ. This measure is called the diffraction measure of the dynamical
system.

As discussed in the introduction to this section the usual approach to autocorrelation proceeds by an averaging
procedure along (models of) the substance in question. In our framework, the substances are modeled by measures.
Thus, we will have to average measures. This is discussed in the remainder of this section. It will turn out that
averaging is possible once ergodicity is known. This is a consequence of the validity of Birkhoffs ergodic theorem
(see Appendix A and in particular Lemma A.3 for further details as well). We will have to exercise quite some care as
the functions fϕ are not bounded.

Definition 4.3. A sequence (Bn) of compact subsets of G is called a van Hove sequence if,

lim
n→∞

|∂KBn|
|Bn| = 0,

for all compact K ⊂ G. Here, for compact B,K , the “K-boundary” ∂KB of B is defined as

∂KB := (
(B + K) \ B

) ∪ [
(G \ B − K) ∩ B

]
,

where the bar denotes the closure.

As discussed in Appendix A, in our setting there exists a van Hove sequence (Bn) such that for any compact K ⊂ G

and any α-invariant ergodic probability measure m on M(G) and any f ∈ L1(M(G),m),

lim
n→∞

1

|Bn|
∫

∂KBn

∣∣f (
αt (ω)

)∣∣dt = 0, (�)

holds for m-almost every ω ∈ Ω . Without loss of generality we can assume that Bn = −Bn for all n. Fix such a
sequence for the rest of this section.



334 D. Lenz, N. Strungaru / J. Math. Pures Appl. 92 (2009) 323–341
Lemma 4.4. Let m be an α-invariant square integrable ergodic probability measure on M(G). Then for all
φ,ψ ∈ Cc(G) nonnegative, there exists a C < ∞ and a set M(G)′ of full measure in M(G) such that for all
ω ∈ M(G)′ we have:

lim sup
n→∞

|ω̃Bn | ∗ |ωBn |(ψ ∗ φ̃)

|Bn| � C.

Proof. Let K be a compact subset of G with K = −K and supp(ψ), supp(φ) ⊂ K . As a product of two L2-functions
the function fψ̃ ◦ | · |fφ̃ ◦ | · | belongs to L1, (�) implies (see Proposition A.3 as well) that almost surely,

lim
n→∞

∫
Bn+K

T t [fψ̃ ◦ | · |fφ̃ ◦ | · |]dt

|Bn| =
∫

M(G)

fψ̃

(|μ|)fφ̃

(|μ|)dm(μ) =: C < ∞.

For v, s ∈ Bn the function t �→ ψ(−t + v)φ(−t + s) is zero outside Bn + K and hence∫
Bn+K

ψ(−t + v)φ(−t − s) dt =
∫
G

ψ(−t + v)φ(−t − s) dt = ψ ∗ φ̃(s + v).

Moreover, since φ, ψ are nonnegative a short calculation gives that

T tfφ̃

(|ω|) =
∫
G

φ(−s − t) d|ω̃|(s); T tfψ̃

(|ω|) =
∫
G

ψ(v − t) d|ω|(v).

Thus,

C = lim
n→∞

∫
Bn+K

T tfψ̃ (|ω|)T tfφ̃(|ω|) dt

|Bn|
= lim

n→∞

∫
Bn+K

∫
G

∫
G

ψ(−t + v)φ(−t − s) d|ω|(v) d|ω̃|(s) dt

|Bn|
� lim sup

n→∞

∫
Bn

∫
Bn

∫
Bn+K

ψ(−t + v)φ(−t − s) dt d|ω|(v) d|ω̃|(s)
|Bn|

= lim sup
n→∞

∫
Bn

∫
Bn

ψ ∗ φ̃(s + v)d|ω|(v) d|ω̃|(s)
|Bn|

= lim sup
n→∞

|ω̃Bn | ∗ |ωBn |(ψ ∗ φ̃)

|Bn| ,

and the proof is finished. �
Lemma 4.5. Let m be an α-invariant square integrable ergodic probability measure on M(G). Let φ,ψ ∈ Cc(G) be
given. Then

lim
n→∞

ω̃ ∗ ωBn(φ̃ ∗ ψ) − ω̃Bn ∗ ωBn(φ̃ ∗ ψ)

|Bn| = 0,

almost surely in ω.

Proof. Let K be a compact subset of G with K = −K and supp(φ), supp(ψ) ⊂ K . Then,

(ω̃ ∗ ωBn − ω̃Bn ∗ ωBn)(φ̃ ∗ ψ) =
∫
G

∫
G

∫
G

φ(−v − s)ψ(r − v)1Bn(s)
(
1 − 1Bn(r)

)
dω(s) dω̃(r) dv.

For the integrand not to vanish we need s ∈ Bn, r ∈ G \ Bn and v ∈ (Bn + K) ∩ [(G \ Bn) + K] ⊂ ∂KBn. Hence, we
can estimate:
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∣∣(ω̃ ∗ ωBn − ω̃Bn ∗ ωBn)(φ̃ ∗ ψ)
∣∣ �

∫
∂KBn

∫
G

∫
G

∣∣φ(−v − s)
∣∣∣∣ψ(r − v)

∣∣d|ω|(s) d|ω̃|(r) dv

=
∫

∂KBn

T −v
[
f|φ|

(|ω|)f|ψ |
(|ω|)]dv.

The proof follows now from (�). �
Theorem 4.6. Assume that G is second countable. Let m be an α-invariant square integrable ergodic probability
measure m on M(G). Then, almost surely in ω,

lim
n→∞

ω̃Bn ∗ ωBn

|Bn| = γm,

where the limit is taken in the vague topology.

Proof. The proof proceeds in three steps.

Step 1. Let φ,ψ ∈ Cc(G), t ∈ G be given and set Zn := φ̃ ∗ ψ ∗ ω̃ ∗ ωBn(t). Then, limn→∞ |Bn|−1Zn = 〈fφ,T tfψ 〉.

Proof of Step 1. Let a compact set K in G with K = −K , 0 ∈ K and supp(ψ) ⊂ K be given. We are going to show
that |Bn|−1Zn is of the same size as |Bn|−1

∫
Bn

fφ(αt−v(ω))fψ(α−v(ω)) dv, which by Birkhoff’s ergodic theorem
converges to 〈fφ,T tfψ 〉.

A direct calculation (see Theorem 5 in [2] as well) shows,

Zn −
∫
Bn

fφ

(
αt−v(ω)

)
fψ

(
α−v(ω)

)
dv =

∫
G

fφ

(
αt−v(ω)

)
D(v)dv,

with D(v) := ∫
G

ψ(v − s)(1Bn(s) − 1Bn(v)) dω(s). Then D(v) is supported on ∂KBn and hence

�(n) :=
∣∣∣∣Zn −

∫
Bn

fφ

(
αt−v(ω)

)
fψ

(
α−v(ω)

)
dv

∣∣∣∣ �
∫

∂KBn

∣∣fφ

(
αt−v(ω)

)
D(v)

∣∣dv.

Now, note that |D(v)| � ∫
G

|ψ(v − s)|d|ω|(s) = f|ψ |(α−v|ω|), thus

�(n) �
∫

∂KBn

∣∣fφ

(
αt−v(ω)

)
f|ψ |

(
α−v|ω|)∣∣dv.

Application of (�) now completes the proof.

Step 2. Let D be a countable subset of Cc(G). Then, there exists a set Ω in M(G) of full measure with

limn→∞ ω̃Bn∗ωBn(φ̃∗ψ)

|Bn| = γm(φ̃ ∗ ψ) for all φ,ψ in D and ω ∈ Ω .

Proof of Step 2. This follows immediately from Step 1, (b) of Lemma 4.1 and Lemma 4.5.

Step 3. There exists a set Ω in M(G) of full measure with limn→∞ ω̃Bn∗ωBn(σ )

|Bn| = γm(σ ) for all σ ∈ Cc(G).

Proof of Step 3. Since G is σ compact, we can find a sequence Kj of compact sets so that G = ⋃
j Kj and

Kj ⊂ K◦
j+1. It follows that G = ⋃

j K◦
j and in particular that each compact subset K ⊂ G is contained in some Kj .

As G is second countable, there exists a countable dense subset Dj in each CKj
(G).

By second countability again, there exists furthermore an approximate unit given by a sequence (i.e. a sequence
(δn) in Cc(G) such that ϕ ∗ δn converges to ϕ with respect to ‖ · ‖∞ for all ϕ ∈ Cc(G)). Moreover, we can pick this
sequence so that there exists a fixed compact set 0 ∈ K = −K such that supp(δn) ⊂ K ,∀n.
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Let

D :=
(⋃

j

Dj

)
∪ {δn | n ∈ N}.

Then D is countable.
Lets observe that for each σ ∈ Cc(G), there exists j so that supp(σ ) ⊂ Kj . Thus, for all ε > 0, there exists some

ψ ∈ Dj and φ = δn so that ‖σ − φ ∗ ψ̃‖∞ � ε, and supp(σ ), supp(φ ∗ ψ̃) ⊂ Kj + K .
For each j ∈ N we can chose nonnegative φj ,ψj ∈ Cc(G), j ∈ N, such that φj ∗ ψ̃j � 1 on Kj + K .
By Lemma 4.4, for each j there exists a constant Cj � 0 and a subset Ωj of full measure so that for all ω ∈ Ωj we

have:

lim
n→∞

|ω̃Bn | ∗ |ωBn |(φj ∗ ψ̃j )

|Bn| � Cj .

Let Ω ′ be the set of full measure given by D in Step 2. Then Ω := Ω ′ ∩ (
⋂

j Ωj ) has full measure.
Let σ ∈ Cc(G) and ω ∈ Ω . Then there exists an j so that supp(σ ) ⊂ Kj .
Let

C := max
{
Cj + 1, |γm|(φj ∗ ψ̃j ),1

}
.

Since ω ∈ Ωj , there exists an N0 so that for all n > N0 we have:

|ω̃Bn | ∗ |ωBn |(φj ∗ ψ̃j )

|Bn| � Cj + 1 � C.

Let ε > 0. Then there exists ψ,φ ∈ D so that

|σ − φ ∗ ψ̃ | � ε

C
φj ∗ ψ̃j .

When combined with the definition of C, this gives easily,

∣∣γm(σ − φ ∗ ψ̃)
∣∣ � ε and

∣∣∣∣ ω̃Bn ∗ ωBn(σ − φ ∗ ψ̃)

|Bn|
∣∣∣∣ � ε ∀n > N0.

Moreover, since ω ∈ Ω ′, by Step 2 we have:∣∣∣∣ ω̃Bn ∗ ωBn(φ ∗ ψ̃)

|Bn| − γm(φ ∗ ψ̃)

∣∣∣∣ � ε ∀n > N1.

Hence, for all n > N := max{N0,N1} we have:∣∣∣∣ ω̃Bn ∗ ωBn(σ )

|Bn| − γm(σ )

∣∣∣∣ � 3ε. �
5. Dynamical systems and pure point diffraction

In this section, we relate spectral theory of measure dynamical systems to diffraction theory. We will assume
that we are given an α-invariant square integrable probability measure m on M(G) such that the associated unitary
representation Tm is strongly continuous. The associated autocorrelation will be denoted by γ = γm. We will then
discuss the relationship between γ̂m and the spectrum of the unitary representation Tm. Our main result shows that,
given (D), pure pointedness of γ̂m is equivalent to pure pointedness of Tm. This generalizes the corresponding results
of [2,15,23].

Proposition 5.1. The equation ρfϕ = |ϕ̂|2γ̂m holds for every ϕ ∈ Cc(G).

Proof. The proof can be given exactly as in [2]. We include it for completeness reasons. By the very defini-
tion of ρfϕ above, the (inverse) Fourier transform (on Ĝ) of ρfϕ is t �→ 〈fϕ,T tfϕ〉. By Lemma 4.1, we have
〈fϕ,T tfϕ〉 = (ϕ̃ ∗ ϕ ∗ γm)(t). Thus, taking the Fourier transform (on G), we infer ρfϕ = |ϕ̂|2 γ̂m. �
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Note that the closed T -invariant subspace U of L2(M(G),m) gives rise to a representation TU of G on U by
restricting the representation T to U . The spectral family of TU will be denoted by ETU .

Definition 5.2. Let ρ be a nonnegative measure on Ĝ and let S be an arbitrary strongly continuous unitary represen-
tation of G on an Hilbert space. Then, ρ is called a spectral measure for S if the following holds for all Borel sets B:
ES(B) = 0 if and only if ρ(B) = 0.

Theorem 5.3. Let m be a square integrable probability measure on M(G) with associated autocorrelation γ = γm.
Then, the measure γ̂ is a spectral measure for TU .

Proof. Given the previous results the proof follows as in [2]. We only sketch the details: Let B be a Borel set in Ĝ.
Then, ETU (B) = 0 if and only if 〈fϕ,ET (B)fϕ〉 = 0 for every ϕ ∈ Cc(G). By Proposition 5.1, we have ρfϕ = |ϕ̂|2γ̂m

and, in particular,

〈
fϕ,ET (B)fϕ

〉 = ρfϕ (B) =
∫
B

|ϕ̂|2 dγ̂m.

These considerations show that ETU (B) = 0 if and only if 0 = ∫
B

|ϕ̂|2 dγ̂m for every function ϕ ∈ Cc(G). By density,
this is equivalent to γ̂m(B) = 0. �

The preceding considerations allow us to characterize the eigenvalues of TU . In this context, this type of result
seems to be new. It may be useful in other situations as well. For a characterization of continuous eigenvalues we refer
to [24].

Corollary 5.4. Let m be a square integrable probability measure on M(G) with associated autocorrelation γ = γm.
For ϕ ∈ Cc(G) and λ ∈ Ĝ, the following assertions are equivalent:

(i) |ϕ̂|2(λ)γ̂ ({λ}) > 0.
(ii) E({λ})fϕ �= 0.

(iii) There exists an f �= 0 with f = E({λ})f in the closed convex hull of {(λ, t)T tfϕ : t ∈ G}.

Proof. Proposition 5.1 gives: 〈
E

({λ})fϕ,E
({λ})fϕ

〉 = ρfϕ

({λ}) = |ϕ̂|2(λ)γ̂
({λ}),

and the equivalence between (i) and (ii) follows. The implication (iii) ⇒ (ii) is immediate as E({λ})T tfϕ =
(λ, t)E({λ})fϕ for every t ∈ G. It remains to show (ii) ⇒ (iii). Let (Bn) be a van Hove sequence in G.

As ϕ �→ 1
|Bn|

∫
Bn

ϕ(s) ds is a probability measure on G, the standard theory of vector valued integration (see e.g.

Chapter 3 in [37]) shows that the L2-valued integral,

1

|Bn|
∫
Bn

(λ, t)T tfϕ dt,

belongs to the closed convex hull of {(λ, t)T tfϕ : t ∈ G} for every n ∈ N. As von Neumann’s ergodic theorem
(see [21]) gives:

E
({λ})fϕ = lim

n→∞
1

|Bn|
∫
Bn

(λ, t)T tfϕ dt,

where the limit is in the L2-sense, the claim follows. �
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Our main result reads as follows:

Theorem 5.5. Let m be an α-invariant square integrable probability measure on M(G) satisfying (D) with associated
autocorrelation γ = γm. The following assertions are equivalent:

(i) The measure γ̂ is pure point.
(ii) T has pure point spectrum.

In this case, the group generated by {λ ∈ Ĝ: γ̂ ({λ}) > 0} is the set of eigenvalues of T .

Proof. The implication (ii) ⇒ (i) is immediate from Theorem 5.3.
As for (i) ⇒ (ii), we note that fϕ belongs to Hpp(T ) for every ϕ ∈ Cc(G) by Proposition 5.1. By Corollary 2.5,

this implies that g ◦ fϕ belongs to Hpp(T ) for every g ∈ Cc(C). By Lemma 2.6, products of functions of the form
g ◦ fϕ , g ∈ Cc(C), ϕ ∈ Cc(G), then belong to Hpp(T ) as well. Now, (ii) follows from (D).

It remains to show the last statement: set L := {λ ∈ Ĝ: γ̂ ({λ}) > 0} and denote the group generated by L in Ĝ by S.
By Theorem 5.3 every λ ∈ L is an eigenvalue of TU and hence of T . As the eigenvalues form a group, we infer that S

is contained in the group of eigenvalues of T . Moreover, by Proposition 5.1, the spectral measure ρfϕ is supported on
S (and even on L) for every ϕ ∈ Cc(G). Thus, by Corollary 2.5, the spectral measure ρf is supported on S for every
f of the form f = g ◦ fϕ with g ∈ Cc(C) and ϕ ∈ Cc(G). By Lemma 2.6 this then holds as well for finite products of
such functions. As finite products of such functions are total by (D), we infer that the spectral measure of every f is
supported on S. Thus, the set of eigenvalues is contained in S. �
Remark. The implication (ii) ⇒ (i) in Theorem 5.5 holds even if m doesn’t satisfy (D).

6. Perturbation theory: Abstract setting

In this section, we shortly discuss a stability result for pure point diffraction. In the topological setting, an analogous
result is discussed in [3,8]. Our result is more general in two ways: First of all, the map Φ below does not need to
be continuous but only measurable. Secondly, the underlying space M(G) is much bigger than the spaces considered
in [3] and hence we obtain quite some additional freedom for perturbations (see [24] for applications).

Definition 6.1. Let m be an α-invariant square integrable probability measure on M(G). A measurable map
Φ : M(G) → M(G) is said to satisfy condition (C) with respect to m if the following holds:

• Φ ◦ αt = αt ◦ Φ for every t ∈ G.
• The measure Φ∗(m) defined by Φ∗(m)(f ) := m(f ◦ Φ) is square-integrable.

If Φ satisfies (C) the measure Φ∗(m) inherits many properties of m. For example it can easily be seen to be ergodic
if m is ergodic [10]. Moreover, we have the following result on equivariant measurable perturbations.

Theorem 6.2. Let m be an α-invariant square integrable probability measure on M(G) satisfying (D) such that γ̂m is
a pure point measure supported on the group S. Let Φ : M(G) → M(G) satisfy condition (C). Then, the dynamical
system (M(G),Φ∗(m)) has pure point spectrum supported in S. In particular, the measure γ̂Φ∗(m) is a pure point
measure supported on S as well.

Proof. Set n := Φ∗(m). Denote the unitary representation of G induced by α on L2(M(G),m) and on L2(M(G),n)

by Tm and Tn respectively. Note that Tm is strongly continuous by assumption (D). Thus, Tn is strongly continuous
as, by definition of n, ‖T t

nf −f ‖L2(n) = ‖T t
m(f ◦Φ)−f ◦Φ‖L2(m) for all f ∈ L2(M(G),n). The spectral measures

associated to f ∈ L2(M(G),m) and g ∈ L2(M(G),n) will be denoted by ρm
f and ρn

g respectively. The definition of
n shows that

ρ̂n
g (t) = 〈

g,T t
ng

〉 = 〈
g ◦ Φ,T t

mg ◦ Φ
〉 = ρ̂m

g◦Φ(t),
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for all t ∈ G. This, gives,

ρn
g = ρm

g◦Φ.

As γ̂m is a pure point measure supported on the group S, we infer from our main result that ρm
f is a pure point measure

supported on S for every f ∈ L2(M(G),m). Thus, the preceding considerations show that ρn
g is a pure point measure

supported on S for every g ∈ L2(M(G),n). In particular, Tn has pure point spectrum supported on S. As γ̂n is a
spectral measure for a sub representation of Tn it must then be a pure point measure supported on S as well. �
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Appendix A. Averaging sequences

In this appendix we consider the following situation. Let X be a set with a σ -algebra B and a measurable action
α :G × X → X of the locally compact amenable group G on X. Let μ be an α-invariant ergodic probability measure
on X. As usual a sequence (Bn) of compact subsets of G is called a Følner sequence if,

|Bn�(BnK)|
|Bn|

n→∞−−−−→ 0,

for all compact K ⊂ G. Here, � denotes the symmetric difference. We say that the Birkhoff ergodic theorem holds
along the Følner sequence (Bn) if for any f ∈ L1(X,μ),

lim
n→∞

1

|Bn|
∫
Bn

f (αtx) dt =
∫
X

f (x)dμ,

for μ-almost every x ∈ X. The aim of this appendix is to show that any Følner sequence admits a subsequence (Bn)

such that Birkhoff ergodic theorem holds along (BnK) for any compact K ⊂ G containing 0. This will show that
certain “boundary terms” which we meet in our considerations indeed go to zero.

Definition A.1. A Følner sequence Bn is called tempered if there exists a constant C > 0 so that |⋃k<n(B
−1
k Bn)| �

C|Bn|.

As shown by Lindenstrauss in [28] the following holds:

(A) Every Følner sequence has a tempered subsequence.
(B) The Birkhoff ergodic theorem holds along any tempered Følner sequence.

Here, (B) is one of the main results of [28].

Lemma A.2. Let (B ′
n)n be a Følner sequence and let (Kl)l be an arbitrary sequence of compact sets in G. Then, there

exists a subsequence (Bn) of (B ′
n) so that the Birkhoff ergodic theorem holds simultaneously along (BnKl)n for any

l ∈ N.

Proof. Since (B ′
n) is a Følner sequence, the sequence (B ′

nKl)n is also a Følner sequence for any fixed l. Hence any
subsequence of it is Følner again. By (A), we can then find a subsequence (Bk(1,n))n so that (Bk(1,n)K1)n is tempered.
An inductive argument shows that for each l there exists a subsequence (Bk(l,n))n of (Bk(l−1,n))n so that (Bk(l,n)Kl)n
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is tempered. Then, by (B), Birkhoff’s ergodic theorem holds simultaneously along all (Bk(l,n)Kl)n. A simple diago-
nalization procedure now completes the proof. �
Lemma A.3. Any Følner sequence contains a subsequence (Bn)n so that for any compact K ⊂ G containing 0 and
any f ∈ L1(μ) we have:

lim
n→∞

∫
BnK

f (αt (x)) dt

|Bn| =
∫
X

f (y)dμ(y),

for μ-almost every x ∈ X.

Proof. Since G is σ -compact, we can find an increasing sequence of compact sets Kl , l ∈ N so that K1 contains 0, Kl

is contained in the interior of Kl+1 for each l ∈ N and the union over all Kl is just G. Then, any compact K ⊂ G is a
subset of some Kl . Now, let (Bn)n be the subsequence defined by Lemma A.2. Let f ∈ L1(μ) and a compact K ⊂ G

with 0 ∈ K be given and choose l with K ⊂ Kl . Then,∣∣∣∣
∫
BnK

f (αt (x)) dt − ∫
Bn

f (αt (x)) dt

|Bn|
∣∣∣∣ �

∫
(BnK)\Bn

|f (αt (x))|dt

|Bn| �
∫
(BnKl)\Bn

|f (αt (ω))|dt

|Bn|
= 1

|Bn|
( ∫

BnKl

∣∣f (
αt (x)

)∣∣dt −
∫
Bn

∣∣f (
αt (x)

)∣∣dt

)
.

As |BnKl |/|Bn| → 1 when n → ∞, and Birkhoff’s ergodic theorem holds along both (Bn) and (BnK) the result
follows easily. �

We now come to the desired result on the vanishing of boundary type terms.

Proposition A.4. Let (Bn)n be a Følner sequence as in Lemma A.3. Then, for all f ∈ L1(μ) and all compacts K ⊂ G,

lim
n→∞

∫
Cn

|f (αt (x))|dt

|Bn| = 0,

for μ-almost every x ∈ X along any sequence (Cn) with Cn ⊂ BnK for all n ∈ N and |Cn|/|Bn| → 0, n → ∞.

Proof. Let ε > 0 be arbitrary. Set K̃ := K ∪ {0}.
For N ∈ N we define the function f N on X by f N(x) := f (x) if |f (x)| � N and f (x) = 0 otherwise.

Then limN→∞ f N = f in L1(X,μ). Therefore, there exists an N ∈ N with ‖f − f N‖1 � ε. By Lemma A.3, for
almost every x ∈ X, there exists an n1 = n1(x, ε) so that for all n � n1, we have:∫

BnK

∣∣f (
αt (x)

) − f N
(
αt (x)

)∣∣dt �
∫

BnK̃

∣∣f (
αt (x)

) − f N
(
αt (x)

)∣∣dt � 2ε|Bn|.

Thus, for such x and n � n1,∫
Cn

|f (αt (x))|dt

|Bn| �
∫
Cn

|f N(αt (x))|dt

|Bn| +
∫
Cn

|(f (αt (x)) − f N(αt (x)))|dt

|Bn|
�

∫
Cn

N dt

|Bn| +
∫
BnK

|(f (αt (x)) − f N(αt (x)))|dt

|Bn|
� N |Cn|

|Bn| + 2ε.

As |Cn|/|Bn| → 0 by assumption, we obtain: ∫
Cn

|f (αt (x))|dt

|Bn| � 3ε

for such x and all large enough n. As ε > 0 is arbitrary, the statement follows. �
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When dealing with σ -compact, locally compact Abelian groups we can do better than Følner sequences. Namely, in
this case, there exists a van Hove sequence as shown in [40, p. 249]. Of course, every van Hove sequence is a Følner
sequence. In this case, we can apply the previous proposition with Cn = ∂KBn ⊂ BnK̃ , n ∈ N, and K̃ := K ∪ {0}
compact. This is used in Section 4.
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