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ABSTRACT Frictional models for membrane transport are tested experimentally and
theoretically for the simple case of a solution consisting of a mixture of two perfect
gases and a membrane consisting of a porous graphite septum. Serious disagree-
ment is found, which is traced to a missing viscous term. Kinetic theory is then
used as a guide in formulating a corrected set of transport equations, and in giving
a physical interpretation to the frictional coefficients. Sieving effects are found to be
attributable to entrance effects rather than to true frictional effects within the body
of the membrane. The results are shown to be compatible with nonequilibrium
thermodynamics. Some correlations and predictions are made of the behavior of
various transport coefficients for general solutions.

INTRODUCTION

So-called "frictional models" have been widely used for the flux equations describing
membrane transport. As formulated by Spiegler (1) and by Kedem and Katchalsky
(2), they have subsequently been applied to a variety of systems (3-9). The frictional-
model equations are equivalent to the Onsager phenomenological equations, in the
sense that they have the same mathematical structure and the number of independent
parameters to be found experimentally is the same. However, the virtue of the fric-
tional model is supposed to be that the coefficients in the transport equations can be
given a physical interpretation, without the need for a detailed microscopic theory.
Such a physical interpretation gives predictive power to a theory, and makes it sus-
ceptible to experimental and theoretical tests other than the mere verification of the
Onsager reciprocal relations.
The purpose of this paper is to subject the frictional-model equations to experi-

mental and theoretical tests by considering the limiting case of an extremely simple
type of solution and membrane-a mixture of perfect gases and an inert porous
septum. An extensive series of experiments on a single porous septum is available
(10, 11), as is a detailed kinetic theory (12). Since the frictional model is supposed to
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be quite general, any failure in a simple limiting case is apt to be indicative of a basic
flaw in the model.
We find that the frictional model predicts a number of results that are in serious dis-

agreement with experiment. Consideration of the nature of the disagreements, and
comparison with kinetic theory, reveal that the difficulty is a fundamental one and is
related to the omission of a viscous flow term. This term is also omitted from many
formulations of the Onsager phenomenological equations on the assumption that me-
chanical equilibrium prevails; this assumption is invalid if viscous dissipation is oc-
curring. Nevertheless, difficulties from this omission usually do not appear until a
physical interpretation of the phenomenological coefficients is attempted.
Once the difficulty of the missing viscous term is recognized, the frictional-model

equations are easily modified to include viscous flow, and agreement with experiment
is achieved. The physical interpretation of the so-called frictional coefficients can then
be further tested by comparison with kinetic theory. An apparent paradox exists be-
tween the separative behavior of a membrane in terms of so-called internal friction
coefficients, and the operation of such a membrane in a steady state (13, 14). Kinetic
theory resolves the apparent inconsistency in the present case by showing that the
mechanism for separation is not a frictional effect, but an entrance effect. That is, the
separation is caused by differences in the rates at which different species enter a mem-
brane pore, not by differences in their interactions with the pore walls. The latter
mechanism can operate to produce effective steady-state sieving only if coupled with
another mechanism for removal back out the pore entrance.

FRICTIONAL MODEL

Formulation ofEquations
The classical solution to the problem of formulating general transport equations is to
assume a general linear relation among fluxes Ji and "forces" Xi,

Ji=£ L jXj, (1)

where the Lij are phenomenological coefficients. Onsager's great contribution was to
show that, if the Ji and Xi are chosen properly, then

Lij = Lji. (2)

The choice of fluxes and forces must be such that they give the entropy production a in
the form

T=o S (3)

and further that the fluxes are chosen as time derivatives of extensive thermodynamic

BIOPHYSICAL JOURNAL VOLUME 15 1975592



quantities and the forces as gradients of intensive thermodynamic quantities (15, 16).
If a correct choice is made, then there is abundant experimental evidence that the
Onsager reciprocal relations of Eq. 2 are valid (15-17).
A difficulty with the Onsager formulation as applied to membrane transport is that

it furnishes no mechanistic interpretation of the Lij, and no indication as to the de-
pendence of the Lij on solution or membrane properties. Thus the practical usefulness
of the Onsager formulation can often be largely illusory, even though it furnishes a
valuable framework for discussion. Not enough is known about the Lij to permit
accurate integration of the transport equations, and approximate integration may de-
stroy the reciprocal relations (18). Different forms of the transport Eq. 1 have been
sought that yield transport coefficients with a less complicated behavior or a simpler
physical interpretation than the Lij. The frictional model attempts to deal with the
difficulty by imagining the force Xi to be made up of frictional interactions between
the species i and the membrane, and between the species i and the other species j, the
interaction being proportional to the difference in velocities of the species. If we de-
fine average velocities vi in terms of the fluxes and concentrations ci as

vi J1/ci, (4)

then the frictional-model transport equations are (1-5)

Xi = fmvi + Z f(vi >-), (5)

wherefi, and fj are so-called frictional coefficients, and the term fi,, vi represents the
friction with the stationary membrane. It is assumed that the Onsager choice of the Xi
is still made, in which case the Onsager reciprocal relations require that

cif= cj.f (6)

The transport Eq. 5 makes the desired connection with a mechanistic or molecular
interpretation, and has been widely used (1-9).

For mass transport the frictional-model equations have been used with the following
choice of Xi:

Xi -V= , (7)

where s, is the chemical potential of species i. It is this choice that turns out to be
the crucial one in losing the viscous terms.

If the fj are regarded as phenomenological coefficients in the same sense as the
Li,, then Eq. 5 contains no more information than Eq. 1, and any experimental test
is at most equivalent to a test of the Onsager reciprocal relations. It is only through
the physical interpretation of the f]j that new information and predictive power are
introduced, which can be tested experimentally. We therefore turn to the interpreta-
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tion of the f]i for the test case of a mixture of perfect gases in an inert porous
membrane.

Identification ofFrictional Coefficients
For gases the so-called frictional coefficients can be identified by consideration of two
limiting cases (6). At very low pressures molecule-molecule collisions are negligible
compared with molecule-membrane collisions, and the fj are therefore negligible com-
pared with the fim. At high pressures molecule-molecule collisions greatly outnumber
molecule-membrane collisions, and the fm are negligible compared with the f]j.
Moreover, dyi = RT d In p, for perfect gases at any pressure, where pi = ciRT is the
partial pressure of species i. Thus at low pressures the frictional-model equations
become identical to the Knudsen diffusion equations,

Ji = - (l/f,,) Vpi = - (DiKIRT) Vpi, (8)

where the DiK are Knudsen diffusion coefficients. The DiK are known to be inde-
pendent of pressure and composition, since the species behave independently in the
low-pressure Knudsen regime; the fm are thus also independent of pressure and
composition.
At high pressures the f,, are negligible and the frictional-model equations become

the same as the Stefan-Maxwell diffusion equations, which are the multicomponent
generalization of Fick's law of diffusion (19),

-V Inpi = IZ f,(v, - v>) = C/(V - V,), (9)
RT~j cD,j

where Dij are the binary diffusion coefficients in the membrane. The Dij are known
to be inversely proportional to total pressure and to have only a weak dependence on
composition (a typical variation of Dij is a few percent over the whole composition
range of a trace of i in purejto a trace ofjin pure i). Thus cDij and hence f,/cj can
be taken as virtually constant, independent of both pressure and composition. Note
that this identification of thefj is in agreement with the Onsager reciprocal relations
through Dij = Dji-
The identifications we have found are thus

fm = RT/D1y, (10)

fjl/cj = fil/ci = RT/cDj, (11)

in agreement with Spiegler (6). What this achieves is the determination of the pressure
and composition dependence of the f,,, and fj, from which we can proceed to ex-
perimental tests.

BIoPHYSICAL JOURNAL VOLUME 15 1975594



COMPARISON WITH EXPERIMENT

Data Available
To test a theory with adjustable parameters we must have more measurements than
the minimum necessary to determine the parameters. Gaseous systems are especially
advantageous over liquid systems in this regard, since pressure is an easily manipulated
variable for gases. The data available are for the interdiffusion of helium and argon in
a low-permeability graphite under the influence of a number of imposed pressure
gradients, so that diffusion and flow occurred simultaneously (10, 11). The tempera-
ture was held constant at 25°C, and a series of measurements was made at each of five
average pressures between 1 and 5 atm, with almost pure helium on one side of the
membrane and almost pure argon on the other side. The fluxes of both components
were measured, their sum giving the total flux. Data are also available for the flow
of pure helium and pure argon through the same graphite septum as a function of
pressure difference, with the average pressure fixed at various values between 1 and
6 atm.

Working Equations
We wish to limit our considerations to regions linear in Ap, in order to avoid com-
plications over the integration of differential equations. The particular form of the
transport equations used is not trivial from this point of view; some forms are linear
over larger ranges than others. It is simplest to start with the case of the forced flow
of a single gas, for which the flow equation is written in integrated form as

Ji = -(Ki/RT)(Ap/L), (12)

where Ki is the permeability coefficient of pure i, and L is the membrane thickness.
The connection of Ki with the frictional coefficient is readily found to be

Ki = RT/I,fm. (13)

If a nonuniform binary mixture is involved, so that diffusion as well as forced flow
occurs, it is convenient to describe the situation by an expression like Eq. 12 for the
total flux J, with an added term for the diffusive contribution to J (1 1),

J = #IJ1 - (C2/RT)(Ap/L), (14)

or by interchange of subscripts,

J = #2J2 - (Cl/RT)(Ap/L), (15)

where #I, 02,, Cl,, and C2 are constants. The term 81 J, (or 62 J2) represents the con-
tribution of diffusion to total flow. The constant 61 (or #2) is determined experi-
mentally by measurement of the fluxes at uniform pressure; writing J = J, + J2, we

DANESHPAJOOH, MASON, BRESLER, AND WENDT Equationsfor Membrane Transport 595



obtain from Eq. 14

01i = 1 + (J2/Jl)p-0. (16)

A similar expression for fl2 follows from Eq. 15, or from Eq. 16 by interchange of sub-
scripts. The advantage of Eq. 14 or 15 is that J - I, J, or J - f2J2 is linear over a
wider range of Ap than either J, or J2, as is illustrated in Fig. 1 for the He + Ar system
at an average pressure of 1.49 atm (1 1). It can be seen that J - IBArJAr is linear over an
extensive range of Ap.
We obtain Eq. 14 or 15 from the frictional model equations by writing

dAi = RTdlnpi = RTdlnx, + RTdlnp, (17)

where xi is the mole fraction of i, and then eliminating Vx, and Vx2 between the two
transport equations by use of the identity dx, + dx2 = 0. The constants are thereby
found in terms of the so-called frictional coefficients to be,

01 = 1 - (fim/f2m), (18)

C, = RT/flm, (19)

with similar expressions for #2 and C2. According to the previous identification of
the frictional coefficients, the f,'s and C's are independent of pressure and composition.
Note that Eqs. 14 and 15 are not independent; one can be obtained from the other

through the relation J = J, + J2 . Moreover, neither equation involves the binary dif-
fusion coefficient D12 (orff2). Thus an independent diffusion equation is needed for a
complete description of the system. Although such an equation is easily obtained (one
of the two frictional-model equations will do, in fact), we shall have no need of it for
our experimental tests of the frictional model.

Experimental Tests

The experimental data we shall use are summarized in Fig. 2 as plots of KH., KA,
CH., and CA, as functions of mean pressure. Each point was obtained from the least-
squared slope of an appropriate plot of flux versus Ap, such as shown in Fig. 1. In the
calculations the theoretical values off, were used,

,B = 1 - (m,/m2)'/2, (20)

where m, and m2 are the molecular masses, since it is known from kinetic theory (12,
20) that (J21/JJ)Ap-o = -(ml/m2 )' 2v
We give below five experimental tests of the frictional-model equations. These five

are not entirely independent, but to some extent represent different ways of viewing the
experimental data.

(1) Pressure dependence of the permeability coefficients KHe and KAr. The perme-
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FIGURE I Forced flow in a diffusing He + Ar gas mixture in a porous graphite membrane at
1.49 atm and 25°C. The term OAr,JA, is the contribution of diffusion to the total flux J. The
slope of the straight line gives the flow parameter CHe of Eqs. 14-15. This form of plot gives a
linear relation over a wide range of pressure differences.

ability coefficients of pure gases are predicted by Eq. 13 to be independent of pressure.
Fig. 2 shows that they depend linearly on pressure.

(2) Pressure dependence oftheflow coefficients CHC and CA,r. The flow coefficients of
a diffusing gas mixture are predicted by Eq. 19 to be independent of pressure, but Fig. 2
shows that they depend linearly on pressure.

(3) Relation between K, and C,. From Eqs. 13 and 19 it follows that K1 = C,; this
prediction is independent of any statement about the pressure dependence of the co-
efficients. Fig. 2 shows that this predicted equality clearly fails, except in the limit of
p ) O.

(4) Flux ratio at uniform pressure. This could also be considered a test of the relation
between the f,3 and Ki. From Eqs. 13, 16, and 18 we obtain

-(JHe/JAr1p.O = (mAr/MHe)I/2 = 1 - #Ar = fArm/fHem = KHC/KAr. (21)

That is, the ratio KHe/KAr should equal the square root of the mass ratio, 3.16, but
Fig. 2 shows that this is true only in the limit ofp - 0. The ratio decreases with in-
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FIGURE 2 Permeability and flow coefficients as a function of mean pressure for He, Ar, and He +
Ar mixtures in a porous graphite membrane at 25°C. Only the solid line for KAr is drawn to
fit the data. The dashed lines are then determined from the KAr line according to kinetic theory,
Eqs. 34-35. The frictional model predicts that all four coefficients are independent of pressure,
and that CHC = KHC and CAr = KAf.
FIGURE 3 Individual and total fluxes as a function of pressure difference at 1.96 atm for the same
system as in Fig. 1. The open circles are the measured total fluxes (proportional to volume flow),
and the filled circles are the measured helium fluxes. The solid curve for J is drawn as an em-
pirical representation of the data. The two curves for JH are calculated from the curve for J
according to theory-the dashed curve from the frictional model, Eq. 22, and the solid curve
from kinetic theory, Eqs. 14 and 35.

creasing pressure, falling to about a value of 2 at 2 atm. However, the frictional model
does correctly predict that CHC/CAf is equal to 3.16 at all pressures.

(S) Prediction of individual fluxes from totalflux and permeability coefficients. This
test is another way of examining the prediction that C, = K,; combination of this
equality with Eqs. 1415 and 18-19 yields

JHC = (J/lBHe) + (KAfr//BHCRT)(Ap/L),
- (KHC/[KHC - KAfJ)J + (KH.KAf/[KH - KAF])(Ap/RTL), (22)

with a similar expression for JAr. For a test we choose the measurements at 1.96 atm,
which are especially extensive, and compare the measured JHC with the result predicted
from the observed total J and the values ofKH2 andKA2 . Such a prediction, if accu-
rate, would be extremely useful it would permit the calculation of an individual dif-
fusive flux from a measurement of volume flow plus independent permeability mea-
surements. The comparison is shown in Fig. 3, and the prediction is seen to fail badly.
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Nature ofFailure

The failure of the frictional-model equations is easy to diagnose from the behavior of
the permeability coefficients shown in Fig. 2. A linear pressure dependence has long
been explained on the basis of the viscous flow of a compressible fluid; measurement
of the slope of such a plot of K, vs. is a classic method for the measurement of gas
viscosity. In other words, it would appear likely that the failure of the frictional model
can be attributed to the lack of any terms describing viscous flow in the equations.
Further evidence for this view comes from the identification of the permeability and
flow coefficients, K, and C,, with fm and hence with the Knudsen diffusion coefficient
DiK. This means that the flow mechanism is being attributed solely to the motion of
individual molecules (Knudsen diffusion), and not to any viscous mechanism.
An interesting puzzle now arises. If the frictional model fails so badly for gases, how

was Spiegler (6) able to successfully describe many features of the diffusion of gases
across porous media? Investigation shows that Spiegler treated only the cases of
isobaric (Ap = 0) and equal countercurrent (J = 0) diffusion. These are just the two
cases, and the only two, for which the influence of the viscous flow drops out at all
pressures (21). Thus the apparent puzzle is really indirect evidence that neglect of
viscous flow is the source of the trouble.
The lack of a viscous flow term in the frictional-model equations is a fundamental

omission, caused by the basic assumption of mechanical equilibrium of the fluid in the
membrane (Manning[9] has also pointed out the need for viscous terms). Fortunately
this assumption is not crucial, and viscous flow has been incorporated into irreversible
thermodynamics by Bearman and Kirkwood (22-24). We could use their results as a
basis for modifying the frictional model, but we prefer to proceed by way of kinetic
theory in order to gain physical insight. The methods are consistent, and the same final
equations are obtained whichever route is followed.

KINETIC THEORY

The kinetic-theory equations that describe the experiments discussed in the preceding
section are well known (12), and confirm the diagnosis of a missing viscous flow term.
We wish to do more than confirm this omission, however-we wish to cast the general
multicomponent kinetic theory results into a form which admits of a direct phe-
nomenological generalization, as a basis for modifying the frictional model. We first
give the equations as obtained from the most general kinetic theory procedure pres-
ently available; this is sometimes referred to as the "dusty-gas" model, in which the
porous membrane is treated mathematically as one component of the gas mixture, con-
sisting of giant molecules held stationary in space (12). We then show how the same
equations can be obtained more simply but less rigorously on the basis of momentum-
transfer arguments (25). The phenomenological generalization follows directly by
plausibility arguments.
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Dusty-Gas Model

The diffusion equations for a multicomponent mixture are simplest when written,
not as a flux of one component proportional to gradients involving all components
(Onsager form), but as gradients involving one component proportional to fluxes of
all components (Stefan-Maxwell form). If we define an average diffusion velocity for
component i as

ViD JiD /Ci, (23)

where JiD is that portion of the flux due to diffusion alone, then the diffusion equations
for an isothermal mixture of v components are (19)

-di= CCj (viD -Vj) (24)

a total of v equations, of which only v - I are independent. The gradient factor di
contains three terms corresponding to concentration diffusion, pressure diffusion, and
forced diffusion, respectively, as follows (in one dimension):

d-d (c,\ c (M M\ dlnp I1cI( M,'~~\ '5
dz c c dz p c CkFk

where M1 is the molecular weight of component i, M is the mean molecular weight of
the mixture, and F1 is the external force on the ith component.
We now take one component as stationary, uniformly distributed, and having a

very high molecular weight; this comprises the porous membrane, and is denoted by
the subscript d for "dust." Then c, p, Dj, andM of Eqs. 24 and 25 include the dust as
one component, and are given a prime unless the dust is explicitly removed from the
counting. However, kinetic theory shows that to an excellent approximation,

c'D,, = cD,. (26)

An external force is needed to keep the dust stationary in the presence of pressure
gradients in the gas mixture; a simple force-balance argument shows that (12)

CdFd = dp/dz, (27)

where p is the actual gas pressure. Insertion of these conditions into Eqs. 24 and 25
leads to considerable cancellation, and the result is

dznA ViD + ZE_ (ViD - VjD), (28)
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where the Knudsen diffusion coefficient DiK is

DigK cDd/cd. (29)

In Eq. 28 we have assumed that no external forces act on the gas molecules; this would
not be true for ions, but the forced diffusion terms are easily added if needed. The
sums now include only the gas components, not the dust.
The average total velocity is obtained by adding the average viscous flow velocity to

the average diffusion velocity,

Vi = ViD + Vvisc, (30)

or in terms of fluxes,

Ji = JiD + Xi Jvs. (31)

This additivity follows directly from the kinetic theory in that there are no viscous
flow terms in the diffusion equations, and no diffusion terms in the viscous flow equa-
tions; the two are entirely independent in the sense that there are no direct coupling
terms in these equations.' The viscous flow velocity is computed by a force-balance
argument such as is used for the derivation of Poiseuille's law, and is

v,,, = -(B./1)(dp/dz), (32)

where B. is a geometric constant characteristic of the membrane. Combining these
results with Eq. 28 and substituting for the chemical potential from Eq. 17, we obtain

1Tdz 1u (- Vi), (33)

which is the desired result.
From Eq. 33 we can readily obtain the forms for the permeability and flow coeffi-

cients, and show that they agree with experiment (12). After a little algebra we find
the permeability coefficient of a single gas i to be

Ki = D1K + (Bo/li)p, (34)

'Of course this does not mean that viscous flow and diffusion do not interact in a very real sense, but only
through boundary conditions and the behavior of the transport coefficients, not through direct coupling
terms in the equations (12). For instance, the viscosity of a mixture depends on its composition, which in
turn depends on the diffusion occurring. Thus, viscous flow is influenced by diffusion. Conversely, the
pressure distribution may be largely determined by the viscous flow, which thereby influences the diffusion
through the pressure dependence of the diffusion coefficients.
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and the flow coefficients Cl and C2 of a binary mixture to be (with i = 1 or 2),

Ci = D1K[l + (Bo/n7mix)(P/DK)], (35)

where lmix is the viscosity of the mixture, and

I/DK - (xl /DIK) + (X2/D2K)- (36)

The constant f,B for a binary mixture is

, 1 = 1 - (D2K/DIK) = 1 (m /m2)/2 (37)

with a similar expression for f#2. These equations show that K, and Ci are linear in
pressure, and that K1 = Ci only at p - 0, in accord with the data shown in Fig. 2.
The data displayed in Fig. 2 can be summarized by eight empirical numbers-four in-
tercepts and four slopes-but Eqs. 34-37 contain only two independent parameters, B.
and one of the Knudsen diffusion coefficients. If these two are known, the other
six can be predicted from knowledge of viscosities and molecular masses. Thus a
good test of Eqs. 34-37 is to fit one line to the data to determine the two param-
eters, and from this fit predict the other three lines and see how well they agree
with the experiments. Accordingly, we fitted the KA, data by least squares, ob-
taining DArK = 1.24 x 10-4 cm2/s from the intercept, and B. = 2.13 x 10-14 cm2 from
the slope, with fA, taken as 226 ,uP at 25°C. Since Eq. 37 states that the DiK vary as
m,. 1/2 we predict that DHCK = 3.93 x 10-4 cm2/s. This value, together with 7Hc =
198 tP, determines the line for KHC. Experimental measurements of the viscosities of
He + Ar mixtures show that nmix depends only weakly on composition over a large
range; the linear average over the composition range yields a value of 228 AP. This
value, together with the value of DK calculated from Eq. 36, determines the lines for
CH. and CAr. As can be seen in Fig. 2, the agreement between kinetic theory and ex-
periment is quite good.

Kinetic theory also makes an accurate prediction for the flux data shown in Fig. 3.
The curve for JHC is calculated according to Eqs. 14 and 35 from the curve drawn for
total J, using the value of CAr predicted as in Fig. 2 and the theoretical value of /3H.
according to Eq. 37.

Momentum- Transfer Model
The basic idea goes back to Maxwell (26) and to Stefan (27). It was re-invented during
World War II in connection with isotope separation (28). The extension to multi-
component mixtures and to Knudsen diffusion is straightforward (25, 29), but does
not seem to be widely known. Since pressure is due to the transfer of momentum by
collisions according to the kinetic theory of gases, it is argued that the gradient of
partial pressure of one species is due to the momentum transferred to that species by
collisions with the other species and with the wall. Thus the gradient is built up by
additivity of momentum transfers. The contribution of the wall collisions is easily
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written down as

-(l1/RT)(dpi/dz)K = JiD/DiK = CIVID/DAiK, (38)

which is essentially just the definition of the Knudsen diffusion coefficient, DiK. The
contribution of the molecular collisions can be found from a detailed molecular argu-
ment (30), which we do not reproduce here, but can be easily guessed by rewriting the
diffusion equations for a binary mixture in terms of the partial pressure gradient. For
pure diffusion at zero pressure gradient, these equations are

JID = -D,2(dc,/dz) + XIJD, (39A)

J2D = -D12(dC2/dZ) + X2JD, (39B)

which are essentially just the definition of D,2. Combining these two and eliminating
the total diffusive flux JD, we find

-(l/RT)(dpI/dZ)D = (X2JID - XIJ2D)/DI2 = (CIC2/DI2)(VID - V2D). (40)

The extension to multicomponent mixtures is then plausible: for each new species there
is a new momentum-transfer term on the right,

- (l1/RT)(dpIIdz)D = (c, C2/DD2) (VID - V2D) + (CI C3/D3) (VID - V3D) + *.., (41)

with similar equations for each of the other species. Combining Eqs. 38 and 41 we
can write the total momentum transfer for species i as

- (l/RT)(dpi/dz) = C,ViD/DiK + (cicj/cDij)(vID - viD). (42)

This is the same as Eq. 28 obtained by the dusty-gas model, on substitution of c, =
pA/R T. An additional set of terms for the action of external forces could also be added
in an obvious way, but we shall not bother with this extension.
The independence of diffusive and viscous flows is actually more general than kinetic

theory, and is valid for any isotropic system. It depends only on the fact that all the
equations are linear in fluxes and gradients, and that quantities of different tensorial
character do not couple in the linear regime (Curie's theorem) (31). Thus the inclusion
of viscous flow in the momentum-transfer model proceeds exactly as in the dusty-gas
model, and we end up again with Eq. 33, the desired result.

Phenomenological Generalization
We first remove the specifically gas-like portions of Eq. 33 by defining pressure-
independent parameters,

Cim R T/DiK,. (43)

ij -RT/cDij = cji. (44)
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For gases, t.m represents the interaction between species i and the membrane, inde-
pendent of the other species in the mixture, and Dij represents the interaction between
species i and j, almost but not quite independent of the other species (32, 33). Then
the transport equations become

- = ,[v, + (Bo/n7) Vp] + E S D(vi - vi), (45)
j

which are exactly the same as the frictional-model equations, except for the viscous
term. The relation of the coefficients is >im = fin, and tjj = fj/cj = fl/c1. Eq. 45 is
thus expected to be generally applicable to all fluids, including dense gases and liquid
solutions, without restriction as to density or ideality.

Onsager Relations
To show that our phenomenological generalization of kinetic theory is consistent with
irreversible thermodynamics, we need only prove that Eq. 45 obeys the Onsager rela-
tions. The proof will also suggest a way to modify the frictional model to include
viscous flow terms. Ifwe define

Ji = civi, (46 A)

Xi = - VAI - jm (Bo/n)VP, (46 B)

then Eq. 45 is readily arranged into the form

Xi = S FijJj, (47)

or in matrix notation

X = FJ, (48)

where

Fij(i /j) = -j, (49 A)

Fii = C '(ijm + E C ) (49 B)
k#i

The matrix F is symmetric because ,j = 4j. Formally solving Eq. 48, we write

J = LX, where L = F-'. (50)

Since F is symmetric, so is L, and Eq. 45 obeys the Onsager relations.

Permeability and Tracer Diffusion
In gases it is easy to separate the contributions of diffusion and viscous flow by mea-
suring the pressure dependence of the permeability coefficient of a single gas, as
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shown by Fig. 2 and Eq. 34. This technique is not available for liquids, and the
problem is usually studied by comparing the solvent permeability coefficient as
measured with a pressure gradient (hydraulic conductivity) to the solvent "self-
diffusion" coefficient as measured with isotopic tracers (34). It is therefore interesting
to make a similar comparison for gases. The tracer diffusion coefficient D, is found
to be (12)

l/D* = (1/D*K) + (l/D'), (51)

where D* is the Knudsen diffusion coefficient. of the tracer, and D', is the ordi-
nary diffusion coefficient of the tracer in the normal solvent. From this we see that
D' < D&, and from Eq. 34 we see that K, I DIK. Thus K, > Df, as expected, and
the sign of equality holds only if everything is in the Knudsen regime.

MODIFICATION OF FRICTIONAL MODEL

Revised Derivation
With the acuity of hindsight, one can now see how the frictional-model arguments
might have been modified to include the viscous term. The most fundamental way
would be to choose the forces XA to include a viscous force as well as the gradient of
chemical potential-in particular, the choice shown in Eq. 46 B leads exactly to our
generalized kinetic-theory result of Eq. 45. This choice of the Xi is equivalent to
the modification found by Bearman and Kirkwood (22-24) for the introduction of
viscous flow into irreversible thermodynamics. Thus all three approaches-irreversible
thermodynamics, frictional model, and kinetic theory-become completely consistent
with each other and with experiment.
Another way to introduce viscous flow into the frictional-model equations is to add

a term to include the interaction between species i and the viscous flow of all the other
species, so that the equations become

- Vui = fm (Vi - vvisc) +E f,i(vi - v,) (52)

Taking vic from the analogue of Poiseuille's law,

visc = -(B0/n) Vp,

we obtain the equivalent of Eq. 45, the generalized kinetic-theory result.
Yet another way to revise the derivation of the frictional-model equations is sug-

gested by the momentum-transfer model of kinetic theory discussed in the previous
section. From this model it is clear that the transport equations can be constructed
by combining momentum transfers or chemical potential gradients like resistors in
series, where voltage drops are additive, and then combining the resultant diffusive
flux with the viscous flux like resistors in parallel where currents are additive. A
mnemonic diagram for generating Eq. 45 from such considerations is shown in Fig. 4
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FIGURE 4 Series-parallel electrical diagram as a mnemonic device for writing down the transport
equations for coupled flow and diffusion in membranes. Diffusive fluxes combine by addition of
chemical potential gradients (analogue of voltage drops), and the net diffusive flux then combines
additively with the viscous flux (analogue of currents).

(25). The procedure is to first obtain the diffusive branch by adding up the contribu-
tions to the chemical potential gradient, including the interaction with the membrane
and with the other series in the mixture, and if necessary including the contribution of
external forces. Then the viscous flux is included by replacing each diffusive velocity ViD
by (vi - rv,ic), and substituting for vPj. in terms of the viscosity and pressure gradient.
Here only the membrane interaction term is affected, since the species interaction terms
involve the difference (vD - VjD), which is equal to (v, - vj). This series-parallel anal-
ogy gives a simple recipe for writing down Eq. 45, but it is best regarded as a mnemonic
device only, and not as a basis for giving physical interpretation to the transport
coefficients.

Physical Interpretation ofCoefficients
We can use the present results to gain some further insight into the physical meaning
of the frictional-model coefficients. Anderson and Quinn (35) compared the frictional
model with a hydrodynamic model, using Poiseuille's equation to identify the fric-
tional coefficients, and concluded that the two models did not agree. We can now see
that any comparison involving viscosity in the interpretation of the frictional coeffi-
cients is of necessity doomed to failure; viscosity enters the frictional-model equations
as an entirely separate term, completely independent of any of the original terms in
the equations.
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More interest attaches to the interpretation connected with the separation mecha-
nism for sieving or hyperfiltration membranes, in view of the apparent paradox be-
tween a frictional mechanism and steady-state operation. It is convenient to present
the discussion in terms of the reflection coefficient, a, for a two-component system.
The definition of a follows by arranging Eq. 45 for ideal solutions into the form (4)

J = -LP(Vp - aRTVc,). (53)

Ifwe take Eq. 53 as defining a, then a represents the fraction of the theoretical osmotic
pressure realized with a "leaky" membrane,

a (Ap/RTAcj)j_O. (54)

In terms of the so-called frictional coefficients, the expression for a turns out to be

or = fim - f2m

Xlf2m + X2fim + Cr12 + (cB,,,/) [XIflm(Afm2, + Cr12) + X2ffim(flm + Cr12)]
(55)

in which we have included the originally omitted viscous term and have used g;2 in
preference to fl2 and f2j. An analogous expression for Lp can be obtained, but is
not needed here. The important feature of Eq. 55 is its numerator, which shows that
the factor causing sieving (i.e. causing a to be different from zero) is the difference in
the two membrane frictional coefficients, (ftm - f2m,,). This strongly suggests that
sieving is due to differences in the frictional interactions of solute and solvent within
the membrane. Aside from its inconsistency with steady-state operation (13, 14), we
wish to show that such an interpretation is incorrect, according to kinetic theory, for
the simple case of perfect gases.
We first show that the experimental system discussed in the previous section exhibits

sieving, in the sense that a is nonzero. From the combined flow and diffusion experi-
ments it is straightforward to pick out the pressure difference for which J = 0, and
calculate a according to the definition of Eq. 54, in the form

a = (AP/TLAXAr)J.°0, (56)

where we have arbitrarily chosen argon as the solute and helium as the solvent. The
experimental points are shown in Fig. S for the five experimental pressures. Also
shown is the theoretical curve calculated according to Eq. 55, using the numerical
values of B0, rq, and the DiK (or f,m) already quoted. The value of D,2 (or p12) was ob-
tained from independent experiments at uniform pressure with the same porous
graphite membrane (10); the value was D,2 = 1.06 x 10-4 cm2/s at a nominal pressure
of 1 atm. The agreement is excellent. It is worth noting that at p = 0, the limiting
value of a is slightly greater than unity. It would seem from Fig. 5 that the graphite
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FIGURE 5 Reflection coefficient a as a function ofmean pressure for the same He + Ar "solution"
and membrane as in Figs. 1-3. The "sieving" effect shown is actually a kinetic entrance effect,
not a frictional effect within the body of the membrane as suggested by the frictional model. The
curve is from kinetic theory, Eq. 55.

membrane exhibits a substantial osmotic effect with an Ar + He solution; the pressure
differences in the experiments amounted to about 0.2 atm (1 1, 12).
To trace the molecular interpretation of the apparent sieving behavior of the porous

graphite membrane shown in Fig. 5, we note that in the kinetic-theory results nonzero
a corresponds to {Ar,m £ tHc' which in turn corresponds to DAfK # DHeK. We there-
fore only need to understand why Knudsen diffusion coefficients differ, and this is a
simple problem because collisions between molecules do not enter into consideration.
The derivation of a detailed expression for DiK is a classical problem in kinetic
theory (30, 36), and shows that this mechanism for separation is not a true frictional
effect, but an entrance effect. For instance, for free-molecule diffusion through a long
capillary tube with diffusely reflecting internal walls, the Knudsen diffusion coefficient
is

DiK = iAid, (57)

where d is the tube diameter and 5, = (8k T/rm,)'/2 is the mean molecular speed of
species i. The separation thus depends on ii and thereby on mi 1/2* But -i enters the
derivation through the counting of the number of species i molecules that enter the tube
per unit time, not from any consideration of how long they take to get through the
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tube once they have entered. That is, more fast molecules enter the tube per unit time
than slow molecules, so that a relative enrichment occurs immediately on entrance;
how long it then takes to get through the tube is irrelevant as far as separation is con-
cerned. Considerations of different tube geometries or gas-surface interactions change
only the numerical and geometrical factors in Eq. 57, and do not affect the R,. Most
of the complications in the calculation of DIK are of a geometric nature, and involve
the computation of the probability that a molecule will find its way back out the
entrance after it has entered (30, 36). This probability is usually the same for different
species, in which case separation is entirely an entrance effect. Some separative behav-
ior can in principle be caused by preferential back-reflection out the entrance for dif-
ferent species, but this is rare (and destroys the mr 1/2 behavior of the DiK). The
behavior shown in Fig. 5 is entirely an entrance effect, as shown by the mT'/2 depen-
dence of the DiK demonstrated in Fig. 2.

This interpretation of the 4,, and hence of the so-called frictional coefficients f,,,
in terms of entrance effects rather than frictional effects within the body of the mem-
brane completely avoids the conflict with steady-state operation. This conflict arises
because internal friction causes accumulation of material within the membrane, and a
steady state cannot be reached unless a removal mechanism for accumulated material
coexists with the rejection mechanism. Any physical interpretation of frictional-model
coefficients must take this fact into account.

DISCUSSION

We believe that Eq. 45 supplies a set of generally valid transport equations for any type
of solution in any open membrane. Whether it is regarded as obtained by a generaliza-
tion of kinetic-theory equations or by a modification of the frictional-model equations
is a matter of taste, since the result is the same. Advantages of this formulation over
the Onsager formulation lie in the behavior of the coefficients and in their possible
physical interpretation. Regarding behavior, for gases the coefficients 4,, (or fm,)
depend only on species i and the membrane and not on any other species, and the
coefficients tij depend only on species i and j to an excellent approximation. This
simple behavior may not hold for condensed phases, but hopefully the dependence of
the t,I and tz on the other species in the solution will be weaker than that of the
Onsager coefficients L,,. Certainly this is true for gases, where the multicomponent
diffusion coefficients corresponding to the Lf; depend on the composition of the whole
mixture in a very complicated way (19, 37, 38).

Regarding physical interpretation of the coefficients, the comparison with kinetic
theory suggests that any steady-state separation occurring through an open membrane
is likely to be an entrance effect rather than an internal friction effect. The entrance
effect can be either a kinetic one as in Knudsen flow, or a steric one if the molecular
diameter is comparable to the membrane pore diameter (39, 40). An important impli-
cation of this conclusion is that any explanation of a steady-state separative effect in
membranes as other than an entrance effect must probably involve some heteroporos-
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ity or mosaic structure of the membrane, so that part of the membrane is permeable
and part is impermeable to some of the species.
Some further physical interpretation of transport coefficients can be obtained from

Eq. 45, leading to predictive power such as was shown in Fig. 2 for gases, although
there is less scope for liquids than for gases because total pressure is not a practical
variable for liquids. We consider a binary solution, and convert Eq. 45 into two
independent working equations of particularly convenient form. Making no assump-
tions about ideality of solutions, we use the Gibbs-Duhem relation for the chemical
potential gradients,

EciVi = Vp (constant T), (58)

and algebraically eliminate the term involving t12 in Eq. 45 to obtain the first working
equation,

J = J- (C2/RT) Vp, (59)

where

= 1 - QLA2.) (60)

RRT B
+ Bo Xtlm + X24) (61)C2 + ~~~~~~~~~~~(61)

We have used the relation c = (x,1V, + x2 V2)', where V, and V2 are partial molar
volumes. This equation is of course analogous to Eqs. 14-15 that we used for gases. A
similar equation can be written in terms of species 2 by interchange of the subscripts 1
and 2, but the two equations are not independent. An independent diffusion equation
can be obtained from Eq. 45 by substituting J2 = J - J, and writing the chemical
potential gradient as

V,u = RTVlna, + V,Vp, (62)

where a, is the (dimensionless) activity. The result can be arranged into the physically
appealing form,

Jl = -Die.ff [(d ln al)/(d In cl)] Vc, - DI ff (cl Vl/RT) Vp + xl18 J

- [x,(l - bi)(Bo/77mix)/(xi VI + x2V2)]VP, (63)

where

Dleff R T(Qm + cr12)', (64)

61 Ct12(QIm + ct12)'l = rl2(Dleff/RT)(xV, + X2V2)'. (65)
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A similar equation holds for species 2, but is not an indepenident equation. Each of the
four terms on the right-hand side of Eq. 63 can be given a physical interpretation, with
a simple analogue in perfect gas mixtures. The first term is an ordinary diffusion term,
but with an effective diffusion coefficient D1 cif whose value reflects the relative impor-
tance of molecule-membrane interactions and molecule-molecule interactions. If
molecule-membrane interactions dominate, then D, eff equals R TIl~m, correspond-
ing to the Knudsen regime in gases. If molecule-molecule interactions dominate, then
Deff equals R T/ct12 and is proportional to the ordinary diffusion coefficient D12,
the constant of proportionality depending only on membrane geometry; this limit
corresponds to the continuum regime in gases. The second term is a pressure diffusion
term; in perfect gases the first two terms merge together because of the equation of
state, PA = cR T. The third term is a net drift term, and the quantity 6, varies
between 0 and 1 as molecule-membrane or molecule-molecule interactions dominate.
In perfect gases, net drift does not contribute in the Knudsen regime (6, = 0), but
contributes fully in the continuum regime (6a = 1). The fourth term has the nature
of a correction term; in gases it makes only a small contribution unless the pressure
gradient is large. Moreover, it becomes negligible in the molecule-molecule regime
(6a} 1), and is probably also negligible in the molecule-membrane regime because if
Im >> C,12, the factor (x, V, + x2V2) = c-' in the denominator of the last term is

probably large.
Eqs. 59 and 63 are thus recommended as the working transport equations for a

binary mixture. They are especially suitable for integration and interpretation, as
judged by their success for perfect gases (12). Moreover, they allow some transferral
of knowledge from solution to solution using the same membrane. In particular, if
solution diffusion coefficients in free solution are known, then only one rumust be
measured experimentally since

~12/t34 = (D34/D,2)([X,VI + X2V2]/[X3V3 + X4V4]). (66)

Thorough testing of this and other consequences of Eq. 45 awaits a comprehensive set
of measurements on a single membrane with well-characterized solutions.
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