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Formal learning theory constitutes an attempt to describe and explain the phenomenon

of learning, in particular of language acquisition. The considerations in this domain are

also applicable in philosophy of science, where it can be interpreted as a description of

the process of scientific inquiry. The theory focuses on various properties of the process

of hypothesis change over time. Treating conjectures as informational states, we link the

process of conjecture-change to epistemic update.We reconstruct and analyze the temporal

aspect of learning in the context of dynamic and temporal logics of epistemic change. We

first introduce the basic formal notions of learning theory and basic epistemic logic. We

provide a translation of the components of learning scenarios into the domain of epistemic

logic. Then, we propose a characterization of finite identifiability in an epistemic temporal

language. In the end we discuss consequences and possible extensions of our work.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Modal logics of epistemic and doxastic change have been developed and applied in the context of multi-agent systems

to analyze the process of epistemic and doxastic change. Formal learning theory, on the other hand, is concerned with

functions that identify a correct hypothesis from a range of possibilities on the basis of inductively given streams of data.

These functions can be viewed as agents that change their beliefs about which hypothesis is correct. In this paper we

investigate the connection between formal learning theory and modal logics of belief change, on the example of finite

identification. The motivation for bridging learning theory and modal logics of belief change is twofold. By analyzing the

epistemic and temporal structure underlying formal learning theory, we provide additional insight into the semantics of

inductive learning. On the other hand, importing the ideas, problems andmethodology from learning theory enriches logics

of epistemic and doxastic change by new concepts and new perspectives (for philosophical and methodological discussion

see [19]).

Let us give a short explanation of how the bridging is established (a similar approach can be found in [13,20]). First, we

focus on the language learning paradigm, in which languages are treated as sets of positive integers. Learning is viewed as

a process in which an agent (let us call her Learner) considers some range of languages; one of the languages is the actual

one, and Learner’s general aim is to find out which one it is. The elements of the language are given to Learner one by one.

The infinite sequence of data that governs this enumeration includes all and only elements of the language. Several success

conditions of such a learning process can be defined. For instance, it can be assumed that each time Learner gets a piece of

information, she is allowed tomake a conjecture.We can define the learning process to be successful if Learner’s conjectures

stabilize on the proper language. This learnability condition is called identification in the limit [22]. Another, more restrictive

notion of success requires that Learner, while successively given the data about the language, gives an answer only once, at

some finite stage of the procedure. This kind of learnability is known as finite identification [27].

Intuitively, our approach to inductive learning in the context of epistemic and epistemic temporal logic is as follows. We

take the initial class of languages to be possible worlds in an epistemic model, which mirrors Learner’s initial uncertainty
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over the range of languages. The incoming piece of information is taken to be an event that modifies the initial model.

We investigate the properties of iterated update situations that correspond to finite identifiability and we describe the

emergence of irrevocable knowledge in this setting. The structure resulting from updating the model with a sequence of

events can be viewed as an epistemic temporal forest. We explicitly focus on protocols that are associated with set learning

scenarios. We give a modal characterization of forests that are generated from a learning situation that satisfies a finite

identifiability of languages condition. We observe that a special case of such protocol-based setting, namely when only one

stream of events is allowed in each state, can be used tomodel function-learning paradigm.We show how the simple setting

of iterated epistemic update cannot account for all possible learning situation. In the end we conclude our considerations

and present possible directions of further work.

2. Formal learning theory

LetU be an infinite recursive set;we call any S ⊆ U a language. Learning theory ismostly concernedwith indexed families

of recursive languages, i.e., class C for which a computable function f : N × U → {0, 1} exists that uniformly decides C, i.e.,

f (i,w) =
{
1 if w ∈ Si,

0 if w /∈ Si.

The global input for Learner is given as an infinite stream of data. In learning theory, such streams are often called texts

(positive presentations).

Definition 1. By a (positive presentation) ε of S wemean an infinite sequence of elements from S enumerating all and only

the elements from S (allowing repetitions).

Definition 2. We will use the following notation:

• εn is the nth element of ε;
• ε�n is the sequence (ε1, ε2, . . . , εn);• set(ε) is the set of elements that occur in ε;
• if α, β ∈ U∗, then by α � β we mean that α is a proper initial segment of β .
• L is a learning function—a recursive map from finite data sequences to indices of hypotheses, L : U∗ → N. We will

sometimes take the learning function to be L : U∗ → N ∪ {↑}. Then the function is allowed to refrain from giving a

natural number answer, in which case the output is marked with ↑.

2.1. Finite identification

Finite identifiability of a class of languages from positive data is defined by the following chain of conditions.

Definition 3. A learning function L:

1. finitely identifies Si ∈ C on ε iff, when inductively given ε, at some point L outputs a single value i;

2. finitely identifies Si ∈ C iff it finitely identifies Si on every ε for Si;
3. finitely identifies C iff it finitely identifies every Si ∈ C;
4. a class C is finitely identifiable iff there is a learning function L that finitely identifies C.

Example 1. Let C1 = {Si = {0, i} | i ∈ N}. C1 is finitely identifiable by the following function L : U∗ → N ∪ {↑}:

L(ε�n) =
{↑ if set(ε�n) = {0} or ∃k < n L(ε�k) �= ↑,
max(set(ε�n)) otherwise.

In other words, L outputs the correct hypothesis as soon as it receives a number different than 0, and the procedure ends.

To see how restrictive this notion is, we can consider finite class of languages that is not finitely identifiable.

Example 2. Let C2 = {Si = {0, . . . , i} | i ∈ {1, 2, 3}}. C2 is not finitely identifiable. To see that, assume that S2 = {0, 1, 2}
is chosen to be the actual world. Then learning function can never conclusively decide that S2 is the actual language. As, for

all it knows, 3 might appear in the future, so it has to leave the S3-possibility open.

A necessary and sufficient condition for finite identifiability has already been given [25,27].
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Definition 4 [27]. A set Di is a definite finite tell-tale set for Si ∈ C if

1. Di ⊆ Si,

2. Di is finite, and

3. for any index j, if Di ⊆ Sj then Si = Sj .

On the basis of this notion, finite identifiability is characterized in the following way.

Theorem 1 [27]. A class C is finitely identifiable from positive data iff there is an effective procedure D : N → P<ω(N), given
by n 	→ Dn, that on input i produces a definite finite tell-tale of Si.

In other words, each set in a finitely identifiable class contains a finite subset that distinguishes it from all other sets in

the class.Moreover, for the effective identification it is required that there is a recursive procedure that provides such definite

finite tell-tale set.

2.2. Identification in the limit

To see that a more general notion of identification is possible let us consider again Example 2, i.e., take C2 = {Si =
{0, . . . , i} | i ∈ {1, 2, 3}}, and assume that S2 is the actual language. As we saw Learner cannot conclusively decide that S2
is the case. There is however a way to deal with this kind of uncertainty. Namely, if we allow Scientist to answer each time

he gets a new piece of data, we can define the success of learning using the notion of convergence to the right answer. After

seeing 1 and 2 Learner can keep conjecturing S2 indefinitely, because in fact 3 will never appear. This leads to the notion of

identification in the limit.

Definition 5 (Identification in the limit [22]). Learning function L:

1. identifies Si ∈ C in the limit on ε iff for co-finitely manym, L(ε�m) = i;

2. identifies Si ∈ C in the limit iff it identifies Si in the limit on every ε for Si;
3. identifies C in the limit iff it identifies in the limit every Si ∈ C.
4. C is identifiable in the limit iff there is a learning function that identifies C in the limit.

Below we give some examples of classes of languages which are identifiable in the limit. First let us consider an example

of a finite class of finite sets.

Example3. Recall the class C2 fromtheprevious example.C2 is identifiable in the limit by the following function L : U∗ → N:

L(ε�n) = max(set(ε�n)).

Learning by erasing. Learning by erasing [24] is an epistemologically intuitive modification of the identification in the limit.

It has not drawnmuch attention in the field of formal learning theory but for our purposes (a comparison with the approach

of dynamic epistemic logic) it is interesting. Very often the cognitive process of converging to a correct conclusion consists

of eliminating those possibilities that are falsified during the inductive inquiry. Accordingly, the outputs of the learning

function are negative, i.e., the function each time eliminates a hypothesis, instead of explicitly guessing one that is supposed

to be correct. The difference between the definition of this approach and the usual identification is in the interpretation

of the conjecture of the learning function. In learning by erasing one assumes an ordering of the initial hypothesis space

isomorphic to the natural numbers. This allows one to interpret the actual positive guess of the learning-by-erasing function

to be the least hypothesis (in the given ordering) not yet eliminated.

Let us give now the two definitions that shape the notion of learning by erasing.

Definition 6 (Function stabilization). In learning by erasing we say that a function stabilizes to number k on environment ε
iff for co-finitely many n ∈ N:

k = min({N − {L(ε�1), . . . , L(ε�n)}}).
Definition 7 (Learning by erasing [24]). We say that a learning function L:

1. learns Si ∈ C by erasing on ε iff L stabilizes to k on ε;
2. learns Si ∈ C by erasing iff it learns by erasing Si from every ε for Si;
3. learns C by erasing iff it learns by erasing every Si ∈ C.
4. C is learnable by erasing iff there is a learning function that learns C by erasing.
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It is easy to observe that in this setting learnability heavily depends on the chosen enumeration of languages, since the

positive conjecture of the learning function is interpreted as the minimal one that has not yet been eliminated.

Several types of learning by erasing have been proposed. They vary in the condition of which hypotheses the learning

function is allowed to remove (for details and results on learning by erasing see [24]).

3. Dynamic epistemic logic

Modal logics of epistemic change are used to analyze the information flow in multi-agent systems (see, e.g., [2,7,17,18]).

We focus on the approach of dynamic epistemic logic (DEL [29], see also [14]), inwhich it is possible to formalize the principles

of such changes.

Let us begin with the notion of epistemic model. To better suit our purposes wewill restrict ourselves to the single-agent

case, indicating in relevant places how to make the step towards the multi-agent extension. We fix Prop to be a countable

set of propositional letters.

Definition 8. A single-agent epistemic model M is a triple:

〈W,∼, V〉,
where W �= ∅ is a set of states, ∼ is a binary equivalence uncertainty relation on W , and V : Prop → ℘(W) is a valuation,

where prop is a countable set of propositional letters, and ℘(W) is the power set of W .

For the multi-agent modelling we extend the above definition with the uncertainty relations of all agents. Therefore,

instead of ∼ we get (∼a)a∈A, where A is the set of agents.

In the above definition the set W stands for the possible states, and ∼ for the uncertainty of the agent. In other words,

w ∼ v means that the agent cannot distinguish (is uncertain) between the possibilities w and v.

Epistemic models are static—they represent the informational state of an agent in temporal isolation. We will nowmake

the settingmore dynamic by assuming that the agent observes some incoming data and is allowed to revise his informational

state. We will restrict to the simplest method, called update (see [4]). Update is a policy that restricts models—each time a

piece of data is encountered, it is assumed to be truthful and all worlds of the epistemic model that do not satisfy this new

information are eliminated.

The definition below formalizes the notion of update—the revision with formula ϕ results in removing all states that do

not make ϕ true.

Definition 9. The update of an epistemic model M = 〈W,∼, V〉 with a formula ϕ, formally M | ϕ, results in the new

epistemic model M′ = 〈W ′,∼′, V ′〉, where:

1. W ′ = {w ∈ W | w |� ϕ};
2. ∼′ = ∼ � W ′;
3. V ′ = V � W ′.

Let us consider two simple examples of single-agent propositional update.

Example 4. Let us take a single-agent epistemic model M = 〈W,∼, V〉, where W = {w1,w2,w3}, ∼ = W × W ,

Prop = {p1, p2, p3, p4} and the valuation V : Prop → P(W) is defined in the following way V(p1) = {w1,w2,w3},
V(p2) = {w1,w2}, V(p3) = {w2,w3}, V(p4) = {w3}, in otherwords:w1 |� p1∧p2∧¬p3∧¬p4,w2 |� p1∧p2∧p3∧¬p4,

andw3 |� p1∧p3∧p4∧¬p2. Let us assume thatw2 is the actualworld, and that the agent receives propositional information

that is consistent withw2 in the following order: p1, p2, p3. Receiving p1 does not change anything—everyworld satisfies p1.

Then p2 comes in, eliminatingw3, sincew3 �|� p2. The agent is now uncertain only betweenw1 andw2. The last information

p3 allows deleting w1 because w1 �|� p3. The uncertainty of the agent now disappears—the only possibility left is w2.

Moreover, whatever true (consistent with the actual world w2) information comes in w2 cannot be eliminated.

In fact, if any of the worlds is the actual one, and the agent will receive truthful and complete propositional information

about it, he will be able to eventually eliminate all other worlds, and therefore gain full certainty about his situation.

Example 5. Let us again take a similar epistemic model, this time with the following valuation V(p1) = {w1,w2,w3},
V(p2) = {w1,w2}, V(p3) = {w1}. Now, only one world, namely w1, can get identified by receiving truthful and complete

propositional information. In case w2 (or w3) is the actual world, the agent will never be able to eliminate w1 (or w1 and

w2), and therefore the uncertainty will always remain.

3.1. Dynamic epistemic learning scenarios

In Examples 4 and5 theuncertainty range of the agent is revised as newpieces of information (in the formof propositions)

are received. The data comes from a completely trusted source, and as such, causes the agents to eliminate the worlds that

do not satisfy it.
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In learning theory it is common to assume the truthfulness of incoming data, and therefore, in principle, it is justified to

use epistemic update as a way to perform the inquiry (for observational interpretation of update see [5]). In this section we

will present single-agent update-based learning scenarios in the framework of epistemic logic.

First, the initial learning model is a simple epistemic model whose worlds correspond to the initial class of languages

being learned.

Definition 10. Let C = {S1, S2, . . .} be a class of sets such that for all i ∈ N, Si ⊆ N. Our initial learning modelMC is a triple:

〈WC,∼, VC〉,
where WC = C, ∼ = WC × WC , VC : Prop ∪ nom → P(WC), such that Si ∈ VC(pn) iff n ∈ Si and for each set Si ∈ C, we

take a nominal i ∈ nom and we set VC(i) = {Si}.
Inwords,we identify states of themodelwith sets,we also assume that our agent does not have anyparticular initial infor-

mation or preference over the possibilities. The interpretation of the propositional letters is as follows. Let C = {S1, S2, . . .}
be a class of sets, and let U = ⋃ C be the universal set of C. For every piece of data n ∈ U we take a propositional letter pn.

The nominals correspond to indices of sets. They can be interpreted as finite descriptions of sets or as theories that describe

possible sequences of events.

In the previous section (see Examples 4 and 5)we touched on our central topic of iterated update. This leads us to consider

sequences of updates that are executed on a given epistemic model.

Definition 11. A data stream is an infinite sequence ε = (ε1, ε2, . . .) such that for every i ≥ 1 there is an pn ∈ Prop such

that εi = pn.

The intuition is that, at stage i, the agent observes the proposition of εi. For clarity, we will call finite parts of such data

streams data sequences.

Definition 12. A data sequence is a finite sequence σ = (σ1, . . . , σn), where for every 0 < i ≤ n, there is pn ∈ Prop, such

that σi = pn.

For our data streams and data sequences we will use the same notation as for texts (see Definition 2).

The data streams are not entirely arbitrary, they should reflect the reality, be consistentwith the actualworld. The analogy

with scientific inquiry can be used here: one can base theories on the results of experiments if the results are assumed to

be consistent with reality. We will additionally require that every elementary information true in the actual world will

eventually appear in the stream.

Definition 13. We will say that ε is a data stream for w ∈ W iff ε enumerates all and only those propositional letters that

are true in w, i.e.: p ∈ set(ε) iff w ∈ V(p).

The ‘confrontation’ of the epistemic model with a logical formula has been already given in Definition 9. Now we need

to define what it means to perform iterated update.

Definition 14. The iterated update of model M with the data sequence ε�n = (ε1, ε2, . . . , εn) can be defined in the

following way:

Mε�n := (((M | ε1) | ε2) · · · ) | εn.
We will refer to suchMε�n by ε�n-generated epistemic model.

In other words, the epistemic model is updated with a data sequence in a step-by-step manner.

3.2. Finite identification and epistemic logic

The research in dynamic epistemic and dynamic doxastic logic often touches the subject of converging to some desired

states: (common) knowledge or (joint) true belief (see, e.g. [3]). In this respect it is concerned with multi-agent versions

of the belief-revision problem. In this section we will show how to use the notion of finite identification to character-

ize convergence to irrevocable knowledge. To establish the first connection we will restrict ourselves to the single-agent

case.

Definition 15. Iterated epistemic update ofmodelMwith an infinite data stream ε stabilizes toM′ iff there is an n ∈ N, such

that for all m ≥ n, Mε�m = M′. In such cases we will sometimes write that the generated epistemic model Mε stabilizes

toM′.
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We are now ready to show that epistemic update performed on finitely identifiable class of sets leads to irrevocable

knowledge. We will use the non-computable (general) characterization of finite identifiability of sets from positive data

based on Theorem 1.

Theorem 2 [27]. A class C is finitely identifiable from positive data if and only if for every set Si ∈ C there is a definite finite

tell-tale set Di.

Theorem 3. The following are equivalent:

1. C is finitely identifiable.

2. For every Si ∈ WC and every data stream ε for Si the generated epistemic model Mε
C stabilizes to M′

C = 〈W ′
C,∼′, VC〉,

where W ′
C = {Si} and ∼′ = {(Si, Si)}.

Proof. (1 ⇒ 2) Let us assume that C is finitely identifiable. Then, by Theorem 2, for every set Si ∈ C there is a finite definite

tell-tale set Di ⊆ Si such that Di is not a subset of any other set in C. Let us then take one Si and the corresponding finite

definite tell-tale set Di. For every data stream ε for Si there is a finite initial segment, ε�m, such that Di ⊆ set(ε�m). Then by

stage m every Sj such that i �= j has been eliminated by the update.

(2 ⇒ 1) Let us assume that for every Si ∈ WC and a data stream ε for Si, the generated epistemic model Mε
C stabilizes

to M′
C = 〈W ′

C,∼′, VC〉, where W ′
C = Si and ∼′ = {(Si, Si)}. Assume for contradiction that C is not finitely identifiable.

Therefore, by Theorem 2, there is a set Si ∈ C such that every finite subset of Si is included in some Sj ∈ C such that i �= j.

Then for all n, if Mε�n
C = 〈Wε�n

C ,∼ε�n, Vε�nC 〉 then {Si, Sj} ⊆ W
ε�n
C , so it clearly does not stabilize to M′

C = 〈W ′
C,∼′, VC〉,

where W ′
C = {Si} and ∼′ = {(Si, Si)}. Contradiction. �

3.3. Finite identifiability in epistemic language

The previous subsection gives a semantic characterization of finite identifiability. In this part we will move towards

explicitly involving the notion of knowledge. We first look at the core language of epistemic logic (see, e.g. [11]).

Syntax. Our epistemic language LEL is defined as follows:

ϕ := i | p | ¬ϕ | ϕ ∨ ϕ | Kϕ
where p ranges over prop—a countable set of proposition letters and i over the set of nominals nom. For the multi-agent

logic we simply add Ka for every a ∈ A, where A is the set of agents.

Semantics. Let us show how we interpret LEL language.

Definition 16 (Truth definition). We give the semantics of LEL .

M,w |� i iff w ∈ V(i)

M,w |� p iff w ∈ V(p)

M,w |� ¬ϕ iff M,w �|� ϕ

M,w |� ϕ ∨ ψ iff M,w |� ϕ or M,w |� ψ

M,w |� Kϕ iff for all v such that w ∼ v we have M, v |� ϕ

In the multi-agent version in the last clause we replace K with Ka and ∼ with ∼a, for a ∈ A assuming that A is the set of

agents.

With respect to the language of epistemic logic LEL , the following corollary corresponds to the semantic characterization

in Theorem 3.

Corollary 1. The following are equivalent:

1. C is finitely identifiable.

2. For every Si ∈ WC and every data stream ε for Si the generated epistemic model Mε
C stabilizes to M′

C = 〈W ′
C,∼′, VC〉,

where W ′
C = {Si} andM′

C, Si |� K i.

Proof. From Theorem 3 we know that 1 is equivalent to:

# For all Si ∈ WC and every data stream ε for Si the generated epistemic model Mε
C stabilizes to M′

C = 〈W ′
C,∼′, VC〉,

where W ′
C = {Si} and ∼′ = {(Si, Si)}.
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(# ⇒ 2) Let us take Si ∈ WC and data stream ε for Si and assume that the generated epistemic model Mε
C stabilizes to

M′
C = 〈W ′

C,∼′, VC〉, where W ′
C = {Si} and ∼′ = {(Si, Si)}. Then by definition of semantics of LEL M′, Si |� K i, since it is

true that for all Sj ∈ {Sk ∈ W ′
C | Si ∼′ Sk}, we have thatM′

C, Sj |� i.

(2 ⇒ #) Let us assume that for all Si ∈ WC and data stream ε for Si the generated epistemic model Mε
C stabilizes to

M′
C = 〈W ′

C,∼′, VC〉, where W ′
C = {Si} and M′

C, Si |� K i. That means that for all Sj ∈ {Sk ∈ W ′
C | Si ∼′ Sj} we have

that M′
C, Sj |� i. But from definition of the valuation VC we know that Si is the only state in WC that validates i. Therefore

∼′ = {(Si, Si)}. �

Until now we have shown how to express the outcome of finite identifiability learning scenarios in LEL . The language of

epistemic logic can account only for the result of epistemic change. Our aim is to give a logical formula that can express the

possibility of convergence. As the latter is a temporal property, we will propose to view the structure generated by iterated

epistemic update as a temporal branching model.

4. Learning and temporal logic

Before we make the transition to the temporal setting, we will first discuss a generalization of the update with incoming

information—the concepts of event models and product update introduced by Baltag et al. [2].

4.1. Event models and product update

Iterated update, defined in Section 3 can be placed in a more general perspective. Obviously, the incoming information

does not have to be propositional. It does not even have to be purely linguistic. It can be any event that itself has an epistemic

structure. To consider changes caused by such arbitrary events, we will now introduce the notion of event model, which

represents the epistemic and informational content of what ‘happens’.

Definition 17. An event model is a triple:

E = 〈E, (∼E
a)a∈A, pre〉,

where E �= ∅ is a set of events; for every agent a ∈ A, ∼E
a is a binary equivalence relation on E, and pre : E → LEL , is

a precondition function where LEL is a set of formulas of some epistemic language. A pair (E, e), where e ∈ E is called a

pointed event model.

For every agent a ∈ A, the relation ∼E
a encodes that agent’s epistemic information about the event taking place. The

precondition functionmaps events to epistemic formulas. An eventwill be executable in some state only if that state satisfies

the precondition of this event.

The effect of updating an epistemic modelMwith an event model E can be computed according to the so-called product

update.

Definition 18. Let M = 〈W, (∼a)a∈A, V〉 be an epistemic model and E = 〈E, (∼E
a

)
a∈A , pre〉 be an event model. The

product update of Mwith E gives a new epistemic model M ⊗ E = 〈W ′, (∼′
a)a∈A, V ′〉}, where:

1. W ′ = {(w, e) | w ∈ W & e ∈ E & w |� pre(e)};
2. (w, e) ∼′

a (w
′, e′) iff w ∼a w′ and e ∼E

a e′;
3. and the valuation is as follows: (w, e) ∈ V ′(p) iff w ∈ V(p).

The next example shows the product update caused by an event model of public announcement.

Example 6. Let us consider the following multi-agent scenario. Anne, Bob and Carl are playing a card game. The deck of

cards consisting of: 1, 2, 3. Each person gets one card. We can represent the situation after dealing as a triple xyz, where

x, y, z are cards and the first position in the triple assigns the value to a (Anne), the second to b (Bob), etc. For instance, 231

means that Anne has 2, Bob has 3 and Carl has 1. All the possible situations after a deal are: 123, 132, 213, 231, 312, 321.

We assume that all the players witness the fact of dealing but they do not know the distribution of the cards. The epistemic

model M of this situation is illustrated in the figure.
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Let us then assume that the actual world is 231. Obviously each player’s knowledge does not allow certainty about which

is the actual world. In the model the uncertainty of the agent x about the worlds w and w′ is symbolized by the following:

w ∼x w′ (in the figure this relation is depicted by two states being joined by a line labeled with x, dropping reflexive

loops).

Let us now assume that Anne shows her card to all the players publicly, i.e., all the players see her card and all of them

know that all of them see it. This event is modeled by E = 〈E, {∼E
i }i∈A, pre〉, where E = {e}, for each x ∈ A, e ∼E

x e and

pre(e) = 2 _ _ (i.e., ‘Anne has 2’).

The public announcement of ‘Anne has 2’ results in the epistemic situation which can be presented as M′ = M ⊗ E
depicted below:

Event E of the above example is a public announcement of: ‘Anne has 2’. In dynamic epistemic logic the public an-

nouncement of ϕ is represented by ‘!ϕ’ and corresponds to the elimination of all those possible worlds that do not satisfy

ϕ. In other words, public announcement works as relativization of the model to those worlds that satisfy the content of the

announcement. 1

4.2. Dynamic epistemic logic protocols

By making a step from dynamic epistemic logic into epistemic temporal logic we can analyze the temporal aspects of

update. Redefining the iterated epistemic update in terms of protocols (see [16,28]) will bring us closer to the temporal

setting. A protocol specifies sequences of events that are admissible in certain epistemic situations. In this section, following

[8], we will give the definition of local protocols, and epistemic models generated with respect to a protocol. By doing this

we prepare the grounds for our learning-theoretic setting.

The admissible runs of some informational process are defined by a protocol P that maps states in an epistemic model to

sets of finite and infinite sequences of event models closed under taking prefixes. In general not every sequence of events

may be possible at a given state.

Let E be the class of all event models. Accordingly, every state of the epistemic model is assigned a set of sequences

(infinite and finite) of event models closed under taking finite prefixes, an element of Prot(E) = {P ⊆ P(E∗ ∪ Eω) | P
is closed under finite prefixes}.
Definition 19. Let us take an epistemicmodelM = 〈W, (∼a)a∈A, V〉. A local protocol forM is a function P : W → Prot(E).

Until now we have been concerned with the ε�n-generated epistemic model M, where ε�n is some sequence of propo-

sitions. We will now provide an analogous notion of a model generated from a sequence of event models but according to

some specific local protocol.

Definition 20. LetM = 〈W, (∼a)a∈A, V〉 be an epistemic model. We define the (P, ε�n)-generated epistemic modelMP,ε�n

inductively, as follows:

MP,ε�0 = M
MP,ε�n+1 = 〈WP,ε�n+1,∼P,ε�n+1, VP,ε�n+1〉, where:

WP,ε�n+1 := {s | s ∈ WP,ε�n; s |� pre(εn+1) & ε�n + 1 ∈ P(s)};
∼P,ε�n+1 := ∼P,ε�n�WP,ε�n+1;
VP,ε�n+1 := VP,ε�n�WP,ε�n+1.

The protocol-based approach to update has a straightforward temporal interpretation. The question of how iterated

product update can be interpreted in temporal logics is interesting because the latter are widely used to study the evolution

of a system over time.Moreover, epistemic extensions of temporal logics offer a global view of the evolution of amulti-agent

system as events take place, focusing on the information that agents possess. Obviously, all of these aspects are crucial for

inductive inference.

1 Other illustrations of the strength of product update can be found in [1,6,12].
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4.3. Dynamic epistemic and epistemic temporal logic

Epistemic temporal logics are interpreted on epistemic temporal models (see, e.g. [28]).

Definition 21. An epistemic temporal model H is a tuple:

〈W, 
,H, (∼a)a∈A, V〉,
where W �= ∅ is a countable set of initial states; 
 is a countable set of events; H ⊆ W(
∗ ∪ 
ω) is a set of histories

(sequences of events starting at states from W) closed under non-empty finite prefixes; for each a ∈ A, ∼a ⊆ H × H is an

equivalence relation; and V : Prop → P(H) is a valuation. We write wh to denote some finite history starting in the state

w, and wε analogously for an ω-history.

We sometimes refer to the 〈W, 
,H〉-part of an ETL model as the temporal protocol this model is based on. We refer to

the information of an agent a at h with Ka[wh] = {vh′ ∈ H | wh ∼a vh′}.
The relation between the dynamics of epistemic update and epistemic temporal logic has already been studied (see, e.g.

[9,10]). In particular, it has been observed that iterated epistemic update in dynamic epistemic logic generates epistemic

temporal forests satisfying certain properties (see [8]). We will refer to this construction by For(M, P) and define it below.

We construct the forest by induction, starting with the epistemicmodel and then checking which events can be executed

according to the precondition function and to the protocol. Finally, the new information partition is updated at each stage

according to the product update. Since product update describes purely epistemic change, the valuation stays the same as

in the initial model.

Definition 22. An epistemic model M = 〈W, (∼M
a )a∈A, VM〉 and a local protocol P : W → Prot(E) generates an ETL

forest For(M, P) of the form:

H = 〈WH,E,H, (∼a)a∈A, V〉, where:

1. WH := W;

2. H is defined inductively as follows:

H0 := WH;
Hn+1 := {(we1 . . . en+1) | (we1 . . . en) ∈ Hn;Mε�n,w |� pre(en+1)and (e1 . . . en+1) ∈ P(w)};
H := ⋃

0≤k<ω Hk;
3. if w, v ∈ WH, then w ∼a v iff w ∼M

a v;

4. whe ∼a vh′e′ iff whe, vh′e′ ∈ Hk, wh ∼a vh′, e and e′ are states in an event model E and e ∼E
a e′;

5. Finally, wh ∈ V(p) iff w ∈ VM(p).

The correspondence between the iterated product update and an epistemic temporal forest relies on some properties of

epistemic temporal agents. To be precise, it has been shown that the structures of iterated DEL update are in fact epistemic

temporal frames that satisfy the following conditions: perfect recall, synchronicity, uniform no miracles and propositional

stability. Let us introduce those epistemic multi-agent assumptions.

Definition 23. Let us takeH = 〈W, 
,H, (∼a)a∈A, V〉 to be an epistemic temporal model.

Perfect recall H satisfies perfect recall iff

for all whe, vh′f ∈ H if Ka[whe] = Ka[vh′f ], then Ka[wh] = Ka[vh′].
The condition of perfect recall expresses that agents do not forget past information as further events take place.

Synchronicity H satisfies synchronicity iff

for all wh, vh′ ∈ H if Ka[wh] = Kb[vh′], then length[wh] = length[vh′].
Synchronicity is satisfied if the agents have access to some external discrete clock and thus can keep track of the time.

Uniform-no-miracles H satisfies uniform no miracles iff

for all wh, vh′ ∈ H such that wh ∼a vh′

and for all e1, e2 ∈ 
 with whe1, vh
′e2 ∈ Hif there are sh′′, th′′′ ∈ H such that sh′′e1 ∼a th′′′e2,

then whe1 ∼a vh′e2.
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Uniform-no-miracles means that if an agent cannot distinguish between a history terminating with e1 and a history

whose last event is e2, then at any time if he is unable to distinguish between two histories wh and vh′ then he is still

unable to distinguish between whe1 and vhe2. This property characterizes local ‘updaters’ that do not take into account

the whole history but that proceed in a step-by-step manner.

Propositional Stability H satisfies propositional stability iff for all wh,whe ∈ H we have p ∈ V(whe) iff p ∈ V(wh).

The following result indicates that the iterated product update of an epistemic model M according to a protocol P

generates an epistemic temporal forest that validates the above-mentioned epistemic properties.

Theorem 4 [8]. An ETL-model H is isomorphic to the forest generated by the sequential product update of an epistemic model

according to some state-dependent DEL-protocol iff it satisfies perfect recall, synchronicity, uniform-no-miracles and propositional

stability.

4.4. Learning in a temporal perspective

Let us now see how the above construction can be used to analyze finite identifiability.

Learning event models. In our learning setting the incoming information has a purely propositional character. A simple event

learning model can be associated with every such piece of data in the following way.

Definition 24. Let C = {S1, S2, . . .} be a class of sets and, as before, U = ⋃ C is the universal set of C. Let E : N → E be a

function that transforms an integer into an eventmodel in the followingway: for each n ∈ N, E(n) = En = 〈{e},∼En , preE〉,
where ∼ = {(e, e)} and preE(e) = pn. Similarly, if S ⊆ N, E(S) = {E(n) | n ∈ S}.

In otherwords, for every piece of data n fromU we take a propositional letter pn, and sincewe consider simple announce-

ment scenarios, we construct an event model that consists of one state. For simplicity, we will sometimes refer to such En
with pn. By making the conceptual transition from the simple propositional update to the event models we want to show to

what extent our framework conforms to the general setting described in the previous section.

Set-learning local protocol. Intuitively, given a state Si ∈ WC , our protocol P should authorize at Si any ω-sequence that

enumerates Si and nothing more. Our set-learning scenarios allow any enumeration of elements of a given set. Therefore

the corresponding local protocol can be defined in the following way.

Definition 25. Let C = {S1, S2, . . .} be a class of sets and U = ⋃ C be the universal set of C. For every Si ∈ WC , the
set-learning local protocol, P(Si), is the smallest subset of (E(U))ω that contains:

{f : ω → E(Si) | f is surjective},
and that is closed under non-empty finite prefixes. Accordingly, P(WC) := ⋃

Si∈WCP(Si).

Set-learning local protocols restrict the admissible sequences of events only in terms of content and not in terms of

ordering. It is easy to observe that such a local protocol can replace the sets in learning scenarios. In principle we can then

skip the precondition check and instead decide whether an event can take place just on the basis of the protocols. We will

return to this issue in the end of this paper.

Initial learning model with local protocol. Let us now complement our definition of the initial learning model (Definition 10)

with the local set-learning protocol.

Definition 26. Let C = {S1, S2, . . .} be a class of sets such that for all i ∈ N, Si ⊆ N. The initial learning model with local

protocol consists of:

1. an epistemic model MC = 〈WC,∼, VC〉, where WC = C, ∼ = WC × WC , VC : Prop ∪ nom → P(WC), such that

Si ∈ VC(pn) iff n ∈ Si and for each set Si ∈ C, we take a nominal i and we set VC(i) = {Si}.
2. for each Si ∈ WC , a set-learning local protocol P(Si).

Now we are ready to define how our initial learning model and a set-learning protocol generate an epistemic temporal

forest. We define the additional set of designated propositional letters based on the previously used set of nominals nom,

Propnom := {qi | i ∈ nom}.
Definition 27 (Epistemic temporal learning forest). A learning model MC = 〈WC,∼M, VM

C 〉 together with the local set-

learning protocol P generates an ETL forest For(M, P) of the form:

H = 〈WH,E,H, P,∼, V〉, where:
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1. WH := WC ,
2. H is defined inductively as follows:

H0 := WH;
Hn+1 := {(we1 . . . en+1) | (we1 . . . en) ∈ Hn;MP,ε�n

C ,w |� pre(en+1)and (e1 . . . en+1) ∈ P(w)};
H := ⋃

0≤k<ω Hk;
3. If w, v ∈ WH, then w ∼ v iff w ∼M v;

4. whe ∼a vh′e′ iff whe, vh′e′ ∈ Hk, wh ∼ vh′, and e = e′;
5. Finally, the valuation V : Prop ∪ Propnom → P(H) is defined in the following way:

• for every p ∈ Prop, wh ∈ V(p) iff w ∈ VM
C (p);• for every qi ∈ Propnom, wh ∈ V(qi) iff w ∈ VM

C (i).

The above construction is in the strict correspondence with the general case of generated epistemic temporal forest

of Definition 22. Our concept allows a slight simplification in point 4 because of the very simple structure of our public

announcement events. At this point we have the temporal structures that correspond to the learning situation. The next step

is to give a temporal characterization of forests that satisfy the identifiability condition.

4.5. Finite identifiability in ETL

In this section we will give a general characterization of finite identification in the epistemic extension of CTL∗ (see [15]),

LETL∗ . The aim of this section is to give a formula of epistemic temporal logic that characterizes classes of sets that are finitely

identifiable.

4.5.1. Epistemic temporal language

Syntax. The syntax of our epistemic temporal language of LETL∗ is defined in the following way.

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Kϕ | Fϕ | Aϕ
where p ranges over a countable set of proposition letters Prop ∪ Propnom. Kϕ reads: ‘the agent knows that ϕ’. Fφ means

‘at some point in the future on the current infinite sequence φ will be true’, and we define G to mean ¬F¬. Aϕ means: ‘in

all infinite continuations conforming to the protocol, ϕ holds’.

Semantics. LETL∗ is interpreted over epistemic temporal frames,H, and pairs of the form (ε, h), the former being a maximal,

infinite history in our trees, and the latter a finite prefix of ε (see [26,28]).

Definition 28. We give the semantics of LETL∗ . We skip the boolean clauses. We take h � h′ to mean that h is an initial

segment of h′, and p ∈ Prop ∪ Propnom.

H, ε,wh |� p iff wh ∈ V(p)

H, ε,wh |� Kϕ iff for all ε′, vh′ if vh′ � ε′andvh′ ∈ K[wh] then H, ε′, vh′ |� ϕ

H, ε,wh |� Fϕ iff there are σ ∈ 
∗ and wh′ � ε with wh′ = whσ andH, ε,wh′ |� ϕ

H, ε,wh |� Aϕ iff for all ε′ ∈ P(w) such that wh � ε′ we have H, ε′,wh |� ϕ

Togive a temporal characterizationoffinite identifiabilityweneed toexpress the following idea. Inour epistemic temporal

forest, at any state, it is the case that on all infinite branches therewill be a point in the future after which the agent will keep

knowing qi, which means that he will remain certain about the partition of the tree he is in. The special set of propositional

letters Propnom corresponds to the underlying theory that allows predicting further events. In this sense, knowing that qi
is equivalent to having a complete knowledge about the state, i.e., for any p ∈ Prop, if p holds in the state, then the agent

knows that p. Formally, with respect to finite identifiability of sets, the following theorem holds.

Theorem 5. The following are equivalent:

1. C is finitely identifiable.

2. For all Si ∈ WC and ε ∈ P(Si) the learner’s knowledge about the initial state stabilizes to Si on Siε in the generated forest

For(MC, P).
3. For(MC, P) |� qi → AFGK qi.
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Proof. (1 ⇒ 2) Assume that C is finitely identifiable. Assume, for contradiction, that there is a state Si ∈ WC andω-sequence
ε ∈ P(Si) such that the agent’s knowledge does not stabilize to Si on ε. There are two cases.

Case 1 The learner stabilizes to another state, but then by construction of P(Si) and definition of the generated epistemic

temporal forest, for every finite prefix h � ε, Sih ∈ K[Sih]. Contradiction.
Case 2 After each finite prefix h � ε, there is at least one state different from Si that remains epistemically possible. But by

construction of P(Si) this is only possible if Si ⊂ Sj . Then every finite subset of Si is a subset of Sj , and therefore Si ∈ C
does not have a finite definite tell-tale set. Therefore, from Theorem 2, C is not finitely identifiable.

(2 ⇒ 3) Assume for contradiction that there is ε and h � ε such that:

1. For(MC, P), ε, h |� qi
2. For(MC, P), ε, h �|� AFGK qi

From (1), by the definition of For(MC, P), it is the case that for all h′ such that h′ � ε For(MC, P), ε, h′ |� qi and that

ε ∈ P(Si).
Fromtheaboveand (2),wehave that there isε′ ∈ P(Si) such thath � ε′ and for allh′, ifh � h′ � ε,For(MC, P), ε′, h′ �|�

K qi. But then it means that there is Si ∈ WC and ε ∈ P(Si) such that for all h � ε, K[Sih′] �= {Sih′}. Contradiction.
(3 ⇒ 1) Assume that C = {S1, S2, . . .} is a class of sets and that For(MC, P) |� qi → AFGK qi. Hence, for every

Si ∈ WC and ε ∈ P(Si) there is h � ε such that for all h′ with h � h′ � ε, For(MC, P), ε, h′ |� K qi. In other words,

K[Sih′] = {Sih}. We claim that the content of h, i.e., E−1(set(h)) is a definite finite tell tale set for Si. First, observe that by

definition of P we have E−1(set(h)) ⊆ Si. Second, E
−1(set(h)) is finite because h is finite. Finally, we have to show that for

all j �= i, E−1(set(h)) � Sj . Assume for contradiction that there is an Sj such that E−1(set(h)) ⊆ Sj . But then Sjh ∈ K[Sih].
Contradiction. �

5. Identification of sets and uniform-no-miracles

The rule of uniform-no-miracles states that any two histories that are not distinguishable from an agent’s perspective

cannot get distinguished by extending themwith the same event (or two indistinguishable event states). In our learnability

context a strengthening of this rule seems interesting.

Let us consider the problem of identification in a more general perspective. Objects to be learned do not have to be sets,

in particular their protocols do not have to be order-independent. Except for sets, formal learning theory is also concerned,

for example, with learnability of functions. Possible realities can even be more general, they can be classes of functions—

scenarios of this kind are at heart of many inductive inference games, e.g., card game Eleusis (see, e.g. [30]). Then, the worlds

can be identified with protocols that allow certain sequences of events that can be defined by some logical formula. In

particular, events might be assumed to occur in a certain order. Let us consider the following example.

Example 7. Let us take two possible worlds: w1 and w2 such that:

1. the protocol forw1 allows all infinite sequences that contain all even numbers, and additionally require thatwhenever

a number is 8 then the successor should be 10;

2. the protocol forw2 allows all infinite sequences that contain all even numbers, and additionally require thatwhenever

a number is 8 then the successor should be 6.

As long as the learner receives even numbers different than 10 he cannot distinguish between the two states, e.g., the two

sequences, h, h′, are in both protocols:

• h : 2, 4, 6, 8
• h′ : 4, 2, 6, 8
Therefore, we can say that whichever of the two is enumerated, w1 ∼ w2. However, complementing both of them with the

same event, 10, leads to ‘a miracle’—two hypotheses get to be distinguished.

In principle, there is no reason why such ‘miraculous’ classes of hypotheses should be excluded from learnability con-

siderations. Such cases show a strength of the protocol based temporal approach over the one-step simple DEL update.

The latter is well-suited for set-learning, because set-learning protocols are permutation closed and in this sense they are

reducible to the precondition check. This is whywe turned to amore liberal setting of epistemic temporal logic in which the

‘miracle’ of order-dependence is possible.

In general, thinking about learnability in terms of protocols leads to a setting in which the possible realities are identified

with sets of scenarios of what should be expected to happen in the future. In this sense, the most general realities are
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sets—they allow any possible enumeration of their content. Functions allow only one particular sequence of events. 2 In

between there are a variety of possibilities for defining protocols that can be characterized in an arbitrary way.

6. Conclusions and perspectives

Ourwork provides a translation of scenarios from formal learning theory into the domain of dynamic epistemic logic and

epistemic temporal logic. In particular, we show that the finite identification of sets can be performed bymeans of epistemic

update, and that its outcome can be characterized in epistemic logic. Moreover, in the more general context of learnability

of protocols, we show the characterization of finite identifiability in an epistemic temporal language.

Our results indicate that the two prominent approaches, learning theory and epistemic temporal logic, can be joined in

order todescribe thenotionsofbelief andknowledge involved in inductive inference.Also, our representationof initial classes

of sets and environments gives an interesting application for the theory of protocols. As we indicated in the previous section

the temporal logic based approach to inductive inference gives a straightforward framework for analyzing various domains of

learning on common ground. In terms of protocols, sets can be seen as classes of specific histories—their permutation closed

completeenumerations. Functions, on theotherhand, canbeseenas ‘realities’ that allowonlyoneparticular infinite sequence

of events. We can think of many intermediate concepts that can be the object of learning. The property that distinguishes

set- and function-learning protocols is their order-(in)dependence. This feature of protocols corresponds to a property of

temporal models that is structurally similar to that of uniform-no-miracles. We perceive its temporal characterization as an

interesting direction of future research.

A natural question arises whether it is possible to use the tools of epistemic logic to analyze other conditions for learn-

ability. The answer is affirmative (see [21]). Limiting learning can be modeled in doxastic extensions of DEL and ETL, that

are enriched by a plausibility relation and therefore also by the notion of belief. Recall that under the condition of finite

identifiability, Learner succeeds if at some finite stage he gives a correct answer, i.e., if at some point he can be sure about

the conjecture. On the other hand, in limiting conditions for learnability Learner gives an answer at infinitely many stages

of the procedure. There is no natural way to represent the current, non-final guess in epistemic frameworks. However, if

we add a doxastic plausibility relation over the set of possible states, the current conjecture can be viewed as the minimal

state according to the plausibility relation at a given stage. Then, the limiting condition of success can be defined as the

stabilization of belief in the generated doxastic epistemic model. This idea resembles learning by erasing, where the actual

positive guess is interpreted to be the least index (according to some ordering) not yet eliminated. The difference is that in

learning by erasing Learner each time removes only one possibility from the initial range of languages.

Directions of furtherwork include extending our approach to other types of identification, e.g., identification of functions;

finding modal framework for learning from both positive and negative information; studying systematically the effects of

different restrictions on protocols. We are also interested in investigating various constraints one can enforce on learning

functions (e.g., consistency, conservatism or set-drivenness) and comparing them to those of epistemic and doxastic agents

in doxastic epistemic temporal logics. Modal logics of belief change are a natural framework to study a variety of notions

that underlay certain concepts of learnability. Moreover, they offer the right tools to analyzemulti-agent learning situations,

in particular the interaction and communication and their effect on learnability.
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