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1. Introduction

Portfolio selection is a distinct decision problematic, different
from others indicated by Roy [1]: choice, ranking and classifica-
tion. In general terms, a portfolio problem may be defined as a
problem which involves:

e the selection of one or several out of a set of possible items;

e under some constraints, which limit the possibility to
select items;

e where outcomes are determined by some aggregation of
properties of the selected items.

Portfolio decision problems occur in many application areas,
well-known examples include financial portfolio problems, in
which combinations of several financial assets as stocks are
formed [2], and project portfolios [3], in which different projects
to be undertaken by an organization are combined. However,
other situations exhibit a similar structure such as plant alloca-
tion [4], combination problems in chemistry [5], fleet composition
in transport [6] or land usage planning [7].

As a general term, we will therefore use the term “items” to
indicate objects to be combined in a portfolio. Item is a most
general term and, depending on the context analyzed, it may
represent one of the following alternatives: a project, stocks
(or shares in a company) in the financial market, a plant allocation,
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a chemistry element, and so on. Depending on the problem
context, items can be divisible or indivisible. In some portfolio
problems, it is possible to have several copies of identical items in a
portfolio (e.g. several shares in the same company), or items can be
selected once at most. The problems we are considering here deal
with indivisible items which can be selected only once (like
projects and plant allocation, for instance).

Recently, the multidimensional nature of portfolio problems
has been pointed out. Therefore, the paradigm of multicriteria
decision analysis (MCDA) provides adequate support for this type
of problem. Portfolio problems often involve multiple attributes,
for example, risk and return of financial portfolios, or different
kinds of benefits to be achieved by project portfolios. A compre-
hensive literature review related to MCDA in portfolio problems is
given in the next section. Our review emphasizes outranking
methods for portfolio selection. In this review, the PROMETHEE
method has been found as one of the most widely used
outranking methods for applications involving the portfolio
problematic. Although relatively few publications directly related
to portfolio selection based on outranking methods have been
found, this kind of method is relevant depending on the context
analyzed and considering its non-compensatory nature.

The present paper proposes an approach to deal with portfolio
selection based on the PROMETHEE method. PROMETHEE is, to
our knowledge, the only outranking method for which a specific
variant for portfolio problems has already been introduced in the
literature in the form of the PROMETHEE V method [4]. The main
problem in applying outranking methods to portfolio problems is
that these methods require a pairwise comparison of alternatives,
which limit the number of alternatives which can be considered.
However, in portfolio problems, each combination of items fulfilling
certain constraints is a potential alternative. This leads to a huge
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number of potential alternatives (portfolios). Typical methods for
portfolio selection therefore do not explicitly generate all possible
portfolios, but try to directly build the optimal portfolio from the set
of available items.

This is also the approach taken in PROMETHEE V, which builds
an optimal portfolio based on a PROMETHEE ranking of individual
items (rather than entire portfolios). One aim of our paper is to
compare the solution obtained by this approach to the solution
that would be obtained by applying the PROMETHEE method
directly to the set of all possible portfolios. The analysis of
PROMETHEE V, on which this study is based, also led to the
development of an alternative formulation of PROMETHEE V and
several alternative approaches, which involve a computational
effort not much larger than PROMETHEE V, but could generate
solutions which more closely reflect the ranking of all portfolios.
Our study therefore has two main contributions: the development
of different, computationally “light” methods for portfolio
selection based on the PROMETHEE method, and a computational
study comparing the quality of solutions obtained with these
methods as well as PROMETHEE V.

The paper is organized as follows. The next section presents a
literature review on portfolio decision problems using MCDA
methods, emphasizing outranking methods for portfolio selection.
Section 3 presents the model formulation and derives some
analytical results. In Section 4, a comprehensive analysis is
conducted based on computational experiments. In Section 5,
we discuss the applicability of the methods and the results
obtained, and draw some conclusions.

2. Literature review

A review on MCDA methods in financial context is given by
Zopounidis and Doumpos [8], including portfolio performance
assessment. They point out that the multidimensional nature of
this problem has been emphasized by financial researchers,
where the MCDA paradigm can provide an appropriate support.
This statement is reinforced by Xidonas et al. [9] and by
Zopounidis [2], who put a specific focus on the MCDA perspective
of portfolio problems. A similar argument is made by Anagnos-
topoulos and Mamanis [10], who modeled the selection of
financial portfolios. Zopounidis [2] deals with the contribution
of MCDA in financial decision problems, including an extensive
bibliography on the subject.

A second important application of multicriteria portfolio
problems is the selection of project portfolios. Stummer and
Heidenberger [11] provide a comprehensive list of different
criteria and developed an interactive multiobjective model for
project portfolio selection, which was later extended to a group
decision procedure [12]. A metaheuristic approach to solve this
problem was developed by Carazo et al. [13].

Not much literature has been identified regarding to outranking
methods for portfolio selection. A comprehensive literature review
on PROMETHEE, including methodologies and applications issues
[14], analyses 217 contributions related to PROMETHEE methods
from 100 journals and categorizes them. According to that study,
only five papers are related to PROMETHEE methods for portfolio
selection.

The family of PROMETHEE methods [15] is a set of outranking
based approaches for multicriteria problems. The use of PROMETHEE
for portfolio problems has been proposed by Brans and Mareschal
[4], which is known as the PROMETHEE V method.

A number of applications using PROMETHEE V can be found in
the literature. Abu-Taleb and Mareschal [3] conducted an applica-
tion for the PROMETHEE V method to evaluate water resource
projects. Al-Kloub and Abu-Taleb [16] use PROMETHEE V for

project portfolios in the water resource context. A leakage
management strategy of water distribution networks has been
analyzed by Morais and de Almeida [17] using PROMETHEE V in a
group decision context.

Some studies have applied multicriteria methods to portfolio
problems in the context of financial markets. Bouri et al. [18] have
conducted a study using PROMETHEE II and V to select attractive
portfolios under the investors’ constraints. Hababou and Martel [19]
dealt with the context of pension funds. They analyzed the ELECTRE
family and the PROMETHEE method, selecting the latter, once
discordance indices and veto thresholds were not necessary.
Another study [20] deals with financial portfolios, analyzing perfor-
mance and risk of private pension funds, using the PROMETHEE
method.

Some studies are focused on methodological issues, rather
than applications. Fernandez-Castro and Jimenez [21] present a
methodological contribution related to PROMETHEE V, suggesting
that some constraints are soft and propose that some coefficients
are estimated by fuzzy numbers. Mavrotas et al. [22] use an
alternative approach to PROMETHEE V in a financial context.
Instead of solving the knapsack problem as in PROMETHEE V, they
conduct a parametric solution procedure.

Although PROMETHEE methods contribute a specific approach
to deal with portfolios, other outranking methods have also been
considered for portfolio problems. Martel et al. [23] applied
ELECTRE methods to portfolio comparisons. Gladish et al. [24]
proposed a fuzzy model with ELECTRE I method. Xidonas et al. [9]
employ the ELECTRE Tri method, considering that the amount to
be invested in each item may change, representing a decision
variable. This kind of problem is also pointed out by Hurson and
Zopounidis [25] and Zopounidis and Doumpos [8].

Some further studies are not directly related to the most
common portfolio problems (projects and financial), instead
considering another kind of items, for instance plant allocation [4].
In another study, Nikolic et al. [5] applied PROMETHEE V in the
environmental context, concerned with the ranking of copper
concentrates according to their quality. Araz et al. [26] used
PROMETHEE to approach a portfolio problem in the context of
supplier selection for outsourcing.

3. Model formulation

In this section, we develop our model and derive some general
results before proceeding to a more comprehensive analysis
based on computational experiments in the next section. First,
we introduce the necessary notation.

3.1. Definitions and notation

We consider the problem of creating a portfolio of items. The
set of available items is denoted by A = {A,...,A;}, where each
individual item A; is characterized by two vectors:

e resource usage (Iy, ..
resource q by item i;

e other attributes (aji, . .
the item.

.,Tig) where riq is the consumption of

.,0ix), which represent the benefits of

In evaluating a portfolio, the decision maker is only interested
in its benefits. Resource usage is only considered as a constraint
on the construction of portfolios.

A portfolio S is a subset S = A of several items. We assume that
in terms of resource usage, there are no synergies between items.
Therefore, resource consumption R,(S) of a portfolio S is the sum
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of resource requirements of all items included in the portfolio:
RyS)=> i M

ieS
For each resource g, the decision maker has a budget limit R;. A
portfolio S is feasible if

Zr,»q <R, vq )
ieS

The set of all feasible portfolios is denoted by F. We call a portfolio
a boundary portfolio if it is feasible and it is not possible to add any
item to the portfolio without violating a resource constraint:

VigsS : 3q : Ry(S)+T > Ry 3)

The benefits of a portfolio depend on the benefits of the items
it contains. The relationship between benefits of individual items
and the benefits of the entire portfolio can be quite complex. In
general, we can distinguish two cases:

e monotonic attributes, in which the addition of another item to
the portfolio will lead to an increase (or at least not to a
decrease) in the benefit of the entire portfolio; and

e non-monotonic attributes, for which adding another item
might decrease the benefit of the entire portfolio.

As a specific case of monotonic attributes, we consider additive
aggregation, where the benefit of the portfolio is the sum of
benefits of its items:

Vi$)=> ai, x>0 “)
ieS

As an example for non-monotonic attributes, we consider the

minimum operator (a chain is as strong as its weakest link):

Vi§) = I‘Il‘lglgl ik (5)

We base our evaluation of portfolios on the PROMETHEE
method for multiattribute decision making. Since PROMETHEE is
already extensively documented in the literature [27-29], we do
not describe it here in detail.

For simplicity, we only consider criteria with a linearly
increasing preference function between an indifference threshold
ting and a strict preference threshold ¢, i.e. type V according to
the classification by Brans et al. [27]. For the following models, we
slightly extend the usual terminology of PROMETHEE. We define
the flow between two alternatives A; and A; in the usual way:

b = Zka (a—as) (6)
k
where f is a linear preference function defined as follows:
0 d <t
fd)= (d_tind)/(tpref_tind) ting <d < Cpref (7)
1 d> tpref

and w is the weight assigned to attribute k by the decision
maker. PROMETHEE then defines the inflow, outflow and net flow
of an alternative as

Outflow: &;" =37, ;
Inflow: &; =37,®;
Net flow: @; = ¢ —&; .

We extend these definitions and also define a net flow
between two alternatives (rather than between one alternative
and all the other alternatives) as
Vij = d)ij_¢ji (8)

Note that vj = —vj;.

In theory, the PROMETHEE method could be applied to the
entire set F of feasible portfolios. In practical problems, the
number of feasible portfolios might be too large for such an
analysis. Nevertheless, we consider the ranking obtained in this
manner as the “true” ranking of all portfolios, and use it as a
benchmark to which we compare all other models.

To create a ranking of portfolios, we have to apply the
PROMETHEE method to portfolios rather than to alternatives.
We define the flow between two portfolios n and m as

Pom = Zwl(f(vnk_vmk) (9)
k

where V, is the aggregate value of portfolio n in attribute k
computed according to (4) or (5), depending on the type of
attribute k.

The portfolios are then ranked according to their net flows,
which are calculated as

Pnzzpnm—zpmn (]0)

meF meF

Proposition 1. If all attributes are aggregated by monotonic aggre-
gation, the best portfolio according to (10) will be a boundary
portfolio. If there are several optimal portfolios, at least one of them
is a boundary portfolio.

Proof. Assume that portfolio n is not a boundary portfolio. That
means a portfolio m exists, which contains all items in n, plus at
least one more item. Since all attributes are monotonic, portfolio
m will not be worse than portfolio n in any attribute. Thus two
cases are possible: (i) portfolio m dominates portfolio n, or (ii)
they have identical values in all attributes. Since in PROMETHEE a
dominating alternative is always preferred over the alternative it
dominates, n cannot be optimal if it is dominated by m. If the two
portfolios have the same values in all attributes, and n is optimal,
then m is optimal, too, and we have at least one optimal portfolio
which is also a boundary portfolio. [

Proposition 1 hints at a possible simplification of the portfolio
selection problem. Instead of considering all portfolios, it could
be sufficient to only consider the set of boundary portfolios.
However, the evaluation according to (10) is based on the net
flow of a portfolio with respect to all other portfolios, not just
with respect to other boundary portfolios. It has been shown [30]
that a PROMETHEE ranking can change when additional alter-
natives are considered. Therefore, an interesting question for our
computational study is whether a ranking that only compares
boundary portfolios to each other will be similar to a ranking of
boundary portfolios based on comparison to all portfolios.

3.2. Item-based optimization models

Although it might be possible to restrict the search for the
optimal portfolio to the set of boundary portfolios, the number of
portfolios that need to be compared can still be huge. Therefore,
we consider models which attempt to directly construct the
optimal - or at least a very good - portfolio, based only on data
from individual items in this section.

The starting point for this model is a PROMETHEE analysis of
the individual items. We denote the net flow of item i with
respect to the other items by &;.

Maximizing the net flow of all items contained in the portfolio
is a quite natural approach to constructing the optimal portfolio.
This approach is taken in the PROMETHEE V method [4]. Let x; be
a binary variable indicating whether item i is included in the
portfolio. The optimal portfolio can then be determined by solving
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the following binary optimization problem:
max » @
i
st. ) rgi<Rq vq
i

xi €{0,1} (1)

The net flows &; used in model (11) are based on a pairwise
comparison of all items. Therefore, an item is considered to
contribute much to the objective function of model (11) even if
it has a large net flow (i.e. performs very well) only with respect
to the other items already contained in the portfolio, but has a
very low (or even negative) net flow with respect to the items not
contained in the portfolio. Therefore, it might seem to be
more appropriate to only consider the flow from items in the
portfolio to items outside the portfolio in determining the optimal
portfolio.

This problem can also be formulated as a binary linear
optimization problem. Let y; denote a binary variable which is
set to one if A; € S and A;¢S. Otherwise, y;; is set to zero.

The objective is to maximize the net flow from items in S to
those not in S, therefore the objective function can be formulated
as

max » > “vy; (12)
ij

To ensure consistency of the binary variables in the model,
y;=1 if and only if x;=1 and x;=0. Since v; may be positive or
negative, y; must be controlled using lower and upper bounds. If
v;; had only positive values, upper bounds would be sufficient.

This linkage between yj;;, x; and x; can be established via the
following constraints:

Yij <X; (13)
yij<1-x; (14)
Vij = Xi—X; (15)
yi=0 (16)

Eqs. (13) and (14) together provide an upper bound
Yij < min(x;,1-x;), which guarantees that y;=1 is only possible if
x;=1 and x;=0. However, y;; could still be zero in that case, which
would happen if v; <0. This is avoided by the third condition,
which provides a lower bound. Since y;; is always forced to be zero
or one by constraints (13)-(15), it is not necessary to define it
explicitly as a binary variable.
The entire model then becomes

max >y vy
i

St Y <X
y,] < ]—Xj
YVij = Xi—X;
> xitig <Ry Vvq

i

X € (0,1} 17)

Although models (11) and (17) are based on different concepts,
they will lead to the same solution, as shown in the following
proposition:

Proposition 2. Models (11) and (17) will generate the same
solution.

Proof. We can rewrite the net flow of item i as
D= D —D7 =D "By—> Bi=> v (18)
j j Jj

Consider an arbitrary portfolio S. Model (11) evaluates this
portfolio as

> (19)

ieS
and model (17) evaluates it as

DD Vi (20)

icSj#s

The values of these two objective functions are identical. Using
(18), we can rewrite (19) as

SS-E S D an

ieS j ieS | j¢sS jes

The first term of this equation is equal to (20). The second term
is zero. Both i and j enumerate the same items. The term thus
represents the sum across a matrix, in which the lower diagonal
matrix is the negative of the upper diagonal matrix. For each v; in
the upper diagonal matrix there is the corresponding vj; = —vj; in
the lower diagonal matrix and vice versa. Since v;; is also zero for
all i, the total sum is zero.

The constraints of both problems describe the same set of
feasible portfolios. Since they maximize the same function over
the same feasible set, the two models are equivalent. O

Programs (11) and (17) do not necessarily generate boundary
portfolios. The reason for this can best be explained considering
model (17): if the net flow of the items already contained in a
portfolio to another item is larger than the net flow of that item to
the items not in the portfolio, the total effect of adding this item
would be negative. In model (11), the same situation is reflected
by a negative coefficient of the corresponding variable in the
objective function, which causes the variable to remain at zero
and the item not to be included in the portfolio. Therefore it is
possible that the inclusion of items into the portfolio stops before
a boundary portfolio is reached. This situation cannot be cor-
rected by altering the objective function coefficient (e.g. omitting
the flow from items in the portfolio to the additional item), since
this depends on the set of items already contained in the
portfolio, which is not known in advance.

To overcome this problem, we propose to solve model (11) (or
alternatively, problem (17)) for a fixed number of items ¢, and
systematically vary c. Model (11) is thus extended to

max » &ix;
i
st. Y rgi<Rq vq

> xi=c
xi €{0,1} (22)

We call a portfolio which provides the optimal solution to (22)
a c-optimal portfolio for a given value of c. Obviously, since
portfolios are constrained by available resources and only a finite
number of items is available, there is an upper limit to c. This
upper limit is denoted by cmax < |A].

An interesting question is how the c-optimal portfolios change
when c is increased.
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Conjecture 1. Consider the set of c-optimal solutions. There is a
critical value c* so that portfolios for c<c* are not boundary
portfolios and the following condition holds for all c < c*: S¥_; C S%.
(i.e. when increasing c by one, one item is added, all other items
remain in the portfolio).

It is quite obvious that a value c¢* must exist. It could be one, if
the first c-optimal portfolio (for c=1) is already a boundary
portfolio. But it is not possible that the set of c-optimal portfolios
does not contain any boundary portfolio. From the definition of a
boundary portfolio, if the c-optimal portfolio for a given c is not a
boundary portfolio, it is possible to add at least one more item to the
portfolio, and thus a c-optimal portfolio for c+1 must exist. Since ¢
is bound by ¢;qx at least the last portfolio must then be a boundary
portfolio. It is quite plausible that in such cases, the next solution is
obtained by simply adding one item to the portfolio.

The c-optimal portfolio for ¢* could be considered a good
solution to the portfolio problem. It can also be obtained with
little effort by solving only a few binary linear programming
problems.

However, it is still possible that adding more items to the
portfolio beyond c* improves the portfolio further. Therefore, we
consider two more solutions in our computational analysis. One is
the portfolio obtained for ¢4y, i.e. the solution to problem (22)
containing the largest number of items. Furthermore, we consider
the best portfolio according to a PROMETHEE ranking of the entire
set of c-optimal portfolios, also including the solutions for ¢ > c*.
While these two solutions require to solve a few more optimiza-
tion models, the total effort is still very small compared to an
analysis of all portfolios, and even to a complete PROMETHEE
analysis on the set of all boundary portfolios.

4. Computational model
4.1. Research questions

In the preceding section, we have proposed several approaches
how the PROMETHEE method could be used for portfolio selec-
tion problems without performing a PROMETHEE ranking of the
entire set of feasible portfolios. In increasing order of computa-
tional effort, these methods are:

1. the PROMETHEE V method (BestFlow), which requires solving
model (11) once;

2. the c-optimal portfolio for c=c* as defined in Conjecture 1
(cStar), which requires solving model (22) for increasing
values of ¢ until a boundary portfolio is found;

3. the c-optimal portfolio containing the largest number of items,
i.e. the maximum value of ¢ (cMax), which requires solving
model (22) for all possible values of c;

4, the best portfolio in a PROMETHEE ranking of all c-optimal
portfolios (cRank), which in addition to 3, requires a PROMETHEE
ranking of all c-optimal portfolios;

5. the best portfolio in a PROMETHEE ranking of all boundary
portfolios (BestBound).

We developed a computational model to compare those five
solutions. As a benchmark, we used the PROMETHEE ranking of all
feasible portfolios. Since this requires a pairwise comparison of all
feasible portfolios, the size of problems analyzed in this study was
necessarily limited, even though in a study like this one, much
longer computation times can be accepted than in actual applica-
tions in a decision support system. However, the results obtained in
moderately sized problems used for this computational study can

guide the choice of models to be used in actual decision support for
larger problems.

As an additional benchmark, we use the best portfolio in the
set of c-optimal portfolios according to the ranking of all portfo-
lios (cBest). Although this portfolio cannot be determined without
establishing a ranking of all portfolios, it is a useful indicator
about how good the portfolios in the set of c-optimal portfolios
can become, and whether it might make sense to present the
entire set of c-optimal portfolios to the decision maker.

Therefore, the main research question to be studied using our
model is:

RQ1: How are the solutions identified in Section 3, and the
best c-optimal portfolio (as a benchmark), ranked in a PRO-
METHEE ranking of all portfolios?

Since the model allows us to study the portfolio selection
problem in detail, it can also be used to answer additional questions.
The next two questions concern the set of boundary portfolios and
its relationship to the entire set of feasible portfolios.

RQ2: What is the fraction of boundary portfolios in the set of
all feasible portfolios, and how well does a PROMETHEE ranking
of all boundary portfolios agree with their ranking in the set of all
feasible portfolios?

The first part of RQ2 is obviously interesting if we want to use
the best boundary portfolio as an approximation to the best
portfolio selection problem. Selecting the best boundary portfolio
is computationally tractable, only if the set of boundary portfolios
is considerably smaller than the entire set of feasible portfolios.

It has been shown [30,31] that rank reversals can occur in the
PROMETHEE method when additional alternatives are considered.
Therefore, the ranking of boundary portfolios within the entire set
of feasible portfolios is not necessarily the same as a ranking
established only among the boundary portfolios. The second part
of RQ2 studies whether this could become a severe problem.

RQ3: In the case of non-monotonic attributes, how likely is it
that the optimal portfolio is not a boundary portfolio?

As we have already shown in Proposition 1, the optimal
portfolio will always be a boundary portfolio in the case of
monotonic attributes. But since it is not necessarily the best
boundary portfolio, RQ1 asks by how far the optimal portfolio is
missed when only a ranking of boundary portfolios is performed.
RQ3 complements RQ1 by looking at the problem from a different
perspective. Proposition 1 is valid only for monotonic attributes. If
attributes are not monotonic, the optimal portfolio is no longer
necessarily contained in the set of boundary portfolios, and RQ3
asks how often the true optimal portfolio will be missed by
considering only boundary portfolios.

Our last two research questions deal with the set of c-optimal
portfolios.

RQ4: Is Conjecture 1 true, i.e. are c-optimal portfolios for ¢ < c*
obtained by adding one item to the preceding c-optimal portfolio?

While c-optimal portfolios for ¢ <c* are by definition not
boundary portfolios, the situation for ¢ > c* is less obvious. Since
boundary portfolios are likely to be good portfolios, it is to be
expected that these portfolios will often be boundary portfolios,
but there is no guarantee that this will always be the case.
Therefore we formulate another research question:

RQ5: How likely is it that c-optimal portfolios for ¢ > c* are
boundary portfolios?

4.2. Model design and parameters

The computational model operated on randomly created portfo-
lio problems, which were parameterized according to the number of
items, the number and types of attributes involved and the number
and limits of resources. For a given problem dimension, the model
first generates the outcome values and resource usage of items by
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drawing random values from a uniform distribution in the range
from zero to one. The model allows for both equal weights and
randomly generated weights of attributes. Both variants were tested,
but no significant differences in results were found (Table 1).

After generating a problem instance, all feasible portfolios for
the problem instance were generated. Portfolio generation used a
search tree similar to the approach of Vetschera [32]. At each level
of the tree, a decision about adding one item to the portfolio is
made. Since resource requirements of a portfolio are assumed to
be additive, the tree can be truncated as soon as a resource limit is
reached, thereby eliminating most infeasible portfolios. To keep
the model computationally tractable, a limit of 300,000 feasible
portfolios was imposed and a problem was dropped if this limit
was exceeded. The limit was reached only in a few instances in
the largest class of problems analyzed (cf. Table 2).

Once all feasible portfolios were generated, the boundary
portfolios were identified. This analysis requires an effort which
is linear in the number of portfolios and the number of items,
since for each portfolio it has to be checked whether it would be
possible to add any other item without violating constraints.

The model then simultaneously performed a PROMETHEE
ranking of all feasible portfolios and the ranking among boundary
portfolios. This was the most computationally demanding part of
the model, since PROMETHEE requires a pairwise comparison of
portfolios. Thus, for 300,000 portfolios, 90,000,000,000 pairwise
comparisons had to be performed. Because of the amount of the
data, each portfolio was evaluated individually and only the net
flow of each portfolio was stored. Intermediate results could not
be stored, since a flow matrix between all portfolios would have

Table 1
Parameter settings for computational experiments.

Parameter Settings
Items 10, 15, 20
Resource limit 2,25,3

All additives, three additives +2 min
Equal, random

Attribute types
Weights

Table 2
Cases with less than 100 experiments.

Items Weights Attributes Resource limit Actual experiments
20 Random Mixed 3 97
20 Equal Mixed 3 95
20 Random Additive 3 97
20 Equal Additive 3 95
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required to store 90 billion elements. However, the net flow
among boundary portfolios could simultaneously be calculated by
adding only the flows from/to other boundary portfolios.

In the next step, all portfolios were tested for efficiency by
pairwise comparison among portfolios. Finally, a PROMETHEE
ranking of all individual items was performed to calculate their
net flow, and the objective value of model (17) was calculated to
simultaneously determine the set of c-optimal portfolios. This
corresponds to solving model (17) by complete enumeration.
Finally, a PROMETHEE ranking of the c-optimal portfolios was
performed.

The model was implemented in Object Pascal using the Open
Source FreePascal compiler (http://www.freepascal.org). The
program can be obtained upon request from the authors.

Computational experiments were performed in a full factorial
design using parameter settings in Table 1.

All problems contained five attributes and one resource. Three
hundred experiments were performed for each setting involving
10 and 15 items. For the settings involving 20 items, only 100
experiments were performed since they used excessive computa-
tion time. In some rare cases, not all 100 experiments could be
performed because the number of portfolios would have
exceeded the limit. The actual number of experiments that could
be carried out in these cases is shown in Table 2.

To obtain information about the computational effort needed
to generate the different solutions, we measured the times
needed for the following four tasks separately: (i) generating
the portfolios (including identification of boundary portfolios), (ii)
the PROMETHEE ranking of all portfolios, (iii) determining the
efficient portfolios, and (iv) calculating all the c-optimal portfolios
by complete enumeration and the PROMETHEE ranking of these
portfolios. All experiments were run on a PC with Intel E6550
processor running at 2.33 GHz. Timing results are shown in Fig. 1.

Generation of portfolios (represented as circles in the left part of
Fig. 1) usually was completed in less than one-tenth of a second and
never exceeded half a second. With the exception of 8 out of 7700
cases, finding the portfolio maximizing the sum of net flows of items
(represented by triangles in the same figure) was also completed in
less than half a second. Longer running times in the eight excep-
tional cases, which took up to 50 s, probably were caused by some
hard disk activity not related to the experiment. Running times for
both activities increased approximately linear in the number of
portfolios. In contrast, both the PROMETHEE analysis of portfolios
(circles in the right part of Fig. 1), as well as determination of
efficient portfolios (triangles in the same graph), showed the
expected quadratic increase in running times, which ranged in
thousands of seconds for larger problems. The quadratic increase
in running times for the PROMETHEE analysis also clearly indicates
that time can drastically be decreased by considering only boundary
portfolios, which can be generated very rapidly.

120001 .
10000 1
8000
6000
4000 ¢
2000

01

0 50000 100000 150000
Portfolios

Fig. 1. Timing results for portfolio generation and item models (left), and PROMETHEE ranking and efficiency test of portfolios (right).
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4.3. Results

4.3.1. Solutions

Research question RQ1 deals with the performance of the
different solutions proposed in Section 3. To evaluate perfor-
mance, we consider the relative rank of the portfolios indicated by
each solution in the PROMETHEE ranking of all feasible portfolios.
To correct for differences in the number of feasible portfolios, we
use the relative rank, i.e. the rank divided by the total number of
feasible portfolios. A relative rank of 1% would therefore indicate
that a solution is located in the top 1% of all feasible portfolios.

Table 3 shows the ranks of the portfolios generated by the
different solution methods for the cases of additive and mixed
attributes. A non-parametric Wilcoxon test indicates that all
differences between methods shown in this table are significant
at p<0.1%. Figs. 2 and 3 further differentiate these results
according to equal vs. random weighs, the number of items and
the resource limits used in each run.

In the case of additive attributes, there is a clear and consistent
ranking of methods. The PROMETHEE V portfolio, which max-
imizes the net flow of items, on average fails to reach the top 10%
of all feasible portfolios. Considering the median, which is more
robust against outliers, it still does not reach the top 5%. In
contrast, the portfolio which is obtained for c* is within the top
3%, and the portfolio which is best according to a PROMETHEE
ranking of the c-optimal portfolios even reaches the top 1% of all
feasible portfolios. The c-optimal portfolio containing the largest
number of items almost reaches the best among the c-optimal
portfolios. These portfolios even come close to the best boundary
portfolio, which takes considerably more effort to identify.

For the case of mixed attributes, the picture is less clear.
Except for cMax, all solutions considered are on average within
the best 5% of all portfolios, and the median value is below 3%.
The overall results in Table 3 still show a similar ranking of
solution methods. However, the more detailed analysis in Fig. 3

Table 3
Ranks of the different solutions (% of all feasible portfolios).

Statistic BestFlow cBound cRank cMax BestBound cBest
Additive attributes

Mean 11.21 2.85 039 0.31 0.14 0.23
Median 6.67 0.52 0.12 0.11 0.07 0.10
SD 12.78 6.71 0.80 0.73 0.23 047
Mixed attributes

Mean 4.84 3.91 2.50 6.35 0.95 0.73
Median 1.68 133 0.99 2.97 0.21 0.29
SD 8.13 7.16 4.01 10.11 3.02 1.38
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Fig. 4. Fraction of boundary portfolios.

indicates that for several problem types, the ¢* portfolio performs
worse than the PROMETHEE V portfolio. The best-ranked among
the c-optimal portfolios in most cases still outperforms these two
solutions, but is considerably worse than both the best boundary
portfolio, and the best among the c-optimal portfolios. The biggest
change occurs for the largest c-optimal portfolio, which now
consistently performs considerably worse than all the other solu-
tions. This is not surprising, since in the case of non-monotonic
attributes, adding more items to the portfolio is no longer guaran-
teed to improve the portfolio. These results show that in the case of
mixed monotonic and non-monotonic attributes, the set of c-
optimal portfolios still contains very good solutions, but it can be
difficult to determine which of the c-optimal solutions is
actually best.

4.3.2. Boundary portfolios

Research questions RQ2 and RQ3 consider the boundary
portfolios. Across all experiments, 12.68% of all feasible portfolios
were boundary portfolios. As Fig. 4 shows, this fraction varies for
the different parameter settings. It generally decreases when
resource limits are relaxed. The impact of the number of items
varies for different resource limits. In the more constrained
settings, there are fewer boundary portfolios in the larger
problems. This effect is reversed for the less constrained problems.
The non-parametric Kruskal-Wallis test indicates that the impact
of resource limits on the fraction of boundary portfolios is highly
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Fig. 5. Correlation coefficients.

significant (p < 0.0001) for all problem sizes. Problem size has no
significant effect for the tightly constrained problems, for a
resource limit of 2.5, the effect is weakly significant (p=0.0022)
and for the least constrained problem with a resource limit of 3, it
is highly significant (p < 0.0001).

The second part of RQ2 concerned the ranking among bound-
ary portfolios and its consistency with the ranking of all portfo-
lios. Consistency could be measured using two approaches: since
net flows are measured on a cardinal scale, Pearson correlation
coefficients could be calculated. But since we are mainly
concerned with the ranking of portfolios, we used the Kendall
Tau coefficient of rank correlation between portfolios instead.

Fig. 5 shows the average values of this coefficient across all
parameter settings. In most cases, the average is above 0.8,
indicating a rather strong positive correlation. Thus we can
conclude that on average, the ranking of boundary portfolios
obtained from comparing only the boundary portfolios to each
other is rather similar to the ranking of boundary portfolios
within the entire set of feasible portfolios. This confirms
the results of Verly and de Smet [33], who also found that rank
reversals in PROMETHEE are very infrequent.

To test the statistical significance of the correlation coeffi-
cients, we used the normal approximation of the distribution of
Kendall correlation coefficients [34] and calculated the corre-
sponding p values. The correlation coefficients failed to reach
significance at p < 0.001 only in few rare cases for small problems
containing 10 items, as shown in Table 4.

Since we want to determine whether a ranking of boundary
portfolios can be used to identify the best portfolio, it is also
important to consider extreme cases in which the rankings most
strongly disagree. Fig. 6 shows the distribution of correlation
coefficients, grouped by resource limit and number of items. Very
low correlations are obtained only in problems involving 10
items. This is quite plausible, since these problems also involved
a smaller number of portfolios, so a deviation in the ranking of a
few portfolios could have a considerable negative impact on the
correlation. However, the opposite effect can be observed with
respect to the resource limit. Problems with less restricted
resources, in which there are more portfolios, do exhibit instances

Table 4
Number of cases (out of 300 experiments) in which Kendall correlation coeffi-
cients did not reach significance at p < 0.1%.

Weights Unequal Equal

Attributes Additive Mixed Additive Mixed
Res. limit

2 0 0 0

2.5 0 3 0 1

3 1 4 1

of very low correlations, while problems with tight resource
constraints do not.

Our analysis of RQ1 has already shown that the best boundary
portfolio performs on average very well in terms of the ranking of
all portfolios. RQ3 now studies whether the best overall portfolio is
likely to be a boundary portfolio in cases with mixed attributes,
where this is not true in general. Surprisingly, across all experi-
ments in this setting, the best overall portfolio was a boundary
portfolio only in 58.9% of all experiments. This means that in over a
third of the cases, the best portfolio could not be found by
considering only boundary portfolios. However, as we have already
seen in RQ1, the best boundary portfolio usually was not far from
the optimum, even when the true optimum was missed.

To test whether this fraction is significantly influenced by
problem parameters, we performed proportional tests between
subgroups of the data formed by the number of items, and the
resource limit, respectively. The results of these tests are sum-
marized in Table 5. The fraction of cases in which the optimal
portfolio was a boundary portfolio remains almost constant when
the number of items is varied, while increasing the resource limit
leads to a weakly significant decline.

4.3.3. c-optimal portfolios
Our last two research questions deal with the set of c-optimal
portfolios. First, we consider portfolios obtained for c<c*
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Table 5 In the present study, we have considered the case of non-

Effect of resource limit and number of items on the number of cases in which
optimal portfolio is a boundary portfolio.

Resource limit 2.0 25 3.0

Fraction (%) 61.57 59.86 55.24 p=0.0021
Items 10 15 20

Fraction (%) 58.67 59.33 58.28 p=0.8715

and analyze whether they are actually formed according to
Conjecture 1.

As Fig. 7 shows, the conjecture is not fulfilled in all cases. On
average across all experiments, it is violated in roughly 20% of all
cases. Finding a c-optimal portfolio is still a combinatorial
optimization problem. In particular for higher values of c, the
optimal solution might be close to being a boundary portfolio for
c+1. Thus the optimal solution for c+1 can involve a change in
the composition of the entire portfolio. A proportion test indicates
that significant influences exist of both the number of items and
the resource limit on the fraction of cases in which Conjecture 1 is
fulfilled. It should be noted that Fig. 7 does not differentiate
between experiments with additive attributes and experiments
with mixed attributes. Both cases must lead to the same results
concerning Conjecture 1. Since model (22) uses only the net flow
between items, and not flows between portfolios, its optimal
solution is not influenced by the way in which evaluations of
portfolios are calculated. This could explain the relatively
bad performance of this model when compared to the actual
ranking of all portfolios, in which the aggregation method plays
an important role.

Our last research question deals with the other part of the set of
c-optimal portfolios, the subset for which ¢ > c*. As Fig. 8 shows, it is
not always the case that these portfolios are all boundary portfolios,
although this is true in a large majority of cases.

5. Conclusions

Multicriteria portfolio problems are often approached using
compensatory methods, such as additive aggregation procedures.
However, there are several practical situations in which non-
compensatory approaches based on outranking relations seem
more appropriate. This is the case if the decision maker has a
preference structure which by nature is non-compensatory, or is
unable or unwilling to establish trade-offs required to specify the
parameters for compensatory methods. Such situations have been
reported in several applications. Comparisons of the use of out-
ranking procedure with multiattribute utility theory have been
done for example in contexts such as risk analysis of natural gas
pipelines [35] and the selection of outsourcing contracts [36].

compensatory preferences in the context of portfolio problems,
with a specific focus on the PROMETHEE family of methods. In
this context, PROMETHEE V has been proposed as a technique for
portfolio evaluation, which involves only moderate computa-
tional requirements. The aim of this study was to elaborate more
on the trade-off between computational requirements on the one
hand, and the quality of the solutions obtained in relation to the
(often computationally impossible) PROMETHEE ranking of all
portfolios on the other hand. Our study can therefore also be seen
as an evaluation of the benefits of spending some additional effort
above that required by PROMETHEE V.

We have used a computational model for this comparison. The
use of computational models can always be viewed as a limitation
on the generalizability of such studies, since only specific settings
can be analyzed. To overcome this limitation, we have considered
both cases of equal and random weights, where we found no
significant differences. We can therefore consider our results to be
quite robust with respect to the structure of weights involved.

In terms of other problem characteristics, our study is more
focused. In particular, we have concentrated on situations in
which benefits on the one hand, and resource requirements on
the other hand are strictly separated. Costs, or other resource
requirements of portfolios, are not considered as evaluation
attributes by the decision maker. The cost for each project is
applied only for the budget constraint. In many practical situa-
tions involving project portfolio selection, the DM is willing to
spend the whole amount (the limit of the cost constraint), in
order to implement more alternatives. This seems realistic, when
considering that once the DM has a budget, he wants to get the
most value of benefit criteria by spending the entire budget.

In such a situation, the idea of a boundary portfolio is particularly
appealing. It has led us to introduce the concept of c-optimal
portfolios, which in a systematic way allows us to analyze the effects
of increasing the size of portfolios by adding more items, which then
can lead to the exploration of different boundary portfolios.

The concept of boundary portfolios originated from the
consideration of monotonic attributes, where it is particularly
natural. However, there are also situations where non-monotonic
attributes might be more adequate for a specific criterion. In this
case, adding another project might decrease the advantage of the
entire portfolio. This kind of criteria do not represent benefits for
which the DM has a cumulative preference. However, this is not
the most usual situation found in practical problems related to
project portfolios. It may be considered for other kind of portfolio,
such as chemistry combination. Other practical situation where
this could be found is risk evaluation with regard to financial
portfolios. To allow for consideration of such portfolio types, we
have also included the case of non-monotonic attributes in our
computational study.
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Fig. 7. Fulfillment of Conjecture 1.
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Fig. 8. Fraction of boundary portfolios among c-optimal portfolios for ¢ > c*.

According to our results, the methods we have studied per-
form best for the case of monotonic attributes. Thus it is reassur-
ing that this is the predominant type of attributes in most
practical applications. Nevertheless, we have also found that
although the best overall portfolio was not found in the set of
boundary portfolio in about 40% of the cases involving non-
monotonic attributes, the best boundary portfolio is still not far
from the optimum.

Based on the results of our computational study, we can
therefore propose a two-level approach how to apply PRO-
METHEE methods to portfolio problems:

1. If the number of items is not too large, all boundary portfolios
should be generated and ranked. Generating all boundary

portfolios requires only a minimal computational effort for
problems of the size we studied. Since the number of boundary
portfolios was found to be approximately one order of magni-
tude smaller than the total number of feasible portfolios, and
PROMETHEE involves a pairwise comparison of all alternatives
to each other, this would reduce the computational require-
ments to about 1% of the effort required to rank all portfolios
and still provide a very good approximation of the actual best
solution.

. If the problem is too large to generate and compare all

boundary portfolios, at least the set of all c-optimal portfolios
should be generated, and a ranking of these portfolios should
be performed. While this approach involves a somewhat larger
effort than PROMETHEE V, it is still very low compared to the
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evaluation of all - or even all boundary - portfolios, and
provides a considerably better approximation to the ranking of
all portfolios.

This recommendation leads to some important topics for
future research: our results have also indicated that often the
set of c-optimal portfolios contains portfolios which are better in
terms of the overall ranking of portfolios than the one which is
best in a ranking just of the c-optimal portfolios. Identifying these
“true best” c-optimal portfolios without resorting to the ranking
of all portfolios is a challenging topic for future research.
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