-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com
Cﬁ JOURNAL or

SCIENCEC DIRECT?® COMPUTER

AND SYSTEM

SCIENCES

www.elsevier.com/locate/jcss

ELSEVIER Journal of Computer and System Sciences 71 (2005) 266—290

Boosting in the presence of noise

Adam Tauman Kal&i!, Rocco A. Servedib*:2

3Toyota Technological Institute at Chicago, Chicago, Il 60637, USA
bDepartment of Computer Science, Columbia University, 1214 Amsterdam Avenue, Mailcode 0401, New York, NY 10027, USA

Received 5 January 2004; received in revised form 16 September 2004

Available online 8 December 2004

Abstract

Boosting algorithms are procedures that “boost” low-accuracy weak learning algorithms to achieve arbitrarily
high accuracy. Over the past decade boosting has been widely used in practice and has become a major researc
topic in computational learning theory. In this paper we study boosting in the presence of random classification
noise, giving both positive and negative results.

We show that a modified version of a boosting algorithm due to Mansour and McAllester (J. Comput. System
Sci. 64(1) (2002) 103) can achieve accuracy arbitrarily close to the noise rate. We also give a matching lower bound
by showing that no efficient black-box boosting algorithm can boost accuracy beyond the noise rate (assuming that
one-way functions exist). Finally, we consider a variant of the standard scenario for boosting in which the “weak
learner” satisfies a slightly stronger condition than the usual weak learning guarantee. We give an efficient algorithm
in this framework which can boost to arbitrarily high accuracy in the presence of classification noise.
© 2004 Elsevier Inc. All rights reserved.

Keywords:Computational learning theory; Noise-tolerant learning; Boosting; PAC learning; Branching programs

* Corresponding author. Fax: +1212 666 0140.

E-mail addressekalai@tti-c.org(A.T. Kalai), rocco@cs.columbia.ediR.A. Servedio).

1work done while A.T. Kalai was at the Laboratory for Computer Science, MIT, and was supported by an NSF Mathematical
Sciences Postdoctoral Research Fellowship.

2Work done while R.A. Servedio was at the Division of Engineering and Applied Sciences, Harvard University, and supported
by an NSF Mathematical Sciences Postdoctoral Research Fellowship and by NSF Grant CCR-98-77049.

0022-0000/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2004.10.015

https://core.ac.uk/display/82185649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jcss
mailto:kalai@tti-c.org
mailto:rocco@cs.columbia.edu

A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290 267

1. Introduction

InValiant’s probably approximately correct (PAC) learning model, a successful learning algorithm must
be able to achieve any arbitrarily low error rate given random examples drawn from any fixed probability
distribution. In an early paper, Kearns and Valif8] proposed the notion ofweaklearning algorithm
which need only achieve some error rate bounded away %,oamd posed the question of whether weak
and strong learning are equivalent for efficient (polynomial time) learning algorithms. Soon afterward,
in a celebrated result Schapire gave a positive answer to this qugsiiprSchapire gave an efficient
boostingalgorithm which, given access to any weak learning algorithm, uses the weak learner to generate
a hypothesis with arbitrarily low error. Since Schapire’s initial result boosting has become one of the
biggest successes of computational learning theory; boosting algorithms have been intensively studied
from a theoretical perspective and are widely used in practice.

The standard PAC learning model assumes that all examples received by the learner are labeled correctly
i.e. the data has no noise. An important question, which was asked by Schapire in his originfll @gaper
and by several subsequent researcfirds whether it is possible to efficiently perform boosting in the
presence of noise. Since real data is frequently noisy, this question is of significant practical as well as
theoretical interest.

In this paper, we give a detailed study of boosting in the presenandbm classification noisén
the random classification noise model, the binary label of each example which the learner receives is
independently flipped from the true labg{x) with probability s for some fixed O< 5 < %; the value
n is referred to as thaoise rate Random classification noise is the most standard and widely studied
noise model in learning theory. We give both positive and negative results for boosting in this model as
described below.

1.1. Our results

We first demonstrate that decision-tree-like boosting algorithms can boost accuracy arbitrarily close
to the noise rate. In particular, we analyze a modified version of the “branching programs” booster of
Mansour and McAllestefl5], which built on a boosting analysis of decision trees due to Kearns and
Mansour[11]. We refer to the boosting algorithm frofh5] as the MM boosting algorithm, and to our
modifiedversion as the MMM boosting algorithm.

We next show that in general it iot possible to boost to any error rate lower than the noise rate
using a “black-box” polynomial time boosting algorithm. This negative result assumes only that one-way
functions exist. Some computational hardness assumption is required since in exponential time any weak
learner can be boosted to arbitrary accuracy in the presence of noise. (Draw a polynomial size noisy data
set, exhaustively guess which labels are noisy, and run a standard boosting algorithm.)

The results described above assume that the boosting algorithm has access to a weak learner as define
by Kearns and Valiant, i.e. an algorithm which, given examples drawn from a distridDfipnoduces
a hypothesis whose error rate relative to the target function is bounded away} frear our second
positive result we consider a slightly stronger notion oblaylearner (precisely defined in Sectiéh
which produces a hypothesis whosgvariancewith the target function is bounded away from 0. We
show that if the MMM boosting algorithm has access to an okay learner, then it can boost to achieve
arbitrarily low error in the presence of random classification noise.

268 A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290

Table 1
Examples labeled 1 are either noisy negative examples or nonnoisy positive examples
Noise No noise
True positive example pn p(L—mn)
True negative example 1-pn A-pA-n

i —) R - 1
Thus, the frequency of true positive examples among examples Iabel%g% whichis less thar% ifp<n<s.

1.2. Our approach

Recall that a weak learning algorithm must output a hypothesis with error at%'ne$twhen given
examples drawn from any distributi@ A simple but useful observation is the followingZifis balanced
between positive and negative examples then the hypothesis generated by a weak learner provides som
useful information, but ifD is unbalanced then the weak learner can output a trivial hypothesis and still
satisfy the guarantee. For exampley = 0.1 andD puts probability weight B on positive examples,
then the identically-1 hypothesis is a legitimate output for the weak learner. Thus, the only way to ensure
that a weak learner gives some useful information is to run it on a distribution which is roughly balanced
between positive and negative examples. If the distribufida unbalanced, then some sort of filtering
or reweighting must be performed to obtain a balanced distribd¥omll known boosting algorithms
take this approach when given a constant weak hypothesis.

The main idea behind our negative result is that in the presence of classification noise, it can be difficult
to obtain a balanced distributi@ . Consider a scenario whePeputs weightp < % on positive examples.

To make the weak learner do something useful, we would like to reweight to a balanced distribution
Intuitively, the best way to do this is to discard some examples which are labeled 0. Howevet,ijf

then even among examples which are labeled 1, less than half are true positive examples (see Table 1)
Thus, we cannot construct a new distribution which forces the weak learner to do something useful, so
we cannot boost to high accuracy. In Secttowe make these ideas precise and give a hardness proof.

For our positive results, we consider a modified version of the “branching program” boosting algorithm
of Mansour and McAllestefl5]. Our analysis exploits the fact that their scheme causes the (possibly
noisy) label of a given example to play a relatively small role in its reweighting. This is in contrast with
several other boosting algorithms, such as AdaB@gist(and less obviously Boost by Majorifp],
LogitBoost[4], etc.),in which a noisy label can cause an example to receive exponentially more weight
than it would otherwise receive. We note that several researfh@g have empirically observed that
standard boosting algorithms such as AdaBoost can perform poorly on noisy data, and indeed it has been
suggested that this poor performance is due to AdaBoost's tendency to construct distributions which put
a great deal of weight on a few noisy examgl&ls

1.3. Related work

The elegant Statistical Query model introduced by Kefk@Eis a model in which the learner does not
receive labeled examples but instead can obtain estimates of statistical properties of the distribution of
labeled examples. Aslam and Decatur gave an algorithm for boosting any Statistical Query weak learner
to arbitrary accuracfl]. Since every Statistical Query algorithm can be simulated using a noisy example

A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290 269

oracle[10], their result seems to imply that any Statistical Query weak learning algorithm can be boosted
even with noise.

However, Aslam and Decatur’s result does not allow the Statistical Query weak learner to have access
to unlabeled examples from the distribution, which is sometimes considered part of the Statistical Query
model. In fact, the “unboostable” weak learning algorithm we present in Sebta@n be viewed as
a Statistical Query algorithm that requires access to unlabeled examples. This suggests that it may be
impossible, in general, to boost Statistical Query algorithms that have access to unlabeled examples, or
that Aslam and Decatur’s result may be the strongest possible.

One of the most impressive examples of noise-tolerant learning is that of learning a noisy half-space
[2]. Their algorithm uses a special outlier-removal process that examines unlabeled points. Thus, while
their algorithm is, in the broadest sense, a Statistical Query algorithm, Aslam and Decatur’'s boosting
cannot be used directly on their approach. Instead, they give a special-case boosting approach for their
problem.

In follow-up work, it has been shown that branching programs can be used to boost under a stronger
model of nois¢9]. The model considered there is an arbitrary distribution &vel’, where, for simplicity,
sayY = {0, 1}. As in thep-concept mod¢l2] the goal is to learrf (x) = E[y|x] for a random example
(x, y) from the distribution, and the error of a hypothekigs measured byE[(h(x) — f(x))?]. It is
shown that as long as one can find a hypothesis which is positively correlated (has a positive correlation
coefficient) with the target function, boosting is possible. As an application, it is shown that the class of
generalized additive models (with monotonic link functions), popular in the statistics literature, can be
learned by such boosting.

The above model of “noise” is stronger and weaker in some senses. Its strength is that the noise is not
necessarily uniform, and the hypothesis has to learn the noise as well. However, in the case of uniform
classification noise very neér the constant hypothegigx) = % is quite accurate and real learning only
has to be done to get very small error. In contrast, according to the standard definition of accuracy in a
noisy setting, which is with respect to a noiseless test set, this high-noise case is more difficult.

2. PAC learning preliminaries

Our results are for the model of PAC learning in the presence of classification noise. For a detailed
introduction to PAC learning sd&4].

A concept class @ a class of Boolean functions over soimstance spac&’. We assume throughout
that the instance spa#as of dimensiom, i.e.X = R" or X = {0, 1}", and we are interested in algorithms
whose running time is polynomial m(and other parameters).

Let f be a function inC, D a distribution overX, andy a value <y < % A noisy example oraclis
an oracleEX (f, D, n) which works as follows: each timEX (f, D, n) is invoked, it returns a labeled
example(x, b) € X x {0, 1} wherex € X is drawn from distributiorD andb is independently chosen
to be f (x) with probability 1— y and 1— f(x) with probability .

Let f € C be afixed target function. A noise-tolerant PAC learning algorithm for a conceptClass
an algorithm which has the following property: for any > 0, any 0<y < % any target functiorf € C,
and any distributiorD over X, if the algorithm is given access 10X (f, D,) then with probability 1- 6
it outputs a hypothesils such that Prep[h(x) # f(x)] < . We refer to Preplh(x) # f(x)] as the
error of h underD.

270 A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290

A noise-tolerant weak learning algorithm is an algorithm which satisfies the PAC criterion only for
sufficiently larges. More precisely, we have:

Definition 1. Let 0 < y < % A noise-tolerant-weak learning algorithm for a concept claSss an
algorithmA that takes inputg, 6 and is given access to a noisy example or&eevith the following
property. For alk, 5 if O is a noisy example oracIEX(f, D, n) wheref € C, D is any distribution on
{0, 1}", and Ogn < 2, thenAruns in time polyn, 1= 2,7, 1) and with probability at Ieast} d, A outputs

apoly(n, % 5, ,, - 2,7) -time evaluable hypothesissuch that Prep[h(x) # f(x)]<

A boosting algorithm is an algorithm which, given access to a weak learning algorithm, can generate
a hypothesis with arbitrarily low error. More precisely, we have:

Definition 2. A black-box noise-tolerant booster is an algoritBnthat is given access to an oradlke
and black-box access to an algorithn with the following property. For all concept class€s for
all0 <y < % for all 0<y < % for all n, ¢, 6, we have: ifA is a noise-tolerang-weak learning
algorithm forC and O is a noisy example oracIEX(f D, n) where f € C andD is any distribution

on {0, 1}", then B runs in time polyn, 1, 1, 1, = 211) and with probability at least + & B outputs a

poly(n, =, 5, o 1—2,7)—t|me evaluable hypotheshssuch that Preplh(x) # f(x)]<e.

We note that in both our positive and negative results, the boosting alg®itaits the weak learning
algorithmA as a black boxB may runA using any oracl€® whichB is able to provide, buB cannot “read
the code” ofA. Thus, our negative results hold only for boosting algorithms which operate in this black-
box way. We feel that this is a minor restriction to put on boosting algorithms since all known boosting
algorithms (including the MM boosting algorithm which we analyze) work in a black-box way—they
call the weak learner and use the hypotheses which it generates, but do not inspect the internal state of
the weak learner during its execution.

3. MM: noise-free boosting

In this section, we describe a particular boosting algorithm and analyze its performance in the absence
of noise (i.e. whem = 0). The algorithm we describe here is essentially the branching program booster
of Mansour and McAllestelrl5] (which built on ideas from Kearns and Mansour’s padf), and we
henceforth refer to it as the MM boosting algorithm. Our goal here is to set the stage for our analysis of
the MMM algorithm (modified MM) in the presence of noise, which we give in Sectibasd6. Our
presentation and analysis of the MM algorithm are slightly different ffohj in order to facilitate our
presentation and analysis of the MMM algorithm in Sectidred6.

3.1. Preliminaries

Throughout this section, we lgt € C be a fixed target function arfd be a fixed distribution ovex.
For¢ C X we writeD|, to denoteD conditioned orx € ¢, i.e.D|¢(S) = Prp[x € S| x € £]. We write
pe to denote Py[f(x) = 1|x € £] andp to denote Pp[f(x) = 1].

A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290 271

Definition 3. As in [11], theuncertaintyof a distributionD is defined to bé/ (D) = 2/p(1— p). Let
L be a partition ofX into disjoint subsets (s& = (J,. £). The uncertainty oL underD is defined to
beU(D, L) = Y, weue, whereu, = U(D|,) = 2/pe(1— py) is the uncertainty of the conditional
distributionD|, andw; = Prp[x € £] is referred to as theveightof leaf ¢.

Given any partitionC of X, there is a natural corresponding predictor for the target funé&tiomeach

setl € L, we predict 1 iffp, > % The error of this predictor undé? is) °, we min(p,, 1 — p¢); note

that this is at mos%U(E, D) since min is less than geometric mean. Thus, the uncertainty of a partition
gives an upper bound on the error of the corresponding predictor.

Definition 4. ThebalancedlistributionD is an equal average of the distributidR; 14y andD| -1(g),
i.e.D(S) = 3Prplx € S| f(x) =11+ 2Prplx € S| f(x) =0l

Given access to a hoise-free oral& (f, D), it is easy to simulate the noise-free oragl& (f, 5);
this is done by flipping a coin at random to decide whether to choose a positive or negative example. Then
wait until one receives such an example.

For our purposes, branching programis a rooted, directed acyclic graph in which each |eas
labeled with a bith, and each internal nodehas outdegree 2 and is labeled with a Boolean function
h,. (Branching programs go by various names, such as decision graphs and binary decision diagrams, in
different communities.) Branching programs were introduced into boosting as a generalization of decision
tree learning: while decision trees are constructed by splitting nodes, for branching programs nodes can
be merged as well.

3.2. The MM boosting algorithm

The MM algorithm iteratively constructs a branching program in which each internahnisdabeled
with a hypothesidi, generated by the weak learner at some invocation. In such a branching program,
any instancer € X determines a unique directed path from the root to a leaf; at each internal tiogle
outgoing edge taken depends on the valy@). Thus, the sef of leaved corresponds to a partition &f,
and for each leaf we have probabilities;, = Pr{x reacheg] andp; = Pr.cp[f(x) = 1]x reached].
As described above, each I¢as labeled 1 ifp, > % and is labeled O otherwise; thus a branching program
naturally corresponds to a classifier.

The MM algorithm is given below. The branching program initially consists of a single leaf. The
algorithm repeatedly performs two basic operations:

e Split a leaf(Steps2—3): The chosen ledfbecomes an internal node which has two new leaves as its
children. The label of this new internal node is a hypothesis generated by the weak learning algorithm
when run with the oracl& X (f, D|,) (recall that this distribution is obtained by first conditioning on
x € ¢ and then balancing that conditional distribution).

3This may take a great deal of timegfis very close to 0 or 1, but as we will see these situations do not pose a problem for
us since we will abort the simulation after some bounded number of draws.

272 A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290

e Merge two leave§Step$—-7): The two leaves, and?, chosen for the merge are replaced by a single
leaf ¢. All edges into¢,, and{;, are redirected int@.

Intuitively, splitting a leaf should increase the accuracy of our classifier. In the MM algorithm, the leaf

to be split is chosen so as to maximally decrease the overall uncertainty of the partition corresponding to
the branching program. Conversely, merging two leaves should decrease the accuracy of our classifier.
However, we must do merges in order to ensure that the branching program does not get too large;
Kearns and Mansour have shown that without merges the size of the resulting decision tree may be
exponentially largg11]. The leaves to be merged are chosen so as to minimally increase the overall
uncertainty of the partition. The conditionin line 7 ensures that we only perform merges whose cumulative
uncertainty increase is substantially less than the uncertainty decrease of the most recently performed
split, and thus we make progress. The final output hypothesis of the MM booster is the final branching
program.

The MM boosting algorithm:
Input: desired final error level,
access tg-weak learned,
access to noise-free example orak€lg (f, D).

Recall from the definitionsw, = Prp[xreaches led, p = Prp[f(x) = 1|x reached], u, =
2/ pe(1— pe), D, is the distribution obtained by conditioning ane ¢, andD|, is the balanced
version ofD|,.

Algorithm:

1. Start with the trivial partitionC = {X}, so the branching program is a single leaf.

2. Construct candidate splits For each lea¥ € £, such thatp, ¢ {0, 1}, run the weak learning
algorithm A on the balanced distribution on this leaf (i.e. oraEl& (f, D|;)) to obtain leavedg
and/{;.

3. Choose best split:Perform the split that reduces the overall uncertainty the most4} dte this
reduction, so

As = mZaX{wgug — Wegley — We Upy).

Stop if the error of the current branching program.

Setd,, := 0.

Consider candidate mergesLet ¢, # ¢, be the two leaves which, if merged into one léafvould
cause the minimum increase in uncertainty. £ be this minimum value:

o 0k

z:= min {we, ug, + we, e, — wetty}.
La#lp
7. Merge if safe: If 4y, + z < 45/2 then
e Merge leaveg,, ¢, in the branching program.
e Setdy = Ay + z.
e Goto Step 6.
8. Otherwise, go to Step 2.

A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290 273
3.3. Correctness and efficiency of the MM algorithm

We assume in this section that all probabilities are computed exactly by the MM algorithm. In Sec-
tion 3.4, we show that our analysis still holds if probabilities are estimated by a polynomial amount of
sampling. We also assume that the weak learning algorithm successfully ﬁ%lels)a-accurate hypoth-
esis at each invocation, i.e. we ignore tharobability of failure. This failure probability can be handled
with standard techniques as discussed in Se&ién

The following lemma corresponds to Lemma 411].

Lemma 1. Suppose for distributio®, hypothesis h satisfigrz[A(x) # f(x)]<% — 7. Let £ be the
partition induced by hi.e. £ = {h~1(0), »~1(1)}. ThenU (£, D)< (1 — 2y2)U (D).

Proof. Without loss of generality we write

Pplf(x) =1]=p,
Pplh(x) = 1A f(x) =1]= pa,
Pplh(x) =0A f(x) =1=pd—-a),
Pp[f(x) =0]=g = (1-p),
Pplh(x) = 1A f(x) = 0]=qb,
Pplh(x) =0A f(x) =0l=¢(1-b),
so the error oh underD| ¢(y)=1 is 1 — a and underD| ¢(,)—o is b. Since the error under the balanced
distribution is at mos§ — 7, we havel=4*2 <% — y and hence: — b >2).
By definition,U (D) = 2,/pq and that

p(l—a)q(l—>b)
(p(L—a)+q(1—b))?

paqb
(pa + qb)?

=2/pagh +2/p(1 —a)q(1 —b)
—U(D) (m +J/A-aa- b)) .
To finish the proof, we observe that

@+¢(l—a><l—b)=%¢<a+b>2—(a—b>2+%¢<1—a+1—b>2—<a—b>2

U(L, D) =2(pa + qb)

+2(p(1—-a)+q(1 - b))\/

1 1
<SoV@+0?2 =42+ 5@~ (a+b)? - 42

where the second inequality uses the concavity of the fungtief— . O

Lemmal implies that as long as the MM branching program does not have too many leaves, each split
performed in line 3 gives a substantial decrease in the overall uncertainty:

Lemma 2. Suppose that the MM branching program’s partitiérhas L leaves before executing S8p
Then after performing the split in St&pthe new partition.’ satisfies/ (£/, D) < (1 — 2y%/L)U (L, D).

274 A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290

Proof. Sincel hasL leaves, some leaf must havewu, > %U(ﬁ, D). If this leaf were chosen for the

split then by Lemmad. the uncertainty:, would be multiplied by at most % 2y2, and hence the overall
uncertaintyU (£, D) would be multiplied by at most & 2;2/L. Since the actual split chosen is the one
which reduces overall uncertainty the most, the lemma holds.

Now we show that if the branching program has many leaves, there are merges it can perform which
do not increase uncertainty by too much.

Lemma 3. Suppose that the MM branching program has uncertalhty: U (£, D) and L > %E log U—‘fz

leaves Then there are two leaves and ¢, whose merger would cause the uncertainty to increase by at
mosty?U/L, i.e. the resulting partitiorC,_, would satisfyl/ (L, 5, D) < (1 + y?/L)U.

Proof. We may assume without loss of generality that there are at le@steaves? such thatp, < %
(The other case, that there are at lelg? leaves? such thatpg>% follows by symmetry.) Consider
what would happen if we were to merge two such legjeand ¢, which have associated weightg
andwy and uncertainties; = U(D|,,) <uz = U(D|,). Itis easily verified that this would give a leaf
£ with weightw = w1 + w2 and uncertaintyy = U (Dy) satisfyingui <u <u» (this uses the fact that
p1, p2< %). Consequently, the increase in overall uncertainty resulting from such a merge would be

U
wu — wiug — waup <wi(up — uy) = wing (— — 1) - (1)
ug

Now we imagine putting the uncertainties of these leaves into disjoint buckets. Considef&he
intervals

((-5)-(-5) |

fori = 1,2,...,L/8. (These buckets were used explicitly as part of the algorithfid%h but our
presentation uses them only here in the analysis.) Siheex)Y* <1/e for x € (0, 1], we have

2\ L/8 2\ 2logt o
(-3) <)

9 9 4

and hence these buckets cover at least the int¢f%&l/4, 1].

Suppose first that at leas/4 of the L /2 leaves withp; < 2 have uncertainty, <72U /4. If this is the
case then there must be some such leaf with weighkt4/L. By Eq. (1), merging this leaf with any other
leaf whose uncertainty is at mg&i/ /4 results in an increase in uncertainty of at mogt?U /4<y2U /L,
which suffices to establish the lemma in this case.

So now suppose that at ledst4 of the L /2 leaves withp, g% have uncertainty, > 72U /4. By the
pigeon-hole principle, among thegeg4 values ofu, at leastL /8 fall into buckets in which they are not
the unique largest value assigned to that bucket. Among thg8&alues, let’ be the leaf with lowest
weuge. Since the total uncertainty i€, we must havev, u, <8U/L. Let £” be a leaf which falls into
the same bucket and satisfies

M(’gu@”gu@’/(l — 72/9)

A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290 275

From Eq. (), the increase in uncertainty which would result from merginand¢” is at most

8U 1 _8U 2 <Uy2
(1-92/9) L 9-27 L

so the lemma is proved.O
Now, we can establish correctness of the MM boosting algorithm:

Theorem 4. After at mosll—4 Iog > log = 5 splits and mergeshe MM algorithm will output a hypothesis
h such thaPrp[h(x) # f(x)]<£

Proof. First, note that since the algorithm halts as soon as the ergghBr) # f(x)] is at moste,
throughout its execution we hav&(L, D) > 2¢ (recall that the uncertainty is always at least twice the
error rate). We now show that the algorithm halts after the claimed number of steps.

We first note that the number of leaves in the branching program whenever Step 3 is executed is never
greater tharl, = 7—22 log %2 To see this, note that if there drdeaves and a split is performed, then by

Lemma2 the uncertaintyJ prior to the split decreases by at leagtZ/L. Lemma3 then implies that
there is some merge which would increase the uncertainty by atyfiggL. Thus this merge will be
performed in Step 7 and there will again be at moktaves.

Thus by Lemma2 and the condition in Step 7, the cumulative effect of a split and the (possibly
empty) sequence of merges which follows it before the next splitis to multiply the uncertainty by at most
(1 —92/L). Since the uncertainty of the initial trivial partition is at most 1, we have that immediately

. L 22\ S . .
before the(s + 1)st split takes place the uncertainty is at mé]st— %) ge‘”z/L. This is less than2

fors = % log 218 so at most this many splits take place. The total number of merges is clearly at most the
total number of splits, so the theorem is proved]

3.4. Approximating MM via sampling

So far we have discussed an idealized version of the MM algorithm in which all probabilities can be
computed exactly. Ifil5], the MM algorithm was run on a fixed sample so this exact computation could
in fact be done, but for our extension to the noisy setting it is more convenient to consider a “boosting-
by-filtering” version where we do not use a fixed sample. Hence we cannot compute probabilities exactly
but instead must use empirical estimates obtained by callixigf, D).

Let L be as in Theorem. We first note that in Step 2 the algorithm need not run the weak learning
algorithm on any leat which hasw,u, < 57, since the total contribution of such leaves to the final
uncertainty will be at mos§. By the analysis in SectioB.3, for each leaf it suffices to estimate the

quantityw,u, to additive accuracy (4) This accuracy ensuresthat, asin Theofebefore thes +1)st
split the uncertainty is at mosf — Q(yZ/L))S, and that our final estimate of the uncertaidty, weu,
will be off by at mostO (¢).

How much time is required to estimat&u, to a given additive accuracy? We can rewtiigu, as
2\/agby Wherea; = Prp[x € £and f(x) = 1] andb;, = Prp[x € £ and f(x) = 0]. Tail inequalities,
such as Chernoff bounds, imply that these probabilities, and hengeas well, can be estimated to any

276 A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290

inverse polynomial additive accuracy from a polynomial number of callsXd f, D). (Note that from
the above discussion, we only need to simulaté(f, D|,) in Step 2 ifweu, is Q(e/L), and if this is the
case then we can simulate each calE® (f, D|¢) in poly(L/¢) time with high probability.)
Finally, we note by a standard analysis the total failure probability of all estimates and calls to the weak
learner can be bounded byat little cost. We thus have:

Theorem 5. For anye, 6 > 0, if the MM boosting algorithm is run usingjaweak learner and a noise

free example oracl€ X (f, D), then it runs forpoly(%, 1 1) time steps and with probability— 5 outputs

a hypothesis h satisfyingrp[h(x) # f(x)]<e.

4. MMM: boosting to the noise rate

In this section we modify the MM algorithm to obtain the MMM algorithm which can achieve any
accuracy up to the noise rate. The MMM algorithm is given access to a noise-tolevaak learning
algorithm and to a noisy example oradi&X (f, D,) and is given a value > 0; its goal is to output
a hypothesis such that Pp[ha(x) # f(x)]<n + . We analyze the algorithm in terms of the true
probabilitiesp, = Prp[f(x) = 1|x € £] instead of the “noisy” probabilitieg, = Prp[label= 1|x € £].
Sincepy = pe(1 —) + (1 — pe)n, we have

pe—n
S 1-2 @)
Thus, the MMM algorithm can estimage to within an additive error of by estimatingp, to within an
additivel_;én. We assume throughout this section that the MMM algorithm knows the valgdfaiot,
we can use the following standard trick: if we could “gueg$fien the algorithm would succeed. In fact,
if we could guesg to within a small error, then we would succeed as well. This is because the algorithm
would succeed with high probability if the true distribution had our guessed amount of noise, and the
two distributions with different amounts of noise are very close (so close that no algorithm that draws
a sufficiently small number of examples can succeed on one and fail on the other). Thus, one searches
through the possible noise values, starting at small eta and gradually increasing, each time rerunning the
algorithm with the estimategl When we reach the correct valuepthe algorithm will succeed and we
will be able to tell by our sufficiently high accuracy.

The MMM algorithm differs from the MM algorithm in the following ways:

Pe

e In Step 2 the oracl& X (f, TDD '), i.e. a noisy balanced oracle, is used to run the weak learning
algorithm, where;’ > , is some higher noise rate. (Later we will show how to efficiently simulate
EX(f, D,n') givenaccesst& X (f, D, n) and will show thay’ is bounded away froré; this ensures
that at each stage the noise-tolerant weak learner can construct a weak hypothesis as required.)

e Forz > 0 defineL to be the set of leavessuch that mifipe, 1 — p¢}>n + 5. Each time a leat
is formed, if¢ ¢ £, then we view¢ as “dead” and never consider it again for splits or merges; so
MMM only performs splits and merges on leave<in(This ensures that we can efficiently simulate
the noisy balanced oracle. For leaves nofinve may not be able to simulate such an oracle.)

o In Step 4 the algorithm halts if Bfa(x) # f(x)1<n + .

We have the following analogue of Theorémn

A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290 277

Theorem 6. After O(yi4 log ;: log 1) splits and mergethe MMM algorithm will output a hypothesis h
such thatPrp[h(x) # f(x)]1<n + .

Proof. The error Pp[h(x) # f(x)] has contributions from leaves ifi and not inZ.. By definition

of £ the total contribution from leaves not ify is at most; + t/2. Thus it suffices to bound the error
contribution from leaves i, by /2. The analysis establishing this bound is very similar to that of
Theoremd with t/2 in place of:. LetU, = ZZEET we2+/ pe(1 — pe) be the total uncertainty of leaves in
L.. As before, it suffices to redudé, to 7. If we setL, = |£|, then Lemm& now holds with 1— 2y2/L,

in place of 1— 2y2/ L, because the leaf of largest uncertaintircan be split and its uncertainty reduced
by a factor of 1— 2y2. Lemma3 applies to the subset of leavésand the uncertainty/;, so as before

if there are many leaves ifi then merging some pair increases uncertainty by at mesg4/L.. Thus,

by the same argument as Theoréithe valueU, will be reduced ta in the same number of splits and
merges as in Theoremfor ¢ = t/2. O

We now show how to simulate the noisy balanced example og@&lef, D, /) using EX (£, D, n).
Assume without loss of generality that= Prp[f(x) = 1]<3. From the discussion above we may
assume thap > + 5. We filter examples fronk X (f, D,) as follows:

e Labeled0: Reject each example labeled 0 with probabiiﬂg;;f_iﬂ, otherwise keep it.

e Labeled1: Flip to 0 with probability(l_(:__lff(ffﬂ__”z)pn), otherwise do not flip the label.

The idea is that the rejection balances the distribution between true positive and true negative examples,
but as a result of this balancing we now have asymmetric noise, i.e. the fraction of negative examples
that are mislabeled is greater than the fraction of positive examples that are mislabeled. To compensate,
the flipping causes an equal fraction of positive and negative examples to be mislabeled, so we have true
classification noise at a higher rate We have the following lemma:

Lemma 7. Givenaccesst@ X (f, D, i), wherep = Pr{ f (x) = 1]andmin{p, 1— p} >y + 5, by making

pon(%, log %) callstoEX (f, D, n) we can simulate a call t& X (f, D,) with probabilityl — §, where
1 T

77/§§ -7

Proof. Recall that we have access to a noisy example o#a&léf, D, n) whereD is some distribution,
O<py< % is the noise rate, angl = Prp[f (x) = 1] satisfies;+i<p < % for somer > 0. We show how
this oracle can be used to simulate the ordti(f, 23, n"). HereD is the balanced version of distribution
Dand0< ¢ < % is a new noise rate.

We filter examples fronkE X (f, D,). For each example,

Labeled0: Reject with probabilityp, = f_‘pzfﬂ, keep with probability - p, = %.
LabeledL: Flip its label with probabilityp ; = (1_%:5{();7;1”—_"2)%), do not flip withprobability - p ;.

We will show that this results i X (f, D, 1) Wheren/g% -7
In order to verify this, it suffices to check the following two things. First, with regard to rejection,

I;’Dr[f(x) = 0 A not rejected = I%r[f(x) = 1A not rejectedl

278 A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290

This would show that at least the resulting distribution is balanced but says nothing about the labels or
apparent noise rates. The LHS above can be writtéh as) ((1 — n) (1 — p,) + 1) because the example

was negative with probability 4 p and either the example was not noisy (probability:1), thus labeled

0, and kept (probability + p,), or it was noisy (probability)) and was kept for sure. Similarly, the RHS

above can be written gs(n(1 — p,) + 1 —). One can check that the above two quantities are both
(1—%1)17(1—17)
—p—n
Second, we need to check that the noise rates on both positive and negative examplds atber
words, we need to verify that,

I%r[f(x) = 0 A not rejectedA label = 1] = ¢/ I;r[f(x) = 0 A not rejected

and

I;r[f(x) = 1A not rejectedA label = 0] = i/ Fgr[f(x) = 1 A not rejected

Inthe above, labéis the possibly flipped label after Step 2. The first LHS can be writtéh-ap)n(1—p)
because the example must have been a negative example that was noisy and not flipped. Similarly, the
second LHS above ig(n(1 — p,) + (1 — n)py). A tedious but straightforward verification shows that

. 1(1=p) . A=2p)p(1—p)
these two quantities are bo&lglm T
Based on our earlier calculation that
1-2pp1-p)

Pr{f(x) = 0 A not rejectedl =
1-p—n

the effective noise rate is

, nl=p)y 1 p—n

CpHn—=2pn 2 2p4n—2pn

It is straightforward to verify thaﬁg% — z becausg — >3 andp +n — 2pn < 1, so the lemma is

proved. O

As in Section3.4, to run MMM successfully we need only estimate eagh py, u, to inverse poly-
nomial accuracy. A new issue which arises is that sipces an estimate instead of a precise value, the
filtering procedure described above to sample fio®\(f, D|¢, ") will not perfectly simulate this oracle,
i.e. the resulting distribution may not be perfectly balanced, and the noise rates on positive and negative
examples may not be exactly equal. However, this is not a problem since a straightforward analysis shows
that the statistical difference between the true distribution and the distribution we simulate can be made
as small as any inverse polynomial (at the expense of a corresponding polynomial increase in runtime).
Thus, any weak learner which makes polynomially many draws from our simulated distribution cannot
distinguish between it and the true distribution with high probability. Since it succeeds with high proba-
bility from the true distribution, it must succeed with high probability from the simulated distribution as
well.

We thus have

A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290 279

Theorem 8. For anyt, 6 > 0, if the MMM boosting algorithm is run using a noiselerant y-weak
learner and a noisy source of exampl&X (£, D, n), then it runs fopoly(:, 2, 3, 1%2,7) time steps and

with probability 1 — 6 outputs a hypothesis h satisfyiRgp[h(x) # f(x)]<n+ 7.

In the next section, we give a lower bound showing that, in general, itis impossible to boost a black-box
weak learner past the noise rate.

5. Boosting past the noise rate is hard

The basic approach here is that we suppose we have some distributiorpwithdraction of positive
examples. Thus the all 0’s hypothesis is a good weak hypothesis to start. We will describe an “unboostable”
weak learner with the following property: whenever possible, it outputs a trivial hypothesis that contains
no useful information. In fact, the weak learner only does something interesting if its sample contains a
large set of unique (occurring only once in the sample) examples that is éqmlytive. The motivation
for considering this weak learner is that it is difficult for a booster to generate a set of examples that is
nearly% positive, because a random example that is labeled positive is still moré thaty to be a true
negative example, and thus intuitively it is hard for the booster to make the weak learner give any useful
information.

However, there is a difficulty in that the booster might conceivably be able to learn on its own, without
even using the weak learner. Thus, in order to prove that it is hard to boost past the noise rate, we somehow
need to ensure that the booster must indeed use the weak learner.

Our approach takes advantage of the fact that since a boosting algorithm must work for any concept
class, the booster does not “know” the concept class on which it is beint)\Wenwill consider concept
classes each containing a single function; for each such concept class there is a corresponding wealk
learner which knows this function (since the weak learner may be tailored for the particular concept class
being learned), but the booster does not. The overall collection of functions (collection of concept classes)
considered will be a pseudo-random family of functions, so intuitively the booster should be unable to
learn without using the weak learner.

Using this approach, we prove the following:

Theorem 9. If one-way functions exist then black-box netséerant boosters do not exist

In fact, we show (Theorerh3) that for anyr > 0 it is cryptographically hard to boost to accuracy t
in the presence of classification noise at rate

We give some more intuition for our construction. The unboostable weak learning algorithm is as
follows. Consider a target functidnwhich has only am — t fraction of inputsx satisfying f (x) = 1.
Then under the uniform distribution a weak learner can output the constant-0 hypothesis; in fact the only
distributions for which a weak learner must output some other hypothesis are nonuniform ones which

4An alternative approach would instead be to assume that the boosting algorithm cannot use any information about the
particulars of the learning problem. Namely, we could assume that the boosting algorithm cannot do anything with examples
other than identify whether two are the same or different, examine their labels, and apply the weak hypotheses to them. Under
this assumption almost any concept class can be shown to have an unboostable weak learner. In our cryptographic construction
described below, we bypass this strong assumption by instead assuming that one-way functions exist.

280 A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290

put weight at Ieas% on the small set of positive examples. Thus, the only way a boosting algorithm can
get anything useful out of such a weak learner is to simulate a distribution which puts weight %t least
on positive examples, and as argued earlier this seems difficult to do since the noise.rate is

In fact there is a hole in this argument. For example, a boosting algorithm could simulate a distribution
which puts weight% on each of two examples. If the booster is lucky and one of the examples is positive,
then the resulting distribution is balanced. Thus, in order to design a maximally unhelpful weak learner
which thwarts this boosting strategy, we have our weak learner make a lookup table of examples which it
sees many times in its sample. For each example in the table, the weak learner’s output is the majority vote
label from its occurrences in the sample; on all other examples the weak learner outputs 0. Intuitively,
this hypothesis is sufficient to satisfy the weak learning criterion unless the data set for the weak learner
contains a large number of distinct instances many of which are true positive examples; only if this is the
case does the weak learner give up some useful information.

Now we give the actual construction. LetOp < 1. Let{f; : {0, 1}/ — {0, 1}}5¢(0.1+ be ap-biased
pseudorandom function family, i.e. a family of functions which are indistinguishable from truly random
p-biased functions (see Appendixfor a formal definition ofp-biased pseudorandom function family).

For eachy € {0, 1}" we define a concept clags as follows: each clags, contains exactly one concept,
which is f;.
FixO<y< %. We now define an algorithm, for each concept clags;. In the following description

the valuesn1, k, mo, are polynomials im, % 1_—1271 1 whose values will be given later.

Algorithm A (7, y):

1. Draw a sequenc® of my examples. (Note that a given instance {0, 1} may occur more than
once inSi.)

2. LetT be the set of instances € {0, 1} which occur at leask times inS1. For eachx € T let
b, € {0, 1} be the majority vote label of all pairs, y) in §1 which havex as the instance.

3. Defineh to be the hypothesig; (x) = “if x € T then outpub, else output 0.”

4. Draw a sequenc® of my examples. Abort and output the hypothégsisf there is any instance
which occurs more than once # but is not inT.

5. Let N be the number of occurrences $a of instancesk such thatx ¢ 7 and f;(x) = 1. If

N> (% - %)mz then outputf, and otherwise output;.

Note that the hypothesig; is quite uninformative since any algorithm with access to the example
oracle can generate this hypothesis for itself without ugingSteps 4 and 5 ensure that the informative
fs hypothesis is output only i§, contains many distinct positive examples.

The following claim shows thad is indeed a noise-tolerant weak learning algorithm. As before, we
assume that we know the noise rate, but again this assumption can be removed.

Claim 10. Ay is a noisetoleranty-weak learning algorithm for concept claé6s.

Proof. The valuesn,, m1 andk are polynomials im, &, 1_—12,7 1 which will be defined later.
We first observe thati; runs in polynomial time. To see this, note thit can havef; “hard-wired”
into it, and f; is efficiently evaluable, so the numhéiin Step 5 can be computed exactly in polynomial

time.

A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290 281

It remains to show that for any distributi@dand any O< n < % if AgisrunusingeX (fy, D, n) asthe

oracle, then with probability at least1d, A, outputs a hypothesissuch that Pp[A(x) # fi(x)]< % —.
We use the following two lemmas which we prove later:

Lemma 11. A, aborts in line4 with probability less tharg.
Lemma 12. With probability at least. — % we haveb, = fi(x) foreveryx € T.

We will analyze an alternate algorithA{ in which the test in line 4 is not performed abgdis defined
to equalf;(x) for everyx € T. By Lemmasl1and12it suffices to show that {4’ (x) # f(x)] g% -
with probability at least 1 % whereh’ is the hypothesis output by, . Consequently, it suffices to show
that if Prp[h} (x) # f(x)] > 5 —y thenA/, outputsf, with probability 1— 3.

To see that this condition holds, note that in line 54jf we have thatS, is a set of independent
random draws fronkE X (fs, D, n). (This is not true in line 5 ofA; since inA; we have conditioned o8
containing no repeated instances which are n@t.)irhus inA/, the valueN is an empirical estimate of
Prplx ¢ T andf;(x) = 1] obtained fromns independent samples. As longas> 2(log g)/yz, standard
Chernoff bounds tell us that with probability at Ieas%l% the fractionN /m differs from Pip[x ¢ T
and fy(x) = 1] by at most“—é'. Hence if Pp[x ¢ T and f;(x) = 1] is greater thar% — 7 we output fs
with probability at least - % Since inA§ hypothesis:] is guaranteed to be right one 7', we have
Prp[h}(x) # f(x)] = Prp[x ¢ T and f(x) = 1] and the claim is proved.

Proof of Lemma 11. For 1<i < j<my, call positions(i, j) in S»> a violator if the corresponding
elements are equal, i.€. = x;, and the number of occurrencesxgfin Sy is less thark. The algorithm
abortsin Step 4 only if there is some violatar). We now upper bound the probability that any particular
(i, j) is a violator.

Fix (i, j) and also fixr;. We may imagine thaf; andx; were drawn in the following way: First a
multisetS’ of m1 + 1 labeled examples was drawn from the example oracle, and then a random element of
S” was chosen to be; and the rest were chosen . This is equivalent to drawing; and all examples
in S1 independently from the example oracle.

Now suppose that there wereccurrences af; in S’. If 1 > k, then there is no way thé&t, j) can be a
violator because there will always be at lelaetcurrences of; in S1. On the other hand, the probability
thatx; = x; isexactlyr/(m1+1). Soift <k, the probability thati, j) isaviolatoris /(m1+1) < k/m1.

By the union bound, the probability that afy ;) is a violator is at mosmgk/ml. This is at most/3
provided thatnq >3m3k/s. O

Proof of Lemma 12. Fix anyx € T, sox occursm >k times inS;. The probability that the majority
vote of the labels corresponding to instances iof S is incorrect is precisely the probability that a coin

which has probability; < % of coming up HEADS comes up HEADS more often than TAILSrn: k
tosses. Using a standard Chernoff bound, as lorige&log %)/(1 — 21)? this probability is at most
o_ 5o the probability tha, # f;(x) for any fixedx € T is at most?%l. SinceT contains at mosiz;

3mq’
insltances, a union bound finishes the prodafl

So we have seen that the above three lemmas hold as lomg:ag(log 2)/72, m1>3m3k/5, and
k>2(log %)/(1 — 21)2, which is easily achieved for polynomial sized, m», andk.

282 A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290
5.1. Proof of Theorem 9

Let U/ denote the uniform distribution of®, 1}". Fix any noise rate 6< n < % and any O< 7 < .

Fix p = n — 5. Let the parameter in algorithm, bey = m < 211. We prove Theorend by
establishing the following stronger theorem, which bounds the accuracy level that black-box boosting
algorithms can achieve in the presence of noise atjrate

Theorem 13. Let{ f;} be a pbiased pseudorandom function familjhen for random s no blackbox
boosting algorithmB, given access t& X (f;, U, n) and Ay, can output a hypothesis whose error is at
mosty — 1. More preciselyfor all polynomials Q and all polynomial time algorithn®s for n sufficiently
large,

1

SFE)Z[{ le{{ [h(x) # fs(x)]<n — T} <ow’

where h is the hypothesis output By

Theoreml3 gives a lower bound aof on the accuracy levelwhich any polynomial time black box
boosting algorithm can achieve. In Sectignve analyzed the MMM boosting algorithm (which is black-
box) and showed that it matches this lower bound: givereaay; + = wherer > 0, the MMM algorithm
achievesg-accuracy in the presence of classification noise atyratéime polynomial in% (and the other
relevant parameters). Thus the bound of Theoit&and of the MMM algorithm) is the best possible.

The idea of the proof of Theored8 is thatB will only succeed ifA; outputsf; at some invocation.
As above, this can only happensS$ contains at least 6% — %) fraction of distinct positive examples.
Since f; is ap-biased pseudorandom function and the noiseréesufficiently larger thap, such a set
S» is difficult to construct.

Before giving the proof we introduce some terminology: we say that th&sefoolproof if N > (% —
%)mg and otherwise we say th& is foolable We write B?4 to indicate thaB has access to the example
oracle© and black-box access to the weak learning algorithniVe say thatB@4s hits f; if at some
point during its executiol invokesA; and A; draws a foolproof sequenc® in Step 4 (so ifA; does
not abort in Step 4, it outputs hypothegisin Step 5). We say that ihissesf it does not hit. We say that
a hypothesi# is goodif Pry ¢y [2(x) £ fi(x)]<n — 1.

Theorem13 follows immediately from the following two lemmas. Here and subsequently we write
“p.p.t.” as an abbreviation for “probabilistic polynomial time.”

Lemma 14. For all polynomialsQ, all p.p.t. algorithms Band all sufficiently large n

P BEX (st As hits £,] <

1
omn)’
Lemma 15. For all polynomials Qall p.p.t. algorithms Band all sufficiently large n

. 1
Pr{BEXUs:U:m.As gutputs a good h BEXUs:Usm:As missesf,] < o
n

A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290 283
5.2. Proof of Lemma 14

The idea of the proof is as follows: before hittinfy for the first time, algorithmA; outputs the
hypothesisi; from Step 4 each time it is invoked by. However, it is not difficult to see thd& can
generate this hypothesis for itself without having any acceds t®hus, prior to its first call oA, which
hits f;, B might as well have access only B (f;, U,). We then show that no p.p.t. algorithm which
has access only t8 X (f, U, n) can hit f; with nonnegligible probability. Intuitively, the reason why
B cannot do this is because the frequency of positive examples is low relative to the noigesate
even exampleéy, 1) from EX (fy, U,) have too low a probability of being true positive examples to be
useful.

More formally, letB be any p.p.t. algorithm. We may assume that for all ora@lesd algorithms,
the algorithmB©-4 makes exactly queries ta® and exactlyt calls to A, whereg, t are both polyn).
Fori =1,...,tlet X' denote the sequenaé?l, ..., x"!52| of strings whichBEX (/s-1:m.As provides to
algorithmA, in Step 3 of theth invocation ofA,. EachX’ is thus a random variable over the probability
space defined by the uniform choicesok {0, 1} and any internal randomness of algoritiBn For
succinctness, we say that hits f; if X’ is foolproof and does not caugg to abort in Step 3.

For eachs € {0, 1}" let A, be a modified version of algorithm, which always outputs;. Consider
the following algorithmB which takes access only #©X (f, U, n):

e Algorithm BEX (U0 first simulates the execution &fEX (/s-U-m-4s (note thatB can simulated, for
itself given access t& X (fs, U, n)). .
e Algorithm B then chooses a uniform random valug€ A<t and outputs the sequengé of strings

761, 761520 which BEX (4.4 provided to algorithmi, in Step 3 of thefth invocation ofA,.

Now, without loss of generality, we may assume thiat= X' for all i (i.e. the random variablek¥’ and
X' are identically distributed for all. To see this, note that at each invocatibpoutputs either:, or
f,; the X!'s correspond to having, always outpuf1. But even ifA, outputsf; at some call, we may
assume without loss of generality that the boosting algorBstoresf,; but continues running just as if
A, outputtedr; (recall that the booster can construct sudh dor itself usingE X (f, U, 1)). For such
a booster, eacl’ will be identical to the correspondink’.

We thus have that

PrIX" hits f;] = PrIX" hits f;]> PrBEXUsUm-As hits f1/1.

This, together with the following lemma, implies Lemrhé

Lemma 16. Pr{X¢ hits f] < ﬁ for all polynomials Q and all sufficiently large.
Proof of Lemma 16. Letf be a Boolean function fror0, 1}" to {0, 1}. Consider the following algorithm
D which takes access to an oracle fand outputs a single bit:

o D/ first simulates the execution 62X (/40 pf simulates each call t8 X (f, .) by choosing a
uniform randomx € {0, 1}", callingf to obtain f (x), and flipping this bit with probability;. Let ¥*

denote the sequence of strings thﬁX(f’“L’“v/is (which is simulated byB£X(/4:n) provided to
algorithmA; in Step 3 of itsth invocation ofA;.

284 A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290

e Let 1<¢<t be the value selected hyEX (U | y¢ hits f (meaning that there are at ledst>
(% — %)mz uniquely occurring instances i such thatf (x) = 1), thenD/ outputs 1. Otherwise it
outputs 0.

Looking over the algorithm, one sees thais a p.p.t. algorithm. The following claim plays a crucial role

in our argument. (Appendi& defines?, ,, ap-biased pseudorandom family of functions.)

Claim 17. Suppose that f is a random function drawn frdfn ,. Then for all polynomials Q and all
sufficiently large:, we havePr{ D/ outputsl] < 1/Q(n).

Proof. In order forY* to hit f, algorithm B must construct a sequencema$ instances if0, 1} which
containsN)(% — %)mz distinct instances withf (x) = 1. SinceB makes at most polynomially many
calls toEX (f, U, n), we have that with probability exponentially close toRLnever receives the same
instance more than once froBX (f, U,). Thus we may assume that after it has made all its oracle calls
to f, there are three types of instanaes {0, 1}" for B:

e Instances such thatB received(x, 1) from a call of EX(f,U, n). Forsuch an, either f(x) = 1 and
the label was not flipped b or f(x) = 0 and the label was flipped k. Hence for such ar we

have thatf (x) = 1 with probability—pu_’jf)i‘(’i)_p)n,

e Instances such thatB received(x, 0) from a call of EX (f, U, n). For such anx, either f(x) = 0
and the label was not flipped Iy or f(x) = 1 and the label was flipped by. Hence for such ar

we have thalf(X) =1 W|th probabllltym
e Instances< such thatB never received an example, b). In this case we have thgt(x) = 1 with

probability p.
We will use the following fact:

p(1—n) i _1_ 9
Fact 18. max 5oy S @pit-mepn PH =2~ 2
1 n(1—4y)

Proof. Recall that O< y = m < 711, 0<pn <3 andp=n— ;. Wethus have = 7"
We first show thap < % — 2y. Substituting forp, multiplying both sides by 2 and rearranging, this
inequality becomesl — 16y2)(1 — 2) > 0 which is clearly true.

(1—n) 1 e -
IeﬂNﬁ\;vr,];v:ijgow thatm = 5 — 2y. This follows from substituting fop and simplifying the

Finally we show thatm < % — 2y. Substituting forp, multiplying both sides by 2 and

rearranging, this inequality becom@s‘llﬂj)_(# > 0 which is clearly true. O

Thus, regardless of ho® selects instances of these three types for the sequence of lepgthe
probability that there are at Iea@— %)mz distinctinstances witlf (x) = 1is at mostthe probability that
a (% —2y)-biased coin comes up HEADS at least- 3)m; times inm;, flips. As long asn, = Q(1/72),
standard Chernoff bounds guarantee this probability to/88@, and the claim is proved.]

By the definition ofp-biased pseudorandomness and Claifywe have that if is ap-biased pseudo-
random functionf; wheresis uniformly chosen if0, 1}", then for all polynomial€) and all sufficiently

A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290 285

large n we have PfD/s outputs 1 < 1/Q(n) as well. However, it is straightforward to verify from
the construction of algorithnD that PfD7s outputs 1 is precisely PrX¢ hits f;]. This proves the
lemma. O

5.3. Proof of Lemma 15

The intuition here is that by conditioning on the event tiB&tX (/s-4.1-As missesf,, B might as
well have access only t& X (fs, U, n). Since f; is a p-biased pseudorandom function, though, no
p.p.t. algorithm can output a good hypothesis (i.e. leArto high accuracy), since otherwise it would
be possible for a p.p.t. algorithm to learn a random function f, to high accuracy which is
absurd.

More formally, letB be any p.p.t. algorithm. Consider the following algoritiihwhich takes access
only to EX (fy, U, n): algorithm CEX(/s-Un) simulates the execution &£X (fs:U:1-4s and outputs the

hypothesish which BEX(/:U:0.4s outputs. (Note that" can simulated, for itself given access to

EX(f.SW uv 17))
The following two lemmas together imply Lemni&:

Lemma 19. For all sufficiently large nwe have

Pr{CEXUsUn outputs a good h
> P BEX (U As outputs a good h BEXUsUm-As missey;]/2.

Lemma 20. Pr{CEX(/s-U:m outputs a good] < ﬁ for all polynomials Q and all large enough
Proof of Lemma 19. We have

PHCEX(Us:U1 outputs a good |
— P{BEX(sUm-As gutputs a good]
> P BEX(sUm.As guiputs a good & BEX(sU-As missesf,]
— PH{BEX(sUm-As gutputs a good | BEX(UsUn-As missesf, |
Pr{BEX(sUm-As missesf,]
> PBEX(UsU-As outputs a good: | BEX s Um-As missesf, /2,
where the last inequality holds for all sufficiently largeby Lemmal4. (Recall thatBEX (fs:U:n).As

can simulateBEX (s Um.As g0 we have RBEX s U As missesf,]< PBEXUsUm.As missesf;].)

Let TRANS(BEXUs:tm.Asy (TRANS (BEXUs:U:m.Asy - respectively) denote a complete transcript
of algorithm B's execution usingEX (f;, U, n) and weak learning algorithms (A, respectively).
TRANS(BEX(s:m). Asy and TRANSBEX (s:U:n.Asy gre both random variables over the probability
space defined by choosingmaking random draws t8 X (f, U, 1), and any internal randomnessRf
Induction shows that the two conditional random variables

TRANS(BEX(fY’u”’)’AS) | (BEX(fs,uv”)vAs missesf;)

286 A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290

and
TRANS(BEX st Asy | (BEX(flh).As missest,)
are identically distributed. This implies that
PrBEXUsUm-As gutputs a good | BEX s Um-As missesf,]
— P{BEX(sUm.As gutputs a good | BEX(sUn-As missesf,]

which combined with the previous inequality proves the lemnia.

Proof of Lemma 20. Letfbe a Boolean function frorf0, 1}" to {0, 1}. Consider the following algorithm
E which takes access to an oracle fand outputs a single bit:

o E/ first simulates the execution &fZX/:U:m | ike algorithm D/ in the previous subsectior/
simulates each call t& X (f, U, n) by choosing a uniform random € {0, 1}", calling f to obtain
f(x), and flipping this bit with probability. Let/ s be the hypothesis whioiZX (/41 outputs.

e E/ then selects-independent uniform randombit stringsz?, ..., z" € {0, 1}". E/ computesu
which is the fraction of these strings which havg(z’) = f(z'). E/ outputs 0 ify < 1 — 25/=* and

outputs 1ifu>1— Z5—.

It is not difficult to see thaE is a p.p.t. algorithm. We have

Claim 21. Suppose that f is a random function drawn frdfp ,. Then for all polynomials Q and all
sufficiently large n we haver[E/ outputsl] < 1/Q(n).

Proof of Claim 21. SinceCEX (/4" makes at most poly:) many calls taE X (f, U, 1), with probability
1 — 1/2%M no stringz’ selected in the last step &/ was previously seen bg/ in its simulation of
CEX(1Um: so we assume that this is indeed the case. Siiap-biased random function, for eagh
the probability that » agrees witHf on z' is at most 1 p (recall thatp < %). Thus the probability that
E/ outputs 1 is at most the probability thatla— p)-biased coin comes up HEADS at legbt- %)n

times inn tosses. Using Chernoff bounds this is at mg@“™ (recall thaty — « < p are fixed relative
tonsop — (n — 1) = ©(1)), so the claim is proved. O

Now we suppose thdis ap-biased pseudorandom functighwheresis uniformly chosen if0, 1}".
By the definition ofp-biased pseudorandomness and Claigfor all polynomialsQ and all sufficiently
largen we have that REE/s outputs 1 < 1/0(n) as well. Leta = Pr{CEXUs:U:m outputs a goodt],
and recall that a gooldis anh such that Az (x) # f;(x)] <5 — . Consequently, with probability, we
have that each’ chosen byE /s satisfiesi , (z') = f;(z') with probability at least - (y — 7). Hence,
with probability« we have thaE /s outputs 1 with probability at leagt wherey is the probability that a
(1— (n — 7))-biased coin outputs at leadt— %)n HEADS inntosses. As before, Chernoff bounds
imply thatu>1 — 1/2%" so consequently PE/s outputs 1> «(1 — 1/2%™), This proves the claim.
]

As a remark, we note that the algorithy is a weak learner for noise rajeand can be modified in a
straightforward manner to handle larger noise rates (simply by taking the majority of more examples).

A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290 287
6. Boosting an okay learner to arbitrary accuracy

In this section we present an alternate notion of weak learning, aaliglearning, and show that the
MMM algorithm can be used to efficiently boost any okay learner to arbitrary accuracy in the presence
of noise.

To motivate our definition of okay learning, we note that the standard definition of weak learning has
some counterintuitive consequences. Consider a scenario in which the target gangépthe Boolean
conjunctionxy A x2 A x3 and our hypothesis(x) is —x1 A —x2 A —x3. Under the uniform distribution
we have PIf(x) # h(x)] = % and hencé is a valid output for a standard weak learner. This is slightly
odd since in facif (x) andh(x) are negatively correlated in a statistical sense, so in some sense a learner
which outputsh as a weak hypothesis fowould be a disappointment.

Recall that the balanced distributidn is obtained by reweightin@ so that Ps[f(x) = 1] =

Pralf(x) =0] = % We define théalanced errorof a hypothesié to be

1 1
Prif(x) #h(x)] = > Prif(x) #h(x)| f(x) =114+ =P f(x) #h(x)]| f(x) =0l 3
D D 2D

Similarly, anoise tolerant-okay learneris an algorithm which, given access EX (f, D, n), outputs

a hypothesis such that Ps[h(x) # f(x)]g% — 7. The running time is allowed to be polynomial in

1 1 1 1 1
s oo 50 3 Pproo=11 2N prprro=or-

While this definition may seem artificially chosen to make our guarantees work, it is actually fairly
natural. One observation is that having balanced egrpis equivalent to

Cov(h, f)=2y Cov(f, f),

where, Co\f, h) = Ep[f(x)h(x)] — Ep[f(x)]Ep[h(x)] is the covariance dfandi. So it is a guar-
antee that the covariance is positive (equivalently correlation is positive). Another consequence is that
Prp[h(x) = 1] f(x) = 1] > Prp[h(x) = 1]. In the absence of noise, an okay learning algorithm can be
converted to a weak learning algorithm and vice versa. In the presence of noise, an okay learner can be
converted to a weak learner.

Given access to a noise-tolerant okay learner, we modify the MM algorithm in the following ways:

e As before we calculatg, according to 2).
e In Step 2 we run the noise-toleraptokay learner using thenbalancedconditional distribution

EX(f? D|E’ 77)

As in the MM algorithm we boost until we obtain dnwhich satisfies Bs[h(x) # f(x)]<e We
obtain:

Theorem 22. For any ¢, § > 0, if the above boosting algorithm is run using a netséerant y-okay
learner and a noisy example orackX (£, D, n), then it runs for at mospoly(3, ¢, 3, ;) time steps
and with probabilityl — 6 outputs a hypothesis h satisfyiRgp[i(x) # f(x)]<e.
Proof. The analysis for boosting a noise-toleraiutkay learner is identical to the original noise-free MM
analysis. Each hypothesis generated by our noise-tolerakay learner using an oracleX (f, D, n)
satisfies Pglh(x) # F(x)1<: — 7 which is exactly the condition that was used in our noise-free
analysis. O

288 A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290

We note that an okay learner is equivalent to simply a learner that satisfies Mansour and McAllester
notion of “index reduction hypothesigl5], namely assuming that the algorithm makes progress each
step. However, we follow the original spirit of boosting as a method of increasing weak (or okay) to
strong. Further work9], studies in detail these types of okay learners (and even weaker learners), giving
such learners for simple and advanced problems.

7. Conclusions

We have given matching upper and lower bounds for boosting in the presence of classification noise.
Intuitively, the key to our positive results for the MM algorithm is that changing the label of any example
does not change its weight by very much. This property also holds for the earlier decision tree boosting
algorithm analyzed by Kearns and Manslit], but as mentioned earlier the size of the decision tree
could be exponential n}n While the MM algorithm gives a substantial improvement,(ﬂ{%) hypothesis

size of the MM algorithm is still larger than tite(yiz) which other boosting algorithms such as AdaBoost
achieve.

Finally, we have defined a noise-tolerant okay learner which can be boosted to arbitrary accuracy in
the presence of noise. We hope this will be an aid to designing provably noise-tolerant strong learners,
just as the concept of boosting weak learning makes it easier to design provably strong learners.

Follow-up work[9] has extended the analysis of branching program boosting algorithms to differ-
ent models of noise (probabilistic concepi2] more similar to statistical regression), giving another
theoretical interpretation of noisy boosting.

Acknowledgments

We thank the anonymous referees and Daphne Koller for helpful comments.

Appendix A. p-biased pseudorandom function families

Let £(-) be a polynomial. Recall fronfi7] that apseudorandom function famiig a collection of
functions{ f; : {0, 1}¥l — {0, 1}¢0sD} (0.1)« with the following two properties:

o Efficient evaluation: There is a deterministic algorithm which, given-&it seeds and am-bit input
x, runs in time polyn) and outputsf; (x).

e Pseudorandomness: For all polynomid@sall probabilistic polynomial time oracle algorithnig,
and all sufficiently large:, we have

Pr (MF (") outputs1— Pr [M’s(1") outputs
Fefn[(1") outputs 1 se{O,l}“[(1") outputsl| <

1
o)’
whereF, is the set of all #2" functions which mag0, 1}" to {0, 1}*™ (and hence” e F, is a truly
random function).

It is well known[7,8] that pseudorandom function families exist if and only if one-way functions exist.

A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290 289

For 0 < p < 1, we define g-biased pseudorandom function famity be a family of functions
{fs : {0, ¥l — {0, 1}}5¢(0.1) Which satisfies the usual “efficient evaluation” property and the following
“p-Biased pseudorandomness” property:

e p-Biased pseudorandomness: For all polynomialall probabilistic polynomial time oracle algorithms
M, and all sufficiently large, we have

1
Pr [MF(@1") outputs1— Pr [M%(1") outputs 1| < ——,
en‘,,[(1 outputs 1 se{o,l}"[(1) oulputs 1 Q(n)
whereF, , is the distribution over functions frof®, 1}" to {0, 1} such that each functidf has weight

p!F @1 — p)IF O Equivalently, drawing a functiof e ., is done by tossing p-biased coin
for eachx € {0, 1}" to determineF (x).

We use the fact that for any<p <1, if one-way functions exist thgmbiased pseudorandom function
families exist. To see this, consider a pseudorandom function fgniilyin which £(n) = n. Let {f]}
be a family of binary-valued functions defined as follow$tx) = 1 if f;(x) is one of the firsf p2"]
lexicographically ordered strings {0, 1}, and f, (x) = 0 otherwise. It is straightforward to verify that
{f]} is ap-biased pseudorandom function family.

References

[1] J. Aslam, S. Decatur, Specification and simulation of statistical query algorithms for efficiency and noise tolerance, J.
Comput. System Sci. 56 (1998) 191-208.
[2] A.Blum, A. Frieze, R. Kannan, S. Vempala, A polynomial-time algorithm for learning noisy linear threshold functions,
Algorithmica 22 (1/2) (1997) 35-52.
[3] T.G. Dietterich, An experimental comparison of three methods for constructing ensembles of decision trees: bagging,
Machine Learning 40 (2) (2000) 139-158.
[4] J. Friedman, T. Hastie, R. Tibshirani, Additive logistic regression: a statistical view of boosting, Ann. Statist. 28 (2000)
337-374.
[5] Y. Freund, Boosting a weak learning alogrithm by majority, Inform. Comput. 121 (2) (1995) 256—285.
[6] Y. Freund, R. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput.
System Sci. 55 (1) (1997) 119-139.
[7] O. Goldreich, S. Goldwasser, S. Micali, How to construct random functions, J. Assoc. Comput. Mach. 33 (4) (1986)
792-807.
[8] J.Hastad, R. Impagliazzo, L. Levin, M. Luby, A pseudorandom generator from any one-way function, SIAM J. Comput.
28 (4) (1999) 1364—-1396.
[9] A.Kalai, Learning monotonic linear functions, in: Proceedings of the 17th Annual Conference on Learning Theory, 2004,
pp. 487-501.
[10] M. Kearns, Efficient noise-tolerant learning from statistical queries, J. Assoc. Comput. Mach. 45 (6) (1998) 983—-1006.
[11] M. Kearns, Y. Mansour, On the boosting ability of top-down decision tree learning algorithms, J. Comput. System Sci. 58
(1) (2999) 109-128.
[12] M. Kearns, R. Schapire, Efficient distribution-free learning of probabilistic concepts, in: Proceedings of the 31st Annual
IEEE Symposium on Foundations of Computer Science, 1990, pp. 382—-391.
[13] M. Kearns, L. Valiant, Cryptographic limitations on learning boolean formulae and finite automata, J. Assoc. Comput.
Mach. 41 (1) (1994) 67-95.
[14] M. Kearns, U. Vazirani, An Introduction to Computational Learning Theory, MIT Press, Cambridge, MA, 1994.

290 A.T. Kalai, R.A. Servedio / Journal of Computer and System Sciences 71 (2005) 266—-290

[15] Y. Mansour, D. McAllester, Boosting using branching programs, J. Comput. System Sci. 64 (1) (2002) 103—-112.
[16] R. Schapire, The strength of weak learnability, Machine Learning 5 (2) (1990) 197-227.

[17] R. Schapire, Theoretical views of boosting, in: Proceedings of the 10th International Conference on Algorithmic Learning
Theory, 1999, pp. 12-24.

	Boosting in the presence of noise
	Introduction
	Our results
	Our approach
	Related work

	PAC learning preliminaries
	MM: noise-free boosting
	Preliminaries
	The MM boosting algorithm
	Correctness and efficiency of the MM algorithm
	Approximating MM via sampling

	MMM: boosting to the noise rate
	Boosting past the noise rate is hard
	Proof of Theorem 9
	Proof of Lemma 14
	Proof of Lemma 15

	Boosting an okay learner to arbitrary accuracy
	Conclusions
	=p-biased pseudorandom function families
	References

