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Abstract 

Nishizaki, S., Programs with continuations and linear logic, Science of Computer Programming 21 

(1993) 1655190. 

The purpose of this paper is to investigate the programs with continuations in the framework of 

classical linear logic which can also be regarded as improvement of traditional classical logic. First, 

simply typed I-calculus 2: with continuation primitives is introduced. Second, a translation from 

nc to linear logic is given. Last, a correspondence between them is presented. 

1. Introduction 

The notion of continuation, which means the rest of computation, was originally 
discovered by van Wijngaarden [25], Mazurkiewicz [17], and Morris [18], indepen- 
dently. Strachey and Wadsworth used this notion for the denotational semantics of 
jump-statements [24]. 

Recently, this notion has become popular not only among theoreticians but also 
among working programmers in Lisp’s dialect Scheme [21]. In Scheme, one can 
flexibly use continuations like integers and lists, i.e. continuation as first-class object. 

Primitive call-with-current-continuation (abbreviated call/cc) enables one to use this 
facility. A simple example of call/cc is as follows: 
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(call/cc 

(lambda (exit) 

(for-each 

(lambda (x) (if (negative? x) (exit x))) 

‘(64 0 3’7 -3 245 19)) 

#t)) 
The result 
---3. 

(This example is cited from the reuised3 report [21].) 

Primitive cull/cc supports advanced control structures such as coroutine [14] and 

backtrack [13] in addition to global exit such as the above example. 

The continuation-passing-style transformation (abbreviated CPS-transformation) is 

one of the main topics in the research area on continuation. Roughly speaking, this 

transformation added one more argument to each function and the additional 

argument explicitly simulates passing of a continuation in calling of functions. 

Originally, the aim of this translation is to obtain a program that is independent of 

evaluation strategies from a program that is dependent on a certain evaluation 

strategy. This translation may be understood from various aspects: embedding from 

the I-calculus with continuation primitives to the usual I-calculus [S], program 

transformation [26] and compilation technique [2,7,22]. 

Recently, Filinski [4] studied the duality between value and continuation in the 

framework of category theory. Under this duality, we can identify 

with 

a function from values of type A to values of type B 

a function from continuations of type B to continuations of type A. 

Intuitively, we may more symmetrically say that 

value = result of computation, 

continuation = rest of computation. 

Program languages with continuation primitives are very powerful in the aspect of 

control, however, they have an unpleasant feature: their computation is not conjluent 

unlike usual I-calculi. In other words, results of computation depend on the evalu- 

ation strategy, e.g. call-by-value, call-by-name, etc. The following is a typical example: 

Nondeterminism of computation 

(call/cc(lambda (exit) 

((lambda(x) 1) (exit 2)))) 

1( L 

1 2 

(call-by-name) (call-by-value) 
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We leave programming and turn to logic. We can find the similar phenomenon in 
traditional classical logic, which is “nondeterminism” of classical logic [lo, p. 1511. 

Nondeterminism of proof normalization 
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It is pointed out in [lo] that such a nondeterminism of classical logic is caused by 
the unrestricted use of the weakening rule and the contraction rule to both sides of the 
sequents. In intuitionistic logic, this problem is avoided by restricting the application 
of the right weakening rule and right contraction rule. In Girard’s (classical) linear 
logic [8,9], this problem is solved by the more careful use of these structural rules. The 
“deterministic” proof normalization is one of the advantages of linear logic. The 
following are proofs in classical linear logic, corresponding to the above one: 
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We find that some information about determinism is added to the proof during the 
translation from traditional classical logic to classical linear logic. 

The two systems discussed above, I-calculus and logic, are connected by 
a Curry-Howard isomorphism. This isomorphism had been restricted to one between 
intuitionistic logic and simply typed I-calculus until Griffin [12] extended this to the 
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correspondence between classical logic and simply typed A-calculus with continuation 

primitives. 
CPS 

extended C”~q--y--H~~~r~ I;;- a’ - i ;~~mli~~y&Curry-Howard 

classical logic E intuitionistic logic 

where A<, is the simple typed A-calculus with the continuation primitives %? and 

G’ [S] and 2’ the simple typed &calculus. % and d correspond to the ii- 

elimination rule and the -L-elimination rule, respectively. 

To be exact, we should say that 

CPS-transformation 

= 11 -translation + Friedman’s A-translation [11,16], 

which is shown by Murthy [19,20]. He applied this correspondence to the program 

extraction from classical proofs. 

The following is an example of the classical proof corresponding to the programs 

which implements call/cc using primitives LZ? and %‘I 

[x:A] [k:lA] 

;14 

+d 

I 

A-B 
+ Y(x) 

[f: (A + B) + A] 
+E 

[k:lA] A 

I +& 
I 

- -+ 9(k) 
11A 

118 
A 

((A -+ B) + A) + A + s(f) 

The conclusion ((A + B) -+ A) + A is famous as Peirce’s law which cannot be proved 

in intuitionistic logic, but made only by implication. 

We finish this section with the motivation of this paper. 

Motivation 

As we have seen, it is possible to avoid the nondeterminism from classical logic in 

the following ways: 

a intuitionistic logic: the right weakening rule and right contraction rule are inhibited; 

l linear logic: the weakening rule and contraction rule are treated more carefully. 

The first solution has been selected in previous approaches: 11 -translation ( = CPS- 

transformation) eliminates the nondeterminism by embedding from classical logic to 

intuitionistic logic. We here try another solution, i.e. linear logic. 
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2. Programming language A,* 

First of all, we have to introduce the programming language we will investigate. We 

define simply typed ,I-calculus &+ with primitives for continuation handling. First, we 

define types. Second, terms and, last, a computation rule in this section. 

Definition 1 (Types). AtomicType is a countable set of given atomic types. Types of 

&+ are inductively defined as follows: 

A ::= LY. 1 A+B, 

wherecc,p,. . . are metavariables over atomic types and A, B, . . . over types. Type is 

a set of types defined as above. 

Note that types are similar to the usual simply typed A-calculi: ,I: does not have the 

bottom type I which designates the top-level type (cf. IS, [12]). 

Definition 2 (Terms). Var is a countable set of given variables. Terms of ,I,* are defined 

inductively as follows: 

M ::= x 1 (2x:A.M) 1 (M N) 1 XA,, 1 S&~(M) , 

where x, y, . . . are metavariables over variables and M, N, . . . over terms. Term is 

a set of terms defined as above. 

(Ax : A.N), (M NJ, XiB, and 4,. {M} are called a A-abstraction, a function applica- 

tion, a call/cc-constant and an abort-term, respectively. We used Felleisen’s notation of 

continuation primitives, where X A,B equals call/cc in the programming language 

Scheme. 

We notice that “da,B ( . . . }” is not defined as a function constant like XA, B, but as 

a special form in the terminology of Common Lisp [23] because of the evaluation 

order defined later. We use braces { } in abort terms in order to emphasize this 

point. 

We introduce several notions in the following before defining of typing of ,I:. 

Definition 3 (Type environment). A type environment is a function whose domain is 

a finite set of variables {x1, . . ,x,} and whose codomain is the set of types Type. 
r 2.. ., r1,r2,. . . are used as metavariables over type environments. TypeEnv is the 

set of type environments. A type environment {x1 H CQ, . . . , x, H cc,,} is abbreviated 

to {[xl:ccl],. . . ,[X,:C(“]}. 

Definition 4 (Restriction of a type environment). Suppose that r is a type environment 

over (x1,. . . , x,,}, A a type, x an arbitrary variable which satisfies that r maps x to 

A ifxE{xl,. . . , x,}. The restriction of r by [x : A], written r\[x : A], is a function 
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whose domain is {x1, . . . , xn}\(x} and which maps variables to the same types as 
r does except for the variable x, i.e. 

r\[x : A] : Domain(r)\(x) -+ Var, 

y bT(y) (where y # x). 

For example {[x:A][y:B][f:A-*BJ}\[x:A] = {[.I:B][~:A+B]}. 

Definition 5 (Merge of type environments). Suppose that rI and r2 are type environ- 
ments with their domains (x1,. . . , x,} and { yr, . . . , y,>, respectively, which satisfy 
~,(x)=~z(x)foreveryvariablexsuchthatx~{x,,...,x,}n{y,,...,y,}. 

The merge of type environments rI and r2, written rI u Tz, is a type environment 
whose domain is the union of the domains of rr and Tz and which maps variables to 
the same types as rI and r2, i.e. 

rlurZ:(xl,...,xm}~{~l,...,~n)~Var, 

X(E {Xl,. . . , ~~1) H b(x), 

Y(E {Yl,. . . , Y,>) - wy). 

Forexample {[x:A][y:B]}u{[x:A][f:A+B]} = {[x:A][y:B][f:A-tB]} 
and the merge of {[x : A]} and ( [x : B]} (where A # B) is impossible. 

Definition 6 (Type judgement, type inference rules and type derivation tree). A type 
judgement II-M:A (where r is a type environment, M a term and A a type) is 
a relation among type environments, terms and types defined inductively by the 
following type inference rules. A tree with a type judgement as a root and inference 
rules as nodes and leaves is called a type derivation tree. The type inference rules of 
2: are as follows: 

(l) {[x:A]}t-x:A IJar 
(2) 

I- call/cc,,,:((A --) B) --) A) + A 
Con, 

(3) 
Z-kM:B 

r\[x:A]t-((;lx:A.M):A+ B 
Lam 

(4) 
l-,I--M:A-+B TztN:A 

rl urz k(MN):B APP 

(5) 
TFM:A 

rF&-A,B{M}:B 
Special& 

We have the following property on these notions. 
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Proposition 7 (Type environment and free variables). Let r be a type environment, 
M a term and A a type. If r k- M: A is satis$ed, then Domain(T) equals the set offree 
variables occurring in term M 

(Domain(T) denotes the domain of T’ when we regard r as a function.) 

The above result leads to the uniqueness of a type derivation tree as follows: 

Proposition 8 (Uniqueness of a type derivation tree). Suppose that r is a type environ- 
ment, M a term and A a type. If there exists a type derivation tree whose root is 
r k M: A, it is unique. 

The uniqueness of a type derivation tree is desirable because we define the transla- 
tion from terms of 2: to proofs of linear logic indirectly: the domain of the translation 
is not terms but type derivation trees. 

Some people may think that the definition of typing is already completed. This is 
true in cases of the usual typed I-calculi, but not true in this case: typings of the usual 
typed I-calculi are defined inductively on the structure of terms, in other words, a type 
derivation tree is built up from local to global. On the other hand, typing of A,-’ cannot 
be defined only in such a manner. The following additional condition, which has 
a global nature, is required: 

Definition 9 (Abort-typing condition). Suppose that M is a term, A a type and r a type 
environment such that r I- M: A is satisfied. 

It is said that M satisfies the abort-typing condition if and only if every abort-term 
occurring in M has the body of type A. In other words, every abort-term in M occurs 
in the form of dA ,,., { . . . }. 

Definition 10 (Typing of 1:). It is said that M is a term of type A in a type environ- 
ment r if and only if M satisfies r I- M: A and the abort-typing condition. 

Next, the call-by-value computation of &’ is presented in the style of Felleisen [S], 
i.e., given as rewriting rules. We first prepare a few notions and then introduce the 
computation. 

Definition 11 (Value). A value of &+, where V, W, . . . , are used as metavariables, is 
defined inductively as follows: 

V ::= x ) (Ax:A.M) 1 .X--,B. 

Informally, we can explain that a value is a term which cannot be computed any 
more. The notion of evaluation context defined next is the device for pointing the place 
which should be computed each time (the call-by-value computation is intended here). 
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Definition 12 (Evaluation context). An evaluation context is defined inductively as 

follows: 

EC 1 ::= C 1 I (EC IN). I V’EC I) 

WeuseE[ I,... as metavariables over evaluation contexts. [ ] is called a hole. 

If E [ ] is an evaluation context, then E [M] denotes the term that results from 

placing M in the hole of EC 1. 

Definition 13 (Computation of&+). The computation rule of 2: is a relation between 

Term and Term, written + Comp, such that 

+comp = -8” u +xu -‘&. 

Each subrelation is defined as follows: 

E[((lx:A.M)V)] -PUE[M[x := V-J], 

EC(%, B VI ‘~E[(V(~~:A.~,,B{EC~~}))I 

where A’ is a type of E[. . .], 

EC=d,.{M)I -+&MM. 

At the end of this section, we return to the abort-typing condition. Some people 

may doubt its necessity. A term M which satisfies type judgement r k M:A and not 

the abort-typing condition causes a dynamic type error, i.e. a type error in the 

execution time. 

For example, suppose that &A,B(M) satisfies Z-l- S&~(M):& but not the abort- 

typing condition. Then +& can be applied to this term. 

~,B{M) -+dM. 

w - 

TYPO A TYPO B 

Such terms are excluded thanks to the abort-typing condition. 

Proposition 14 (Preservation of the abort-typing-condition). Zf M is a term of type 
A and N a term such that M +ccomp N, then N is also a term of type A. Therefore, the 
abort-typing condition is preserved during the computation. 

3. Translation from 2: to linear logic 

In this section, we introduce a translation from A,+ to linear logic, which consists 

of two translations: one is from types to propositions of linear logic, called z, and 

the other is from terms to proof nets (a proof notation of linear logic), called T. 
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Translations from A.-calculi to linear logic have been introduced by several re- 

searchers. The simplest is the translation from Lafont’s linear A-calculus [ 151 to linear 

logic. We remind the definition of the linear A-calculus before the discussion on the 

translation. 

Definition 15 (Lafont’s linear I-calculus (simply typed version)). The difference with 

the usual simply typed A-calculus is in the I-abstraction. 

M ::= x* 

1 Ix*.M where x must occur once and only once in M 

I W A-BNA) 

For example, Af *+’ AX* fx is correct, however, AxA.AyB.x is not correct (because . . 
variable y used in A-abstraction AyB does not occur in its body x). The restriction 

above on the A-abstraction may be intuitively explained by the fact that an input value 

is used once and only once, i.e. the duplication and/or deletion of an input value is 

prohibited. Such a restricted A-abstraction will be called a linear A-abstraction and 

such a function a linear function. 

The translation from types of linear A-calculus to propositions of linear logic is 

defined as follows: 

Definition 16 (Type-translation of linear kcalculus: zLLc). 

z~&A) = A (where A is an atomic type), 

TUC(A + B) = ~U.C(‘4 -0 TUC(B). 

The linear implication 4 is regarded as the type of linear functions. 

Let us observe from another viewpoint. It holds that 

Therefore, we may say that a function of type A+ B is one which uses an input 

value of type B’ once and only once and then returns an output value of type A’. The 

meaning of the linear negation A’ in the programming language can be explained by 

Filinski’s duality between values and continuations [6]: a function from values of type 

A to values of type B is regarded as one from continuations of type B to continuations 
of type A. Thus, the following holds: 

value of type A’ = continuation of type A. 
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Girard gave the translation from polymorphic lambda calculus system F to linear 

logic. The translation of type is as follows: 

Definition 17 (Translation zF( .)). Translation zF( .) from types of system F to prop- 

ositions of linear logic is defined inductively as follows: 

z&) = c1 (where CI is atomic), 

+(A + B) = !Z&4)43Z#), 

z,(K!x.A) = A CL.Z#). 

There is no restriction on I-abstraction in this calculus. The function of type !A 4 B 

is one which uses an input value of type A an arbitrary number of times and returns an 

output value of type B. Let us observe this function type from the viewpoint of 

continuation in the same way as above. 

!A-oB = (!A)l ??BB 

= (!A)‘%‘B” 

= B” T (! A)‘- 

= B’a(!A)‘. 

The function of type ! A a B is, therefore, one which uses a continuation of type B once 
and only once and returns a continuation of type !A. 

We find that deletion and/or duplication of the given continuation is impossible. 

We try to add the modality ! to the underlined part of B’ 4 (! A)’ for possibility of - 
deletion and duplication. Then, we obtain 

! B’ 4 (! A)‘, i.e. !A-o?B 

Under this translation, the type of value returned by the function of type !A-o?B 
is ?B. However, we cannot obtain any value (of type ?C) from this value of type ?B and 

another function of type !Ba ?C: because ?B I- !B is not generally provable, especially 

when B is atomic. For this reason, we use !A 4 !B instead and add ! to the underlined 

part of (!-(!A)’ ( = !A-o!B) as before, finally obtaining: 

! (! B)’ 4 (! A)‘, i.e. !A-o?!B. 

In contrast to the former case, a function of type !A 4 ?! B can be applied to a value 

of type ?!A in linear logic. 

The meaning of modalities occurring in !A 4 ?! B should be summarized here: 

‘A-oz!B : 
I... I : the possibility of duplication and/or deletion of an input 

value; 

. ..‘p... . A . the possibility of duplication and/or deletion of an input 

continuation. 
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The formal definition of the transformation r from types of A,* to propositions of 

linear logic is as follows: 

Definition 18 (Translation z). The translation z from types of &+ to propositions of 

linear logic is defined as follows: 

Z(U) = tl, 

r(A + B) = !z(A)o?!r(B) 

= ?s(A)L~?!r(B). 

We finish with the definition of two abbreviations as preparation for the next 

section. 

Notation 19 (?z(T)‘, C?s). Suppose that r 

. . . , [x,: A,]}. Then ?z(T)’ is an abbreviation 

?+I#, . . . ,?z(A,y. 

The abbreviation 

is type environment ( [x1 : Al 1, 

of the following sequence: 

denotes the several C?-links which connect the corresponding entries between r1 and 

r2. If there is no corresponding entry, there is no C?-link. For example, if 

r1 = {[x : A], [y : B]} and r2 = {[y : B], [f: A + B]}, then the above abbreviation 

means 

?z(lql ?z(B)l ?z(B)i 
C?S 

?z(A + B)’ 

?z(B)' 

We give an example in the case that two type environments have no corresponding 

entry. If r1 = {[x : A], [y : B]} and r2 = {[z : B], [f: A --* B] >, then the above ab- 

breviation merely means 

?z(A)’ ?T(B)’ ?z(B)’ ?z(A --f B)‘. 

A translation from terms of 2: to proofs of linear logic is introduced. We do not 

define the translation on the terms themselves, but indirectly on the type derivation 

trees. A I-term is not a tree in a strict sense because it has variable-bindings of b 

abstraction as implicit edges. A type derivation tree, on the other hand, is a tree since 

informations on variable occurrences are attached to each node. For this reason, the 

translation is defined more simply on type derivation trees than on terms. In the 
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following, translation T is defined with Tvalue and T,,,, as subroutines. First, these two 

subroutines are presented. 

Definition 20 (Translations Tvalue and T,,,,). We define two translations Tvalue and 

T term from type derivation trees to proof nets by mutual induction on the structure of 

the type derivation tree. These translations are defined on type derivation trees 

satisfying a weaker condition than the abort-typing condition, i.e. types of bodies of 

abort-terms are equal to each other but may not be equal to the type of the term 

derived by the type derivation tree: these translations are defined inductively, there- 

fore, type derivation trees passed as arguments in each induction step are subtrees of 

some type derivation tree satisfying the abort-typing condition. We call this type 

which is equal to every abort-term’s body, the top-level type. 
Translation Tvalue is defined satisfying the following condition: 

Suppose that n is a type derivation tree with root judgement r I- V: A. 

If A is atomic, then the result Tvalue (I7) is a proof net with ?z(r)’ t(A) as its 

conclusion. Otherwise, i.e. if A is a function type B + C and V does not include any 

abort-term, then T,,,,,(l7) has as conclusion 

?$I-)’ ?z(B)’ ?! z(C), 

if V includes some abort-term, T,,,,,(I7) has as conclusion 

?z(I’)’ ?z(B)’ ?!7(C) ?!s(O), 

where 0 is a top-level type. 

Similarly, translation T,,,, satisfies a condition of the same kind as above. 

Suppose that II is a type derivation tree with root judgement r k A4 : A. The proof 

net Tt,,,(17) has as conclusion ?r(T) ’ ?!r(A) if M does not include any abort-term, else 

?t(r)’ ?!z(A) ?!r(O), where 0 is the top-level type. 

We call the part ?t(r)’ a variable door, ?!z(A) an output door and ?!r(O) an 

unbinding door. 
These properties are straightforwardly checked in the following definition. 

Each case of Tvalue is as follows: 

l Variables. If a type derivation tree n is 

:n 

[s:A,‘Fx:A 
and A atomic, then T,,,,,(n) is 
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otherwise, i.e. if A is a function type B -+ C, then T,,,,,(l7) is 

a i-abstraction. If a type derivation tree 17 is 

:tl’ 

Tt-M:C 

TF@x:B.M):B+C 
Lam, 

where x does not freely occur in M (i.e. r is not defined on x), then T,,,,,(I7) is 

W?-box 
, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1 i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
?7(ry ?!r(C) ?!7(0) 
?r(I’)l ?r(B)l ?!r(C) ?!r(O) 

If T,,,,,(I7’) has no unbinding door ?!z(O), then T,,,,,(I7’) has no unbinding door 

either 

W?-box 

If x occurs freely in M, then T,,,,,(l7) is T,,,,,(lI’) itself 

Tterrn(~‘) 
:....................................................: 
?r(I’)l ?r(B)l ?!r(C) ?!r(O) 

If T,,,,,(n’) has no unbinding door ?!r(O), then T,,,,,(l7) has no unbinding door, 

in the same way as the above case. 

l Constant call/cc. If a type derivation tree Il is 

E%&:((B+C)+B)+B 
Con,, 
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then T,,,,,(n) is 

) ,W?-box 

!-box 
I 

T(B)* D? 

?r(B)I . 

?r(B)l 

I 

r(B) 
!r(B) 

- D? 
?!r( B) 

?!r( B) 

!(?T(B)’ q?!~(C))@!?~(B)l 

?(!(?r(B)’ ~?!~(C))~!?~(B)~) D’!’ 

?!T( B) ?!T( B) 

?!T( B) 
C? 

Each case of T,,,, is as follows: 

l Value of atomic type. If a type derivation tree ZZ is 

:Il’ 

i-k V:A, 

V value, and A atomic, 

!-box 

?T(ry !r(A) 

?!7(A) 

then T,,,,,,(n) is 

D? 

l Value offunction type. If a type derivation tree 17 is the same as above but A is 

a function type, then T,,,,(n) is 

!-box 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

:................................................................... 
?T(Iy ?+B)’ ?!7( C) 

q 
?!T(O) 

?r( B)’ W!r(C) 

?T(Iy !(?7(B)’ q?!~(c)) 

?!(?7(B)’ q?!~(c)) D’ 

?!r(O) 
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If Tyalue(n’) has no unbinding door ?!r(O), then Tt,,,(Lr) has no unbinding door, 

in the same way as the other cases, i.e. A-abstraction. 

l Abort-term. If a type derivation tree ZI is 

Tt-M:A 

and if 7’,,,,(17) has an unbinding door, then Tter,.,,(n) is 

Note that type A is equivalent to the top-level type 0 because of the input 

condition of translation r,,,, . 

If Tt,,,,,(n) has no unbinding door, then Tt,,,(n) is 

W?-box 

~1 

?T(Iy ?!~(l?) ?!T(A) 

l Application. If a type derivation tree LI is 

:n1 :n2 

~lt-M:A-+B r,kN:A 

r,ur~l-(MN):B APP > 

if both M and N are values and A is atomic, then 7’,,,,(n) is 

!-box . . . . . . . . . . . . . . . . . . . . . . . . . 
; Zalue(~2) ; L-J :.......................: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

?T(r2y r(A) ; Tva~ue( II I) 
:...............................................i 

?T(r+ 
I 

!T(f) ?T(y ?+y ?!r(B) ?!r(O) 

I 

?7(rl u r2) ,& CUT 
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Note that T,,,,,(n,) has no unbinding door because a value of atomic type 

must be a variable. 

If both M and N are values but A is a function type B + C, then 7’,,,,(n) is 

!-box 

?S bUT 

?!r(O) 
? 

where the above proof net does not have a C?-link between ?!r(O) if T,,,,,(n,) 

has no unbinding door ?!r(O). 

If M is a value but N is not a value, then Tt,,,(LI) is 

!-box 

?T r2) ?!T(A) ?!r(O) ?T(I-‘~)~ 
c 

!?T(A)I 
‘CUT 

?!T(B) ?!7(0) 

I 
?r(rr u r# ’ 

1 C?s 

?!T(O) C? 

where the above proof net does not have C?-link between ?!r(O) if T,,,,,(n,) has 

no unbinding door ?! z(O). 

Otherwise, i.e. if neither M nor N is a value, then Tt,,,(n) is 

!-box 

!-box 

~......r,,;,cn;~ ..... : ............................. . mj 
Ttem(&) 

?~(r~)*?!r(A)?!r(O) !?r(A)’ ?(!r(A)@!?r(B)‘) ?!r(B) 

--m- .._....,...,....................................: I 

?T(I’~)~ ?!(?r(A)' q?!r(B))?!r(O) ?r(I’z)l ?!r(O) !?(!r(A)@!?r(B)l) ?!r(B) 

C?S 
I I 

?r(rl u r# CUT 
?!r(O) C? 

where the above proof net does not have C?-link between ?!z(O) if T,,,,,(n,) has 

no unbinding door ?! r(0). 
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T is defined as follows: 

Definition 21 (Translation T). Suppose that n is a type derivation tree with a root 

judgement r F M : 0. 
If Tt,,,(ZI) has no unbinding door 

. . . . . . . . . . . . . . . . . . . . . . . . . . 

! Tterrn(q ; 
: . . . . . . . . . . . . . . . . . . . . . . . . . 
?T(Iy ?!T(O) 

then T(U) is Tt,,,(L’) itself, else, i.e. T,,,,(n) has an unbinding door 

:“.‘...‘..““.......““‘........‘..: 

T,errn(~) ; 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
?r(Iy ?!T(O) ?!T(O) 

then T(IZ) is 

~.......................... . . . . . . . . . . 

Temm ; 
:...................................... 
?T(Iy ?!T(O) ?!r(O) 

?!T(O) 
C? 

Note that it is due to the abort-typing condition that the type of the unbinding door 

is equal to that of the term ?!t(O). 

We finish this section by presenting an example of translation T. 

Example 22. Let A, B, and C be types, x and f variables, M and N terms, TM and 

Tlv type environments, and llM and IIN type derivation trees such that 

:nM :Il* 

r,u([x:B]}FM:A, r,u{[f:B+C]}tN:B. 

And suppose that M and N include no abort-term. Then a term (Ax: B.M) 
(X,. .(Af: B + C.N)) is translated as follows: 
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where we omit formulas labeled to each node of the proof net for simplicity. 

The middle part of the above proof net corresponds to (&, c(2f: B + CN)). The 
middle C?-rule duplicates the continuation of (Xa, ,-(;lf: B + C.N)) which is translated 
to the left !-box. The W?-box deletes a continuation whenfis called in N. The inner 
D?-rule is explained as “reading a value” similarly to the translation from system F to 
proof net [S] and the outer D?-rule as “reading a continuation”. These points are the 
main differences of this translation from the one for system F. 

4. Relation between &’ and linear logic 

We can find the correspondence between nz and linear logic: evaluation contexts 
are mapped to !-boxes, call-by-value redexes to the outmost CUT-links, and computa- 
tion to proof normalization. 

4.1. Evaluation context in the proof net 

An evaluation context is mapped to the !-box of the proof net by the translation T. 

Proposition 23 (Evaluation context as !-box). Let M be a term of type A under a type 
environment r, E [ ] an evaluation context such that E [M] is a term of type C under 
r u r’, ll a type derivation tree of M, and II’ a type derivation tree of E [M] 

TkM: A, TuT'kE[M]: c. 
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Zf M is a value and its type A atomic (actually M is a variable of atomic type A), then 
T(ZI’) is 

!-box 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
?r(A)’ ?!r(B) ?r(A)* ?!7(A) 

I 
L 

J 
?r(r’ u [z : A])I ‘? cvT 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

If M is a value and its type A a function type AI --) AZ, then T(II’) is 

. . ..“.......................‘......”........‘”....“.‘“....~ 

!-box 

?T 1 u I-’ ? 
. .T II 

lf M is not a value, then T(Il’) is 

We here find a feature that a subterm pointed by an evaluation context appears 
at the outmost, in other words, a call-by-value redex is transformed to an out- 
most CUT-link. This feature is common to CPS-transformation: call-by-value 
CPS-transformation maps a call-by-value redex to a redex of the weak head 
reduction. 

4.2. Computation and proof normalization 

The correspondence between computation in AZ and proof normalization in linear 
logic is presented in the following. Roughly speaking, each step of the computation 
can be simulated by the cut elimination of a proof net. The proof normalization is 
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a little weak in the aspect of handling C?-links (contraction) and the W?-box 
(weakening). 

Definition 24 (Extension of cut elimination of proof nets). The cut elimination of 

proof nets is here extended by the addition of the following contractions and 

an equality: 

!-box !-box 

W?-box 

!-box 

- j P ; 
. . . . . . ..___..... 

’ ’ ?A c 

?A ?A e C? ?B C 
- ?A ’ 

W?-box 

?A ?B C - 

?A ?A C? 
?A 

?A 
?AC? ?ATA.flC? 

= 

Under the proof normalization defined in the above, the following holds: 

Theorem 25 (Computation as proof normalization). The computation rule _‘comp 

of &+ corresponds to several steps of elimination of CUT-links: tf M, N are 
terms such that M -‘comp N, then the T(M) are rewritten to T(N) by the proof 
normalization procedure extended as above and elimination of useless outmost 
W?-boxes. 
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Here, we comment on “elimination of useless outmost W?-boxes”: The formulas 

z(T) in the auxiliary door of T(M) exactly correspond to free variables FreeVar(M), 
on the other hand, the number of free variables FreeVar(M) occurring in M often 

decreases. The decreased free variables correspond to the eliminated outmost W?- 

boxes. 

Proof (Outline). The most subtle point is the handling of C?-links and W?-boxes, 
which corresponds to the handling of variables in A-terms. A detailed discussion about 

this would obsure the outline of our argument. For this reason, we do not go into 

these details. 

First, we have to reconstruct the substitution operation: the proof normalization of 

a proof net does not simulate the usual substitution operation. So, we change the 

substitution as follows: 

Definition 26 (Substitution simulated by proof normalization). A substitution, written 

M [x : = N], where we substitute a term N for a free variable x in a term M, is defined 

in the following, using a “subroutine” M{x:= N} defined only in the case that 

a variable x strictly occurs in a term M. 

M[x:= N]+M 

if x4 FreeP’ar(M); 

+ M{x:=N} 

if x E Free Var(M); 

(M’M”){x:=N} +(M’{x:=N} M”{x:=N}) 

if XE FreeVar(M’), FreeVar(M”); 

(M’M”) {x:= N} +(M’{x:= N} M”) 

if x~FreeVar(M’), x$ FreeVar(M”); 

(M’M”){x:=N} +(M’M”{x:=N}) 

if x$ FreeVar(M’), xE FreeVar(M”); 

(Ay:A.M){x := N} +(/Iy:A.M(x:=N)); 

where x # y 

Z&.(M) (x:=N} -d”,B{M{x:=N}} 

We can easily check that the substitution M [x : = N] defined above is equivalent 

to the usual one. 



186 Shin-ya Nishizaki 

Then, if we notice the following points, the proof is straightforward. 

the shape of evaluation contexts after the translation, explained above; 

the correspondence between each substitution step defined above and each proof 

normalization step; 

outmost CUT-links correspond to steps of the computation (except the substitu- 

tion operation); 

the correspondence between free variables of a subterm and auxiliary doors of 

the proof box (which originates from the subterm) through the translation T. 0 

Example 27. Last, we present an example. We observe a normalization for the proof 

net T((lx: B.&f) (A& c(ilf: B --, C.N))) in the example at Section 3. If we contract the 

outmost right CUT-link, it becomes 

rid i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
D? 1 : ~term(flA4) ; : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

LUZ) 

J. ?~(l-~)l ?!T(A) 

\ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

W? ~terrn(wv) i 

T- 
: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

! 

?T(E)* ?7(rM)l ?!T(A) 

-\c3 

d? 

..__CUT 2 

(this figure shows only the left part changed by the normalization: the lower CUT-link 

is connected to the !-box of T,,,,(Il,).) 

Remind that 

(Ax : B.M) (&, c((;lf: B + C.N))) 

-+comp (Ax : B.M) ((Af: B + C.N) (h : B.d~, c { (Ax : B.M)z})) . 

In the above proof net, the inside of the W?-box corresponds to (Ax: B.M)z 

and the one of the left !-box to (AZ : B.dA, c{ Ix: B.M)z}). These normalization 

steps correspond to this computation transition and we find that the !/C?-SC step 

(see [8]) at the right CUT-link duplicates the continuation and that the W?-box 

in the proof net translated by X,,c is an early form which grows up into an 

abort-term. 

For a more detailed observation, suppose that N is (ly : C.Ni) (flv,) such that 

:n, . ’ : “RI 

~N,~{Cy:CI}~~1:~, rlVIFNZ:B. 
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Then Tterm(AJ) is 

187 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . 

id\@( id : 

; ~term(~Nz) ; II d? 
~term(~N,) ; 

~;j’djr”;..... 
.7(ri; j’l”y{G(‘ii, 

. . . . . . . . . . . . . . . . . . . . . . . . . 
?T(l-j.+)1 ?!7(8) 

L- 1 CUT i CUT 

C?S 

?7(rN1 L rjtJ,)l ?T(A-i3)l 

The middle part of the !-box has the faculty of connecting the given function to an 

argument port and an output port. 

The normalization proceeds further under this supposition. The outmost right 

CUT-link can now be contracted: 

rid 
D? 

f . . ..‘.......‘......“....“‘.... 

~k,rnPM) : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

(This figure shows only the changed part: the ?!+A) is connected to the !-box of 

Tt,,,(n,) by a C?s-link and ?!r(B) it by a CUT-link.) 

This part corresponds to (AZ : B.s&, c { (Ax : J3.M)z})N2. If the normalization of 

Tte,,(II,,) proceeds and the middle !-box which includes the W?-box, has disappeared 

as a result of normalization, then the W?-box deletes the right !-box which is 

a continuation. It is important that the deletion of the continuation by the W?-box 
does not depend on term Ni: even if variablefdoes not occur in Nr, the continuation 

is deleted, which is one of the features of cull-by-value evaluation. 

5. Conclusion 

We first introduced the programming language A.; with continuation primitives. 

Secondly we introduced the translation from A,’ to linear logic, which consists of two 

translations: translation r from types to propositions and translation T from terms 
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and proof nets. Lastly, the relationship between &+ and linear logic was investigated. 

The following is the main result of this paper: 

In the translated type !$A)-o ?!r(B) of a function type A -+ B, the first 

modality ! shows us the possibility of duplication and/or deletion of an 

input value (of type A) and the second modality ? the possibility of 

duplication and/or deletion of an input continuation. A characteristic of 

a programming language with continuation primitives is explicitly pres- 

ented by modality of linear logic. 

6. Related works and future works 

Curry-Howard isomorphism between programming language with continuation 

primitives and classical logic have been studied previously [12,19,20]. There corres- 

pond various notions of the programming language to ones of classical logic: con- 

tinuation primitives V, d and X correspond to inference rules of classical logic, the 

ii-elimination rule, the I-elimination rule and Peirce’s law, respectively, and 

continuation-passing-style transformation corresponds to 11 -translation. If we 

translate negation 1 A ( = A -+ I) as (!A) -0 I with multiplicative absurdity I rather 

than additive absurdity 0 (like [S, p. 911: this replacement goes well since the I- 

elimination rule does not occur in proofs translated by ii-translation. The com- 

position of l-~-translation and the above translation also gives a translation from 

classical logic to linear logic, which is equivalent to the one given in this paper in the 

sense of M because ii,4 -?!A is provable in classical linear logic. So, the 

contributions of this paper in comparison with previous works are the following: 

l expressing the possibility of deletion and duplication of continuations by 

modality ?, !; 

l investigating the mechanism of continuations in a proof net. 

There are several directions for future work. One is the translation from the 

programming language to linear logic. We have used many !-boxes in the translation 

and these boxes ensure the determinism. The abuse of boxes does harm to another 

strong point of proof nets, i.e. parallelism, which is the point to be improved in our 

work. 

Another direction is improvement of 2,“: this direction is not related to the 

continuation itself. The treatment of free variables in the definition of the translation is 

quite complicated. In usual A-calculi, the substitution has been thought to be 

a “cheap” operation. However, it is not “cheap” and cannot be disregarded in linear 

logic. Such a gap causes the complicated treatment at the part corresponding to the 

free variables when we define the translation. Therefore, we should bring I-calculus 

closer to linear logic. io-calculus [l] is recently proposed by Abadi et al. Substitutions 

are manipulated explicitly, hence, the substitution is not treated as a cheap operation, 
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which is fit for our work. The reconstruction of this work by this calculus will fill the 

gap between I-calculus and linear logic and the situation will be improved. 

We have studied the simply typed language. Danos proposed the untyped version 

of proof net, called pure net [3]. We may extend our work to the untyped version with 

his work. 

In this paper, we investigated only two primitives X and d. Other primitives have 

been proposed, for example shij$ reset by Danvy and Filinski [4]. The study of new 

primitives is also a future work. 
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