
Science of Computer Programming 21 (1993) 165-190

Elsevier

165

Programs with continuations
and linear logic

Shin-ya Nishizaki
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-01. Japan

Communicated by M. Hagiya

Revised October 1992

Abstract

Nishizaki, S., Programs with continuations and linear logic, Science of Computer Programming 21

(1993) 1655190.

The purpose of this paper is to investigate the programs with continuations in the framework of

classical linear logic which can also be regarded as improvement of traditional classical logic. First,

simply typed I-calculus 2: with continuation primitives is introduced. Second, a translation from

nc to linear logic is given. Last, a correspondence between them is presented.

1. Introduction

The notion of continuation, which means the rest of computation, was originally
discovered by van Wijngaarden [25], Mazurkiewicz [17], and Morris [18], indepen-
dently. Strachey and Wadsworth used this notion for the denotational semantics of
jump-statements [24].

Recently, this notion has become popular not only among theoreticians but also
among working programmers in Lisp’s dialect Scheme [21]. In Scheme, one can
flexibly use continuations like integers and lists, i.e. continuation as first-class object.

Primitive call-with-current-continuation (abbreviated call/cc) enables one to use this
facility. A simple example of call/cc is as follows:

Correspondence to: S. Nishizaki, Department of Information Science, Faculty of Science, University of

Tokyo, 7-3-l Hongo, Bunkyo-ku, Tokyo, 113, Japan. E-mail: sin@is.s.u-tokyo.ac.jp.

0167~6423/93/$06.00 0 1993-Elsevier Science Publishers B.V. All rights reserved

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82185637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

166 Shin-ya Nishizaki

(call/cc

(lambda (exit)

(for-each

(lambda (x) (if (negative? x) (exit x)))

‘(64 0 3’7 -3 245 19))

#t))
The result
---3.

(This example is cited from the reuised3 report [21].)

Primitive cull/cc supports advanced control structures such as coroutine [14] and

backtrack [13] in addition to global exit such as the above example.

The continuation-passing-style transformation (abbreviated CPS-transformation) is

one of the main topics in the research area on continuation. Roughly speaking, this

transformation added one more argument to each function and the additional

argument explicitly simulates passing of a continuation in calling of functions.

Originally, the aim of this translation is to obtain a program that is independent of

evaluation strategies from a program that is dependent on a certain evaluation

strategy. This translation may be understood from various aspects: embedding from

the I-calculus with continuation primitives to the usual I-calculus [S], program

transformation [26] and compilation technique [2,7,22].

Recently, Filinski [4] studied the duality between value and continuation in the

framework of category theory. Under this duality, we can identify

with

a function from values of type A to values of type B

a function from continuations of type B to continuations of type A.

Intuitively, we may more symmetrically say that

value = result of computation,

continuation = rest of computation.

Program languages with continuation primitives are very powerful in the aspect of

control, however, they have an unpleasant feature: their computation is not conjluent

unlike usual I-calculi. In other words, results of computation depend on the evalu-

ation strategy, e.g. call-by-value, call-by-name, etc. The following is a typical example:

Nondeterminism of computation

(call/cc(lambda (exit)

((lambda(x) 1) (exit 2))))

1(L

1 2

(call-by-name) (call-by-value)

Programs with continuations and linear logic 167

We leave programming and turn to logic. We can find the similar phenomenon in
traditional classical logic, which is “nondeterminism” of classical logic [lo, p. 1511.

Nondeterminism of proof normalization

:ll : 11’

./
:?I

FB
- R-W
FB, B
F R-+3

I-B FB
-RR-%‘.-
FB, C CFB

L-W

I-B, B
CUT

t-B R-%

\
I.

: x’

I-B
- R-w
I-B, B
- R-g

I-B

It is pointed out in [lo] that such a nondeterminism of classical logic is caused by
the unrestricted use of the weakening rule and the contraction rule to both sides of the
sequents. In intuitionistic logic, this problem is avoided by restricting the application
of the right weakening rule and right contraction rule. In Girard’s (classical) linear
logic [8,9], this problem is solved by the more careful use of these structural rules. The
“deterministic” proof normalization is one of the advantages of linear logic. The
following are proofs in classical linear logic, corresponding to the above one:

: k’

:ff F?!B

k?!B
?W

?W
k?!B,?C’

t-?!B,?!C t-?! B, !?C I!

I-?!B,?!B
CUT

I-?!B
?C

.I
:n

?!B

I-?!B,?!B
?W

I-?!B
?C

I-?!B . 11’
?W

t-?!B,?C’ ! k?!B

I-?! B, !?C’ k?!B,?!C

k?!B,?!B

k?!B
?C

.I : c’

?!B

I-?!B,?!B
?W

F?!B
?C

?W

-CUT

We find that some information about determinism is added to the proof during the
translation from traditional classical logic to classical linear logic.

The two systems discussed above, I-calculus and logic, are connected by
a Curry-Howard isomorphism. This isomorphism had been restricted to one between
intuitionistic logic and simply typed I-calculus until Griffin [12] extended this to the

168 Shin-ya Nishizaki

correspondence between classical logic and simply typed A-calculus with continuation

primitives.
CPS

extended C”~q--y--H~~~r~ I;;- a’ - i ;~~mli~~y&Curry-Howard

classical logic E intuitionistic logic

where A<, is the simple typed A-calculus with the continuation primitives %? and

G’ [S] and 2’ the simple typed &calculus. % and d correspond to the ii-

elimination rule and the -L-elimination rule, respectively.

To be exact, we should say that

CPS-transformation

= 11 -translation + Friedman’s A-translation [11,16],

which is shown by Murthy [19,20]. He applied this correspondence to the program

extraction from classical proofs.

The following is an example of the classical proof corresponding to the programs

which implements call/cc using primitives LZ? and %‘I

[x:A] [k:lA]

;14

+d

I

A-B
+ Y(x)

[f: (A + B) + A]
+E

[k:lA] A

I +&
I

- -+ 9(k)
11A

118
A

((A -+ B) + A) + A + s(f)

The conclusion ((A + B) -+ A) + A is famous as Peirce’s law which cannot be proved

in intuitionistic logic, but made only by implication.

We finish this section with the motivation of this paper.

Motivation

As we have seen, it is possible to avoid the nondeterminism from classical logic in

the following ways:

a intuitionistic logic: the right weakening rule and right contraction rule are inhibited;

l linear logic: the weakening rule and contraction rule are treated more carefully.

The first solution has been selected in previous approaches: 11 -translation (= CPS-

transformation) eliminates the nondeterminism by embedding from classical logic to

intuitionistic logic. We here try another solution, i.e. linear logic.

Programs with continuations and linear logic 169

2. Programming language A,*

First of all, we have to introduce the programming language we will investigate. We

define simply typed ,I-calculus &+ with primitives for continuation handling. First, we

define types. Second, terms and, last, a computation rule in this section.

Definition 1 (Types). AtomicType is a countable set of given atomic types. Types of

&+ are inductively defined as follows:

A ::= LY. 1 A+B,

wherecc,p,. . . are metavariables over atomic types and A, B, . . . over types. Type is

a set of types defined as above.

Note that types are similar to the usual simply typed A-calculi: ,I: does not have the

bottom type I which designates the top-level type (cf. IS, [12]).

Definition 2 (Terms). Var is a countable set of given variables. Terms of ,I,* are defined

inductively as follows:

M ::= x 1 (2x:A.M) 1 (M N) 1 XA,, 1 S&~(M) ,

where x, y, . . . are metavariables over variables and M, N, . . . over terms. Term is

a set of terms defined as above.

(Ax : A.N), (M NJ, XiB, and 4,. {M} are called a A-abstraction, a function applica-

tion, a call/cc-constant and an abort-term, respectively. We used Felleisen’s notation of

continuation primitives, where X A,B equals call/cc in the programming language

Scheme.

We notice that “da,B (. . . }” is not defined as a function constant like XA, B, but as

a special form in the terminology of Common Lisp [23] because of the evaluation

order defined later. We use braces { } in abort terms in order to emphasize this

point.

We introduce several notions in the following before defining of typing of ,I:.

Definition 3 (Type environment). A type environment is a function whose domain is

a finite set of variables {x1, . . ,x,} and whose codomain is the set of types Type.
r 2.. ., r1,r2,. . . are used as metavariables over type environments. TypeEnv is the

set of type environments. A type environment {x1 H CQ, . . . , x, H cc,,} is abbreviated

to {[xl:ccl],. . . ,[X,:C(“]}.

Definition 4 (Restriction of a type environment). Suppose that r is a type environment

over (x1,. . . , x,,}, A a type, x an arbitrary variable which satisfies that r maps x to

A ifxE{xl,. . . , x,}. The restriction of r by [x : A], written r\[x : A], is a function

170 Shin-ya Nishizaki

whose domain is {x1, . . . , xn}\(x} and which maps variables to the same types as
r does except for the variable x, i.e.

r\[x : A] : Domain(r)\(x) -+ Var,

y bT(y) (where y # x).

For example {[x:A][y:B][f:A-*BJ}\[x:A] = {[.I:B][~:A+B]}.

Definition 5 (Merge of type environments). Suppose that rI and r2 are type environ-
ments with their domains (x1,. . . , x,} and { yr, . . . , y,>, respectively, which satisfy
~,(x)=~z(x)foreveryvariablexsuchthatx~{x,,...,x,}n{y,,...,y,}.

The merge of type environments rI and r2, written rI u Tz, is a type environment
whose domain is the union of the domains of rr and Tz and which maps variables to
the same types as rI and r2, i.e.

rlurZ:(xl,...,xm}~{~l,...,~n)~Var,

X(E {Xl,. . . , ~~1) H b(x),

Y(E {Yl,. . . , Y,>) - wy).

Forexample {[x:A][y:B]}u{[x:A][f:A+B]} = {[x:A][y:B][f:A-tB]}
and the merge of {[x : A]} and ([x : B]} (where A # B) is impossible.

Definition 6 (Type judgement, type inference rules and type derivation tree). A type
judgement II-M:A (where r is a type environment, M a term and A a type) is
a relation among type environments, terms and types defined inductively by the
following type inference rules. A tree with a type judgement as a root and inference
rules as nodes and leaves is called a type derivation tree. The type inference rules of
2: are as follows:

(l) {[x:A]}t-x:A IJar
(2)

I- call/cc,,,:((A --) B) --) A) + A
Con,

(3)
Z-kM:B

r\[x:A]t-((;lx:A.M):A+ B
Lam

(4)
l-,I--M:A-+B TztN:A

rl urz k(MN):B APP

(5)
TFM:A

rF&-A,B{M}:B
Special&

We have the following property on these notions.

Programs with continuations and linear logic 171

Proposition 7 (Type environment and free variables). Let r be a type environment,
M a term and A a type. If r k- M: A is satis$ed, then Domain(T) equals the set offree
variables occurring in term M

(Domain(T) denotes the domain of T’ when we regard r as a function.)

The above result leads to the uniqueness of a type derivation tree as follows:

Proposition 8 (Uniqueness of a type derivation tree). Suppose that r is a type environ-
ment, M a term and A a type. If there exists a type derivation tree whose root is
r k M: A, it is unique.

The uniqueness of a type derivation tree is desirable because we define the transla-
tion from terms of 2: to proofs of linear logic indirectly: the domain of the translation
is not terms but type derivation trees.

Some people may think that the definition of typing is already completed. This is
true in cases of the usual typed I-calculi, but not true in this case: typings of the usual
typed I-calculi are defined inductively on the structure of terms, in other words, a type
derivation tree is built up from local to global. On the other hand, typing of A,-’ cannot
be defined only in such a manner. The following additional condition, which has
a global nature, is required:

Definition 9 (Abort-typing condition). Suppose that M is a term, A a type and r a type
environment such that r I- M: A is satisfied.

It is said that M satisfies the abort-typing condition if and only if every abort-term
occurring in M has the body of type A. In other words, every abort-term in M occurs
in the form of dA ,,., { . . . }.

Definition 10 (Typing of 1:). It is said that M is a term of type A in a type environ-
ment r if and only if M satisfies r I- M: A and the abort-typing condition.

Next, the call-by-value computation of &’ is presented in the style of Felleisen [S],
i.e., given as rewriting rules. We first prepare a few notions and then introduce the
computation.

Definition 11 (Value). A value of &+, where V, W, . . . , are used as metavariables, is
defined inductively as follows:

V ::= x) (Ax:A.M) 1 .X--,B.

Informally, we can explain that a value is a term which cannot be computed any
more. The notion of evaluation context defined next is the device for pointing the place
which should be computed each time (the call-by-value computation is intended here).

172 Shin-ya Nishizaki

Definition 12 (Evaluation context). An evaluation context is defined inductively as

follows:

EC 1 ::= C 1 I (EC IN). I V’EC I)

WeuseE[I,... as metavariables over evaluation contexts. [] is called a hole.

If E [] is an evaluation context, then E [M] denotes the term that results from

placing M in the hole of EC 1.

Definition 13 (Computation of&+). The computation rule of 2: is a relation between

Term and Term, written + Comp, such that

+comp = -8” u +xu -‘&.

Each subrelation is defined as follows:

E[((lx:A.M)V)] -PUE[M[x := V-J],

EC(%, B VI ‘~E[(V(~~:A.~,,B{EC~~}))I

where A’ is a type of E[. . .],

EC=d,.{M)I -+&MM.

At the end of this section, we return to the abort-typing condition. Some people

may doubt its necessity. A term M which satisfies type judgement r k M:A and not

the abort-typing condition causes a dynamic type error, i.e. a type error in the

execution time.

For example, suppose that &A,B(M) satisfies Z-l- S&~(M):& but not the abort-

typing condition. Then +& can be applied to this term.

~,B{M) -+dM.

w -

TYPO A TYPO B

Such terms are excluded thanks to the abort-typing condition.

Proposition 14 (Preservation of the abort-typing-condition). Zf M is a term of type
A and N a term such that M +ccomp N, then N is also a term of type A. Therefore, the
abort-typing condition is preserved during the computation.

3. Translation from 2: to linear logic

In this section, we introduce a translation from A,+ to linear logic, which consists

of two translations: one is from types to propositions of linear logic, called z, and

the other is from terms to proof nets (a proof notation of linear logic), called T.

Programs with continuations and linear logic 173

Translations from A.-calculi to linear logic have been introduced by several re-

searchers. The simplest is the translation from Lafont’s linear A-calculus [151 to linear

logic. We remind the definition of the linear A-calculus before the discussion on the

translation.

Definition 15 (Lafont’s linear I-calculus (simply typed version)). The difference with

the usual simply typed A-calculus is in the I-abstraction.

M ::= x*

1 Ix*.M where x must occur once and only once in M

I W A-BNA)

For example, Af *+’ AX* fx is correct, however, AxA.AyB.x is not correct (because . .
variable y used in A-abstraction AyB does not occur in its body x). The restriction

above on the A-abstraction may be intuitively explained by the fact that an input value

is used once and only once, i.e. the duplication and/or deletion of an input value is

prohibited. Such a restricted A-abstraction will be called a linear A-abstraction and

such a function a linear function.

The translation from types of linear A-calculus to propositions of linear logic is

defined as follows:

Definition 16 (Type-translation of linear kcalculus: zLLc).

z~&A) = A (where A is an atomic type),

TUC(A + B) = ~U.C(‘4 -0 TUC(B).

The linear implication 4 is regarded as the type of linear functions.

Let us observe from another viewpoint. It holds that

Therefore, we may say that a function of type A+ B is one which uses an input

value of type B’ once and only once and then returns an output value of type A’. The

meaning of the linear negation A’ in the programming language can be explained by

Filinski’s duality between values and continuations [6]: a function from values of type

A to values of type B is regarded as one from continuations of type B to continuations
of type A. Thus, the following holds:

value of type A’ = continuation of type A.

174 Shin-ya Nishizaki

Girard gave the translation from polymorphic lambda calculus system F to linear

logic. The translation of type is as follows:

Definition 17 (Translation zF(.)). Translation zF(.) from types of system F to prop-

ositions of linear logic is defined inductively as follows:

z&) = c1 (where CI is atomic),

+(A + B) = !Z&4)43Z#),

z,(K!x.A) = A CL.Z#).

There is no restriction on I-abstraction in this calculus. The function of type !A 4 B

is one which uses an input value of type A an arbitrary number of times and returns an

output value of type B. Let us observe this function type from the viewpoint of

continuation in the same way as above.

!A-oB = (!A)l ??BB

= (!A)‘%‘B”

= B” T (! A)‘-

= B’a(!A)‘.

The function of type ! A a B is, therefore, one which uses a continuation of type B once
and only once and returns a continuation of type !A.

We find that deletion and/or duplication of the given continuation is impossible.

We try to add the modality ! to the underlined part of B’ 4 (! A)’ for possibility of -
deletion and duplication. Then, we obtain

! B’ 4 (! A)‘, i.e. !A-o?B

Under this translation, the type of value returned by the function of type !A-o?B
is ?B. However, we cannot obtain any value (of type ?C) from this value of type ?B and

another function of type !Ba ?C: because ?B I- !B is not generally provable, especially

when B is atomic. For this reason, we use !A 4 !B instead and add ! to the underlined

part of (!-(!A)’ (= !A-o!B) as before, finally obtaining:

! (! B)’ 4 (! A)‘, i.e. !A-o?!B.

In contrast to the former case, a function of type !A 4 ?! B can be applied to a value

of type ?!A in linear logic.

The meaning of modalities occurring in !A 4 ?! B should be summarized here:

‘A-oz!B :
I... I : the possibility of duplication and/or deletion of an input

value;

. ..‘p... . A . the possibility of duplication and/or deletion of an input

continuation.

Programs with continuations and linear logic 175

The formal definition of the transformation r from types of A,* to propositions of

linear logic is as follows:

Definition 18 (Translation z). The translation z from types of &+ to propositions of

linear logic is defined as follows:

Z(U) = tl,

r(A + B) = !z(A)o?!r(B)

= ?s(A)L~?!r(B).

We finish with the definition of two abbreviations as preparation for the next

section.

Notation 19 (?z(T)‘, C?s). Suppose that r

. . . , [x,: A,]}. Then ?z(T)’ is an abbreviation

?+I#, . . . ,?z(A,y.

The abbreviation

is type environment ([x1 : Al 1,

of the following sequence:

denotes the several C?-links which connect the corresponding entries between r1 and

r2. If there is no corresponding entry, there is no C?-link. For example, if

r1 = {[x : A], [y : B]} and r2 = {[y : B], [f: A + B]}, then the above abbreviation

means

?z(lql ?z(B)l ?z(B)i
C?S

?z(A + B)’

?z(B)'

We give an example in the case that two type environments have no corresponding

entry. If r1 = {[x : A], [y : B]} and r2 = {[z : B], [f: A --* B] >, then the above ab-

breviation merely means

?z(A)’ ?T(B)’ ?z(B)’ ?z(A --f B)‘.

A translation from terms of 2: to proofs of linear logic is introduced. We do not

define the translation on the terms themselves, but indirectly on the type derivation

trees. A I-term is not a tree in a strict sense because it has variable-bindings of b

abstraction as implicit edges. A type derivation tree, on the other hand, is a tree since

informations on variable occurrences are attached to each node. For this reason, the

translation is defined more simply on type derivation trees than on terms. In the

176 Shin-ya Nishizaki

following, translation T is defined with Tvalue and T,,,, as subroutines. First, these two

subroutines are presented.

Definition 20 (Translations Tvalue and T,,,,). We define two translations Tvalue and

T term from type derivation trees to proof nets by mutual induction on the structure of

the type derivation tree. These translations are defined on type derivation trees

satisfying a weaker condition than the abort-typing condition, i.e. types of bodies of

abort-terms are equal to each other but may not be equal to the type of the term

derived by the type derivation tree: these translations are defined inductively, there-

fore, type derivation trees passed as arguments in each induction step are subtrees of

some type derivation tree satisfying the abort-typing condition. We call this type

which is equal to every abort-term’s body, the top-level type.
Translation Tvalue is defined satisfying the following condition:

Suppose that n is a type derivation tree with root judgement r I- V: A.

If A is atomic, then the result Tvalue (I7) is a proof net with ?z(r)’ t(A) as its

conclusion. Otherwise, i.e. if A is a function type B + C and V does not include any

abort-term, then T,,,,,(l7) has as conclusion

?$I-)’ ?z(B)’ ?! z(C),

if V includes some abort-term, T,,,,,(I7) has as conclusion

?z(I’)’ ?z(B)’ ?!7(C) ?!s(O),

where 0 is a top-level type.

Similarly, translation T,,,, satisfies a condition of the same kind as above.

Suppose that II is a type derivation tree with root judgement r k A4 : A. The proof

net Tt,,,(17) has as conclusion ?r(T) ’ ?!r(A) if M does not include any abort-term, else

?t(r)’ ?!z(A) ?!r(O), where 0 is the top-level type.

We call the part ?t(r)’ a variable door, ?!z(A) an output door and ?!r(O) an

unbinding door.
These properties are straightforwardly checked in the following definition.

Each case of Tvalue is as follows:

l Variables. If a type derivation tree n is

:n

[s:A,‘Fx:A
and A atomic, then T,,,,,(n) is

Programs with continuations and linear logic 177

otherwise, i.e. if A is a function type B -+ C, then T,,,,,(l7) is

a i-abstraction. If a type derivation tree 17 is

:tl’

Tt-M:C

TF@x:B.M):B+C
Lam,

where x does not freely occur in M (i.e. r is not defined on x), then T,,,,,(I7) is

W?-box
, .

1 i .
?7(ry ?!r(C) ?!7(0)
?r(I’)l ?r(B)l ?!r(C) ?!r(O)

If T,,,,,(I7’) has no unbinding door ?!z(O), then T,,,,,(I7’) has no unbinding door

either

W?-box

If x occurs freely in M, then T,,,,,(l7) is T,,,,,(lI’) itself

Tterrn(~‘)
:..:
?r(I’)l ?r(B)l ?!r(C) ?!r(O)

If T,,,,,(n’) has no unbinding door ?!r(O), then T,,,,,(l7) has no unbinding door,

in the same way as the above case.

l Constant call/cc. If a type derivation tree Il is

E%&:((B+C)+B)+B
Con,,

178 Shin-ya Nishizaki

then T,,,,,(n) is

) ,W?-box

!-box
I

T(B)* D?

?r(B)I .

?r(B)l

I

r(B)
!r(B)

- D?
?!r(B)

?!r(B)

!(?T(B)’ q?!~(C))@!?~(B)l

?(!(?r(B)’ ~?!~(C))~!?~(B)~) D’!’

?!T(B) ?!T(B)

?!T(B)
C?

Each case of T,,,, is as follows:

l Value of atomic type. If a type derivation tree ZZ is

:Il’

i-k V:A,

V value, and A atomic,

!-box

?T(ry !r(A)

?!7(A)

then T,,,,,,(n) is

D?

l Value offunction type. If a type derivation tree 17 is the same as above but A is

a function type, then T,,,,(n) is

!-box
.

:...
?T(Iy ?+B)’ ?!7(C)

q
?!T(O)

?r(B)’ W!r(C)

?T(Iy !(?7(B)’ q?!~(c))

?!(?7(B)’ q?!~(c)) D’

?!r(O)

Programs with continuations and linear logic 179’

If Tyalue(n’) has no unbinding door ?!r(O), then Tt,,,(Lr) has no unbinding door,

in the same way as the other cases, i.e. A-abstraction.

l Abort-term. If a type derivation tree ZI is

Tt-M:A

and if 7’,,,,(17) has an unbinding door, then Tter,.,,(n) is

Note that type A is equivalent to the top-level type 0 because of the input

condition of translation r,,,, .

If Tt,,,,,(n) has no unbinding door, then Tt,,,(n) is

W?-box

~1

?T(Iy ?!~(l?) ?!T(A)

l Application. If a type derivation tree LI is

:n1 :n2

~lt-M:A-+B r,kN:A

r,ur~l-(MN):B APP >

if both M and N are values and A is atomic, then 7’,,,,(n) is

!-box .
; Zalue(~2) ; L-J :.......................: .

?T(r2y r(A) ; Tva~ue(II I)
:...i

?T(r+
I

!T(f) ?T(y ?+y ?!r(B) ?!r(O)

I

?7(rl u r2) ,& CUT

180 Shin-ya Nishizaki

Note that T,,,,,(n,) has no unbinding door because a value of atomic type

must be a variable.

If both M and N are values but A is a function type B + C, then 7’,,,,(n) is

!-box

?S bUT

?!r(O)
?

where the above proof net does not have a C?-link between ?!r(O) if T,,,,,(n,)

has no unbinding door ?!r(O).

If M is a value but N is not a value, then Tt,,,(LI) is

!-box

?T r2) ?!T(A) ?!r(O) ?T(I-‘~)~
c

!?T(A)I
‘CUT

?!T(B) ?!7(0)

I
?r(rr u r# ’

1 C?s

?!T(O) C?

where the above proof net does not have C?-link between ?!r(O) if T,,,,,(n,) has

no unbinding door ?! z(O).

Otherwise, i.e. if neither M nor N is a value, then Tt,,,(n) is

!-box

!-box

~......r,,;,cn;~ : mj
Ttem(&)

?~(r~)*?!r(A)?!r(O) !?r(A)’ ?(!r(A)@!?r(B)‘) ?!r(B)

--m- .._....,...,....................................: I

?T(I’~)~ ?!(?r(A)' q?!r(B))?!r(O) ?r(I’z)l ?!r(O) !?(!r(A)@!?r(B)l) ?!r(B)

C?S
I I

?r(rl u r# CUT
?!r(O) C?

where the above proof net does not have C?-link between ?!z(O) if T,,,,,(n,) has

no unbinding door ?! r(0).

Programs with continuations and linear logic 181

T is defined as follows:

Definition 21 (Translation T). Suppose that n is a type derivation tree with a root

judgement r F M : 0.
If Tt,,,(ZI) has no unbinding door

.

! Tterrn(q ;
: .
?T(Iy ?!T(O)

then T(U) is Tt,,,(L’) itself, else, i.e. T,,,,(n) has an unbinding door

:“.‘...‘..““.......““‘........‘..:

T,errn(~) ;
.
?r(Iy ?!T(O) ?!T(O)

then T(IZ) is

~..........................

Temm ;
:......................................
?T(Iy ?!T(O) ?!r(O)

?!T(O)
C?

Note that it is due to the abort-typing condition that the type of the unbinding door

is equal to that of the term ?!t(O).

We finish this section by presenting an example of translation T.

Example 22. Let A, B, and C be types, x and f variables, M and N terms, TM and

Tlv type environments, and llM and IIN type derivation trees such that

:nM :Il*

r,u([x:B]}FM:A, r,u{[f:B+C]}tN:B.

And suppose that M and N include no abort-term. Then a term (Ax: B.M)
(X,. .(Af: B + C.N)) is translated as follows:

182 Shin-ya Nishizaki

where we omit formulas labeled to each node of the proof net for simplicity.

The middle part of the above proof net corresponds to (&, c(2f: B + CN)). The
middle C?-rule duplicates the continuation of (Xa, ,-(;lf: B + C.N)) which is translated
to the left !-box. The W?-box deletes a continuation whenfis called in N. The inner
D?-rule is explained as “reading a value” similarly to the translation from system F to
proof net [S] and the outer D?-rule as “reading a continuation”. These points are the
main differences of this translation from the one for system F.

4. Relation between &’ and linear logic

We can find the correspondence between nz and linear logic: evaluation contexts
are mapped to !-boxes, call-by-value redexes to the outmost CUT-links, and computa-
tion to proof normalization.

4.1. Evaluation context in the proof net

An evaluation context is mapped to the !-box of the proof net by the translation T.

Proposition 23 (Evaluation context as !-box). Let M be a term of type A under a type
environment r, E [] an evaluation context such that E [M] is a term of type C under
r u r’, ll a type derivation tree of M, and II’ a type derivation tree of E [M]

TkM: A, TuT'kE[M]: c.

Programs with continuations and linear logic 183

Zf M is a value and its type A atomic (actually M is a variable of atomic type A), then
T(ZI’) is

!-box

.
?r(A)’ ?!r(B) ?r(A)* ?!7(A)

I
L

J
?r(r’ u [z : A])I ‘? cvT

.

If M is a value and its type A a function type AI --) AZ, then T(II’) is

. . ..“.......................‘......”........‘”....“.‘“....~

!-box

?T 1 u I-’ ?
. .T II

lf M is not a value, then T(Il’) is

We here find a feature that a subterm pointed by an evaluation context appears
at the outmost, in other words, a call-by-value redex is transformed to an out-
most CUT-link. This feature is common to CPS-transformation: call-by-value
CPS-transformation maps a call-by-value redex to a redex of the weak head
reduction.

4.2. Computation and proof normalization

The correspondence between computation in AZ and proof normalization in linear
logic is presented in the following. Roughly speaking, each step of the computation
can be simulated by the cut elimination of a proof net. The proof normalization is

184 Shin-ya Nishizaki

a little weak in the aspect of handling C?-links (contraction) and the W?-box
(weakening).

Definition 24 (Extension of cut elimination of proof nets). The cut elimination of

proof nets is here extended by the addition of the following contractions and

an equality:

!-box !-box

W?-box

!-box

- j P ;
.___.....

’ ’ ?A c

?A ?A e C? ?B C
- ?A ’

W?-box

?A ?B C -

?A ?A C?
?A

?A
?AC? ?ATA.flC?

=

Under the proof normalization defined in the above, the following holds:

Theorem 25 (Computation as proof normalization). The computation rule _‘comp

of &+ corresponds to several steps of elimination of CUT-links: tf M, N are
terms such that M -‘comp N, then the T(M) are rewritten to T(N) by the proof
normalization procedure extended as above and elimination of useless outmost
W?-boxes.

Programs with continuations and linear logic 185

Here, we comment on “elimination of useless outmost W?-boxes”: The formulas

z(T) in the auxiliary door of T(M) exactly correspond to free variables FreeVar(M),
on the other hand, the number of free variables FreeVar(M) occurring in M often

decreases. The decreased free variables correspond to the eliminated outmost W?-

boxes.

Proof (Outline). The most subtle point is the handling of C?-links and W?-boxes,
which corresponds to the handling of variables in A-terms. A detailed discussion about

this would obsure the outline of our argument. For this reason, we do not go into

these details.

First, we have to reconstruct the substitution operation: the proof normalization of

a proof net does not simulate the usual substitution operation. So, we change the

substitution as follows:

Definition 26 (Substitution simulated by proof normalization). A substitution, written

M [x : = N], where we substitute a term N for a free variable x in a term M, is defined

in the following, using a “subroutine” M{x:= N} defined only in the case that

a variable x strictly occurs in a term M.

M[x:= N]+M

if x4 FreeP’ar(M);

+ M{x:=N}

if x E Free Var(M);

(M’M”){x:=N} +(M’{x:=N} M”{x:=N})

if XE FreeVar(M’), FreeVar(M”);

(M’M”) {x:= N} +(M’{x:= N} M”)

if x~FreeVar(M’), x$ FreeVar(M”);

(M’M”){x:=N} +(M’M”{x:=N})

if x$ FreeVar(M’), xE FreeVar(M”);

(Ay:A.M){x := N} +(/Iy:A.M(x:=N));

where x # y

Z&.(M) (x:=N} -d”,B{M{x:=N}}

We can easily check that the substitution M [x : = N] defined above is equivalent

to the usual one.

186 Shin-ya Nishizaki

Then, if we notice the following points, the proof is straightforward.

the shape of evaluation contexts after the translation, explained above;

the correspondence between each substitution step defined above and each proof

normalization step;

outmost CUT-links correspond to steps of the computation (except the substitu-

tion operation);

the correspondence between free variables of a subterm and auxiliary doors of

the proof box (which originates from the subterm) through the translation T. 0

Example 27. Last, we present an example. We observe a normalization for the proof

net T((lx: B.&f) (A& c(ilf: B --, C.N))) in the example at Section 3. If we contract the

outmost right CUT-link, it becomes

rid i .
D? 1 : ~term(flA4) ; : .

LUZ)

J. ?~(l-~)l ?!T(A)

\
.

W? ~terrn(wv) i

T-
: .

!

?T(E)* ?7(rM)l ?!T(A)

-\c3

d?

..__CUT 2

(this figure shows only the left part changed by the normalization: the lower CUT-link

is connected to the !-box of T,,,,(Il,).)

Remind that

(Ax : B.M) (&, c((;lf: B + C.N)))

-+comp (Ax : B.M) ((Af: B + C.N) (h : B.d~, c { (Ax : B.M)z})) .

In the above proof net, the inside of the W?-box corresponds to (Ax: B.M)z

and the one of the left !-box to (AZ : B.dA, c{ Ix: B.M)z}). These normalization

steps correspond to this computation transition and we find that the !/C?-SC step

(see [8]) at the right CUT-link duplicates the continuation and that the W?-box

in the proof net translated by X,,c is an early form which grows up into an

abort-term.

For a more detailed observation, suppose that N is (ly : C.Ni) (flv,) such that

:n, . ’ : “RI

~N,~{Cy:CI}~~1:~, rlVIFNZ:B.

Programs with continuations and linear logic

Then Tterm(AJ) is

187

.
.

id\@(id :

; ~term(~Nz) ; II d?
~term(~N,) ;

~;j’djr”;.....
.7(ri; j’l”y{G(‘ii,

.
?T(l-j.+)1 ?!7(8)

L- 1 CUT i CUT

C?S

?7(rN1 L rjtJ,)l ?T(A-i3)l

The middle part of the !-box has the faculty of connecting the given function to an

argument port and an output port.

The normalization proceeds further under this supposition. The outmost right

CUT-link can now be contracted:

rid
D?

f‘.......‘......“....“‘....

~k,rnPM) : .
.

(This figure shows only the changed part: the ?!+A) is connected to the !-box of

Tt,,,(n,) by a C?s-link and ?!r(B) it by a CUT-link.)

This part corresponds to (AZ : B.s&, c { (Ax : J3.M)z})N2. If the normalization of

Tte,,(II,,) proceeds and the middle !-box which includes the W?-box, has disappeared

as a result of normalization, then the W?-box deletes the right !-box which is

a continuation. It is important that the deletion of the continuation by the W?-box
does not depend on term Ni: even if variablefdoes not occur in Nr, the continuation

is deleted, which is one of the features of cull-by-value evaluation.

5. Conclusion

We first introduced the programming language A.; with continuation primitives.

Secondly we introduced the translation from A,’ to linear logic, which consists of two

translations: translation r from types to propositions and translation T from terms

188 Shin-w Nishizaki

and proof nets. Lastly, the relationship between &+ and linear logic was investigated.

The following is the main result of this paper:

In the translated type !$A)-o ?!r(B) of a function type A -+ B, the first

modality ! shows us the possibility of duplication and/or deletion of an

input value (of type A) and the second modality ? the possibility of

duplication and/or deletion of an input continuation. A characteristic of

a programming language with continuation primitives is explicitly pres-

ented by modality of linear logic.

6. Related works and future works

Curry-Howard isomorphism between programming language with continuation

primitives and classical logic have been studied previously [12,19,20]. There corres-

pond various notions of the programming language to ones of classical logic: con-

tinuation primitives V, d and X correspond to inference rules of classical logic, the

ii-elimination rule, the I-elimination rule and Peirce’s law, respectively, and

continuation-passing-style transformation corresponds to 11 -translation. If we

translate negation 1 A (= A -+ I) as (!A) -0 I with multiplicative absurdity I rather

than additive absurdity 0 (like [S, p. 911: this replacement goes well since the I-

elimination rule does not occur in proofs translated by ii-translation. The com-

position of l-~-translation and the above translation also gives a translation from

classical logic to linear logic, which is equivalent to the one given in this paper in the

sense of M because ii,4 -?!A is provable in classical linear logic. So, the

contributions of this paper in comparison with previous works are the following:

l expressing the possibility of deletion and duplication of continuations by

modality ?, !;

l investigating the mechanism of continuations in a proof net.

There are several directions for future work. One is the translation from the

programming language to linear logic. We have used many !-boxes in the translation

and these boxes ensure the determinism. The abuse of boxes does harm to another

strong point of proof nets, i.e. parallelism, which is the point to be improved in our

work.

Another direction is improvement of 2,“: this direction is not related to the

continuation itself. The treatment of free variables in the definition of the translation is

quite complicated. In usual A-calculi, the substitution has been thought to be

a “cheap” operation. However, it is not “cheap” and cannot be disregarded in linear

logic. Such a gap causes the complicated treatment at the part corresponding to the

free variables when we define the translation. Therefore, we should bring I-calculus

closer to linear logic. io-calculus [l] is recently proposed by Abadi et al. Substitutions

are manipulated explicitly, hence, the substitution is not treated as a cheap operation,

Programs with continuations and linear logic 189

which is fit for our work. The reconstruction of this work by this calculus will fill the

gap between I-calculus and linear logic and the situation will be improved.

We have studied the simply typed language. Danos proposed the untyped version

of proof net, called pure net [3]. We may extend our work to the untyped version with

his work.

In this paper, we investigated only two primitives X and d. Other primitives have

been proposed, for example shij$ reset by Danvy and Filinski [4]. The study of new

primitives is also a future work.

Acknowledgements

I am deeply indebted to Masami Hagiya for his help in preparing this paper and

wish to thank P.-L. Curien, J.-Y. Girard, C.A. Gunter, R. Hasegawa, S. Hayashi,

T. Ito, A.R. Meyer, C. Murthy, H. Nakano, H. Tsuiki, and the anonymous ref-

erees. I owe the discussion in Section 6 to C. Murthy and one of the anonymous

referees.

References

[l] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy, Explicit substitutions, in: Proceedings 17th Annual
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, San Francisco, CA

(1990).
[2] A.W. Appel and T. Jim, Continuation-passing, closure-passing style, in: Proceedings 16th Annual

ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, Austin, TX (1989).

[3] V. Danos, Dynamic graphs, an alternative way to compute I-terms, in: Proceedings 3rd Italian
Conference on Theoretical Computer Science, Mantova (1989).

[4] 0. Danvy and A. Filinski, Abstracting control, in: Proceedings ACM Conference on Lisp and
Functional Programming (1990).

[S] M. Felleisen, D.P. Friedman, E. Kohlbecker and B. Duba, A syntactic theory of sequential control,

Theoret. Comput. Sci. 52 (1987) 205-237.
[6] A. Filinski, Declarative continuations and categorical duality, Master’s Thesis, DIKU Report No.

89/l 1, University of Copenhagen (1989).
[7] P. Fradet and D. Le MBtayer, Compilation of functional languages by program transformation, ACM

Trans. Programming Languages and Systems 13 (1) (1991) 21-51.

[S] J.-Y. Girard, Linear logic, Theoret. Comput. Sci. 50 (1987) l-102.
[9] J.-Y. Girard, Towards a geometry of interaction, in: Categories in Computer Science and Logic,

Contemporary Mathematics 92 (1989) 69-108.

[lo] J.-Y. Girard, P. Taylor and Y. Lafont, Proofs and Types, Cambridge Tracts in Computer Science

7 (Cambridge University Press, Cambridge, 1989).

[1 l] H. Friedman, Classically and intuitionistically provably recursive functions, in: D.S. Scott and G.H.

Muller, eds., Higher Set Theory, Lecture Notes in Mathematics 699 (Springer, Berlin, 1978) 21-28.

[12] T.G. Griffin, A formulae-as-types notion of control, in: Proceedings 17th Annual ACM Symposium on
Principles of Programming Languages, San Francisco, CA (1990).

[13] C.T. Haynes, Logic continuations, in: Proceedings 3rd Znternational Conference on Logic Programming
(Springer, Berlin, 1986) 671-685.

[14] CT. Haynes, D.P. Friedman and M. Wand, Continuations and coroutines, in: Conference Record of
the I984 ACM Symposium on Lisp and Functional Programming (1984) 293-298.

190 Shin-ya Nishizaki

[15] Y. Lafont, The linear abstract machine, Theoret. Comput. Sci. 59 (1988) 157-180.

Cl63 D. Leivant, Syntactic translations and provably recursive functions, J. Symbolic Logic 50 (1985)

682-688.

[17] A.W. Mazurkiewicz, Proving algorithms by tail functions, Inform. and Control 18 (1971) 220-226.

[18] J.H. Morris Jr, A bonus from van Wijngaarden’s device, Comm. ACM 15 (1972) 773.

[19] C.R. Murthy, An evaluation semantics for classical proofs, in: Proceedings 6th Annual IEEE Sympo-
sium on Logic in Computer Science (1991).

[20] CR. Murthy and R.L. Constable, Finding computational content in classical proofs (1990).

[21] J. Rees and W. Clinger, Revised3 report on the algorithmic language Scheme, SIGPLAN Notices 21
(12) (1986) 37-79.

[22] G.L. Steele Jr, Rabbit, a compiler for Scheme, Ai-tr-474, MIT AI Lab., Cambridge, MA (1978).
[23] G.L. Steele Jr, S.E. Fahlman, R.P. Gabriel, D.A. Moon and D.L. Weinreb, Common Lisp: the

language (1984).
[24] C. Strachey and C.P. Wadsworth, Continuations: a mathematical semantics for handling full jumps,

Technical Monograph prg-11, Oxford University Computing Laboratory, Programming Research

Group, Oxford (1974).
[25] A. van Wijngaarden, Recursive Definition ofsyntax and Semantics (North-Holland, Amsterdam, 1966)

13-24.
[26] M. Wand, Continuation-based program transformation strategies, J. ACM 27 (1) (1978) 174-180.

