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CXCL10 plays a key role as an inflammatory mediator and a
non-invasive biomarker of non-alcoholic steatohepatitis
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Background & Aims: Perpetuate liver inflammation is crucial in
the pathogenesis of non-alcoholic steatohepatitis (NASH).
Expression of CXCL10, a pro-inflammatory cytokine, correlates
positively with obesity and type 2 diabetes. Whether CXCL10
plays a role in NASH was unknown. We aimed to investigate
the functional and clinical impact of CXCL10 in NASH.
Methods: Cxcl10 gene-deleted (Cxcl10�/�) and C57BL/6 wild type
(WT) mice were fed a methionine- and choline-deficient (MCD)
diet for 4 or 8 weeks. In other experiments, we injected neutral-
izing anti-CXCL10 mAb into MCD-fed WT mice. Human serum
was obtained from 147 patients with biopsy-proven non-alco-
holic fatty liver disease and 73 control subjects.
Results: WT mice, fed the MCD diet, developed steatohepatitis
with higher hepatic CXCL10 expression. Cxcl10�/� mice were
refractory to MCD-induced steatohepatitis. We further revealed
that CXCL10 was associated with the induction of important
pro-inflammatory cytokines (TNF-a, IL-1b, and MCP-1) and
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activation of the NF-jB pathway. CXCL10 was linked to steatosis
through upregulation of the lipogenic factors SREBP-1c and LXR,
and also to oxidative stress (upregulation of CYP2E1 and C/EBPb).
Blockade of CXCL10 protected against hepatocyte injury in vitro
and against steatohepatitis development in mice. We further
investigated the clinical impact of CXCL10 and found circulating
and hepatic CXCL10 levels were significantly higher in human
NASH. Importantly, the circulating CXCL10 level was correlated
with the degree of lobular inflammation and was an independent
risk factor for NASH patients.
Conclusions: We demonstrate for the first time that CXCL10
plays a pivotal role in the pathogenesis of experimental steato-
hepatitis. CXCL10 maybe a potential non-invasive biomarker for
NASH patients.
� 2014 European Association for the Study of the Liver. Published
by Elsevier B.V. Open access under CC BY-NC-ND license.
Introduction

Non-alcoholic fatty liver disease (NAFLD) has become increas-
ingly important worldwide due to changes in lifestyle and resul-
tant over-nutrition [1]. Non-alcoholic steatohepatitis (NASH) is a
severe form of NAFLD, characterized by necroinflammation and
lipid accumulation [2,3]. Little is known about the factors respon-
sible for the transition from benign steatosis to steatohepatitis in
NAFLD/NASH. As a consequence, apart from addressing lifestyle
issues, there are few effective interventions to treat patients with
NASH. The present concept about NASH pathogenesis is that
increased levels of toxic lipids, such as free fatty acids or free cho-
lesterol provide initiating and propagating mechanism for hepa-
tocellular injury and resultant inflammation. Inflammation may
result from oxidative stress and pro-inflammatory chemokines
and cytokines, which perpetuate liver injury and lead to fibrosis
[4]. Identification of the pro-inflammatory cytokines, which are
associated with lipotoxicity, may improve our understanding of
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the pathogenesis of NASH, enabling the development of novel
pharmacological treatments.

One particularly important pro-inflammatory cytokine associ-
ated with lipotoxicity is the CXC motif chemokine ligand 10
(CXCL10), which recruits inflammatory cells to the site of tissue
damage [5,6]. CXCL10 has been implicated in the pathogenesis
of hepatitis C virus infection through interactions with the toll-
like receptor (TLR) 2 [7], and in hepatitis B virus-infection
through the nuclear factor-jB (NF-jB) pathway [8]. In various
types of liver injury, CXCL10 is secreted by hepatocytes in areas
of lobular inflammation [9,10] and neutralization of CXCL10
accelerates liver regeneration [11]. These data indicate a poten-
tial role for CXCL10 in the development of intrahepatic inflamma-
tion. Moreover, CXCL10 is upregulated in NASH patients [12] and
correlates positively with the incidence of obesity and type 2 dia-
betes [13,14]. These findings suggest that CXCL10 could be a piv-
otal molecule that facilitates transition from benign steatosis to
progressively hepatocellular damage and inflammation in
steatohepatitis.

We have recently reported that the anti-oxidant enzyme
heme oxygenase-1 protects against development of experimental
steatohepatitis in association with reduced production of CXCL10
[15]. In the present study, we first investigated the functional role
of CXCL10 in the development of steatohepatitis using Cxcl10
gene-deleted mice, and further explored the molecular mecha-
nisms by which CXCL10 exerts its effects on inflammation, stea-
tosis, oxidative stress and apoptosis. We demonstrated by in vitro
and in vivo approaches that blockade of CXCL10 (neutralizing
anti-CXCL10 mAb) protected against steatohepatitis. In particu-
lar, we tested the clinical impact of CXCL10 in 147 patients with
biopsy-proven NAFLD and 73 control subjects and demonstrated
that circulating CXCL10 is an independent risk factor for patients
with NASH.
Materials and methods

Animals and treatments

Age-matched male Cxcl10 knock out (Cxcl10�/�) and C57BL/6 wild type (WT) mice
(from Dr. Andrew D. Luster, Harvard Medical School) were fed either a methionine-
and choline-deficient (MCD) diet or a control diet for 4 weeks to establish steato-
hepatitis, or for 8 weeks to establish fibrosing steatohepatitis [15,16].

For CXCL10 neutralization experiments, male C57BL/6 WT mice were given
CXCL10-specific anti-CXCL10 mAb (R&D System, Minneapolis, MN) by intraperi-
toneal injection (50 lg in 200 lL PBS per mouse) at 12 h before MCD diet, and
then the injection was repeated every 2 days for 5 cycles [10,14]. Mice were also
given an isotype-matched rat IgG2A mAb (R&D System) at the same time as the
controls. In a separate experiment, anti-CXCL10 mAb or control mAb were sup-
plemented for 10 days under MCD diet after induction of steatohepatitis in mice
fed the MCD diet for 3 weeks. All animals received humane care and all animal
studies were performed in accordance with guidelines approved by the Animal
Experimentation Ethics Committee of the Chinese University of Hong Kong.

Mice were sacrificed as previously described [17]. Biochemical determination
of serum alanine aminotransferase (ALT) levels, triglycerides and lipid peroxida-
tion rates were performed. Liver histology, liver collagen content analysis, cyto-
kine profiling assay, cDNA expression array, nuclear DNA binding activity assay,
terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay,
fluorescence activated cell sorting (FACS) analysis, qPCR and western blot were
performed.

Subjects and human sample collection

Serum samples were collected from 147 patients with biopsy-proven NAFLD and
73 healthy subjects as previously described [18,19]. Percutaneous liver
biopsy specimens were collected from 11 patients with NASH, 11 patients with
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simple steatosis and 15 healthy controls in the Prince of Wales Hospital and
the Queen Mary Hospital, Hong Kong. All subjects had given written informed
consent and the study protocol was approved by the Clinical Research Ethics
Committee of the Chinese University of Hong Kong and the University of Hong
Kong.
Statistical analysis

Differences between two groups were compared by the Mann-Whitney U test or
Student’s t test. Multiple group comparisons were made by the Kruskal-Wallis
test or one-way ANOVA. Spearman’s correlation coefficient was used to estimate
the association of serum CXCL10 levels and several factors of interest, while mul-
tiple linear regression was used to determine the independent factors associated
with levels of CXCL10. Multiple logistic regression was performed to identify the
independent risk factors of NASH. A receiver operating characteristic (ROC) curve
analysis was conducted to assess the performance of CXCL10 in the prediction of
NAFLD/NASH. All statistical tests were performed using SPSS or GraphPad Soft-
ware. Data were expressed as mean ± standard deviation or median (interquartile
range [IQR]) and considered significant at p <0.05.

Additional experimental procedures are provided in the Supplementary
Materials and methods section.
Results

Hepatic CXCL10 expression is upregulated in experimental
steatohepatitis and is required for its development

To elucidate the role of CXCL10 in the development of steatohep-
atitis, Cxcl10�/� and WT mice were fed control or MCD diets for
4 weeks. MCD-fed WT mice developed steatosis, ballooning hepa-
tocytes, scattered lobular inflammatory cell infiltration, and
inflammatory foci (Fig. 1A), consistent with steatohepatitis. This
was associated with increased hepatic CXCL10 mRNA and protein
levels compared with mice fed a control diet (Fig. 1B), which
showed normal liver histology (Fig. 1A). Conversely, MCD-fed
Cxcl10�/� mice showed significant less steatosis (p <0.01) and
reduced inflammatory cell infiltration (p <0.01), as indicated by
steatosis and necroinflammatory scores (Fig. 1A). Consistent with
the histologic findings, measurement of serum ALT (p <0.0001),
hepatic lipid peroxide by the thiobarbituric acid reactive sub-
stances (TBARS) assay (p <0.01) and hepatic triglyceride contents
(p <0.01) revealed that loss of CXCL10 protected mice from MCD
diet-induced liver injury (Fig. 1C). The decreased lipid accumula-
tion in MCD-fed Cxcl10�/� mice was confirmed by Oil red O stain-
ing (Fig. 1A). Taken together, these data suggest that CXCL10
contributes to the development of steatohepatitis.
CXCL10 is required for hepatic nutritional fibrosis

To examine whether CXCL10 plays a role in hepatic nutritional
fibrosis, Cxcl10�/� mice and WT mice were fed with control or
MCD diet for 8 weeks. Intraparenchymal pericellular fibrosis
developed from steatohepatitis in WT mice fed with MCD for
8 weeks as shown by Sirius Red staining (Fig. 1D), whilst,
MCD-fed Cxcl10�/� mice showed impressively reduced amounts
of collagen fibres (Fig. 1D). Morphometric analysis yielded con-
cordant results where the Sirius Red-stained collagen areas
were significantly reduced in MCD-fed Cxcl10�/� mice com-
pared to MCD-fed WT mice (p <0.05). Moreover, quantitation
of collagen by measuring hepatic hydroxyproline content sup-
ported the improvement of liver fibrosis by CXCL10 deficiency
(Fig. 1D).
vol. 61 j 1365–1375
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Fig. 1. Deficiency of CXCL10 attenuates experimental steatohepatitis. (A) Representative H&E staining (arrows, inflammatory cells) and Oil red O staining from 4-week
liver sections of Cxcl10�/� and WT mice fed a control or MCD diet. (B) Hepatic CXCL10 mRNA and protein levels in liver tissues of WT mice. (C) Serum ALT, total hepatic lipid
peroxide and liver triglyceride content in WT and Cxcl10�/� mice fed control or MCD diet for 4 weeks. (D) Collagen deposition by Sirius Red staining and hydroxyproline
content of liver sections in mice fed a control or MCD diet for 8 weeks. Data are mean ± SD, n = 5–8/group. ⁄p <0.05, ⁄⁄p <0.001, ⁄⁄⁄p <0.0001 vs. same genotype mice fed
control diet. #p <0.01 vs. WT mice fed MCD diet.
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CXCL10 induces hepatic chemokines, cytokines and other
proinflammatory molecules

We next determined the mechanisms of CXCL10 in regulating
hepatic inflammation by analysing chemokines and cytokines
involved in inflammation and cell recruitment. In keeping with
the improved liver histology and reduction of liver injury, loss
Journal of Hepatology 2014
of CXCL10 significantly reduced the production of key pro-
inflammatory chemokines and cytokines such as tumor necrosis
factor-a (TNF-a), interleukin (IL)-1b, and monocyte chemoattrac-
tant protein-1 (MCP-1), as indicated initially by a cytokine profil-
ing assay (Fig. 2A) and confirmed by qRT-PCR (Supplementary
Fig. 1A–C). We then conducted a cDNA expression assay to iden-
tify molecules involved in CXCL10-mediated pathogenesis of
vol. 61 j 1365–1375 1367
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Fig. 2. CXCL10 induces steatohepatitis through hepatic inflammatory molecules, lipogenic factors and oxidative stress. (A) Hepatic TNF-a, IL-1b, and MCP-1 protein
levels in mice fed control or MCD diet. (B) NF-jB nuclear binding activity and protein levels of phosphorylated NF-jB subunits p65, p50 and NF-jB suppressor IjBa, (C)
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steatohepatitis using an additional panel of inflammatory
response factors and comparing their expression in MCD-fed
Cxcl10�/� and WT mouse livers. Loss of CXCL10 was associated
with substantially increased expression of CXCL6 (63.2-fold),
1368 Journal of Hepatology 2014
CXCL9 (27.7-fold), E-selectin (SELE), IFN-c, oxidative stress-associ-
ated transcription factor CCAAT/enhancer binding protein beta
(C/EBPb), and NF-jB signalling components including IL-6 (24.1-
fold), CCL22 (13.2-fold), TLR9, CXCL5 and cyclooxygenase-2
vol. 61 j 1365–1375



Table 1. The effect of CXCL10 on gene expression profiles of inflammatory
response in mice liver tissues.

Gene name Fold change† Gene function

CXCL6 63.2 Pro-inflammatory cytokine
CXCL9 27.7 Inflammatory response
E-Selectin 7.4 Inflammatory response
IFN-γ 5.3 Pro-inflammatory cytokine
C/EBPβ 4.2 Oxidative stress
IL-6 24.1 Acute-phase response
CCL22 13.2 Inflammatory response
TLR9 4.2 Inflammatory response
CXCL5 2.8 Inflammatory response
COX-2 2.7 Acute-phase response

�MCD-fed WT mice vs. MCD-fed Cxcl10�/� mice.
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(COX-2) (Table 1). These data support that CXCL10 plays a critical
role in liver inflammation.

CXCL10 activates NF-jB

Given the crucial role of NF-jB signalling in the pathogenesis of
steatohepatitis [20,21], we examined whether CXCL10 played any
role in modulation of this pathway in steatohepatitis. NF-jB
nuclear binding activity was increased in MCD-fed WT mice com-
pared with control diet (p <0.0001), but not in MCD-fed Cxcl10�/�

mice (Fig. 2B). This was confirmed by enhanced levels of phos-
phorylated NF-jB subunits p65 and p50, decreased cytosolic
NF-jB suppressor IjBa (Fig. 2B) and upregulation of NF-jB
downstream factor intercellular adhesion molecule-1 (ICAM-1)
in MCD-fed WT mice compared to corresponding Cxcl10�/� mice
(Supplementary Fig. 1D). Our findings indicate that CXCL10
employs NF-jB signalling to mediate inflammation in
steatohepatitis.

CXCL10 contributes to hepatic steatosis by inducing lipogenic genes

To seek an explanation for the reason why deletion of CXCL10
caused less steatosis, we assessed hepatic expression of lipogenic
regulators and genes, including liver X receptor (LXR)a, LXRb, ste-
rol regulatory element binding protein isoform 1c (SREBP-1c),
carbohydrate response element binding protein (ChREBP) and
stearoyl-CoA desaturase isoform-1 (SCD-1) as well as genes and
regulators of hepatic fatty acid oxidation, such as adiponectin,
peroxisome proliferator-activated receptor-alpha and its down-
stream target molecules, acyl-CoA oxidase, long-chain acyl-CoA
dehydrogenase, cytochrome P450 (CYP) 4a10 and 4a14. Com-
pared to MCD-fed WT mice, MCD-fed Cxcl10�/� mice showed sig-
nificantly lower mRNA expression of LXRa, LXRb, SREBP-1c,
ChREBP, and SCD-1 (Table 2). Western blot confirmed the down-
regulation of SREBP-1c and SCD-1 protein expression in liver
lysates (Fig. 2C). Concomitantly, the nuclear DNA-binding activity
of SREBP-1c was decreased in Cxcl10�/� mice (Fig. 2C). Expression
of lipolytic genes, regulating fatty acid oxidation, was similar
between Cxcl10�/� and WT mice fed MCD (Table 2). These find-
ings indicate that CXCL10 either directly or indirectly (such as
via MCP-1) can influence hepatic lipogenesis, thereby contribut-
ing to steatosis as well as its inflammatory consequences.
Journal of Hepatology 2014
CXCL10 contributes to oxidative stress through CYP2E1 and C/EBPb

In addition to the accumulation of hepatic triglycerides in
response to choline deficiency and lipogenesis [22,23], and
impaired antioxidant defences in response to methionine defi-
ciency, induction of CYP2E1 (or CYP4A) [24] and C/EBPb [17]
may induce oxidative stress in the MCD model of steatohepatitis.
To establish whether the latter factors contributed to the protec-
tion against steatohepatitis afforded by CXCL10 deletion, we eval-
uated the levels of C/EBPb and CYP2E1. Both C/EBPb and CYP2E1
mRNA and protein expression were significantly less in MCD-fed
Cxcl10�/� compared to corresponding WT mice (Fig. 2D and E,
Table 1). Nuclear C/EBP DNA-binding activity was also decreased
in Cxcl10�/� mice (Fig. 2D). Thus, CXCL10 could contribute to
hepatic oxidative stress in steatohepatitis by regulating C/EBP
and its downstream target CYP2E1.

CXCL10 contributes to hepatic apoptosis

As the elevation of apoptotic cell death is closely associated with
the severity of NASH [25], we assessed the role of CXCL10 in reg-
ulating hepatic apoptosis in steatohepatitis by TUNEL assay. We
found that TUNEL-positive cells were significantly less in
Cxcl10�/� mice compared to WT mice fed MCD (0.94% vs. 4.56%,
p <0.01) (Fig. 2F). Consistent with the impaired apoptosis, the
protein expression of the active form of the apoptosis regulator
caspase-3 was significantly downregulated in Cxcl10�/� mice
compared with WT mice (Fig. 2F).

Phenotypic analysis of immune cells in the spleen and peripheral
blood of Cxcl10�/� and WT mice

In order to investigate the major immune cell populations in
CXCL10�/� and WT mice, we performed FACS analysis in the
spleen and peripheral blood. Consistent with a previous report
of Cxcl10�/� mice [26], the frequencies of B cells (CD19+CD3�),
T cells (CD3+CD19�), NK cells (NK1.1+CD3�), NKT cells
(NK1.1+CD3+), macrophages (CD11b+F4/80+) and neutrophils
(CD11b+Ly6G+) in the spleen and peripheral blood of Cxcl10�/�

mice were not changed compared to WT mice under MCD or con-
trol diet (Supplementary Figs. 2 and 3). Only a slight reduction of
CD8+ T lymphocytes (CD8+CD4�) was observed in the spleen of
MCD-fed Cxcl10�/� mice compared to WT mice fed with the same
diet (34.3 ± 2.26 vs. 38.5 ± 1.34) (Supplementary Fig. 2).

Inactivation of CXCL10 by anti-CXCL10 mAb antagonizes
MCD-induced steatohepatitis

The above results indicate essential and multiple roles of CXCL10
in steatohepatitis pathogenesis. If this is the case, specific CXCL10
inhibition should dampen or abrogate the development of this
type of liver pathology. To test this, we first examined the func-
tional effect of an anti-CXCL10 monoclonal antibody (mAb) on
steatosis and injury to hepatocyte-derived cells in vitro. As
reported [15,17], incubation of the immortalized murine hepato-
cyte cell line AML-12 with MCD medium for 24 h increased med-
ium ALT, cellular triglyceride and oxidative stress, detected by
TBARS and lipid hydroperoxide assays (Supplementary Fig. 4).
Conversely, anti-CXCL10 mAb added to AML-12 cells incubated
in MCD medium significantly reduced medium ALT, cellular
triglycerides, cellular TBARS and lipid hydroperoxide levels
vol. 61 j 1365–1375 1369



Table 2. Hepatic mRNA expression of genes involved in fatty acid regulation in Cxcl10�/� mice.

Gene WT mice Cxcl10-/- mice
Control MCD Control MCD

Lipogenic genes
LXRα 1.05 ± 0.33 1.52 ± 0.31** 0.99 ± 0.12 0.97 ± 0.23##

LXRβ 1.05 ± 0.30 1.91 ± 0.68** 1.28 ± 0.31 1.30 ± 0.34#

SREBP-1c 1.01 ± 0.16 0.63 ± 0.30* 0.53 ± 0.23 0.30 ± 0.11#

ChREBP 1.01 ± 0.18 0.66 ± 0.26* 1.25 ± 0.31 0.32 ± 0.08***#

SCD-1 1.035 ± 0.33 0.012 ± 0.006*** 0.570 ± 0.213 0.006 ± 0.004***#

Lipolytic genes
Adiponectin 1.44 ± 1.09 0.30 ± 0.29 2.15 ± 0.97 1.08 ± 0.91
PPARα 1.01 ± 0.14 0.69 ± 0.23* 1.17 ± 0.14 0.59 ± 0.09***
ACO 1.04 ± 0.35 0.28 ± 0.07** 1.27 ± 0.49 0.29 ± 0.06
LCAD 1.04 ± 0.31 1.19 ± 0.53 0.74 ± 0.29 0.71 ± 0.22
CYP4A10 0.91 ± 0.55 2.79 ± 1.20* 1.30 ± 0.68 1.46 ± 0.61
CYP4A14 2.03 ± 2.45 79.5 ± 34.2*** 1.69 ± 1.16 50.2 ± 25.4**

Specific mRNA expression values were normalized to the expression of GAPDH. Data are mean ± SD, n = 5–8/group. ⁄p <0.05, ⁄⁄p <0.01, ⁄⁄⁄p <0.0001 compared with
corresponding mice fed control diet. #p <0.05, ##p <0.0001 compared with WT mice fed the MCD diet.
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compared to AML-12 cells in MCD medium exposed to control
IgG2A mAb (Supplementary Fig. 4).

We next examined whether administration of the anti-CXCL10
mAb by intraperitoneal injection could prevent MCD-induced
steatohepatitis in vivo. Administration of the anti-CXCL10 mAb
to MCD-fed WT mice reduced steatosis and inflammatory cell
infiltration (Fig. 3A), with concordant reduction of serum ALT,
hepatic triglyceride and lipid hydroperoxide levels (Fig. 3B) com-
pared to MCD-fed mice administered control mAb. Likewise,
CXCL10 neutralization suppressed NF-jB binding activity
(p <0.01), and reduced the expression of phosphorylated NF-jB
subunits p65 and p50 (p <0.05) and ICAM-1 mRNA (p <0.05)
(Fig. 3C). Moreover, blocking CXCL10 significantly decreased the
levels of CYP2E1 (p <0.01) and SREBP-1c (p <0.05) (Fig. 3D).

After confirming a preventive effect on steatohepatitis, we
further examined whether CXCL10 neutralization could treat ste-
atohepatitis after it has been established. After induction of ste-
atohepatitis in mice fed the MCD diet for 3 weeks, anti-CXCL10
mAb or control mAb was supplemented for 10 days under MCD
diet. Histological analysis of livers by H&E and Oil red O staining
showed significantly reduced lipid accumulation and inflamma-
tory cell infiltration in MCD-fed mice treated with anti-CXCL10
mAb (Fig. 3E). Anti-CXCL10 mAb treatment in MCD-fed mice also
significantly decreased hepatic triglyceride and lipid peroxide
levels compared to MCD-fed mice administrated with control
mAb (Fig. 3F). Moreover, CXCL10 neutralization suppressed hepa-
tic TNF-a (p <0.05) and ICAM-1 (p <0.05) mRNA expression
(Fig. 3G). These data added further weight to the effects of
CXCL10 in mediating inflammation, oxidative stress and steatosis
in the evolution of steatohepatitis.

CXCL10 is associated with lobular inflammation and acts as an
independent risk factor of human NASH

Since the MCD model reflects pathologically severe steatohepati-
tis with choline and amino acid nutritional deficiency and a con-
text of ‘‘lipid trapping’’ in the liver with severe oxidative stress, it
remains important to establish whether human NASH related to
1370 Journal of Hepatology 2014
over-nutrition is also associated with increased liver expression
and circulating levels of CXCL10. To this end, we assayed CXCL10
mRNA in liver biopsy from 15 control subjects and 22 NAFLD
patients (11 simple steatosis patients and 11 human NASH
patients). The results showed that hepatic CXCL10 mRNA levels
were significantly higher in primary NASH tissue compared to
simple steatosis (p <0.05) and normal controls (p <0.001)
(Fig. 4A), inferring that hepatic CXCL10 production is prominent
in patients with NASH.

We next ascertained the clinical impact of CXCL10 in NASH
patients. We enrolled a well-established prospective cohort of
73 control subjects without fatty liver measured by proton-
magnetic resonance spectroscopy and 147 age and gender
matched biopsy-proven NAFLD patients, 69 of whom were
diagnosed as NASH [18,19]. We found that serum CXCL10 was
significantly increased in a stepwise fashion from control subjects
(111 [IQR: 98–146] pg/ml), patients with simple steatosis (170
[133–225] pg/ml) to patients with NASH (248 [154–310] pg/ml)
(Fig. 4B, all p <0.0001). In NAFLD patients (simple steatosis and
NASH), CXCL10 was significantly and positively correlated with
lobular inflammation (rho: 0.26, p = 0.002) and hepatocyte bal-
looning degeneration (rho: 0.24, p = 0.004), which are two major
histological features of NASH (Table 3). Multivariable linear
regression analysis also demonstrated that the serum CXCL10
level was positively associated with lobular inflammation (Beta:
47.9; 95% CI: 15.0–80.8; p = 0.005) and ballooning (Beta: 51.1;
95% CI: 20.0–82.1; p = 0.001) independent of metabolic syn-
drome, body mass index (BMI), ALT, triglyceride, fasting glucose
and cholesterol. Moreover, we performed a multivariate logistic
regression analysis on these subjects and identified that CXCL10
was an independent risk factor for NASH in NAFLD patients (OR:
1.008, 95% CI: 1.004–1.013, p <0.001) (Table 4, with factors
included in the regression model listed).

CXCL10 is a potential biomarker for the clinical diagnosis of NASH

To evaluate the utility of CXCL10 as a biomarker in the diagnosis
of NAFLD and NASH, a ROC curve was constructed. CXCL10
vol. 61 j 1365–1375
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Fig. 3. CXCL10 neutralization protects against steatohepatitis in vivo. (A) Representative H&E staining, (B) serum ALT, hepatic triglyceride, lipid hydroperoxide, (C) NF-
jB binding activity, phospho NF-jB p65, p50, ICAM-1 levels, (D) CYP2E1 and SREBP-1c expression in mice administrated with anti-CXCL10 or control mAb at 12 h before
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exhibited a high overall accuracy in discriminating NAFLD from
control subjects with the area under the receiver operating char-
acteristic curve (AUROC) of 0.81 (95% CI: 0.75–0.87) (Fig. 4C). In
Journal of Hepatology 2014
NAFLD patients, CXCL10 had a moderate accuracy with the
AUROC of 0.68 (95% CI: 0.59–0.77) in discriminating NASH from
simple steatosis (Fig. 4C). If control subjects were also added to
vol. 61 j 1365–1375 1371
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Table 3. Correlations with CXCL10 in NAFLD patients.

CXCL10
rho p value‡

Age 0.16 0.062
BMI 0.07 0.408
Total cholesterol 0.09 0.304
Triglyceride 0.09 0.286
Steatosis 0.15 0.070

0.26 0.002
Ballooning
Lobular inflammation

0.24 0.004
Fibrosis 0.25 0.002

�p value corresponds to Ho: rho = 0.

Table 4. Multivariable analysis for independent risk factors for NASH in
NAFLD patients.

OR 95% CI p value
CXCL10 1.008§ 1.004-1.013 <0.001
Metabolic syndrome 3.083 1.203-7.903 0.019

Variables entered in the regression model: CXCL10, gender, age, body mass index
(BMI), metabolic syndrome, alanine aminotransferase (ALT), fasting glucose, tri-
glyceride, low density lipoprotein-cholesterol (LDL-c), glycated haemoglobin
(HbA1c).
§For every 1 unit increase of CXCL10 level.
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the analysis, the AUROC of diagnosing NASH increased to 0.77
(95% CI: 0.70–0.84) (Fig. 4C). Thus, CXCL10 can be a novel bio-
marker for the clinical diagnosis of NAFLD and NASH.
Discussion

The first novel finding in these studies is that Cxcl10�/� mice
administrated with MCD diet showed significantly attenuated
steatohepatitis compared with WT mice fed the same diet; these
findings were corroborated by improved liver histology, lowered
serum ALT, and hepatic triglyceride content. Moreover, CXCL10
deletion was associated with a significant reduction of intrahe-
patic oxidative stress, as indicated by decreased lipid peroxide
levels. This change was clearly associated with the attenuation
1372 Journal of Hepatology 2014
of hepatic inflammation. In addition, CXCL10 deficiency confers
protection from hepatic nutritional fibrosis. Our data provide
the first evidence that CXCL10 may contribute to lipogenesis,
thereby influencing steatosis and possibly lipotoxicity, as well
as hepatocellular injury and perpetuation of liver inflammation
in steatohepatitis, at least in the MCD model.

The molecular mechanisms by which CXCL10 exerts its broad
range of functions in steatohepatitis were subsequently studied.
As a key pro-inflammatory cytokine, CXCL10 often amplifies the
effects of other cytokines [5]. We therefore evaluated the effect
of CXCL10 on other potential cytokines in steatohepatitis and
showed that CXCL10 was associated with induction of TNF-a,
IL-1b, and MCP-1. TNF-a is a key inflammatory factor involved
in the development of human NASH [27] and experimental ste-
atohepatitis [28]. TNF-a can activate neutrophils, cause insulin
resistance and promote NASH development. TNF-a and IL-1b
are able to induce MCP-1 in vitro, suggesting that these cytokines
are functionally related [29]. MCP-1 is also an important mole-
cule in NASH as it may bridge inflammatory responses with the
induction of insulin resistance [30]. Moreover, MCP-1 can stimu-
late lipogenesis to promote steatosis in the liver, allowing inflam-
mation to exacerbate steatosis [4]. This suggests that CXCL10
induces cytokine expression, leading to the development of
steatohepatitis.

We further characterized the inflammatory factors, regulated
by CXCL10 in steatohepatitis, by a cDNA array covering 84 well-
known inflammatory genes. Our results show that pro-inflamma-
tory factors, including IFN-c, TLR9, CXCL9, IL-6, SELE, CXCL6, CCL22,
CXCL5, and COX-2, were significantly higher in WT mice than in
Cxcl10�/� mice fed with MCD. Each of these molecules could
amplify the inflammatory recruitment in steatohepatitis. To be
specific, IFN-c is a major inducer of CXCL10 related to NASH
pathogenesis [31]; TLR9 activates IFN regulatory factors that
induce production of IL-1b, leading to NASH development in
mouse model [32]; CXCL9, induced by IFN-c, is increased in the
livers of patients with NASH [33], while IL-6 is a key inflamma-
tory factor involved in NASH development [34]. Serum levels of
E-selectin (SELE) are also higher in patients with NASH similar
to those of IL-6 [35]. CXCL6 is associated with the severity of
hepatic inflammation in NAFLD patients and it can be used for
predicting NASH progression [36]. Similarly, CCL22 and CXCL5,
two small chemokines, are serum markers for NASH and the
related obesity and metabolic syndrome [37]. Finally, COX-2,
vol. 61 j 1365–1375
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another pro-inflammatory mediator, plays an important role in
metabolic forms of steatohepatitis as reported earlier by us
[28]. In addition to IFN-c and TLR9, a close correlation between
CXCL10 and TNF-a, MCP-1, IL-6 has been well documented
[38,39]. Collectively, these data suggested that induction of pro-
inflammatory cytokines and key inflammatory factors by CXCL10
is part of a mechanism for the inflammatory recruitment in MCD-
induced steatohepatitis.

An important observation in the present study is that the
majority of the above cytokines and inflammatory factors are reg-
ulated by NF-jB signalling (Fig. 2G). TNF-a is a potent activator of
NF-jB, and in turn activated NF-jB induces TNF-a expression
[40]. TLR9 and IL-6 can also activate NF-jB [32], while ICAM-1,
CCL22, COX-2, IL-1b, MCP-1, and CXCL5 are downstream effectors
of NF-jB activation (Fig. 2G) [20]. These data, when combined
with the previous finding that NF-jB is a key regulator of early
hepatic inflammatory recruitment and liver injury in NASH
[21], implicate a collaborative interaction of CXCL10 and NF-jB
to promote steatohepatitis. Therefore, CXCL10 may act as a lipo-
toxic molecule that activates NF-jB and its downstream inflam-
matory effectors to induce hepatocyte apoptosis and liver
injury, leading to the progression of steatohepatitis.

The underlying causes of hepatic triglyceride accumulation in
steatosis include enhanced uptake and synthesis of fatty acids,
and inhibition of fatty acid oxidation. In our experimental steato-
hepatitis model, knockout of CXCL10 significantly reduced hepa-
tic triglyceride content and steatosis (Fig. 1A and C). This
reduction was associated with reduced activity of SREBP-1c and
downregulation of SREBP-1c, ChREBP, LXRs, and SCD-1 (Fig. 2
and Table 2), which are involved in de novo fatty acid synthesis.
In addition to SREBP-1c and ChREBP, LXR is a major transcrip-
tional activator for lipogenesis [41]; it modulates the expression
of SREBP-1c through directly binding to the promoter of SREBP-
1c. LXR also induces the transcription of the lipogenic genes
SCD-1 and ChREBP [41]. Thus, the likely pathways by which
CXCL10 promotes hepatic steatosis include the upregulation of
key fatty acid synthesis genes that promote fatty acid synthesis
(Fig. 2G).

It is of general agreement that oxidative stress facilitates the
advancement of steatosis to steatohepatitis. Among the common
mediators of oxidative stress [42], CYP2E1 is an oxido-reductase
that can promote NASH development by inducing oxidative/
nitrosative stress, protein modifications, inflammation and insu-
lin resistance [43]. Consistent with this, we confirmed earlier
findings [17,24] that CYP2E1 expression is upregulated in MCD-
induced steatohepatitis. Importantly, we showed that deletion
of CXCL10 completely abolished the MCD-dependent stimulation
of CYP2E1, and significantly reduced the expression of its tran-
scriptional activator C/EBPb (Fig. 2D–E). These data were in accor-
dance with the lower level of CYP2E1 in MCD-fed Cebpb�/� mice
compared with MCD-fed WT mice [41], and demonstrate that
CXCL10 can act upstream of C/EBPb and CYP2E1 to modulate
oxidative stress.

If CXCL10 plays a key part in the pathogenesis of steatohepa-
titis, it would be important to establish that its functional block-
ade ameliorates the severity of steatohepatitis. To test this, we
used anti-CXCL10 mAb to neutralize CXCL10 in vitro. Such neu-
tralization caused a dose-dependent decrease in triglyceride
secretion and ALT release, together with a concomitant suppres-
sion of cellular oxidative stress in AML12 hepatocytes (Supple-
mentary Fig. 4). Moreover, anti-CXCL10 mAb ameliorated the
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severity of fatty liver disease in MCD-fed mice. In the present
work, CXCL10 neutralization using anti-CXCL10 mAb in mice
showed significant improvements in the prevention and regres-
sion of steatohepatitis (Fig. 3). These effects were associated with
reduced hepatic triglyceride and lipid peroxide levels (Fig. 3).
Thus, CXCL10 is a potential target for the prevention and treat-
ment of steatohepatitis.

These mechanistic findings of CXCL10 in the evolution of
experimental steatohepatitis encouraged us to explore the clini-
cal impact of CXCL10 in patients with NAFLD and NASH. We first
demonstrated that CXCL10 was significantly upregulated both in
liver and serum samples of NASH patients. Moreover, the circu-
lating level of CXCL10 in NASH patients was associated with lob-
ular inflammation, which is supported by a previous study that
showed that increased CXCL10 levels were correlated with the
degree of chronic liver inflammatory damage caused by hepatitis
C virus infection [9]. Early identification of patients with NASH
may allow intervention that may alter the course of the disease.
Currently, liver biopsy remains the standard method for the diag-
nosis of NASH and differentiation from simple steatosis. How-
ever, biopsy is an invasive diagnostic procedure that has been
associated with sampling error and observer variability. Thus,
the development of a non-invasive test is paramount to the man-
agement of NASH. To date, there are no reliable serologic tests for
the identification of NASH. Identification of such biomarker
would aid clinicians in the identification of patients with NASH,
and allow for non-invasive frequent monitoring of disease pro-
gression and response to therapy. Building on the significantly
elevated CXCL10 level in NASH patients, we tested the clinical
utility of CXCL10 as a serologic biomarker for the diagnosis of
NASH. Base on a multivariate Cox regression analyses in a study
cohort of 147 NAFLD patients and 73 control subjects, CXCL10
was revealed to be a novel risk factor of NASH independent of
metabolic syndrome, ALT, diabetes and triglycerides (Table 4).
Moreover, the AUROC indicated an overall accuracy of 81% to
diagnose NAFLD and an accuracy of 77% to diagnose NASH, sug-
gesting that circulating CXCL10 production could be regarded
as a valuable new diagnostic factor for NAFLD and NASH. How-
ever, it should be noted that a few prediction models such as
the NAFLD fibrosis score have also been developed to predict
advanced fibrosis [44,45], These scores are comprised of predict-
ing factors of fibrosis such as age, BMI and metabolic factors.
While it is interesting that CXCL10 may serve as a marker of
NASH, the finding warrants independent validation. Furthermore,
it would also be important to explore its role in conjunction with
other predicting factors to improve the diagnosis.

The MCD diet model is a classic and widely adopted dietary
model for studying NASH. It can induce hepatic steatohepatitis
with inflammation, oxidative stress, mitochondrial DNA damage,
apoptosis and fibrosis [46]. Therefore, it is considered as one of
the best-established models for studying NASH-associated
inflammation, oxidative stress and fibrosis. However, it does
not fully manifest all human NASH features. Mice fed with
MCD diet lose weight instead of being obese and lack insulin
resistance [47]. In the future, high-fat and high-fructose model
(also termed as American Lifestyle-Induced Obesity Syndrome
[ALIOS]), which may result in an obese animal with severe stea-
tosis, inflammation, oxidative stress and insulin resistance at
16 weeks [46,48], could be used to support our findings.

In conclusion, these observations and interventions demon-
strate for the first time that CXCL10 plays an essential role in
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the development of steatohepatitis in the context of fatty liver
disease. Further, the mechanism of this effect is through regula-
tion of lipogenesis and oxidative stress either directly or indi-
rectly via pathway modulation and pro-inflammatory signalling,
altering the expression of other key chemokines, cytokines and
pro-inflammatory molecules. Circulating CXCL10 may be a poten-
tial biomarker for patients with NAFLD and NASH.
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