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Abstract The inhibition of hepatic glycogen-associated protein
phosphatase-1 (PP1-GL) by glycogen phosphorylase a prevents
the dephosphorylation and activation of glycogen synthase, sup-
pressing glycogen synthesis when glycogenolysis is activated.
Here, we show that a peptide (280LGPYY284) comprising the last
five amino acids of GL retains high-affinity interaction with phos-
phorylase a and that the two tyrosines play crucial roles. Tyr284
deletion abolishes binding of phosphorylase a to GL and replace-
ment by phenylalanine is insufficient to restore high-affinity
binding. We show that a phosphorylase inhibitor blocks the inter-
action of phosphorylase a with the GL C-terminus, suggesting
that the latter interaction could be targeted to develop an anti-
diabetic drug.
� 2007 Federation of European Biochemical Societies.
Published by Elsevier B.V. All rights reserved.
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1. Introduction

Type-2 diabetes is characterised by hyperglycaemia, the

inability of insulin to stimulate plasma glucose uptake into

peripheral tissues, defects in insulin secretion and excessive

endogenous glucose production [1]. A key objective in treating

diabetes is to lower plasma glucose levels. The liver is a major

organ regulating glucose homeostasis and when plasma

glucose levels decline postprandially, increased hepatic glyco-

genolysis and gluconeogenesis are the major routes of endo-

genous glucose production [2]. Glycogenolysis predominates

initially after fasting, while gluconeogenesis is the major route

after glycogen stores are depleted. It may be advantageous in
Abbreviations: PP1, protein phosphatase 1; GL, hepatic glycogen-
targeting subunit (encoded by gene PPP1R3B); GS, glycogen synthase;
ITC, isothermal titration calorimetry

*Corresponding author. Fax: +44 01382 223778.
E-mail address: p.t.w.cohen@dundee.ac.uk (P.T.W. Cohen).

1These authors made an equal contribution to the studies.
2Present address: Department of Clinical Pharmacology, John Radc-
liffe Hospital, University of Oxford, Oxford OX3 9DU, UK.

0014-5793/$32.00 � 2007 Federation of European Biochemical Societies. Pu

doi:10.1016/j.febslet.2007.08.073
diabetes to counteract hyperglycaemia by stimulating hepatic

GS, so that conversion of blood glucose to hepatic glycogen

is accelerated. One possible way of achieving this would be

to increase the activity of the hepatic GS phosphatase, which

activates GS.

Hepatic GS is regulated both allosterically by glucose-6-

phosphate and by phosphorylation of multiple serine residues

[3,4]. Phosphorylation is catalysed by several protein kinases

that inactivate GS, while dephosphorylation by glycogen-tar-

geted PP1 activates GS. The major form of glycogen-targeted

PP1 in the liver is PP1-GL, which is controlled allosterically by

the active ‘a’ form of glycogen phosphorylase [5,6]. When gly-

cogenolysis is stimulated, glycogen phosphorylase b is con-

verted to phosphorylase a by phosphorylation of Ser14.

Phosphorylase a binds to the GL regulatory subunit of PP1-

GL, preventing the activation of GS, without affecting the inac-

tivation of phosphorylase a by PP1-GL. This allosteric regula-

tion of PP1-GL allows glycogen synthesis to be switched off

when glycogenolysis is stimulated. Phosphorylase a must be

converted back to phosphorylase b almost completely before

glycogen synthesis ensues [5]. Previous studies have demon-

strated that the C-terminal 16 residues of GL are sufficient

for interaction with phosphorylase a [7]. Here, we have identi-

fied the key amino acids within the 16mer that are essential for

binding. We also show that CP-316819, a member of the in-

dole-2-carboxamide series of phosphorylase inhibitors [8] is

capable of modulating the interaction of the GL 16mer peptide

with phosphorylase a.
2. Materials and methods

2.1. Materials
Glycogen phosphorylase a was prepared by phosphorylation of rab-

bit skeletal muscle phosphorylase b with phosphorylase kinase (both
purified by Dr. James Hastie) to a stoichiometry of �1 mol of phos-
phate/mol phosphorylase subunit [9]. Peptides were synthesised by
Dr. Graham Bloomberg, University of Bristol, UK. 5-Chloro-N-
[(1R,2S)-2-hydroxy-3-(methyloxymethylamino)-3-oxo-1-(phenylmeth-
yl)propyl]-1H-Indole-2-carboxamide (CP-316819) was synthesised by
Pfizer Global Research and Development [10].

2.2. Isothermal titration calorimetry
ITC measurements were performed in degassed 50 mM Tris–HCl,

pH 7.0, 1 mM DTT at 20 �C using a VP-ITC instrument (MicroCal,
LLC, Northampton, MA). Unless otherwise stated, titrations
blished by Elsevier B.V. All rights reserved.
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consisted of a preliminary 5 ll injection of 0.32 mM GL peptide solu-
tion followed by 19 injections of 10 ll peptide into the reaction cell,
which contained 1.4 ml of 0.025 mM phosphorylase a monomer solu-
tion. Typically, 180–240 s equilibration time was allowed between
injections to allow heat measurements to return to baseline. The heat
of dilution in separate titrations of both peptide into buffer and buffer
into phosphorylase solutions was determined to be negligible. In order
to determine the effect of CP-316819 on binding, 0.025 mM phosphor-
ylase a monomer was pre-incubated with 0.3–10 lM of drug for 45 min
at 30 �C with shaking in 50 mM Tris–HCl, pH 7.0, 1 mM DTT, 0.1%
(v/v) DMSO. Titrations were then performed as before but with the
addition of 0.1% (v/v) DMSO to all solutions. Calorimetric data anal-
ysis were carried out with ORIGIN 7.0 software. Integration of the
raw heat data using a one-binding-site model yielded a differential ther-
mal binding curve, the equilibrium constant for association of phos-
phorylase a with the GL-derived peptides (Ka), the enthalpy (DH)
and entropy (DS) of binding.
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Fig. 1. Interaction of the 16 C-terminal amino acids of GL with
phosphorylase a. (A) Schematic representation of GL showing the C-
terminal phosphorylase a binding site. The PP1, glycogen and
substrate binding domains of GL are indicated. The sequence of the
phosphorylase a binding region of GL, which is identical in humans,
mouse and rat, is shown [7]. (B) Titration of phosphorylase a by the GL

peptide 269PEWPSYLGYEKLGPYY284. The upper panel shows the
raw data for one experiment, generated by titration of 1.8 ml of
0.025 mM rabbit skeletal muscle phosphorylase a by 20 injections
(12 ll) of 0.32 mM GL 16mer. The lower panel shows the integrated
area within each peak (from the baseline shown) plotted against the
molar ratio of the GL 16mer to phosphorylase a monomer. The
smooth line represents the best fit of the experimental data to a model
with one set of sites. The Kd for the binding of the GL 16mer to
phosphorylase a in this experiment was 0.20 lM.
3. Results

3.1. Analysis of the interaction of GL with phosphorylase a

Initial experiments showed that [32P] labelled skeletal muscle

glycogen phosphorylase a interacted with bacterially-expressed

glutathione-S-transferase-GL [7] on membranes in the absence

or presence of 50 mM glucose or 5 mM caffeine (data not

shown) but not in the presence of 3 mM AMP as noted previ-

ously [6]. The binding of a peptide comprising the 16C-termi-

nal residues of GL (Fig. 1A) to phosphorylase a was

determined by ITC to be exothermic and saturating at a stoi-

chiometry (n) of 1:1 (Fig. 1B; Table 1). The dissociation con-

stant Kd (the reciprocal of Ka) is in the nanomolar range

(218 ± 111 nM for four experiments). The binding reaction is

enthalpy-driven (DH = �11.8 kcal/mol) and entropically unfa-

vourable (TDS = �2.5 kcal/mol) displaying entropy/enthalpy

compensation effects typical of biomolecular interactions.

ITC with a series of truncated peptides (Table 1 upper half)

showed that the Kd was largely unaffected when the 16 residue

peptide was truncated to the C-terminal 13 or 11 amino acids

of GL. Although the binding affinity was decreased (Kd

860 nM) when Tyr274 and Leu 275 were removed, a Kd value

of 854 nM was still observed for a peptide comprising only the

5C-terminal amino acids 280LGPYY284 (rodent numbering).

Alanine scanning analysis of the peptide comprising the nine

C-terminal amino acids (276GYEKLGPYY284) showed that

substitution of Leu280 or Pro282 by Ala weakened the binding

affinity of the peptide (Kd 1.1 and 1.5 lM, respectively), while

substitution of Lys279 or Gly281 actually increased the affinity

to that seen for the wild-type 16mer peptide (Table 1, lower

half). The enthalpical component of the binding energy was in-

creased, although this was counterbalanced by an unfavour-

able reduction in entropy. Replacement of Tyr283 by Ala

completely abolished binding, as did deletion of Tyr284 in

the 11mer and 13mer, indicating the critical importance of

these two C-terminal tyrosine residues in the interaction with

phosphorylase a. Substitution of Tyr283 by the structurally

similar amino acid Phe severely decreased the binding affinity

of the peptide (Kd = 3.2 ± 0.8 lM). Substitution of the C-ter-

minal Tyr284 by phenylalanine was sufficient to completely

disrupt the interaction of the 8mer peptide with phosphorylase

a (Fig. 2B), as was substitution of both Tyr283 and Tyr284 by

Phe. Replacement of Tyr284 by Phe within the 16mer did not

abolish binding but severely decreased the Kd, which was esti-

mated at 24.5 ± 11.6 lM (Table 1). Overall the data indicate a
critical role for the C-terminal Tyr284 of GL in the interaction

with phosphorylase a.

3.2. Effect of the glycogen phosphorylase inhibitor CP-316819

on the interaction of GL with phosphorylase a

The development of inhibitors of phosphorylase a, such as

CP-316819 an indole-2-carboxamide [10], capable of decreas-

ing hepatic glucose output raised the question of whether

any of these compounds affect the binding of GL to phosphor-

ylase a. We found that CP-316819 inhibited phosphorylase a in

the presence of 7.5 mM glucose with an IC50 of 57 nM as

found previously [8]. Calorimetric analysis of the interaction



Table 1
Thermodynamic parameters for the association of various GL-derived peptides with glycogen phosphorylase a

Peptide sequence n Kd (nM) DH (kcal/mol) TDS (kcal/mol) DG (kcal/mol)a

PEWPSYLGYEKLGPYY 0.95 (±0.10) 218 (±111) �11.8 (±0.7) �2.5 (±0.4) �9.3 (±0.8)
PSYLGYEKLGPYY 0.80 (±0.02) 374 (±48) �13.5 (± 0.5) �4.9 (±0.5) �8.6 (±0.7)
YLGYEKLGPYY 0.80 (±0.31) 297 (±97) �13.4 (± 4.7) �4.6 (±2.9) �8.8 (±5.5)
GYEKLGPYY 0.92 (±0.01) 860 (±38) �12.3 (±0.05) �4.1 (±0.1) �8.2 (±0.1)
YEKLGPYY 0.88 (±0.03) 825 (±56) �12.2 (±0.05) �4.0 (±0.1) �8.2 (±0.1)
EKLGPYY 1.08 (±0.04) 801 (±44) �9.7 (±0.1) �1.5 (±0.05) �8.2 (±0.1)
KLGPYY 1.07 (±0.003) 655 (±71) �12.3 (±0.1) �4.0 (±0.2) �8.3 (±0.2)
LGPYY 1.00 (±0.05) 854 (±87) �11.1 (±0.2) �2.9 (±0.2) �8.2 (±0.3)
GYEKLGPAY NB NB NB NB NB
GYEKLGAYY 0.93 (±0.01) 1141 (±53) �11.8 (±0.1) �3.8 (±0.1) �8.0 (±0.1)
GYEKLAPYY 0.59 (±0.03) 305 (±97) �17.6 (±0.04) �8.8 (±0.2) �8.8 (±0.2)
GYEKAGPYY 1.03 (±0.03) 1527 (±255) �10.7 (±0.5) �2.9 (±0.6) �7.8 (±0.8)
GYEALGPYY 0.59 (±0.03) 177 (±59) �17.3 (±0.5) �8.2 (±0.7) �8.3 (±0.9)
GYAKLGPYY 1.02 (±0.03) 968 (±117) �11.5 (±0.1) �3.4 (±0.1) �8.1 (±0.1)
PSYLGYEKLGPY_ NB NB NB NB NB
YLGYEKLGPY_ NB NB NB NB NB
YEKLGPFY 0.80 (±0.004) 3202 (±759) �10.7 (±0.4) �3.3 (±0.5) �7.4 (±0.6)
YEKLGPFF NB NB NB NB NB
YEKLGPYF NB NB NB NB NB
PEWPSYLGYEKLGPYF 0.75 (±0.09) 24476 (± 11644) �11.0 (±1.7) �4.5 (±1.9) �6.5 (±2.5)

All experiments were performed in triplicate, with the exception of the PSYLGYEKLGPY_ peptide, the result of which is from a single experiment
only, and the PEWPSYLGYEKLGPYY and the PEWPSYLGYEKLGPYF peptides, the data for which is derived from four separate binding
exotherms. The errors given correspond to the standard error of the mean unless otherwise indicated. n is the stoichiometry of binding of each peptide
to phosphorylase a monomer. NB means that the experiments have been performed, but no binding was detected.
aCalculated from the equation DG = DH � TDS. The errors given are the square root of the sum of the squares of DH and TDS.

Fig. 2. Titration of phosphorylase a by the GL (277–284) peptide and the Y284F mutant peptide. Phosphorylase a was titrated with 20 injections of
(A) YEKLGPYY and (B) YEKLGPYF at 20 �C. The upper traces show the raw data and the lower traces show the binding isotherms in terms of
heat per injected peptide vs. molar ratio of peptide to phosphorylase a monomer. The mutation of the extreme C-terminal tyrosine residue to
phenylalanine completely abolishes binding to phosphorylase a.
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of the GL 16mer peptide 269PEWPSYLGYEKLGPYY284 with

phosphorylase a, in the presence of increasing concentrations

of CP-316819, showed that the binding affinity of the peptide

was decreased at 1 lM CP-316819 and above (Table 2).

5 lM CP-316819 decreased the overall reaction enthalpy and

modified the integrated binding isotherm to a more shallow

curve (Fig. 3B, lower panel). 10 lM CP-316819 resulted in
raw data (Fig. 3C, upper panel) that was not significantly dif-

ferent from heats of dilution and mixing determined in con-

trols, indicating that 10 lM CP-316819 was sufficient to

completely block the interaction of the 16mer GL peptide with

25 lM phosphorylase a. Although in vivo muscle phosphory-

lase a is a dimer, in vitro at 25 lM phosphorylase a may be

mainly tetrameric [11,12]. The ratio, CP-316819: phosphory-



Table 2
Thermodynamic parameters for the association of the PEWPSYLGYEKLGPYY peptide with 25 lM phosphorylase a monomer in the presence of
the indicated concentrations of CP-316819

CP-316819 concentration (lM) n Kd (nM) DH (kcal/mol) TDS (kcal/mol) DG (kcal/mol)

0 0.95 (±0.10) 218 (±111) �11.8 (±0.7) �2.5 (±0.4) �9.3 (±0.8)
0.3 0.59 (±0.04) 135 (±20) �10.9 (±0.4) �1.2 (±0.2) �9.7 (±0.4)
1 0.90 (±0.03) 888 (±122) �11.0 (±0.4) �2.8 (±0.5) �8.2 (±0.6)
5 1.15 (±0.17) 1917 (±423) �7.9 (±1.3) �0.2 (±1.2) �7.7 (±1.8)
10 NB NB NB NB NB

Experiments at CP-316819 concentrations 0 and 10 lM were performed in quadruplicate. All other experiments were performed in triplicate.

Fig. 3. ITC data for phosphorylase a binding to the PEWPSYLGYEKLGPYY peptide (A) in the absence of CP-316819, (B) following pre-
incubation of phosphorylase with 5 lM CP-316819, (C) following pre-incubation of phosphorylase with 10 lM CP-316819. The upper traces show
the raw heat data and the lower traces show the fit of a 1:1 binding model after integration of the raw data. 10 lM CP-316819 blocks the interaction
of the peptide with 25 lM phosphorylase a monomer.
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lase a monomer of 0.4:1 that blocks interaction with GL sug-

gests that homotropic cooperative effects between the subunits

of phosphorylase a allow inhibition of approximately two sub-

units in the tetramer (or one subunit in the dimer) to alloster-

ically change the conformation of the other subunits(s) to the

inhibited structure [13].
4. Discussion

We show here that the site of interaction of GL with phos-

phorylase a is even smaller than the 16 C-terminal residues

of GL previously determined [7]. A peptide comprising the five

C-terminal amino acids 280LGPYY284 formed a complex with

phosphorylase a, with only slightly lower affinity than the

16mer peptide. The two C-terminal tyrosines play critical roles

in binding; replacement of either by the structurally similar

amino acid Phe is insufficient to retain the nanomolar affinity

of the GL peptides for phosphorylase a, suggesting that the

tyrosine hydroxyls are crucial for interaction with phosphory-

lase a. The marginally increased dissociation constants when

Leu280 or Pro282 are replaced by Ala raise the possibility that

Pro282 may allow favourable presentation of the tyrosines to
phosphorylase a, and Leu280 may provide hydrophobic inter-

actions. Thus, the consensus sequence for initiation of the

interaction is LXPYY, where x may be Gly, Ala or possibly

other amino acids. The crucial interaction of GL with phos-

phorylase a involves the two tyrosine residues at the C-termi-

nus, with the C-terminal Tyr284 playing the major role.

The Kd of 218 nM for the binding of phosphorylase a to the

GL 16mer determined by ITC is consistent with the earlier

analyses employing immobilised GST-GL [7,14] and glyco-

gen-bound GS phosphatase [15]. Our data indicate that each

phosphorylase a dimer binds two molecules of GL (Table 1).

Since GL binding occurs in the presence of glucose and caf-

feine, which bind to distinct sites that are homologous in mus-

cle and liver phosphorylases [16,17], GL is not binding at these

sites. The interaction sites for AMP in liver and muscle phos-

phorylase a are homologous, lying across the dimeric subunit

interface, where each AMP binds between a loop from one

subunit (containing the phosphorylated Ser14) and a helix

of the other subunit [18,19]. Since AMP prevents the binding

of GL to muscle phosphorylase a, AMP binding may either

cause a conformational change that prevents the GL interac-

tion or the binding sites for AMP and the GL C-terminus

overlap.
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Inhibitors of phosphorylase have been developed as hypo-

glycaemic agents that may be useful in the treatment of diabe-

tes to counteract elevated hepatic glucose output. The indole-

2-carboxamide series of phosphorylase inhibitors reached

phase II clinical trials [23] and have been shown to bind to

muscle and liver phosphorylases at a novel allosteric site lo-

cated at the dimeric subunit interface [20,21]. Interestingly,

CP-316819 is able to completely block the binding of GL to

muscle phosphorylase a, raising the possibility that GL binds

at or near the indole-2-carboxamide binding site on phosphor-

ylase a. However, the interaction sites for indole-2-carboxam-

ide inhibitors and AMP on phosphorylase a are distinct, and

the GL C-terminus could not contact both binding sites. More

likely, conformational changes induced by the binding of in-

dole-2-carboxamide drugs prevent the binding of GL to phos-

phorylase a. These inhibitors can interact with the active and

inactive conformations of phosphorylase a, but are likely to

favour the inactive conformation [20].

The finding that CP-316819 blocks the binding of GL to

phosphorylase a suggests that the indole-2-carboxamide drugs

(used in the lM range) may exert their effects on hepatic glu-

cose output not only by inhibition of liver phosphorylase a

but also by lowering the affinity of phosphorylase a for PP1-

GL. While the inhibition of phosphorylase a is a valid strategy

for attenuating hyperglycaemia in type 2 diabetes, the drugs

developed to date inhibit both liver and muscle phosphorylases

and inhibition of the latter may be detrimental because it im-

pairs aerobic muscle function during prolonged contraction

[22]. A drug that inhibits the interaction of GL with phosphor-

ylase a and not phophorylase a itself avoids this problem. The

discovery that a small region of GL binds to phosphorylase a

indicates that it should be possible to develop a small molecule

drug capable of disrupting the interaction. A drug binding to

GL should be effective at far lower concentrations in vivo than

a phosphorylase a inhibitor [23] due to the lower concentration

of GL in the liver. Disruption of the allosteric regulation of

PP1-GL by phosphorylase a may also create an energy-con-

suming glycogenolytic–glycogen synthetic cycle, which could

be advantageous. In addition, such a drug may operate in hu-

man muscle, where PP1-GL is also expressed [24].

Acknowledgements: This work was funded by the Medical Research
Council, U.K. S.M. was supported on a postdoctoral research assis-
tantship by Diabetes U.K. I.R.K. is the recipient of a postgraduate stu-
dentship from the Medical Research Council, U.K.
References

[1] DeFronzo, R.A. (1999) Pharmacologic therapy for type 2 diabetes
mellitus. Ann. Intern. Med. 131, 281–303.

[2] Roden, M. and Bernroider, E. (2003) Hepatic glucose metabolism
in humans–its role in health and disease. Best Pract. Res. Clin.
Endocrinol. Metab. 17, 365–383.

[3] Ferrer, J.C., Favre, C., Gomis, R.R., Fernandez-Novell, J.M.,
Garcia-Rocha, M., de la Iglesia, N., Cid, E. and Guinovart, J.J.
(2003) Control of glycogen deposition. FEBS Lett. 546, 127–132.

[4] Roach, P.J. (2002) Glycogen and its metabolism. Curr. Mol. Med.
2, 101–120.

[5] Bollen, M., Keppens, S. and Stalmans, W. (1998) Specific features
of glycogen metabolism in the liver. Biochem. J. 336, 19–31.
[6] Doherty, M.J., Moorhead, G., Morrice, N., Cohen, P. and
Cohen, P.T.W. (1995) Amino acid sequence and expression of the
hepatic glycogen binding (GL) subunit of protein phosphatase-1.
FEBS Lett. 375, 284–298.

[7] Armstrong, C.G., Doherty, M.J. and Cohen, P.T.W. (1998)
Identification of the separate domains in the hepatic glycogen-
targeting subunit of protein phosphatase 1 that interact with
phosphorylase a, glycogen and protein phosphatase 1. Biochem.
J. 336, 699–704.

[8] Yu, L.J., Chen, Y., Treadway, J.L., McPherson, R.K., McCoid,
S.C., Gibbs, E.M. and Hoover, D.J. (2006) Establishment of
correlation between in vitro enzyme binding potency and in vivo
pharmacological activity: application to liver glycogen phosphor-
ylase a inhibitors. J. Pharmacol. Exp. Ther. 317, 1230–1237.

[9] Cohen, P., Alemany, S., Hemmings, B.A., Resink, T.J., Stralfors,
P. and Tung, H.Y.L. (1988) Protein phosphatase-1 and protein
phosphatase-2A from rabbit skeletal muscle. Methods Enzymol.
159, 390–408.

[10] Hulin, B., Hoover, D.J., Treadway, J.L. and Martin, W.H. (1996)
US Patent Application WO96/39385 Published Dec. 12th Exam-
ple 36.

[11] Barford, D. and Johnson, L.N. (1992) The molecular mechanism
for the tetrameric association of glycogen phosphorylase pro-
moted by protein phosphorylation. Protein Sci. 1, 472–493.

[12] Leonidas, D.D., Oikonomakos, N.G., Papageorgiou, A.C. and
Sotiroudis, T.G. (1992) Kinetic properties of tetrameric glycogen
phosphorylase b in solution and in the crystalline state. Protein
Sci. 1, 1123–1132.

[13] Johnson, L.N. and Barford, D. (1990) Glycogen phosphorylase.
The structural basis of the allosteric response and comparison
with other allosteric proteins. J. Biol. Chem. 265, 2409–2412.

[14] Moorhead, G., MacKintosh, C., Morrice, N. and Cohen, P.
(1995) Purification of the hepatic glycogen-associated form of
protein phosphatase-1 by microcystin-Sepharose affinity chroma-
tography. FEBS Lett. 362, 101–105.

[15] Alemany, S. and Cohen, P. (1986) Phosphorylase a is an allosteric
inhibitor of the glycogen and microsomal forms of rat hepatic
protein phosphatase-1. FEBS Lett. 198, 194–202.

[16] Oikonomakos, N.G., Zographos, S.E., Skamnaki, V.T. and
Archontis, G. (2002) The 1.76 A resolution crystal structure of
glycogen phosphorylase b complexed with glucose, and CP-
320626, a potential antidiabetic drug. Bioorg. Med. Chem. 10,
1313–1319.

[17] Ekstrom, J.L. et al. (2002) Structure–activity analysis of the
purine binding site of human liver glycogen phosphorylase. Chem.
Biol. 9, 915–924.

[18] Barford, D., Hu, S.H. and Johnson, L.N. (1991) Structural
mechanism for glycogen phosphorylase control by phosphoryla-
tion and AMP. J. Mol. Biol. 218, 233–260.

[19] Rath, V.L. et al. (2000) Activation of human liver glycogen
phosphorylase by alteration of the secondary structure and
packing of the catalytic core. Mol. Cell 6, 139–148.

[20] Rath, V.L. et al. (2000) Human liver glycogen phosphorylase
inhibitors bind at a new allosteric site. Chem. Biol. 7, 677–682.

[21] Oikonomakos, N.G., Chrysina, E.D., Kosmopoulou, M.N. and
Leonidas, D.D. (2003) Crystal structure of rabbit muscle glycogen
phosphorylase a in complex with a potential hypoglycaemic drug
at 2.0 A resolution. Biochim. Biophys. Acta 1647, 325–332.

[22] Baker, D.J., Greenhaff, P.L., Macinnes, A. and Timmons, J.A.
(2006) The experimental type 2 diabetes therapy glycogen
phosphorylase inhibition can impair aerobic muscle function
during prolonged contraction. Diabetes 55, 1855–1861.

[23] Treadway, J.L., Mendys, P. and Hoover, D.J. (2001) Glycogen
phosphorylase inhibitors for treatment of type 2 diabetes mellitus.
Exp. Opin. Invest. Drugs 10, 439–454.

[24] Munro, S., Cuthbertson, D.J.R., Cunningham, J., Sales, M. and
Cohen, P.T.W. (2002) Human skeletal muscle expresses a
glycogen targeting subunit of PP1 that is identical to the insulin
sensitive glycogen targeting subunit GL of liver. Diabetes 51, 591–
598.


	The hepatic PP1 glycogen-targeting subunit interaction with phosphorylase a can be blocked by C-terminal tyrosine deletion or an indole drug
	Introduction
	Materials and methods
	Materials
	Isothermal titration calorimetry

	Results
	Analysis of the interaction of GL with phosphorylase a
	Effect of the glycogen phosphorylase inhibitor CP-316819 on the interaction of GL with phosphorylase a

	Discussion
	Acknowledgements
	References


