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a b s t r a c t

We study the parameterized complexity of four variants of pursuit-evasion on graphs:
Seeded Pursuit Evasion, Short Seeded Pursuit Evasion, Directed Pursuit Evasion and
Short Directed Pursuit Evasion. Both Seeded Pursuit Evasion and Short Seeded Pursuit
Evasion are played on undirected graphs with given starting positions for both the cops
and the robber. Directed Pursuit Evasion and its short variant are played on directed
graphs,with the players free to choose their starting positions.We show for SeededPursuit
Evasion and Directed Pursuit Evasion that finding a winning strategy for the cops is
AW[*]-hardwhenwe parameterize by the number of cops. Further, we show that the short
(k-move) variants of these problems (Short Seeded Pursuit Evasion and Short Directed
Pursuit Evasion) are AW[*]-complete when we parameterize by both the number of cops
and turns.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The pursuit-evasion game (also known as cops and robber) takes place on a graph. The cops and robber occupy nodes in
the graph and alternate taking turns where they may move to adjacent nodes. The cops win if any cop captures the robber
by occupying the same node as him. The robber wins if he or she is able to evade the cops indefinitely.
This problem was initially studied for only one cop by Quilliot [11,12] and independently by Nowakowski and

Winkler [10]; both characterized graphs on which one cop was sufficient to capture the robber. Additional cops were added
by Aigner and Fromme [2], who showed that three cops are sufficient to capture a robber in a planar graph, and that it is
possible to construct graphs requiring an arbitrary number of cops to capture a robber. The former resultwas expanded upon
by Quilliot, who proved that 3+ 2k cops are sufficient to capture a robber in a graph of genus k [13]. Goldstein and Reingold
considered a seeded variant (i.e., one in which starting positions were given) and showed it to be EXPTIME-complete [8].
Surveys of the topic include [3,9,7].
Many variants of the pursuit-evasion problem are connected to interesting graph properties. If the cops are allowed

to choose their starting positions and have only one move to catch a single visible robber, the number of cops needed to
ensure capture in a graph G is equal to the size of a minimum dominating set of G [10]. In [2] it is shown that three cops are
sufficient to guarantee the capture of a single robber in a planar graph, and that in a graph of girth at least five the number of
cops necessary to guarantee capture is at least the minimum vertex degree in that graph. If the robber has infinite velocity
(meaning it can move any distance as long as there is a cop-free path from his initial position to its destination), the cops
travel by helicopter (each can move from its current vertex to any other vertex without visiting any vertices between), and
both sides move simultaneously, the number of cops needed to guarantee capture is equivalent to the treewidth of G [15].
In the first variant of the pursuit-evasion problem we study, Seeded Pursuit-Evasion, the cops and robber both move

with a maximum velocity of one, both sides have perfect information (e.g., they can see each other at all times), the starting
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positions are given (not chosen), and the parameter is the number of cops |C |. Seeded Pursuit-Evasion is known to be hard
for EXPTIME when unparameterized [8]. The parameterized complexity of the pursuit-evasion game when both sides are
free to choose their starting position has been considered in [6] and shown to beW[2]-hard when parameterized by |C |, the
number of cops. We formally define Seeded Pursuit-Evasion as follows:

Seeded Pursuit-Evasion
Input:
• A simple, undirected graph G = (V , E)
• A set C ⊆ V of starting positions for the cops
• Starting position a ∈ V , a /∈ C , for the robber
Rules:

1. C defines the starting positions of the cops. Exactly one cop starts at each v ∈ C .
2. The robber begins at vertex a.
3. The cops and robber alternate taking turns, starting with the cops.
4. During the cops’ turn, each cop either moves to a vertex adjacent to his current position, or stays put.1 Multiple
cops may occupy the same node at a time.

5. On his turn, the robber either moves to an unoccupied vertex adjacent to his current position, or stays put.
6. If, at any time, the robber occupies the same vertex as a cop, the robber is captured and the cops win.
7. Both players have complete information. That is, the cops know the positions of the robber and their fellow cops
at all times, and vice-versa.

8. You cannot add or subtract pieces (cops or robbers) from the game at any time. Further, any given piece occupies
exactly one vertex at a time.

Parameter: |C |
Question: Can the cops guarantee capture of the robber?

We also consider three other variants of this problem: in Short Seeded Pursuit-Evasion the cops have only t turns to
capture the robber and t is an additional parameter. In Directed Pursuit-Evasion the graph is directed and the players
choose their starting positions at the beginning of the game. Finally, Short Directed Pursuit-Evasion is Directed Pursuit-
Evasionwith a t-turn limit (as in Short Seeded Pursuit-Evasion).
In Section 2 of this article we review the parameterized class AW[*]. Section 3 proves that Seeded Pursuit Evasion is

AW[*]-hard when parameterized by the number of cops. In Section 4 we prove that hypercubes can serve as the escape sub-
graphs needed for our reduction in Section 3. Section 5 extends our AW[*]-hardness reduction from Seeded Pursuit-Evasion
to Short Seeded Pursuit Evasion and also shows that the latter problem is in AW[*], making this variant AW[*]-complete.
We also show that Short Pursuit-Evasion is in AW[*]. In Section 6 we show that Directed Pursuit-Evasion and Short
Directed Pursuit-Evasion are AW[*]-hard and AW[*]-complete respectively. Finally, we close with a brief summary and
some open questions in Section 7.

2. The class AW[*]

Like classical complexity, parameterized complexity has its own hierarchy of complexity classes (see Fig. 1, [5]). In this
case, the base class for tractability is FPT—the set of parameterized problems which can be solved in O(f (k) · nc) time where
f is an arbitrary function, k is the parameter (or the tuple of parameters), n is the unparameterized input size, and c is a
positive constant.
The parameterized complexity class AW[*] is a subset of XP and a superset of the A-hierarchy. Each class of the

A-hierarchy is in turn a superset of the correspondingW-hierarchy2 class (that is, W[t]⊆ A[t] for t ≥ 1), andW[1] contains
FPT. Thus, if an AW[*]-complete problem were shown to be in FPT, the resulting collapse would consume both the A- and
W-hierarchies.
Intuitively, AW[*] can be considered a parameterized version of the classical complexity class AP (the set of problems

solvable in polynomial time by an alternating Turing machine). There is, however, a striking difference in that AP= PSPACE
while AW[*] does not appear to correspond to any notion of parameterized space [4].
We now review the definition of the problem Unitary Parameterized QBFSAT2, which is known to be AW[*]-

complete [1].3

1 Note that we say the cops and robbermaymove, but they can also stay at the vertex they currently occupy. This is equivalent to the variant where all
piecesmustmove and every vertex has an edge to itself, since in that variant a piece can stay at its current vertex by moving along the reflexive edge.
2 The W-hierarchy is the most well-known parameterized hierarchy, and is often viewed as the parameterized analog of NP [4]. Famous examples of
complete problems in the W-hierarchy include the NP-complete problems Clique, which is W[1]-complete when parameterized by the size of the clique,
and Dominating Set, which is W[2]-complete when parameterized by the size of the dominating set.
3 Specifically, Unitary Parameterized QBFSATt was shown to be AW[*]-complete for any fixed t and we use t = 2.
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Fig. 1. Parameterized complexity hierarchies. An arrow from class X to class Y indicates that X is known to be contained within Y .

Unitary Parameterized QBFSAT2
Instance: An integer r; a sequence s1, . . . , sr of pairwise disjoint sets of boolean variables; a boolean formula F in
conjunctive normal form (CNF) over the variables s1 ∪ · · · ∪ sr with negations applied only to variables.
Parameter: r
Question: Does there exist a variable q1 ∈ s1 such that for every variable q2 ∈ s2, there exists a variable q3 ∈ s3 such
that . . . (alternating qualifiers) such that, when the variables q1, q2, . . . , qr are set to true and all other variables are
set to false, the formula F is true?

This problem serves as the basis for all our AW[*]-hardness reductions, contained in Sections 3, 5 and 6.

3. Hardness of seeded pursuit-evasion

In this section we prove that Seeded Pursuit-Evasion is AW[*]-hard. We obtain this result by using a parameterized
reduction from Unitary Parameterized QBFSAT2. A parameterized reduction is much like a classical one, but the time
permitted to perform the reduction is bounded by a fixed-parameter tractable function rather than a polynomial one, and
wemust not introduce any aspect of the input size into the parameters for the target problem [4].We explain themechanics
of the reduction first; the detailed proof follows after.

3.1. Reduction

Let the entireUnitary ParameterizedQBFSAT2-instance given as input, including the quantifiers in the question (ordered
from 1 to k), variable sets, and formula F , be referred to as A.
Our strategy is to construct an instance of Seeded Pursuit-Evasion which simulates setting the variables in A and then

tests the setting on the formula F . This means the cops can guarantee capture of the robber if and only if they can produce a
satisfying assignment in the simulated setting. Therefore, the cops are guaranteed to catch the robber in the reduced instance
if and only if A is satisfiable. For our parameter, we set |C | = r + 1.
Our reduction employs four component gadgets: escape subgraphs, runways, the assignment gadget, and a set of clause

vertices. Escape subgraphs enable the robber to evade the cops indefinitely (in other words, the robber wins the game if he
enters an escape subgraph), runways simulate the variables of A, the assignment gadget enables the robber to effectively set
the values of the (simulated) universally-quantified variables, and the clause vertices enable the robber to test whether a
clause is satisfied by the simulated variable setting. The starting positions for the cops and the robber are defined in the
gadgets.
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Fig. 2. Runway gadget construction for the ith quantifier. The cop (C) is shown in his starting position. Note that there is a one-to-one correspondence
between the forks and the variables of si .

The terms move and turn are used interchangeably in this reduction. Both mean that one player makes his full move. In
the case of the robber this entails moving from his current node to an adjacent one (or choosing to stay put). In the case of
the cops, this means that all of the cops have either moved or committed to staying put. A round consists of two turns: one
for all the cops, followed by a turn for the robber.
We now describe the construction of each gadget in detail.

3.1.1. Escape subgraphs
The sole purpose of the escape subgraphs is to provide the robberwith a place inwhich he can evade the cops indefinitely.

Any graph of fixed-parameter-tractable size in which a robber could perpetually evade r + 1 cops would suffice for our
purpose. We use hypercubes.

Definition 1. The hypercube graph of degree n, Qn, is the graph whose vertices lie on the corners of the n-dimensional unit
cube. An edge exists between two vertices in Qn if and only if their coordinates differ in exactly one position.

To ensure that the hypercube fulfills its function as an escape subgraphwe rely on the following corollary,which is proved
in Section 4.

Corollary 1. A robber can evade k cops indefinitely in Q2k.

We use hypercubes of degree 2r + 2 as escape subgraphs in our reduction, since the number of cops is the instance
constructed is r + 1.

3.1.2. Runways
For each quantifier in A we create a corresponding runway in our Seeded Pursuit-Evasion instance (see Fig. 2). The

runway corresponding to the ith quantifier of A consists of a path of length i which then forks into |si| paths, making the
number of paths equal to the number of variables associated with the ith quantifier. For each of the variables associated
with the quantifier, there is a path of length r − i + 1; we call these paths the forks of the runway. Moving the cop into a
fork corresponds to a setting in which the variable associated with the fork is true and all the other variables in si are false.
We refer to the first vertex of the length-i path as the start of the runway, while the fork vertices furthest from this start are
referred to as end vertices of the runway. A single cop begins at the start of the runway (see Fig. 2), and the distance the cop
must travel from the start to any end of that runway is at least r .

3.1.3. The assignment gadget
Weconstruct the assignment gadget starting fromapath of length r+2 (remembering that r is the number of quantifiers).

There is one cop, which starts on the first vertex of this path, while the robber starts on the third. The remaining r vertices
correspond to the quantifiers of A; specifically, the i+2nd vertex corresponds to quantifier i. Quantifiers are indexed from 1,
so the robber’s starting position corresponds to the first quantifier. Each vertex which corresponds to a universal quantifier
(which, by the definition of Unitary Parameterized QBFSAT2, is every even-numbered quantifier) is replaced with a clique
of size equal |si|. We call these assignment cliques. For an example of an assignment gadget, we refer to Fig. 3.



A. Scott, U. Stege / Theoretical Computer Science 411 (2010) 3845–3858 3849

Fig. 3. An example of the assignment gadget for r = 5. The cop (C) and robber (R) are shown in their starting positions.

Fig. 4. A Seeded Pursuit-Evasion instance constructed by our reduction from the Unitary Parameterized QBFSAT2 instance s1 = {a, b, c}, s2 = {d, e, f },
F = (a ∧ d) ∨ (b ∧ f ) ∨ (c ∧ e). The cops (C) and robber (R) are shown in their starting positions.

Next, we connect the assignment cliques with the runway forks. We do this as follows: for the assignment clique
corresponding to quantifier i, assign to each vertex a unique variable in si (this results in a one-to-one mapping from the
elements of si to the clique’s vertices). For each vertex v in the assignment clique, create a unique escape subgraph Q v

2r+2.
Choose a vertex w ∈ Q v

2r+2 and add an edge connecting w to v and an edge connecting w to the first vertex of the runway
fork from the ith runway which corresponds to the same variable as v. Fig. 5 shows an example of how the assignment
gadget is connected to a runway.

3.1.4. Clause vertices
Finally we describe the clause vertices (X , Y , and Z in Fig. 4). Each of these corresponds to a clause in F . Each clause vertex

has an edge to every runway fork which represents at least one literal that satisfies the vertex’s corresponding clause. Every
clause vertex is also connected to the end of the assignment gadget (the opposite end of the path fromwhere the cop starts).
If the last quantifier in A is existential, then the end of the assignment gadget is a single vertex. On the other hand, if the last
quantifier in A is universal, then the end of the assignment gadget is a clique and each clause vertex is connected to every
vertex in that clique. Lastly, we create a unique escape subgraph for each clause vertex and connect each clause vertex to a
single vertex of its unique escape graph.

3.2. Sequence of play

The general idea of this reduction is that the runways simulate the quantifiers. For existential quantifiers, the cops are
free to choose the true variable for that quantifier, while for universal quantifiers the connections between the assignment



3850 A. Scott, U. Stege / Theoretical Computer Science 411 (2010) 3845–3858

Fig. 5. Distances from the clause vertices in the assignment gadget and runways.

gadget and the runway enable the robber to manipulate the choice of variable. Our goal is that when the robber reaches the
clause vertices, he will have a safe path to an escape subgraph if and only if there is an unsatisfied clause. For an example of
an instance constructed by this reduction, see Fig. 4.
When a cop chooses a fork to follow, this can be viewed as setting the variable corresponding to that fork to true while

setting the rest of the variables in the same quantifier set si to false. In runways corresponding to existential quantifiers,
the cops position themselves as they choose. For universal quantifiers, the runway cop is forced to block the robber: when
the robber positions himself in one of the vertices in an assignment clique, the cop must move into the corresponding fork
(thus enabling him to catch the robber with his next move should the robber attempt to enter the escape subgraph) or the
robber will be able to move into the adjacent escape subgraph where he can elude the cops indefinitely.
Once all the variables are set, the robber moves from the end of the assignment gadget into a clause vertex. Since the

clause vertices are connected to the runway forks, the cops will be able to capture the robber if he moves into a vertex
corresponding to a satisfied clause. However, if he moves into an vertex corresponding to an unsatisfied clause, then the
cops will be unable to catch him on their next turn and he can flee into an escape subgraph on his subsequent turn.

3.2.1. Proving the sequence of play
We now show the correctness of our reduction with a sequence of lemmas. The first four are independent of instance A,

while the last three depend on the satisfiability of A.

Lemma 1. The cops can either capture the robber or force him into a clause vertex on round r.

Proof. The cop in the assignment gadget starts only two vertices away from the robber (see Fig. 3) and moves first. Thus
if this cop always moves toward the robber, the robber must always move away from the cop. If the cops in the runways
corresponding to universally-quantified variables move to guard the escape subgraphs adjacent to the assignment cliques,
then the robber cannotmove into any of them because hewould be captured. Thus the robber can only leave the assignment
gadget by entering a clause vertex and he will do so in round r , since that is the distance from his starting position to any
clause vertex. �

Lemma 2. The robber can make it into any clause vertex on round r without getting captured, regardless of the cops’ strategy.

Proof. As this proof depends heavily on distances to clause vertices, Fig. 5 may be of assistance.
By our definition for the assignment gadget, the robber starts at distance r from the clause vertices. Let us assume the

robber’s evasion strategy decreases his distance from the clause vertices each turn, since the cop in the assignment gadget
can catch the robber otherwise. The cop in the assignment gadget which starts at distance r + 2 from the clause vertices
cannot catch the robber in the first r turns since the cop’s distance to the clause vertices will always be greater than the
robber’s. The cop does have the advantage of moving first, but this only enables him to temporarily close the gap since the
robber starts out two vertices ahead.
If a runway cop moves to the end of his runway and enters the clause vertices from there, then the distance covered is at

least r+1. Further, his distance from the clause vertices will always be higher than the robber’s at the end of each of the first
r rounds. Thus, the only remaining possible way a cop could capture the robber before round r+1 is if a runway cop can find
a shorter path to the clause vertices by leaving the runway early and entering the assignment gadget. However, this is not
the case: for any universal quantifier,4 if that quantifier is numbered i then both the assignment clique and the connected
vertices in the associated runway forks are at distance r− i+1 from the clause vertices. It takes two turns to move between

4 We do not consider existential quantifiers as their corresponding runways are not connected to the assignment gadget—only the clause vertices. Thus
the cops in these runways can only leave through clause vertices.
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the runway forks and the assignment gadget, but these moves do not decrease the cop’s distance to the clause vertices and
thus these moves are lateral and not part of any shortest path to the clause vertices. Even with the advantage of moving
before the robber, a cop using this move would arrive in the assignment gadget at distance r− i+1 from the clause vertices
on turn i+ 2, while the robber would be at distance r − (i+ 1) = r − i− 1 from the clause vertices and would also be next
to move.
Thus, any shortest path to the clause vertices for a runway cop is of length at least r+1 and no runway cop can catch the

robber in the first r turns even if they leave their runways. This leaves no other cop who could possibly catch the robber. �

Lemma 3. If the robber is on a clause vertex v at the end of round r, the cops have a winning strategy if and only if there is a cop
at the end of a runway fork which corresponds to a literal that satisfies the clause B corresponding to v.

Proof. By definition, each runway fork corresponds to a set of literals. The end of each runway fork is connected to every
clause vertex for which the associated clause contains at least one of its associated literals. Therefore, if there is a cop at the
end of a runway fork corresponding to a literal b that satisfies B, then that cop can simply follow the edge to v and capture
the robber.
On the other hand, let us assume that no cop is at the end of a runway fork corresponding to a literal that satisfies B. Other

than runway forks, the only vertices adjacent to v are those at the end of the assignment gadget and those in the adjacent
hypercube. To show that there is no cop adjacent to v, observe that no cop can reach the hypercube in r rounds since it is
distance r + 2 from the starting position for runway cops and r + 3 from the starting position for the cop in the assignment
gadget. Similarly, the cop in the assignment gadget starts at distance r + 2 from the clause vertices, and the runway cops
start at distance r + 3 from the end of the assignment gadget. �

Lemma 4. Once a runway cop has entered a runway fork, he cannot reach the end of any other runway fork by the end of round r.

Proof. As noted in the definition of the runway gadget, the cop starts at distance r from the ends of the runways. Once he
enters a fork, he increases the distance to the end of every other fork. Thus his distances to the ends of those forks are more
than the number of rounds he has left. �

The following lemma shows that when the robber enters an assignment clique, he chooses which fork the cop in the
associated runway must start down. This renders the cop unable to reach the end of any other fork.

Lemma 5. For runways corresponding to universally-quantified variables, the robber decides which fork the cop can reach the
end of.

Proof. When the robber enters a vertex v in an assignment clique,5 the cop in the runway associated with that clique must
move into u, the first vertex of the runway fork associated with v. This prevents the robber from moving into the escape
subgraph adjacent to v, since both u and v are adjacent to the same vertex in the escape subgraph (see Figs. 4 and 5).
Otherwise, if the cop does not move in this manner the robber can move into the escape subgraph unimpeded and evade
the cops indefinitely once in it.
The cop cannot undo the robber’s selection by moving back and into another fork as he will be unable to reach the end

of another fork with his remaining turns in such a situation by Lemma 4. �

Lemma 6. If A is satisfiable, then the cops can guarantee capture of the robber.

Proof. By Lemma 1 the cops can force the robber into a clause vertex in round r (or capture him if he does not comply).
Since A is satisfiable, it is possible to create a satisfying assignment taking into account how the universal variables get set.
Therefore, regardless of how the robber manipulates the cops in the runways corresponding to universal quantifiers, the
cops can choose runway forks in the runways corresponding to the existential quantifiers of a satisfying assignment.
Assuming the cops have played following a satisfying assignment, and every cop hasmoved to the end of his runway fork,

theremust be at least one cop adjacent to each clause vertex. This is because the set of literals corresponding to the runways
occupied by the cops satisfies F , whichmeans that, by definition, for each clause vertex, there is at least one adjacent runway
end (representing a literal which satisfies the clause) which is occupied by a cop. �

Lemma 7. If A is unsatisfiable, then the robber can evade the cops indefinitely regardless of their strategy.

Proof. By Lemma 2, the robber can get to a clause vertex safely in round r .
By Lemma 3, if the robber is in clause vertex v corresponding to clause B, he can survive round r and enter the adjacent

escape subgraph in round r + 1 (where he can evade the cops indefinitely) if and only if there is no cop at the end of any
runway corresponding to a literal which satisfies B.
By Lemma 5, the robber can decide for each universal variable which fork the runway cop can reach the end of. Since A

is unsatisfiable, he can force the cops into runway forks such that the set of literals corresponding to the runways the cops
can reach the ends of does not satisfy F . Therefore, even if the cops move to the ends of their runways they will not be able
to cover every clause vertex. The robber can survive round r in that clause vertex and then move into the adjacent escape
subgraph on his next turn, guaranteeing that he cannot be captured. �

5 Remember that we only use assignment cliques when the associated quantifier is universal.
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3.3. Correctness

With the following proof, we conclude our hardness result:
Theorem 1. Seeded Pursuit-Evasion is AW[*]-hard.
Proof. Lemmas 6 and 7 show that the cops can force a win in the constructed instance if and only if A is satisfiable. All that
remains to show is that our reduction is parameterized.
If AC is the number of clauses in A and AV is the number of variables in A, then for the number of vertices in the constructed

instance we have:

• At most AC + AV hypercubes, each of size 22r+2.
• AV runways, each of size r + 1, with some overlap.
• AC clause vertices, each of size 1.
• one assignment gadget of size at most AV + 2.

While the size of the constructed instance is not polynomial in the size of the input because of the exponentially-
large hypercubes, the size of the hypercubes is dependent only on r , the parameter. There is only a polynomial number of
hypercubes (and other gadgets) so the size of the graph as a whole remains fixed-parameter tractable. The parameter in our
target reduction is |C |, which is equal to r+1 (one cop in each of the r runways, and one in the assignment gadget), so our new
parameter remains independent of the input size. Thus we have a parameterized reduction from Unitary Parameterized
QBFSAT2 to Seeded Pursuit Evasion. �

4. Pursuit in a hypercube

We have omitted one crucial proof from the reduction in our previous section: that our robber can evade the cops
indefinitely once he enters a hypercube. We provide that proof in this section.
We use coordinates of the hypercube (which are all 0 or 1) as a mapping from vertices to subsets of an n-element set.

In this case, an edge between two vertices exists if and only if the sets corresponding to those vertices differ by exactly one
element.
We now define a notion of a local dominating set. We use N[v] to denote the closed neighborhood of vertex v

(which includes v), while N(v) is the open neighborhood of v (which excludes v).
Definition 2. A graph G = (V , E) has a local dominating set of size k if and only if there exists some v ∈ V and V ′ ⊆ V − {v}
such that |V ′| ≤ k and V ′ dominates N[v].
Note that V ′ must always contain at least one vertex of N(v) in order to dominate v. You always have a local dominating

set when k is larger than or equal to the degree of the lowest-degree vertex in the graph, since for that vertex the local
dominating set can consist of all its neighbors.
If a graph does not have a local dominating set of size k (meaning that no vertex in the graph meets the criteria given

above) then the robber can evade k cops as follows:
Lemma 8. If a graph G does not have a local dominating set of size k, then a single robber can evade k cops in G indefinitely.
Proof. If graph G = (V , E) has no local dominating set of size k and the robber is on a vertex v, then by definition the k cops
will not be able to position themselves in such a way that they are on or adjacent to every vertex in N[v]. Thus, the robber
can escape to an undominated vertex and therefore the cops will not be able to capture him on their next turn. Since this
property applies to every vertex in the graph, the robber can evade the cops indefinitely. �

All that remains is for us to show that a hypercube Q2k does not have a local dominating set, thus allowing the robber to
employ this simple evasion strategy.
Theorem 2. Q2k has no local dominating set of size k.
Proof. We associate with each vertex a length 2k bit string—namely its coordinates on the 2k-dimensional unit cube. In this
representation, two vertices in Q2k are adjacent if and only if their bit strings differ in exactly one position. When we refer
to a weight-x vertex, we mean a vertex whose bit string has Hamming weight x.
Now, assumewithout loss of generality that vertex v is represented by the all-zero string. N[v]-the closed neighborhood

of v-consists of all 2kweight-1 vertices and the weight-0 vertex (v) itself. Any weight-1 vertex dominates itself and v. Any
weight-2 vertex also dominates exactly two weight-1 vertices (its two weight-1 neighbors being the two strings you can
get by changing either of the weight-2 bitstring’s ones to zeros). You are not allowed to use the weight-0 vertex since it is
v, and vertices of weight 3 or higher are not adjacent to any relevant vertices. Thus, all vertices besides v dominate at most
two vertices of N[v].
Since each vertex can dominate at most 2 elements ofN[v], a set of k vertices can dominate at most 2k vertices. However,

N[v] contains 2k+ 1 vertices and therefore k vertices are insufficient to dominate it. �

Since, by Theorem 2, Q2k has no local dominating set, and by Lemma 8 a robber can evade k cops indefinitely in a graph
with no local dominating set of size k, we can derive the result we need for our reduction:
Corollary 1. A robber can evade k cops indefinitely in Q2k.
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5. Short seeded pursuit-evasion

In [1], Abrahamson, Downey, and Fellows sought to parameterize games by considering short variantswhich askwhether
the player to move can force a win within the next t turns. This new input t becomes a parameter. Abrahamson, Downey,
and Fellows applied this approach toGeneralized Geography andNode Kayles in [1] and showed the resulting problems to
be AW[*]-hard for parameter t . Downey and Fellows later conjectured that AW[*] was the natural home of k-move (short)
games [4]. In this section, we now apply this technique to Seeded Pursuit-Evasion.

Short Seeded Pursuit-Evasion
Input:
• A simple, undirected graph G = (V , E)
• A set C ⊆ V of starting positions for the cops.
• Starting position a ∈ V for the robber.
• Positive integer t .
Rules: As for Seeded Pursuit-Evasion.
Parameters: t , |C |
Question: Can the cops guarantee capture of the robber within t moves?

We parameterize by both t and |C | because our hardness result then holds for any subset of those parameters (e.g. for
parameterizing by t or by |C | alone).

5.1. Hardness of short seeded pursuit-evasion

We use our reduction from Section 3 again to inform us as to the parameterized complexity of Short Pursuit Evasion:

Lemma 9. Short Seeded Pursuit-Evasion is AW[*]-hard.

Proof. We reuse the reduction from Unitary Parameterized QBFSAT2 to Seeded Pursuit-Evasion. By Lemma 6, if A
(the original Unitary Parameterized QBFSAT2 instance) is satisfiable then the cops have a winning strategy. The winning
strategy given in that lemma takes at most r + 1 rounds to execute. In all other cases (that is, when A is not satisfiable) the
cops do not have a winning strategy, as per Lemma 7. Since r is the original parameter of A, setting t = r + 1 is both correct
and parameterized. Thus we have a parameterized reduction to Short Seeded Pursuit-Evasion and can conclude that the
problem is AW[*]-hard. �

5.2. Membership of short seeded pursuit-evasion

We reduce Short Seeded Pursuit-Evasion to the AW[*]-complete problem Parameterized QBFSATt [1]. Once again, we
first outline our parameterized reduction, then follow with a proof of correctness.6

Parameterized QBFSATt
Instance: An integer r; a sequence s1, . . . , sr of pairwise disjoint sets of boolean variables; a boolean formula F over
the variables s1 ∪ · · · ∪ sr that consists of t alternating layers of conjunctions and disjunctions with negations applied
only to variables (t is a fixed constant).7
Parameter: r, k1, k2, . . . , kr
Question: Does there exist a subset q1 ⊆ s1 of size k1 such that for every subset q2 ⊆ s2 of size k2, there exists a subset
q3 ⊆ s3 of size k3 such that ... (alternating qualifiers) such that, when all the variables in q1, q2, . . . , qr are set to true
and all other variables are set to false, formula F is true?

Given an instance of Short Seeded Pursuit-Evasion, our goal is to create a formula F which encodes the rules of the game
and is satisfied if and only if there is a winning strategy for the cops. As before, this must be a parameterized reduction.
We first create two sets of variables to represent the positions of the cops and robber:

• cdvj is true if and only if cop d is at vertex v in round j.
• rvj is true if and only if the robber is at vertex v in round j.

We use the quantifiers to capture the alternating nature of the pursuit problem. Since the cops must choose their own
moves, we use the existential quantifiers for the cops’ moves, and since a winning strategy for the cops must take into
account any possible move by the robber we use the universal quantifiers for his moves. Thus, for the existential quantifiers
where i is odd, we set si = {cdv((i+1)/2)|1 ≤ d ≤ |C |, v ∈ V } and ki = |C |. For universal quantifiers where i is even, we set
si = {rv(i/2)|v ∈ V } and ki = 1.

6 A preliminary version of this proof appeared in [14].
7 Note that for t = 2 we require that F be in CNF.
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The ki parameters cause the correct number of cops to occupy vertices. However, this does not preclude the possibility
of one cop occupying multiple vertices while others occupy none. We will prevent this by adding a rule for the cops to our
formula F (specifically R8 below).
We use formula F to encode the movement rules and the winning condition. We write the robber’s constraint rules such

that any variable setting which corresponds to a game in which the robber either cheated or was captured satisfies the
formula — corresponding to a cop-win. Thus the robber’s rules are negated so that a violation results in a clause being true.
These clauses are then arranged in disjunctive normal form so that if any clause is true the entire formula is true as well. For
the cops we want a single violation to result in the entire formula evaluating to false, so their clauses are arranged in CNF.
We now restate the rules of Short Seeded Pursuit-Evasion, encode them as formulas, and prove that these encodings

properly enforce them. Negations are represented with overlines (e.g., the negation of x is x).

Rule 1: Exactly one cop starts at each v ∈ C .
Implementation: R1 =

∧
v∈C cf (v)v0, where f (v) as an arbitrary one-to-one function that maps the vertices of C to the set

{1, . . . , |C |}.

Proof. By definition, cf (v)v0 is true if and only if cop f (v) is on vertex v on turn 0. Therefore, R1 is true if and only if the cops
started on all the vertices in C . �

Rule 2: The robber begins at vertex a.
Implementation: R2 = ra0

Proof. By definition, ra0 is true if and only if the robber is on vertex a on turn 0. Thus R2 is true if and only if the robber starts
on some vertex other than a. �

Rule 3: The cops and robber alternate taking turns, starting with the cops.

Proof. The cops’ turns correspond to existential quantifiers and the robber’s turns correspond to universal quantifiers,which
alternate as desired. For each existential quantifier i is odd and si is the complete set of variables for cop positions on the
corresponding turn. For each universal quantifier i is even and si is the complete set of variables for robber positions on the
corresponding turn. �

Rule 4: During the cops’ turn, each cop either moves to a vertex adjacent to his current position, or stays put. Multiple cops
may occupy the same node at a time.
Implementation: R4 =

∧
(u,v)/∈E,u6=v
1≤s≤t
1≤i≤|C |

(c iu(s−1) ∨ c ivs).

Proof. It may be easier to see the correspondence with R4 if we state Rule 4 as its complement: namely that no cop may
move to a non-adjacent vertex.
Multiple cops (say i and j) occupying the same node is accomplished by setting both civs and cjvs to true. In essence, we

permit this behavior by never disallowing it. �

The following rule is the robber’s analog to Rule 4.

Rule 5: On his turn, the robber either moves to an unoccupied vertex adjacent to his current position, or stays put.
Implementation: R5 =

∨
(u,v)/∈E,u6=v
1≤s≤t

(ru(s−1) ∧ rvs).

Now we add the winning conditions for the cops. For implementation, these are lumped in with the robber’s rules and thus
phrased in DNF.

Rule 6: If, at any time, the robber occupies the same vertex as a cop, the robber is captured and the cops win.
For simplicity, we split this rule into two:
Rule 6a: The cops win if a cop enters the vertex occupied by the robber.
Implementation: R6a =

∨
v∈V
1≤s≤t
1≤i≤|C |

(rv(s−1) ∧ civs).

Proof. Since the cops move first, they can capture the robber by entering the vertex he was in at the end of the last round
(s − 1). Thus, if the robber ends round s − 1 on vertex v, the cops can capture him if and only if some cop i (for any i such
that 1 ≤ i ≤ |C |) enters vertex v in round s. This is true if and only if rv(s−1) ∧ civs is true. Thus R6a is true if and only is a cop
moves into the robber’s vertex. �

As an alternative to the situation in R6a, the robber may move into a cop’s position. This, of course, gets him caught and
thus we must enforce this possibility as well.
Rule 6b: The cops win if the robber enters a vertex occupied by a cop.
Implementation: R6b =

∨
v∈V
1<s≤t
1≤i≤|C |

(rvs ∧ civs).

The proof of this rule is similar to that of R6a, except that since the robbermoved last we check his position in round s instead
of s− 1.



A. Scott, U. Stege / Theoretical Computer Science 411 (2010) 3845–3858 3855

Rule 7: Both players have complete information.

Proof. This is due to the fact that the quantifiers are resolved sequentially in a left-to-right manner. That is, when it is time
to resolve the ith quantifier, the variables corresponding to quantifiers 1 through i − 1 have already been decided and are
known. Thus complete information is encoded into the formula. �

Rule 8: You cannot add or subtract pieces (cops or robbers) from the game at any time. Further, any given piece occupies
exactly one vertex at a time.
Implementation: R8 =

∧
u,v∈V
u6=v
1≤s≤t
1≤i≤|C |

(c ius ∨ c ivs).

Proof. The first part of this statement is enforced by the quantifier weights. For every universal quantifier numbered i
(robber’s turns), we defined the weight ki to always be 1 and the set si to be the set of all rv(i/2). Thus, for any given round t ,
exactly one of the robber variables rvt is true, indicating that the robber is on vertex v.
Similarly, for the existential quantifiers (cops’ turns)wedefined theweight to always be |C |. However, this is not sufficient

to ensure that all |C | cops are placed as it is possible that the variable assignment could set one cop in multiple positions
while another is not given any position. Rule R8 ensures that no cop occurs twice: if a cop occupies two vertices, say u and
v, on turn i then the clause containing both cius and civs is false and thus R8 would be false. If no cop occupies two vertices
on the same turn, then for any turn i and any pair of vertices u, v, one of cius and civs is false. Thus, every clause of R8 would
be true, rendering the entire formula true. Therefore, R8 is true if and only if no cop occupies two different vertices on the
same turn. This means that there must be |C | different cops placed, and thus every cop is placed once. �

Now we assemble the formulas for the cops and the robber:

Robber’s Formula: FR = (R2 ∨ R5 ∨ R6a ∨ R6b)
Cops’ Formula: FC = (R1 ∧ R4 ∧ R8)

Combining these, we get the formula F for our Parameterized QBFSATt instance: F = FR ∧ FC .
Given the preceding sequence of proofs, we also have:

Corollary 2. Our constructed Parameterized QBFSATt instance encodes all the rules of Short Seeded Pursuit Evasion.

Now we are ready to state the main result of this section.

Theorem 3. Short Seeded Pursuit-Evasion is in AW[*].

Proof. We show that F is true if and only if the cops won the game, either by capturing the robber in a legal game or because
the robber cheated.
As we have already verified the rules individually above, the robber’s formula (FR = R2 ∨ R5 ∨ R6a ∨ R6b) is true if at

least one of the following is true: he chooses to start somewhere other than his assigned starting position (R1), performs an
illegal move (R5), or is caught (R6a, R6b). Otherwise, if the robber moves legally without being captured, FR evaluates to false
for the corresponding variable setting. Similarly, the cops’ formula (FC = R1 ∧ R4 ∧ R8) is false if and only if they break a
rule. Thus formula F is satisfied if the cops move legally (FC is true) and the robber is caught or he cheats (FR is true).
Conversely, F is unsatisfied if the copsmove illegally (FC is false) or the robbermoves legally and is not caught (FR is false).

Note that the formula is still unsatisfied if the cops cheat and the robber is captured since FC would be false under those
conditions. The formula is polynomial in size, and does not introduce the input size into the parameters, so our reduction is
complete. �

We can also use this to derive a result for Short Pursuit-Evasion, defined as per Short Seeded Pursuit-Evasion except
that the players choose their starting positions with their first moves.

Lemma 10. Short Pursuit-Evasion is in AW[*].

Proof. The only difference between Short Pursuit-Evasion and Short Seeded Pursuit-Evasion is that the former allows
the players to choose starting positions while in the latter the starting positions are given as part of the input. As such, we
can take the membership reduction for Short Seeded Pursuit Evasion and turn it into a membership reduction for Short
Pursuit-Evasion by removing the rules regarding starting positions from the formula F , namely R1 and R2. With these rules
removed the players are free to select any starting position theywish on their first turns of the simulated game. Thus, we can
reduce Short Pursuit-Evasion to Parameterized QBFSATt by reusing the reduction from Short Seeded Pursuit-Evasion,
with the only change being that F = (R5 ∨ R6a ∨ R6b) ∧ (R4 ∧ R8). �
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6. Directed pursuit-evasion

In this section we consider Directed Pursuit-Evasion, an unseeded variant of the Seeded Pursuit-Evasion problem
where the edges of the input graph are directed and the players choose their starting positions. In [8], Goldstein and Reingold
showed this problem to be hard for EXPTIME.

Directed Pursuit-Evasion
Input: directed graph G = (V , E), positive integer k.
Rules:
• At the beginning of the game, each of the k cops chooses a vertex of G to be deployed to.
• Once the cops are deployed, the robber chooses a vertex in V to start on.
• For the remainder of the game the cops and robber alternate taking turns, starting with the cops.
• During the cops’ turn, each cop eithermoves to a vertex adjacent to his current position, or stays put. Multiple cops
may occupy the same node at a time.
• On his turn, the robber either moves to an unoccupied vertex adjacent to his current position, or stays put.
• If, at any time, the robber occupies the same vertex as a cop, the robber is captured and the cops win.
• Both players have complete information. That is, the cops know the positions of the robber and their fellow cops
at all times, and vice-versa.
• You cannot add or subtract pieces (cops or robbers) from the game at any time. Further, any given piece occupies
exactly one vertex at a time.

Parameter: k
Question: Can the cops guarantee capture of the robber?

We show that this problem is AW[*]-hard by extending our previous reduction from Section 3. Specifically, we take
the output instance from that reduction (from Unitary Parameterized QBFSAT2 to Seeded Pursuit-Evasion) and create an
instance of Directed Pursuit-Evasion.
Given a Seeded Pursuit-Evasion instance generated by our reduction, we add gadgets and direct the edges resulting in a

Directed Pursuit-Evasion instance in which the players will lose if they do not move into the vertices corresponding to the
starting position(s) of the Seeded Pursuit-Evasion instance.We avoidmodifying the rest of the graph so that the remainder
of the game plays out as before. The reduction creates G′ from G as follows:

• Let s be the vertex in G′ corresponding to the starting position in G for the cop in the assignment gadget as given by the
Seeded Pursuit-Evasion instance (see Fig. 3).
• Let r ′ be the vertex between r (the starting position of the robber in the original instance) and s (again, see Fig. 3). Let
U = V − C − r ′.
• For each vertex v ∈ C (the set of starting positions for the cops), change all the undirected edges incident to v into
out-edges.
• Create a set of new vertices Dwith |D| = |C |.
• Add directed edges to G′ such that each vertex in D has one out-edge to a unique vertex in C (that is, a one-to-one
mapping).
• Let s′ be the vertex in D that is adjacent to s.
• Add directed edges from each vertex in D− {s′} to every vertex in U .
• For each v ∈ C − {s}, create an escape subgraph called Rv

1 . Let R1 = {R
v
1: v ∈ C − {s}}.

• For each v ∈ D− {s′}, create an escape subgraph called Rv
2 . Let R2 = {R

v
2: v ∈ D− {s

′
}}.

• For each Rv
1 in R1, pick a vertexw ∈ Rv

1 and add directed edges from r
′ and v tow.

• Add directed edges from s′ to every vertex in each escape subgraph in R1.
• For each Rv

2 in R2, pick a vertexw ∈ Rv
2 and add directed edges from s and r

′ tow.
• For each Rv

2 in R2, add directed edges from v to every vertex of Rv
2 .

Fig. 6 illustrates how the components of G′ are connected.
Besides the graph, we also adjust the rest of the input from Seeded Pursuit-Evasion. While we do not input the set C ,

we set k = |C |. As the robber can choose his starting position, we omit vertex a from the input.

Theorem 4. Directed Pursuit-Evasion is AW[*]-hard.

Proof. This reduction forces the cops to start on the vertices ofD: If when the cops deploy, there is some vertex v ∈ Dwhich
is is not occupied by a cop, then the robber can evade the cops indefinitely simply by starting on v and never leaving that
vertex. The cops cannot capture the robber if he uses this strategy since the vertices in D have no in-edges.
If the cops do start on the vertices of D, the robber must start at r ′ because every other vertex in the graph is adjacent to

a starting position for a cop.
At this point, the cops must all move into C on the same turn or else the robber can escape. If the chaser cop (the one

starting at s′) moves to s while some other cop stays in D and thus leaves vertex v ∈ C − {s} unoccupied, then Rv
1 will be

unguarded and the robber can escape into it. On the other hand, if the cop on v ∈ D − {s′} (for arbitrary v) moves into C
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Fig. 6. Connections in G′ . Solid arrows indicate a directed one-to-one mapping from the vertices in the origin set to the vertices in the destination set.
Dashed arrows indicate that every vertex in the origin set has an edge to every vertex in the destination set. Dotted arrows indicate that each vertex in
the origin set has one edge to each escape subgraph in the destination set. Arrows that alternate between dashes and dots indicate that each vertex in the
origin set has an edge to every vertex of its unique escape subgraph in the destination set.

before the chaser copmoves to s, then the hypercube Rv
2 will be left unguarded. To prevent the robber from escaping via one

of these two situations, the cops must either take their positions in C all at once, or stay put. In the latter case, the robber
can simply remain in his current position. In the former, the robber’s only escape is to r .
Once the cops are on the vertices of C and the robber is on r , we have reached the starting position of the Seeded Pursuit-

Evasion instance. The remainder of the game plays out as it did before (since the vertices in U have not gained any new out-
edges). Thus we have a winning strategy in this instance if and only if we had one in the Seeded Pursuit-Evasion instance.
This gives us a parameterized reduction from Unitary Parameterized QBFSAT2 to Directed Pursuit-Evasion since k = |C |
and |C | = r + 1, showing that Directed Pursuit-Evasion is AW[*]-hard. �

6.1. Short directed pursuit-evasion

The last problem we consider is the short variant of Directed Pursuit-Evasion.

Short Directed Pursuit-Evasion
Input: directed graph G = (V , E), positive integers k and t .
Rules:
• At the beginning of the game, each of the k cops chooses a vertex of G to be deployed to.
• Once the cops are deployed, the robber chooses a vertex in V to start on.
• For the remainder of the game the cops and robber alternate taking turns, starting with the cops.
• During the cops’ turn, each cop eithermoves to a vertex adjacent to his current position, or stays put. Multiple cops
may occupy the same node at a time.
• On his turn, the robber either moves to an unoccupied vertex adjacent to his current position, or stays put.
• If, at any time, the robber occupies the same vertex as a cop, the robber is captured and the cops win.
• Both players have complete information. That is, the cops know the positions of the robber and their fellow cops
at all times, and vice-versa.
• You cannot add or subtract pieces (cops or robbers) from the game at any time. Further, any given piece occupies
exactly one vertex at a time.

Parameters: k, t
Question: Can the cops guarantee capture of the robber within t rounds?

We derive AW[*]-completeness for this problem using Theorem 4 and the techniques from Section 5.

Theorem 5. Short Directed Pursuit-Evasion is AW[*]-complete.

Proof. The proof of Lemma 9 shows that if an instance of Seeded Pursuit-Evasion admits a winning strategy for the cops,
then the cops require at most r + 1 rounds to win. Our reduction to Directed Pursuit-Evasion starts from Seeded Pursuit-
Evasion. The gadgets added by the reduction force the cops to spend exactly two additional rounds getting into the starting
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positions for the Seeded Pursuit-Evasion instance (one round to move into the new starting vertices D, and one round to
move from the new starting positions into the old positions C), after which the game is played out as before. Therefore, if
the cops have a winning strategy in the Short Directed Pursuit-Evasion instance they require at most r+3 rounds to win.
This gives us a parameterized reduction, making Short Directed Pursuit-Evasion AW[*]-hard.
To show membership in AW[*], we reuse the reduction from Theorem 3 in Section 5. As we did before in Lemma 10,

we omit the rules enforcing starting positions (R1 and R2) to enable the players to their starting positions on the first turn.
For R4 and R5 (the movement rules) note that these have already been written in a manner suitable for directed graphs. The
remaining rules do not concern edges or starting positions, and therefore function as intendedwithout furthermodification,
giving us F = (R5∨R6a∨R6b)∧ (R4∧R8) in ourmodified reduction. This gives us a reduction from Short Directed Pursuit-
Evasion to Parameterized QBFSATt . Thus, by this reduction, Short Directed Pursuit-Evasion is in AW[*]. �

7. Summary and open questions

We have shown that Seeded Pursuit-Evasion and Directed Pursuit-Evasion are both AW[*]-hard, and that short
variants of both problems are AW[*]-complete.We also showed that Short Pursuit-Evasion is in AW[*]. Not yet mentioned
are Directed Seeded Pursuit-Evasion and Short Directed Seeded Pursuit-Evasion, to which our Seeded Pursuit-Evasion
and Short Seeded Pursuit-Evasion results apply respectively (as they are subproblems). Thus Directed Seeded Pursuit-
Evasion is also AW[*]-hard and Short Directed Seeded Pursuit-Evasion is AW[*]-complete. We are, however, left with a
number of open questions.
We can argue for Seeded Pursuit-Evasion and Directed Pursuit-Evasion that the number of positions in a game of

either is O(|V |k). Standard game-theoretic algorithms can solve a game in a time which is polynomial in the number of
valid game positions, so with such algorithms we can show these problems to be in XP. However, this leaves us with a gap
between hardness and membership. What is the exact classification of these parameterized problems?
We know that Short Pursuit-Evasion is in AW[*]. Can we adapt the techniques we used in this paper to find an AW[*]-

hardness reduction for Short Pursuit-Evasion as well? Or is the problem easier? Similarly, what about Pursuit-Evasion?
We know that the problem is W[2]-hard [6], but given that so many variants of the problem are hard for AW[*] it seems
likely that it is not in W[2] and thus we are interested in its exact characterization.
Finally, for symmetric graphs (such as the hypercubesweuse), canwe apply the local dominating set concept any further?

Specifically, the lack of a local dominating set in a graph ensures that a robber can evade cops indefinitely, but is the existence
of a local dominating set of size k indeed sufficient to ensure that k cops can capture the robber?
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