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Let q, =v(v—1)(v—2)/24 and let L= {O 1 2 ‘el —-14}U{q. 12 q, —8 a} for v=8.
Further, let J[v] denote the set of all k such that there exists a pair of Steiner ‘quadruple
systems of order v having exactly k blocks in common. We determine Jivlforall y=2" n=2,
with the possible exception of 7 cases for v = 16 and-of 5 cases for each v=32. In- particular
we show: J{v]c [, for all v=2 or 4 (mod 6) and v=8, J[4]={1}, J[8]=1;=10,2,6, 14}, L6\
{103, 111, 115, 119, 121,122, 123}CJ[16] and L,\{qﬂ h h =17, 18 19, 21 25}CJ[U] for
all v=2", n=5.

1. Introduction

A Steiner quadruple system (SQS) is a pair (Q, q) where Q s a finite set and q is
a coiiection of 4-subsets of Q (called btocks) such that every 3-subset of Q is
contained in exactly one blocki of q. The nu“‘ er |Q| is called the order of the
quadruple system (Q, g) ‘and in 1960 Han that'a necessary and
sufficient ‘condition for the exxsteua,e of a"vStezner;quadmple:_syswm of order v
(SQS(v)) is v=2 or 4 (mod 6). Rtis ‘easy to see that if (Q, q) is an SQS(v), then
lgl = v(v—1)(v—2)/24. A very mtearevtmg question n turally arises: For a given
v=2 or 4 (mod 6), for which k ﬁv(v ~Dw-2)24is it posszble to construct a pair
of SQS(v) having exactly k blocks in common? [14] "To date, the only known
results are J[4]={1}, J[8]={0,2,6,14}, and J[10]={0, 2, 4, 6, 8, 12, 14, 30}
(Kramer and Messner [S]). The similar problem for Steiner triple systems has
been completely settled by Lindner and Rosa in [11]. This paper is the first
general attack on settlmg the (much more dlﬂicult) block mi ersec'tlon problem for
SQS ‘
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Let g, = v(v—1)(v—2)/24 and let
i, ={0’ L2,...,q- 14}U{qv -12,4, -8, qv}’

for v=8. Further, let J{v] denote the set of all k such that there exists a pair of
SQS(v) having exactly k blocks in common. We determine J{v] for all v=2"
n =2, with the possible exception of 7 cases for v =16 and of § cases for each
v =32. In particular we show:

J[vle I, for all v=2 or 4 (mod 6) and v =8,

J[4]1={1}, J[8]=13=40,2, 6, 14},

L\{103, 111, 115,119, 121, 122, 123} c J[16],
I\{g,—h:h=17,18,19,21,25}c J[v] for all v=2", n=5.

Although it is surely true that J[v]=1L, for all v =2", n=3, the authors have
not as yet been able to handle the few exceptions listed above. Nevertheless we
do not hesitate to make the following conjeciure.

Conjectuwe. J[v]=1, for all v=2" and v=8.

2. Disjoint and mutuslly balanced PQS

A partial quadruple system (FG5) is a pair (P, q) where P is a finite set and q is
a collection of 4-subsets of P ¢called blocks) such that every 3-subset of P is
contained in at most one block of q. Using graph theoretic terminology we will say
that an element x of P has degree d(x) = h, if x belongs to exactly h blocks of q.
Clearly ¥, .p d(x) =4|q|. Finally, if x# y € P we will write (x, y), tc indicate that x
and y belong to exactly r blocks of q.

Two partial quadruple systems (P, q;,) and (P, q,j are said to be mutually
balanced, if any given triple of distinct elements of P is contained in a block of g,
if and only if it is contained in a block of q,. Two mutually balanced PQSs are said
to b:: disjoint if they have no block in common. It is easy to see that if (P, q,) and
(P, q,) are any two mutually balanced PQSs, then |q,|=|qa|.

In this section we will determine some useful properties of disjoint and mutually
balanced (1)MB) PQSs. In what follows (P, q,) and (P, g,) will be two DMB PQSs
with P={1.2,...,n} and |q,| =|q.| =m.

Property 2.1. n=8, m=8, and d(x)=4 for every x€P.

Proof. If {1.2, 3.4} q,, then necessarily {1, 2, 3, x}, {1, 2,4, y}, {1,3,4, z} and
{2, 3, 4, t} belong tc q,. Since {x,y, z, t}N{l,2, 3,4}=9, clearlv n=8. Let now
xeP and let {x,1,2,3}eq,. If {x,1,2,y;}, {x,1,3, y,} and {x, 2, 3, y,} belong to
d,, then ‘yi, y,, y3}N{x, 1,2,3} =0 and there exists in q, three distinct blocks
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containing {x, 1, yg}, {x, 3. y2} and {x, 2, y,}, respectively. Hence d(x)=4. Finally,
since 4m =Y, _p d(x) we must have m =8.

Property 2.2. If h =max{d(x) : xeP}, then m=2h.

Proof. It is easy to see that if {x, a, b, ¢}eq;, i=1,...,h, there are in q, h
distinct blocks containing x and h distinct blocks containing the triples {a;, b, ¢;}
but not x.

Property 2.3. If x# ye P and {(x, y), then d(x)=2h, d(v}=2h.

Proof. If {x,y,a,b}eq,, i=1,2,...,h, then there are in g, 2h distinct blocks
containing the triples {x, a;, b;} and {y, a;, b;} and at least k additional blocks
containing the triples {x, y, a;} and {x, y, b;}. Hence d(x)=2h, d(y)=2h.

Property 2.4. If d(x)>4, then d(x)=6.

Proof. Let R, ={x, a, b, ¢} (i=1,...,5,...) be all of the blocks of q, containing
x. For every i#j we have |[R;NR;|=1 or 2. If there exist two indices i#j such
that R, NR; ={x}, then there are in g, (at least) six distinct blocks containing
{x, a;, b}, {x, a;, ¢;}, {x, b, ¢}, {x, @;, b}, {x, a;, ¢;} and {x. b, ¢;} respectively. Hence
d(x)=6. If for every i# j we have |R; N R;| =2, then since d(x) >4 for some ye P
there are r =3 blocks containing {x, y}. Clearly d{x)=6.

Property 2.5. If m >>8 and there exists a block R such that d(x) =4 for every xe R,
then m = 14.

Proof. Let {1,2,3,4}eq, and let {1, 2, 3,5}, {1, 2,4, 6}, {1, 3,4, 7} and {2, 3, 4, 8}
belong to q,. If d(1)=d(2)=d(3)=d(4) =4, then we have (necessarily)

ing;: R,={1,2,3,4}, ing, T,={1,2,3,5},

R,={1,2,5,6}, T,={1,2,4,6},
R,={1,3,5,7}, T,={1,3,4,7},
R,={2,3,5,8}, T,={2,3,4,8},
R,={1,4,6,T}. Ts=11,5,6,7},
R¢={2,4,6,8}, Te=12,5,6,8},
R,={3,4,7,8) T,={3,5,7, 8},

Ts=14,6,7, 8}.

If {5,6,7, 8}¢4q,, then {5,6,7,x}, {5,6, 8, y}. {5,7,8, z} and {6, 7, 8, t} belong
to q, (where x, y, z, t are distinct elements of P) and {5, 6, x}, {5,7, x}, {6, 7, x},
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{7,8, z}, {6, 8,1} and {5, 8, y} are contained in six distinct blocks of q,, respec-
tively. Clearly m=14. If Ry ={5,6,7,8}eq,, then (A, 7,) and (A, 7,), where
A={1,2,...,8}, m1={R,,...,Rg} and 7, ={T,...., Tg} are two DMB PQSs.
Since

( U B,ql—ﬁ) and ( U Bﬂqz-fz)

Beqg,—T; Beq,—T2

are two DMB PQSs, it follows that m =16.
Property 2.6. If m >8, then m =12 or m= 14.

Proof. We need consider only the case in which every block B contains an x € P
with d(x)=6 (in the other cases we have immediately our statement from
Properties 2.4 and 2.5). From Property 2.2 we have m =12. Suppose m = 13. It
follows that Y, pd(x)=52 and d(x)=4 or 6 for every x € P. Further we must
have 8 <n < 12. Under these conditions, for every x € P such that d(x) =6 there
exists a v € P such that (x, y)s, so that d(y) = 6. Necessarily, we have the foliowirg
blocks, in g;:

R,={1,2,3,4}, R,={1,3,5,x} R;={2.3,5, v}, Ryo={3,4,v,,t},

R,={1,2,5,6}, Rs={1,4,7,x,}. Rg={2,4,7,v.}, R;1=1{5,6, v, t,},

R;={1,2,7,8}, Rg¢={l,6,8,x3} Ry={2,6,8,y3}, R;x={7,8, vs,t3};
in q,:

T,=1{1,2,3,5}, T,={1,3,4,v}, T-={2,3,4,w}, T,0=1{3,5, %1, uy},

T,={1,2,4,7}, Ts={1,5,6,v,}, T.={2,5,6,wy}, T,;={4,7, x5, us},

T:={1,2,6,8}, T¢={1.7,8,v3}, T:={2,7,8,ws}, T,=16,8, x3, us}.

where {x;, X;, X3} ={vy, V2, v}, {y1, V2, Y3} == {w}, Wa, w3}, {x1, x5, X3} N {ys, ¥2, Y3} =
@ and

(X1, X2, X3) and (v,, Uy, U3) = (7, 6, 3) and (6, 7, 3) respectively, or
(8,5.4) and (8, 4, 5) respectively, or

(Y1, ¥2, ¥3) and (wy, w,, wj) =
Y1, Y2, Y3 ts W2, W3) (a.a,a) withag¢{l1,2,..., 8}

If {x,y,}={7,8}, then we <can sce that for every i=12,3
{2i+1,2i+2, v. w}¢q,. Hence m=15. Suppose, therefore, {x;, y;}N{9. 10} # .
Let x;=9 (or, likewise, y;=:9). If w,; =t and y,=u, for every i=1,2,3,
then for A={1,2,...,8, x,y.4; i=1,23} R'={R:i=1,...,12} and
T={T:i=1,...,12}, (A,R") and (A, T, are two DMB PQSs. Since
(Useq-r' B, 41— R’) and (Upeq,—r B, g~ T» are also a pair of DMB PQSs, it
follows that m=20. If there exist at least o indices i,je{l,2,3} such that
w, # b, wi#t (or, likewise, y, # u;, y;# u;), thcn m =14, Suppose, therefore, that
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w;#t, (or y;# u;) for exactly one index ie{1,2, 3} Necessarily, £ =W;i1, 2=
wio {i,i+1,i+2}={1, 2, 3}). It follows that {d(2i +1), d2i+2)}<{5, 7} Hence
m =14 It follows that DMB PQSs with m'=13 do not exist. S

Theorem 2.7. For every 052 or 4 (mod 6) and v=8, J[v]gL,.

Proof. If two SQS(v) (Q, q,) and (Q, g,) have k blocks in common, then there
exists a pair of DMB P:JSs (7, s5,) and (P, s,) such that P< Q, s, € ¢4, 5, € ¢,, and
|s1] = |sz] = g, — k. The statement follows immediately from Properties 2.1 and 2.6.

3. SQS with blocks in common

In this section we will determine J{v] for ali v =2", n=:2, with the possible
exception of 7 cases for v =16 and of S cases for each v=32. Observe that for
eve: " v=2 or 4 (mxd 6) q, € J[v] and, since D(2v)=v for v >2 [7] (where D(2v)
is the number of pairwise disjoint SQS(Zv) on the same set with 2v elements),
0 e J[v] for v >-4. The following well-known doubling construction for quadruple
systems is the main tool used in what follows.

Let (X,A) and (Y,B) be any two SQS(v) with XNY=0. Let F=
{F.,...,F,_y} and G={G,,...,G,_} be any two 1-factorizations of K, (the
complete graph on v vertices) on X and Y, respectively, and let a be any
permutation c¢n the set {1,2,...,v—1}. Define a collection q of blocks of
Q=XUY, as follows:

(1) Any block belonging to A or B belongs to g;

(2) If x;, x,= X and y,, y2€ Y, then {x,, X5, y1, Y2} € ¢ if and only if {x, x,}€ F,
{y, 2t€G; ia =j.

It is a routine matter to see that {Q, q) is a SQS(2v) (cf. [13, 16]). We will
denote (Q, q) by [XU YA, B, F, G, x) and for every F, 5,a by I'(F, G, a) the
collection of all of the blocks {x,, x5, y1, 2} such that {x,, x;}€ F, {y,, y.}€ G;, and
ia=]j.

Further, if w is a positive integer, we define o;5i=0,1,2,...,w—2, w; to be
the permutation on {1, 2,..., w} given by

w,j=i+1,

1 2 3...
ai={ ‘ W), \\herexj={j,j<i+l,
T F2 &t j-1,j>i+1,

Theorem 3.1. J{4]={1}; J[8]={0,2, 5, 14}.

Proof. J[4]={1} is trivial. Since 0,14<J[8] and J[8]<I; we need show only
that 2,6€J[8]. Let X={1,2,3,4}, V={5,6,7,8}, A={X}, B={Y}; and let
F={F,, F, F;} and G={G,, G,, G;; be two l-factorizations of K, on X
and Y respectively. If ao, a; and a; are the permutations defined on {1, 2, 3}
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in the remarks preceding Theorem 3.1, then [XUYJ(A,B,F,G,a;) and
[ XUYJA,B,F,G,a, are two SQS(3) with 2 blocks in common and
[XUY)A, B,F,G,a;) and [XU YA, B, F, G, a3) are two SQS(8) with 6 blocks
in common.

Theoremm 3.2. For k =105, 113, 117, 125 there are SQS(16) having exactly k
blocks in common.

Proof. Let A ={1,2,3,4}, B={5,6,7, 8}, C=19,10. 11, 12}, D ={13, 14, 15, 16}.
Q=AUBUCUD and let o, B, €, D be the following 1-factorizations of K, on
A, B, C, and D respectively:

A, A, A, B, B, B,
d= 1,2 1,3 1,4 B= 56 57 5,8
3,4 2,4 2,3 7,8 6,8 6,7
C, C, G, D, D, D,

€= 9,10 9,11 9,12 P= 13,14 13,15 13,16
11,12 10,12 10,11 15,16 14,16 14,15

Let a4, «; and a; be the permutations defined on {1, 2, 3} as above and consider
the ccliections of blocks of ), as shown in Fig. 1.

Observe that (AUBUC, X,) and (AUBUC, X,) are two DMB PQSs with
#i=15 blocks. Further we can prove that (Q,X,UYUZUTI(A, %6, as)U
I'®B, 9D, a) UI(A, D, az) U (6, D, as3)) is an SQS(16). It follows that

(i (Q X, UYUZUI(A, €, a;)UIN(B, @, az)UTI'(A, D, az) U6, D, as)
and (Q, X, UYUZUTI'(A, 6, a;) UI'(B, D, u;) U (A, D, a;) UT'(€, D, a,)) are
two SQS(16) with k =125 blocks in common;

(i) (Q, X, UYUZUTI(A, 6, a;)UT(B, 2, a;)UIN(A, D, az) UT'(6, D, as))
and (Q, X, UYUZUI'(A, €, a))UT'(B, D, a,) U (A, D, az) U6, D, as)) are
two SQS(16) with k =117 blocks in common;

(i) (Q, X;UYUZUI(A, 6, az)UINB, D, a) U (A, D, a;)UT'(6, D, as))
and (Q, X, UYUZUI(A, 6, as)UIN(B, D, o) UIN(A, D, az) UT(E, D, a)) are
wo SQS(16) with 113 blocks in common;

(iv) (Q, X, UYUZUI'(A, 6,a3) UT'(B, D, az)UT(A, D, a)UT%, D, as))
and (Q, X,UYUZUTI'(A, 4, a,)UT'(B, 9, an) UT' (A, D, a;) U (6, D, a,)) are
two SQS(16) with 105 blocks in common.

Theorem 3.3. If ke I,\{103, 111, 115, 119, 121, 122, 123}, then k € J[16].
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{a’ b,c,d,e,f, & h}’ Y {132’ )
(1) First, we prove the statement for k evzn. Let F, H be the 1-factorizations on

X given by Fig. 2, and let G, L and M be the 1-factorizations on Y given by

Fig. 3.

., 8}
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1,2 1,3 1,4 1,5 1,6 1,7 1,8
G= 3,5 2,5 2,6 2,3 24 2,8 2,7
4,7 4,6 3,7 4,8 3,3 3,4 3,6
6,8 7,8 58 6,7 57 5,6 4,5
L, L, L, M, M,=L,
M;=G,
1,2 1,3 1,4 L,=G, 1,3 M,=G4=L,
L= 3,5 2,6 2,5 Lg=Gs M= 2,5 Mg=Ggs=Lg
4,6 4,7 3,7 L¢=Gg 4,7 Mg=Gg=Lg
7,8 58 6,8 L;=G, 6,8 M,=G,=L,
Fig. 3.

Farther, let B, and y be the following permutaticns on {1,2,...,7}
Fori=0,1,2,4

7 i=i+1,
1 23 4 5 6 17 HI=ET

B = {2 , where y,=¢j+3,j<i+l,

< Yi Y2 V3 Ya j+2,j>i+1

3 (1 2 3 4 6 6 7)
Y"\1 456 7 2 3/

Let p(8)={0,2,4.6,8,12,14,16,20,28}. If hep(8), then it is possible to
construct four SQS(8) (X,A;) and (Y,B;), j=1,2, such that
|A;NA,|+|B,NB,j=h. Let o; be defined on {1,2,...,7} as in the remarks
preceding Theorem 3.1. Consider k=16i+h, for i=0, 1, 2, 3, 4, 5, 7, and
hep(8), and let (X, A)), (Y, B)), j = 1,2, be SQS(8) with |A, N A,|+|B,NB,|=h.
Since for i# 6 |I'(F, G, a,) NI'(F, G, ;)| = 16i, it follows that [XU Y](A,, B,, F,
G, a,) and [ XUY])(A,, B,, F, G, a;) are two SQS(16) with 16i +h blocks in
common. For i=6, consider the SQS(16) [XUYJ(A,,B;, F, G, a,;, and
[XUYI(A,, B,, F, M, a;). Since |I'(F, G, a;) "I'(F, M, a;)| =96, these SQS(16)
have 96+h blocks in common. It follows that if kel,s, k#16i+10
(i=0,1,...,7), then ke J[16]. '

Let k=16i+10 for i=0, 1,...,6. For i == we consider two SQS(8) (X, A;)
and (Y,B),j=1,2, such that |A;NA,=|B,NB,|=2. Since
\I'(F, G,ay)NT'(H,L,v)|=6, clearly [XUY](A,,B,F,G,a) and [XUY]
(A2, By, H, L, v) have 10 blocks in common. For i=1,2,...,86, let (X, A;) and
(Y, B;), j=0,1,2,3, be SQS(8) such that |A, NA_.,|+|B,NB,.,|=16u+12 for
u=0,1. Since |I'(F, G, 8,)NI'(H, L, 3)|=16i+14 for i=0, 2,4, it follows that
[XUYXA,, B..F,G,B,) and [XUY)(A,.2 Busa, H L, B) for every (u,i)e
{0, 1} x{0, 2, 4} are SQS(16) with 16(i +u)+24 blocks in common.
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0, 0, 0, O 05 Oy Oy R, R, R,
a,b ac ad a,-'e,.vp;f:}u»:s.:k ah ab a;'q~ ad l‘vnli;=.0;,
0__=' ¢h bg bh bc bd be bf R=‘c’f ~bh bg Rs=0;,
de dh of df cg ¢d ¢e “dhider oh T Rg=0g
g ef eg gh eh fh dg e.g fg ef R7~-_f.‘07
*Fig.4.

(2) Now, we prove the statement far k odd. From Thgorem 3 2 there -:xist
SQS(16) with k =105, 113, 117, 125 blocks it common. Let J, N, O R te the
1-factorizations on X given by Fig. 4, and let S, T U, % b° the l-factonzatlons on
Y given by Fig. 5.
Further, let 8, and 3, be the permutatmus on {1 2 T glven by

8=(1234567)and8 (1234567)
! 1456723/ ° M1 56723 4

Let k=79+2h; h=0,1,2,3,...,10, 11 14, 15 andlct(X,A,) and(YB,)
i=1,2, be SQS(8) such that for every h

2h if h is even,

A NA,+IB,NB,|=1. e

1,2 1,3 L4 L5 1,6 1,7 1.8 1,2 1,3 1,4 T,=S,
<. 68 26 25 24 28 23 27 = 36 26 25 T=S;
°7 3,7 4,7 3,6 3,8 3,4 4,8 3,5 4,7 45 3,7 T,=S

4,5 58 17,8 6,7 57 56 4,6 5,8 7,8 6,8 T,=S,

U1 U2 l] 3 U4 i/r 5 Uﬁ U7 Vl V2 V3

1,2 1,3 1,4 1,5 1,6 1,7 L8 1,2 1,3 L4 V,=U,
U= 3,6 2,8 2,7 23 24 2,5 2,6 V= 3,8 2,7 2,8 Vs=U;
T 4,8 4,5 3,8 46 37 34 35 4,5 4,8 3,6 Vg=U;

5,7 6,7 56 17,8 58 6,8 47 6,7 5,6 57 V,=U,

Fig. 5.
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Since |I'(O, U, a;)NI(R, V, a;)| =79 and|{I"J, S, a;) N (N, T, a,)| =81, it fol-
lows that for h even [XU YI(A,, By, O. U, a;) and [ XU Y} A,, B2, R, V, a,! are
two SQS(16) with k=79+2h blocks in common, and for h odd [XUY]
(A, By, 1, S, a;) and [XU Y)A,, B;, N T, a;) are SQS(16) with k =81+2(h—1)
blo:ks in common.

Now, let k=1+16i+r for i=0,1,2,3 and re p(8) ={0, 2, 4, 6, 8, 12, 14, 16.
20, 28}. Consider two SQS(8) (X A;) and (Y,B;), j=1,2, such that
|A;NA,|+|B,NB,|=r. For i =0, since I'(J, 5, 8,)NT'(N, T, 8,)| = 1, the SQS(16)
[XUYXA,, B,,J,S,8) and [ XU ](A,, B,,N, T, 8,) have 1+r blocks in com-
mon. For i#0, we have |I'{J, % 8)NI(N,T a;.,)|=:6i+1 and so
[XUYXA,, B, ], S, a;) and [ XU Y)(A.. By, N, T, o ,,) have 1+16i+r blocks in
common.

Finally, let k=67,71,73, cr 16i+11 for i==0,1,2,3,4. Let (X, A;) and
(Y,B). j=1,2,...,10, be SQ&(8) such that

"16(u—1) ifu=1,2,
|A,NA, . s|+|B, NBy,s|=r,=43u—1 if u=3,%

12 if u=4.
Siive
t ifv=3
I, S, o) NN, T, o) =5, =443 ifv=4
mll if v—7,

it follows that [XUY)(A,, B,.J. S, a,) and [XUY](A..s. B.ss, N, T, a,) are
two SQS(16) with k=r,+s, blocks in common, for every (u,v)e
{1,2.2,4,5}>4{3,4,7}.

Theorem: 3.4. Let v =2", n=5. If kel,\{q,—h:h=17,18,19,21,25}, then k e
J{v].

Proos. Let v=2", n=5 w=2"", X={1.2,...,wland Y={1',2,..., w} with
XNY=0.Let p(w) be the set of all h such that there exist four SQS(w) (X, A;),
(Y. B), j=1,2, with |A;NA,|+|B,NB,|=h. Let F, G, be two 1-factorizations
on X and Y respectively and let «; be defined on {1, 2,...,w—1} in the usual
way.

Assame n = 5. If ke I3,\{1215, 1219, 1221, 1222, 1223}, it is casy to show that
there exists an (r,u)e€{0,1,2,...,13, 15X p(16) such that k = 64r+ u. It follows
that, if (X, A;),(Y,B;),j=1,2, are SQ%(16) such that |A;NA,|+|B,NE,|=u,
then [XUY}A,, B,,F, G, a,s) and [X JY](A,, B, F, G, ;) are two SQS(32)
with k blocks in ccivmon. This finishes the proof for n=35. Assume therefore
n=6 and assure that for all m<n (m:=5) if u=2" and keI \{q.—h:h=17.
18, 19, 21, 25} that ke J[u]. Let ke ,\iq,—h: h=17, 18, 19, 21, 25}. Observe
that if k >(w —3)w?/4+2q,, —26, since w*/4<q, —13 and q, =24, +(w—1)w?/4,
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then there exists an rep(w) such that k=(w-Dw?4+r; and if k=<
(w~3)w?/4+2q, —26, then there exists an

(ruwe{0.1,2,...,w=-3}x{0,1,2,...,2q, 26}

such that k =rw?/4+u In every case, therefore, we have k=rw?/4+u for
r=0,1,2,...,w=3,w—1 and rep(w). Since for every

(rhuwe{0,1,2,...,w=3, w—1}xp(w) |I'(F, G, a,,_,) N I'(F, G, a,)| = rw?/4,

and it is possible to construct four SQS(w) (X,.4,) and (Y,B;),j=1,2, such
that |A; N A,[+|B; N B,| = u, our statement follows from the doubling construction.

Collecting together Theorems 2.7, 3.1, 3.2, 3.3 and 2.4 gives the following
theorem (which is, of course, the main result).

Theorem 3.5.

Jlvlel, forallv=2 or 4 (inod 6) and v=8,
J{4]1={1}, J[8l=13=40,2, 6, 14},

1,,\{103,111, 115. 119, 121, 122, 123} < J[16],
and
I\{g,—h:h=17,18,19,21,25}c J{v] forallv=2"n=5.

¢
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