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Let q,, = u(u - l)(u -2)/24 and let J, = CO, 1,2, . . . , qu - 14)U{(q, - 12, q, - 8, q,& for D 2 8. 
Further, let J[o] denote the set of ail k such that there e$sts a pair of Steiner quadruple 
systems of order u having exactty k blocks ‘m common.‘ We d&ermine J[vj Xor all d =‘2”, ‘~132, 
with the possible exception of 7 cases! for o = 16 and of 5 cases for each ~3 32. In particular 
we show: J[u]c 1” for ail u =2 or 4 (,mod 6) and D a 8, J{4] = (l), a8f = & = {0,2,6,14), I16\ 
(103, 111, 115, 119, 121, 122, 123)~.f[1.6], and &\(cl,-h: tS=l7, 18, 19, 21, 25}c.@] for 
all u=2”, n*s. 

A Steiner quadruple system (SQS) is a pair (Q, q) where Q Hs a finite set and 9 is 
a coiiection of 4-subsets of Q (caled blocks) s~h :that ewxy 3-subset ~ of Q is 
contded in exactly dne block of 4. The tiumb&$ IQ1 is &Wd the order Of the 
quadruple system..(Q% 4) xtxi &I 1960 HanaS [4] pro&d %hat”a necessary and 
sufficient xx&Nion for the existeke of ti St@ner qiradjkqk systa of order v 
(SCrS~u)) is tl= 2 of: 4 (4 6). 9t is easy to See that if IQ, 4) is an S@(u), then 
141= U(U - l)(u - 2)/24. A very titeresting question naturally tises: For a givela 
u s 2 ot 4 (mod 6), for whith k 6 b(v - l)(v - 2)/24‘ iS ti possi& to COPBRUCC a pair 
of SQSfv) having exuctly k blacks in common? [14]. To date, the only known 
results are J[4] = {I}, fl8] = {0,2,6,14]+, and J[lO] = {0,2,4,6,8,12,14,30’~ 
(Kramer and Messner [SD. The similar problem for Steiner triple systems ha:3 
been completely settled by Lindner and Rosa iti [ll]. This paper is the first 
general attack on settling t!le (much more difficult) block intersection problem for 
SC& 
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Let q* = v(u - l)(u - 2)/24 and let 

Z.. = (c),1,2, . . . , qv - 114) u (4u - 12, q2; - 8, q& 

for u 3 8. Further, let .Z[v] denote the set of all k such that there exists a pair of 
SQS(u) having exactly k blocks in common. We determine J[u] for all v = 2”, 
n 2 2, with the possible exception of 7 cases for v = 16 and of 5 cases for each 
u 2 32, In particular we show: 

J[v]E IV for all 2) =2 or 4 (mod6) and ~38, 

J[4l=U), 5[8]= &={O, 2,6,14}, 

Z,,\{103,111, 115, ll$ 121., 322,123)~ J[16], 

Z,,\{q,,-h: h=l7,18, 19,21,25)cJ[~] forall v=2”,na5. 

Although it is surely true that J[v] = ZY,, for all 21 = 2”, n 2 3, the authors have 
not as yet been able to handle the few exceptions listed above,. Nevertheless we 
do not hesitate to make the following conjecture. 

Conje&ure. J[v ] = It, for all u =: 2” and u 23 8. 

2. Disjoint and ~~otudly lbahced PQS 

A partial quadruple system (FQS) is a ?air (P, q) where P is a finite set and q is 
a collection of 4-subsets of P icalled blocks) such that every 3-subset of P is 
contained in at most one bl,ock of 4. Using graph theoretic terminology we will say 
that an element x of P has degree d(x) = h, if x belonk?s to exactly h blocks of q. 

Clearly L cp d(x) = 4 141. Finally, if x # y E P we will write (x, y), to indicate that x 
and y belong to exactly r blocks of q. 

Two partial quadruple systems (P, ql) and (P, q2) are said to be mutualky 
balanced, if any given triple of distinct elements of P is contained in a block of ql 
if and only if it is contained in a block of q2. Two mutually balanced PQSs are said 
to bl: disjcitlt if they have no block in commorr. It is easy to see that if (P, ql) and 
(P, q & are any two mutually balanced PQSs, then ]qll = 1q21” 

In this section we will determine some useful properties of disjoint and mutucolly 
b&mced (1:)MB) PQSs. In what follows (P, ql) and (P, q2) will be two DMB PUSS 
wlith P-(1.,2 ,..., n) and ~ql~=~qzl==m. 

perty 2.1. n 3 8, WI 2 8, nnd d(x) 24 for every x E P. 

Proof. If [ 1.2,3,4) E 41, then necessarily { 1,2,3, x}, { 1,2,4, y }, { 1,3,4, z} and 
{2,3,4, t) belong tc q2. Since {x, y, z, t} n( 1,2,3,4} = 9, clear%/ n > 8_ Let now . 
x E P and let {x, 1,2,3)~ ql. If {x, 1,2, y3}, ,(x, 1,3, yz) and {x, 2,3, yl} belong to 
q2, then ;yl, y,, y3} n{x, 1,2,3) = fl and there exists in q1 three distinct blocks 
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containing {x, 1, y3), (x, 3, y2} and {x, 2, yl}, rispectively. Hence d(x) ~4. ~hdiy, 
since 4m = Lcp d(x) we must have m ~8. 

Property 2.2. If h = max{d(x) : xEP}, then m > 21h. 

Mf. It is easy to see that 3 (x, q, b,, ci} E q,, i = I,, . . . , h, there are in q2 h. 
distinct blocks containing x and h distinct blocks, containing the triples {a,? iii, ci) 

but not X. 

Property 23. If x:f; y E P and (x, y)h then d(x) a2h, d(y)3 2h. 

Proaf. If {x, y, i&, b;}E 91, i = 1,2, . . . , h, then there are in q2 2h distinct 
containing the triples {x, q, bi) and {y, a,, b,i) and at least h additional 
containing the tripl.es {x, y, uJ and {x, y:. bi}. Hence d(x) 3 2h, d(y) 2 2h. 

Property 2.4. If d(x) >4, then d(x)a6. 

blocks 
blocks 

proof, Let & =(x, a,, bi, q) (i = 1,. . . ,5,. . .) be all of the blocks of q1 containing 

X. For every i # j we have I& n I$[ = 1 or 2. If there exist two indices if j such 
that & 17 Rj =(x}, then there are in q2 (at least) six distinct blocks containing 

1x3 ai, &I, 1x9 a,, CiI, (~9 bi, ~1, 1% pi, bj), ix, q, 5 c } and (x. bj, cj} respectively. Hence 
d(x)>,6.Ifforeveryi#jwehaveIRinRil=2,thensi8~ceH(x)>4forsorne yeP 
there are r 2 3 blocks containing {x, y}. Clearly d(x) 3 6. 

property 2.5. If m :> 8 and there exists a bkoclc R such that d(x) = 4 for eveoy x E R, 
then m 2 1.4. 

proof, Let (1,2,3,4) E q1 and let { 1,2,3,5}, { 1,2,4,6}, {I, 3,4,7) and (2,3,4,8} 
belong to q2. If 3(l) = d(2) = c2(3) = d(4) = 4, then WC;: have (necessarily) 

in ql: RI =(1,2,3,4}, in q2: TI =(l, 2,3, S)!, 

R2 =(I, 29% 61, 7-2 =(1,2,4,61,1 

R3 ={l, 39% 73, T3 = (1,3,4,7)!, 

Rd = 129395,819 T4 = G&3,4,8), 

& = {1,4,6,71, Ts = (19 56,719 

Rj = {2,4,6,% T6 = 12,% 6,819 

& = (3,4,7,8> T, = I3,% 79% 

TS = (4,6,7,8]. 

1% (5,6,7,8} $ ql, then {S, 6,7, x}, {5,6,8, Y}~ (5,7,8, z} and {6j 7,8, t} belong 
to ql (where x, y, z, t are distinct elements of B) anti! {S, 6, x), (5,7, A:>, {6,7, x}, 
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(7,8, z}, (6,8, t} and ($8, y} are contained in six distinct blocks of q2, respec- 
tively, Clearly m 2 14. If RB -2 {5,6,7,8)~ lql, then (A, TJ and (A, TV), where 

A-i]l,2,. . .,8}, T~=(&,. . . R,) and TV={‘&?. . ., Ts) are two DMI3 PQSs. 
Since 

u BA-T~) and (BJJ_II.q2-T2) 
B Eql-71 

are two DMB PQSs, it follows that m 3 16. 

Property 2.6. If m ~8, then m = 12 or m a 14. 

Proof. We need consider only the ca3e in which every block B contains an x E P 
with k(x) 26 (in the other cases we have immediately our statement from 
Properties 2.4 and 2.5). From Property 2.2 l,ve have m 3 12. Suppose yn = 13. It 
follows tlXt &J d(x) = 52 and d(x) = .4 or 6 for every x E I? Further we must 
have 8 c n < 12. Under these conditions, for every x E f such that d(x) = 6 there 
exists a y E P such that (x, &, so that d(y) = 6. Necessarily, we have the following 
blocks, in ql: 

R1={1,2,3,4), R,=(1,3,%x,}. R7={2,3,5,y~l}, Rlo=(3,4,u1,tl), 

Rz ={I, 29 5,619 Rs = &4,7, x2)- Rs=(2,4, 7, y:J, RI1 ={5,6, u2, tz), 

Rs=U,2,7,8), Rg=. iL6,8,x,). R9={2,6,8, y3}, R12=(7,8, u3, t3}; 

in q2: 

T, = {I, 293751, 7-4 = {1,3,4,111}, T, = (2,3,4, w,}, 7-1, = (3,5, Xl, Ul}, 

T2=092,4971, -&={L%6,v2}: T&=(2,5,6, w,), T11={4,7,x2,uz), 

TX = { I,29 6,8L Ts = {I - 7,8, v,>, T9 = (2,7,8, w3), T12 = (6,8, x3, UJ 

where h x2, ~~l=h~ v,, v3h 1~~~ Y,, ~~)=fh, w2, ~~1, {x,, x2, ~~vvh y2, y3)= 
@ and 

(xl, x2, x3) and (ul, u2, u,) = (“r,6,3) and (6,7,3) respectively, or 

(YI, ~2, ~3) and h w2, w3) = 
(8 ) 5,4) and (8,4,5) respectively, or 
(a, a, a) with a$& 2,. . . ,8}. 

If {x,, yl} ={7,8}, then WC can see that for every i .= 1,2,3 
(2i + 1,2i +2, vi* Wi)$qls Hence ytt 2 15. Suppose, thereforz, {x+, yi} n(9.10) # $L 
Let Xi = 9 (or, likewise, yi -2 9). If wi = ti and yi = 4 for every i = 3,2,3, 
then for A = (1,2, . . . ,8, xi, y,, 6; i = 1,2. 31, R’ = {&I : i = 1,. . . :, 12) and 
T==(Ti: i =1 1,. . . , 12}, (A, R’) and (A, TJ are two DMI3 PQSs. Since 

(U BEq,-R ’ 8 41 -R’) and (UB~q&39 q2- T ) are also a pair of DMB PQSs, it 
follows that m 2 20. If there exist at least G 3 indices i, j ~{1,2,3} such that 
W, # ti7 Wj # fj (or, likewise, yi # Us, yj -f uj), thc:.rr m 2 14. Suppose, therefore, that 
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w. # 4 (or y, # 4) for exactly one index i E’- {1,2,3}. Necessarily, &+I = w~+~, h+2 = 
w~+~ ({i, i + 1, i +2) = {1,2,3}). It follows that (d(2r’ + l), d(2i +2)}s{S, 7). Hence 
m = 14. It foll~w$ that D&B3 PQSs with nq = 13 do .ii~t exist, 

Theorem 2.7. Fat ewp 21s 2 or 4 (mod 6) and u a 8, .@I c_ &. 

Pmof. If two SQS(U) (0, ql) and (Q, q2) have k blocks in common, then there 
exists a pair of DMJ3 PI-~SS (?, sl) and (P, sJ such that P C_ Q, s1 c ql, s2 ,C q2, and 
Is,\ = Is21 = qU - k. The statement follows immediately from Properties 2.1 and 2.6. 

3. SQS wi& blocks in common 

In this section we will determine J[u] for all o = 2”, n 2~ 2, with the possible 
exception of 7 cases for TV = 16 and of 5 cases for each v 2 32. Observe that for 
eve 2 i- u = 2 or 4 (rn%ti 6) a, E flu] and, since D(2u) 3 r.~ for u > 2 [7] (where D(2u) 
is the number of pairwise disjoint SQS(2u) on the same set with 2u elements), 
0 E Jcu] for v 2~ 4. The following well-known doubling construction for quadruple 
systems is the main tool used in what follows. 

Let (X, A) and (Y, B) be any two SQS(u) with X n Y = fl. Let f; - 

(F,. . l . , F,__,} and G=(G,,. . . , G,_,) be any two 1-fact&zations of K,, (the 
complete graph on u vertices) on X and Y, respectively, and let a be any 
permutation ca the set {l, 2, . . . , v - I]. Define a collection q o:E blocks of 
Q = X U Y, as follows: 

(1) Any block belonging to A or B belongs to 4; 
(2) If x1, x2 E X and yl, y, E Y, then (x1, x2, y,, y2)~ q if and only if (x1, X~)E Fiy 

(~1, YJ E Gj, ia = j. 
It is a routine matter to see that (Q,q) is a SQS(2u) (cf. [13, 163). We will 

denote (Q, q) by [X Cj 1(1(A, B, F, G, 3) and for every F, ;‘3, a by r( F, G, CY) the 
collection of 311 of the blocks {xi, x2, yl, ~3 such that (x1, x'~)E Fi, (~1, Y~}E Gi, and 
iix=j. 

Further, if YP is a positive integer, we define ari ; i = 0, 1,2, . . . , w - 2, w ; to be 
the permutation on (1, 2,. . . , w} given by 

1 2 3*m*w 
% = , 

x1 x2 .K3”‘X, 
where xi= 

Theorenn 3.1. J[4] = (1); J[FJ = (0,2, i,l4}. 

Proof. .J[4] = (1) is trivial. Since 0,l Q E J[8] and flS]c_ Eg we need show only 
that 2,6~J[8]. Let X=(1,2,3,4), U=(5,6,‘7,8), A =(X}, B=(Y); and let 
F ={F,, F,, F3} and G = [G,, G2, G,] be two l-factorizations of Kq on X 
and Y respectively. If ao, CY~ and CY~ ze the permutations defined on {1,2,:3) 
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in the remarks preceding Theorem 3.1, then [X U Y](A, B, F, G, cx3) and 
[XU Yj(A, B, F, G, qJ are two SQS(3) with 2 blocks in common and 
[X U Y](A, B, F, 63, al) and [X U Y](A, B, F, G, ar3) are two SQS(8) with 6 blocks 
in common. 

Theorem 3.2. For k = 105, 113, 117, 125 thiere are SQS(l6) having exactly k 

blocks in common. 

Proof. Let A = { 1,2,3,4}: B = (5,6,7,8}, C := {9,10.11,12), I) = {13,14,15,16}. 
Q = A U B U C U D and let SQ, 3, %, 9 be the following 1-factorizations of & on 
A, B, C, and D respectively: 

-L- 

4 AZ A3 & & B3 

sr2= 1,2 1,3 1,4 B== 5,6 5,7 58 

3,4 2,4 2,3 7,8 6,8 6,7 

Cl G c3 Q D2 03 

$g == 3,10 9,11 9,12 !ZJ= 13,14 13,15 13,16 
11,12 10,12 10,ll 15,16 14,16 14,15 

Let (Ye, cyl and cy3 be the permutations defined on (1,2,3} as above and consider 
the c~:llections of blocks of JJ, as shown in Fig. 1, 

Observe that (A UB U C, X,_) and (A UB U C, X2) are two DMB PQSs with 
:yi -= i5 blocks. Futiher we can prove that (Q, X1 U Y U 2 U &d, ‘%, as) U 
WB, 9, (yg) U T&l, 9, a3) U ir(%, 9, a3)) is an SQS(16). It follows that 

(ir (Q, X, C,i Y UZ Ur(d, %, 03) Ur(B, 9, a3) U&d, $3, a3) Ur(%, 9, a& 
and (0, X2 U Y U 2 U r(d, %, a3) U r(C!i?, 9, us) U r(d, 9, CQ) U r(%, b, a3)) are 
two SQS(16) with k = 125 blocks in common; 

(ii) (0, X1 U Y U 2 U r(.d, %, a3) \J r(a, 9, a3) U r(d, 9, a3) lJr(%, 9, a3)) 
and (Q, &U YUZUr(d, c&, aI)UI’(91, 9, a3)U&z2, 9, aJ)Ur(%, 9, a3)) are 
two SQS(16) with k = 117 blocks in common; 

(iii) (Q, X1 U Y U 2 U r(d, (&, a3) U r(48, 91, a3) lJr(d, 5ii3, 01~) Ur(%, 9, as)) 
a-d (Q, X2 U YUZ U&d, %, a3) Ur(iB, 9, a-J Ur(d, 9, a3) Ur(%, 9, a3)) are 
NO SQS(16) with 113 blocks in common; 

(iv) (Q, X1 U Y UZ UT(d, %, a3) lJI’@, 9,, a3) U.&d, 9, a3) Ur(%, 9, as)) 
and (Q, X2 U Y U Z U r(s&, %, aI) U I’@?, 9, a,J U l$zl, (3, a3) U I’(%, %, as)) are 
two SQS(16) with 105 blocks in common. 

3.3. If kE&,,\{103, 111, 11.5, 119, 1.21, 122, 123}, ttsePt kEJ[16]. 
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Xl xz Y 

1, 2, 3, 4 1, 2, 3, 5 192, 7, 8 
1, 2, 5, 6 19, 2, 4, 6 1,3, 6, 8 
1, 3, 5, 7 1, 3, 4, 7 194, 5, 8 
1, 4, 6, 7 1, 5, 6, 7 2,4, 5, 7 
2, 3, 5, 8 2, 3, 4, 8 293, 6, 7 
2, 4, 6, 8 2, 5, 6, 8 394, 5, 6 
3, 4, 7, 8 3, 5, 7, II 5,6,11,12 
5, 6, 7, 9 4, 6, 7, g 5,7,10,12 
5, 6, 8, 10 5, 6, 9,10 5,8, 9,12 
s, 7, 8,ll 5, 7, 9,11 6,7,10,11 
5, 9,lOJl 5, 8,10,11 6,8, 9,11 
6, 7, g,l2 4 7, 9,12 7,8, 9,lO 
6, 9,10,12 G, 8,10,12 - 
7, ‘9,11,12 7, 8,11,12 
8,10,11,12 9,10,11,12 
-_. 

2 = ~13,14,15,16)u 

13,1,5, 9 14,1,5,10 
13,1,6,12 14,1,6, 9 
13.1,7,11 14,1,7,12 
13,1,8,10 14,1,8,11 
13,2,5,12 14,2,5, 9 
13,2,6,11 14,2,6,12 
13,2,7. 10 14,2,7,11 
13,2,8, 9 14,2,8,10 
13,3,5,11 14,3,5,12 
13,3,6,10 14,3,6,11 
13,3,x 9 14,3,7,10 
13,3,8,12 14,3,8, 9 
13,4.5,10 14,4,5,11 
13,4,6, 9 14,4,6,10 
13,4,7,12 14,4,7, 9 
13,4,8,11 X4,4,8,12 

1% 1,5,12 16,1,5,12 
15,1,6,10 16,1,6,11 
15,1,7, 9 16,1,7,10 
15,1,8,12 16,1,8, 9 
15,2,5,10 16,2,5,11 
15,2,6, 9 16,2,6,10 
15,2,7,12 16,2,7, 9 
15,2,8,11 16,2,8,12 
15,3,5, 9 16,3; 5,10 
15,3,6,12 16,3,6, 9 
15,3,7,11 16,3,7,12 
15,3,8,10 16,3,8,11 
15.4,s 12 16,4,5, 9 
15,4,6,11 16,4,6,12 
15,4,7,10 16,4,7,11 
l5,4,8, 9 16,4,8,10 

Fig. 1. 

Pmof. Let X=(&b,c,d,e,f,g,h}, Y={l,2 ,... ,8}. 
(1) First, we prove the statement for k etlm. Let F, H be the I-factorizations on 

X given by Fig. 2, and let G, t and M be the 1-factorizations on Y given by 
Fig. 3. 

FI Fz 4 E, F, h, F, 
-- 

a, 3 a, d a, f a,h a, c a, e a, g 
F= ‘,d c, h b, c b, g b, d b, f b, h 

er f b, e c, f e, g e, g c, g G e 

4 H2 H3 

a,b a,d a,f H4=F4 
H = c, d b, c b, e & = Fs 

f,g e,f c, h Kd% 
gv h f, g & g 4 e f, h 4 h d, f 

Fig. 2. 

0 g,h ds &=FT 
- 
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G (3, G G Gj G6 G, 

1,2 1,3 1,4 1,5 1,6 1,7 1,8 
ci = 3,s 2,s 2,6 2,3 2,4 2,0 2,7 

4,7 4,6 3,7 4,8 3,:s 3,4 3,6 
6,8 7,s 5,8 6,7 5, “/ 5,6 4,s 

L, L3 M, M,=L1 
- n&-c, 

1,2 1,3 1,4 L4=G4 193 M4= G4= L,: 

L= 395 2,6 2,5 L;=G5 M= 2,s M,=G5=Ls 

4,6 4,? 3,7 L,:=G6 4,7 M6=Gd=L6 

7,s 5,8 6,8 L,‘=G, 698 M,=G,=L, 

Fig. 3. 

Further, let pi and y be the following permutations on (1,2, . . . ,7}: 

For i = 0, 1,2,4 

2 3 4 5 6 

1 2 Yl Y2 Y3 

=: + 7, j i 1, 

where yj = j+3,j<i+l, 

j+2,j>i+l 

1234667 
Y 

Let p(8) = {0,2, d_, 6,8,12, 14,16,20,28}. If h E p(8), then it is possible to 
construct four SQS(8) (X, Aj) and (Y, Bj), i = 1,2, SU& that 
IA, n A21 + IB, fH3,I = h. Let ai be defined on (1,2,. . . ,7} as in the remarks 
preceding Theorem 3.1. Consider k = l&i+Ir, for i =O, 1, 2, 3, 4, 5, 7, and 
Fz E p(8), and let (X, Aj), (Y, Bj), j z 1,2, be SQS(8) with IAl n A,(+ iI31 n&I = h. 
Since for i + 6 IT(F, G, (r,) n r(P;, G, %)I = It%, it follows that [X U Y](A,, Br, F, 
G, a,) and [X U Y](A,, B2, F, G, ai) are two SQS(16) with 16i + h blocks in 
common. For i = 6, consider the SQS(16) [X U Y](A,, B1, F, G, a$ and 
[X U Y](A,, B2, P;, M, oJ. Since Ir(F, G, 01,) n r(F, M, a,)1 = 96, these SQS( 16) 
have 96 + h blocks in common. It follows that if k E 116, k# l&i + 10 
(i =O, 1,. . . ,7), then k E J[16]. 

Let k ==l6i+ 10 for i =0, 1,. . . ,6. For i =“: 0 we consider two SQS(8) (X, Aj) 
and (Y Bi), i= 1~29 such that IA, n A,! = I& f-1 &I= 2. Since 

IW+; G, q) n r(H, E, ?>I = 6, clearly [X U Y’](A,, B1, F, G, aI) and [XU fl 
(AZ, &, H, L, y) have 10 blocks in common. For i = 1,2, . . . ,6, let (X,. Ai) and 
(Y, Bj), i = 0, 1,2,3, be SQS(8) such that I& a”~ Au+*1 + I&, fN3&~ = 16~ -t- 12 for 
u = 0,l. Since IT(F, G, p4) n F(H, L, a)1 = 16i -t i4 for i = 0,2,4, it follows that 
[XU Y](& B,, F, G, P4) and [X U Y](A,+2, I&+2, H, L, @i) for every (u, i) E 
(0, 1) X {O, 2,4) are SQS(16) with 16(i + u) + 2(5 blocks in common. 



(2) NOW, we pwe the statement fw ! k q&L From, ?%eurem. 3.2 there f:xist 
SQS( 16) with k = 105, 113, 117, 123 bi&s iti- +&&&. L&t J!, IV, C?: R l-.e the 
l-factorizations on X giv& by Fig. 4, aud let S, T, U, V be the 1-factorizations on 
Y given by Fig. 5. 1 - 

Further, Pet S1 and SZ be the p&mu&&m on {1,2, . . . ,7) given by 

1234567 1234567 
s1= 

1456723 
and &= 

Le;t k=79+2h; h=O, 1,2,3 ,..., 10, 11, 14, 15; and let (X Aj) and (Y, Bj), 

i = 1,2, be SQS(s) such that for every h 

- 

s, s2 s3 s, ss % s7 

l,? 1,s I,4 13 1,6 I,3 1,8 
‘= 6,8 2,6 2,s 2,4 2,8 2,3 2,7 

3,7 4,7 3,6 3,8 3,4 4,8 3,s 
4,s 5,8 7,8 6,7 !5,7 5,6 4,6 

Tl T2 T3 

I,2 1,3 1,4 T4=Sq 
T= 3,6 2,6 2,5 IT5 Ss = 

4,7 4,s $7 T,-S, 
58 7,8 6,8 T7=S, 

VI v2 v3 

1,2 l,? 1,4 1,s 1,6 1,7 1,8 
U= 3,6 2,8 2,7 ‘2,3 .2,4 2,5 2>6 

4,8 4,s 3,8 4,6 3,7’ 3,4 3,s 
$7 6,7 5,6 7,8 5,8 6,8 4,7 

Fig. 5. 

1,2 1,s 1,,4 v,=u, 
V= 3,8 2,7 2,8 V,=U, 

4,5 4,8 3,6 Y,=U, 
6,7 5,6 5,7 V,=U, 
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Since Ir(O, ~j; CY,) n F(R, B/, c+)I = 719 and jl’(J, S, cy,) n r(N, T, (y?)l= 81, iI foI- 
lows that for h even [XU Y](A,, B1, 0. 11, a;,) and [X U Y](A,, &, R, V, cy,\ are 

two SQS(16) with k = 79-k 21e blocks in common, and for h odd [X’;I Y] 

(A,, B,, J, S, (YJ and [X U I!](&, B,, N T, cq) are SQS(16) with k = 81-b 2(h - 1) 

blo& in c:ommiin. 
Now, let k = 1+ 16i + r for i = 0, 1.2, 3 andi r~ p(8) = (0, 2, 4, 6, 8, 12, 14, 16. 

20, 28). Consider two SQS(8) (X ilj) and (Y, B,), j = 1,2, such that 
(AlnA,i+IB,nB,(=~. For i = 0, since 1 I’(.& :i, 8,) n r(N, T, &)I = 1, the SQS( 16) 
[X U Y](A,, &, Y, S, 6,) and [X U ‘.‘](A ,, &, N, 7’, 6,) have 1 + r blocks in com- 
mon. For i#O, we have I~(J, I;:, 6,,) n r(N, T, ai+,) = l Gi + 1 and so 

[X U Y](A,, R,, J, S, (YJ and [X U Y](A.;., &, N, ‘I’, ~yi+~) have 1 + 16i + r blocks in 
common. 

Finally, let k = 67,7 1,73, c‘r 16i + 11 for i == 0, 1,2,3,4. Let (X, Aj) and 
(Y, Bi). j = 1,2,. . *, 10, be SQS(8) such that 

” l6(u---1) if u =1,2, 

IA, fl Au+51 + )B, f1 Bu+s) = r, =- ti, 132.4 - 1 if u = 3,5 

(12 if u=4. 
Siiic .e 

‘59 
1 

if v =3, 

\f(J, S, 01J n r(lv, T, a,)l= S, =I 
\ 

43 if v = 4, 

111 if v=7, 

it follows that [X U Y](A,, B,. J, S, cyz) and [X U Y](A,+S, B,,+s, IV, T, a,,) are 
two SQS( 16) with k = r,, +.s” bloci:s in common, for every (u, u) E 
{1,2. ?, 4,s) >: (3,4,7). 

eorem 3.4. Let v @= 2”, n 2 5. If k E 1, \,(a. -h: II = 17, l&19,21,25}, then k E 

JM. 

ocr-2. Let v ==2”, na5, w =2*-l* X=(1,2,. ,.. , w} and Y={1’,2’,. . ., w’) with 
n Y = 8. Let p(w) lbe the set of all h sucfm that there exist four SQS(w) (X, Ai), 

(Y, Sj), j = 1,2, with IA, nA,( + I& n13?1= h. Let F, G, be two l-factorizations 
on X and Y respectively and let ai be defined on { 1,2, . . . , w - 1) in the usual 
Wi:!y. 

Assame M = 5. If k c &,\{1215, 1219, 122 1, 1222, 1’223}, it is easy to show that 
thl:re exists an (I-, u) E (0, 1,2, . . . , 13, 5 5 L x p( 16) such that k = 64r + u. It follows 
thitt, if (X, A,), (Y, Bj), j z= l,2, are SQ~~~~~l(s) such that IA, n A21 + JB, n B,) = U, 
then [X U Y](A,, B,, F, (3, (x15) and [X _I Y&i,, &, F’, G, CXJ are two SQS(32) 
with k blocks in ccwmon. This firkhes the proof for 11 = 5. Pssume thetefore 
nH3 and assume that for all rn<n (n~:5) if: u=2” and k~I,,\(q,--h:h =17. 
18, 19, 21, 25) that k: EJ[~‘J. Let k E 1&q,, - bz : h = 17, 18, 19, 21, 25). Observe 

at if k > ( w - 3) w*/4 + 2q, - 26, since w “14 ,:: qW - 13 and qt = 2qW f (w -- 1) w2/4, 
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then there exists an r E p(w) such that k = (w ‘-- I) w2/4+ r ; and if k G 
(w-3)w2/4c2q, -26, then there exists an 

(~,u)E(O, 1,2 ,..., ~-3)x(0,1,2 ,..., 2q,-.26} 

such that k = rw2/4+ U. In every case, therefore, we have k = rw2/4+ u for 
I = 0, 1,2, . . . , w-3, w--l and rep(w). Since for every 

(r, U)E{O, 1,2*. . . , w - 3$ w - 1) x P(W) jr(F, G, a,+) n f(F, G, fB.,>I = rw2/4, 

and it is possible to construct four SQS( w) (X, Aj) and (Y, Bj), j = 1,2, such 
th;:t IA, n A21 + [B, n B,I = u, our statement follows from the doubling construction. 

Collecting together Theorems 2.7, 3.1, 3.2, 3.3 and 3.4 gives the following 
t!heorem (which is, of course, the main result). 

Theorem 3.5. 

J[u] C_ &, for ail u = 2 or 4 (mod 6) and o 2 8, 

J[4] = 111, J[S] = Is = (0,2,6,14}, 

1,,\{103,111,115.119,121,122,123}c_ J[l6], 

I,\{q” - k : h = 17,18,19,21,25)~ fiv] for all v = 2”, n 3 5. 
ti 
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