CONSTRUCTION OF STEINER QUADRUPLE SYSTEMS HAVING A PRESCRIBED NUMBER OF BLOCKS IN COMMON

M. GIONFRIDDO*

Istituto di Matematica, Università di Messina, 98100 Messina, Itelia

C.C. LINDNER**

Mathematics Department, Auburn University, Auburn, AL 36830, USA

Received 21 September 1979 Revised 19 November 1979 and 21 May 1980

Let $q_v = v(v-1)(v-2)/24$ and let $I_v = \{0, 1, 2, \dots, q_v - 14\} \cup \{q_v - 12, q_v - 8, q_v\}$, for $v \ge 8$. Further, let J[v] denote the set of all k such that there exists a pair of Steiner quadruple systems of order v having exactly k blocks in common. We determine J[v] for all $v = 2^n$, $n \ge 2$, with the possible exception of 7 cases for v = 16 and of 5 cases for each $v \ge 32$. In particular we show: $J[v] \subseteq I_v$ for all $v \equiv 2$ or 4 (mod 6) and $v \ge 8$, $J[4] = \{1\}$, $J[8] = I_8 = \{0, 2, 6, 14\}$, $I_{16} \setminus \{103, 111, 115, 119, 121, 122, 123\} \subseteq J[16]$, and $I_v \setminus \{q_v - h : h = 17, 18, 19, 21, 25\} \subseteq J[v]$ for all $v = 2^n$, $n \ge 5$.

1. Introduction

A Steiner quadruple system (SQS) is a pair (Q, q) where Q is a finite set and q is a collection of 4-subsets of Q (called *blocks*) such that every 3-subset of Q is contained in exactly one block of q. The number |Q| is called the *order* of the quadruple system (Q, q) and in 1960 Hanani [4] proved that a necessary and sufficient condition for the existence of a Steiner quadruple system of order v (SQS(v)) is $v \equiv 2$ or 4 (mod 6). It is easy to see that if (Q, q) is an SQS(v), then |q| = v(v-1)(v-2)/24. A very interesting question naturally arises: For a given $v \equiv 2$ or 4 (mod 6), for which $k \leq v(v-1)(v-2)/24$ is it possible to construct a pair of SQS(v) having exactly k blocks in common? [14]. To date, the only known results are $J[4]=\{1\}$, $J[8]=\{0, 2, 6, 14\}$, and $J[10]=\{0, 2, 4, 6, 8, 12, 14, 30\}$ (Kramer and Messner [5]). The similar problem for Steiner triple systems has been completely settled by Lindner and Rosa in [11]. This paper is the first general attack on settling the (much more difficult) block intersection problem for SQS.

* Research supported by the GNSAGA of the CNR (Italia).

** Research supported by NSF Grant MCS 77-03464 A01.

Let $q_v = v(v-1)(v-2)/24$ and let

$$I_{v} = \{0, 1, 2, \dots, q_{v} - 1.4\} \cup \{q_{v} - 12, q_{v} - 8, q_{v}\},\$$

for $v \ge 8$. Further, let J[v] denote the set of all k such that there exists a pair of SQS(v) having exactly k blocks in common. We determine J[v] for all $v = 2^n$, $n \ge 2$, with the possible exception of 7 cases for v = 16 and of 5 cases for each $v \ge 32$. In particular we show:

$$J[v] \subseteq I_v \text{ for all } v \equiv 2 \text{ or } 4 \pmod{6} \text{ and } v \ge 8,$$

$$J[4] = \{1\}, \quad J[8] = I_8 = \{0, 2, 6, 14\},$$

$$I_{16} \setminus \{103, 111, 115, 119, 121, 122, 123\} \subseteq J[16],$$

$$I_v \setminus \{q_v - h : h = 17, 18, 19, 21, 25\} \subseteq J[v] \text{ for all } v = 2^n, n \ge 5.$$

Although it is surely true that $J[v] = I_v$ for all $v = 2^n$, $n \ge 3$, the authors have not as yet been able to handle the few exceptions listed above. Nevertheless we do not hesitate to make the following conjecture.

Conjecture. $J[v] = I_v$ for all $v = 2^n$ and $v \ge 8$.

2. Disjoint and mutually balanced PQS

A partial quadruple system (PQS) is a pair (P, q) where P is a finite set and q is a collection of 4-subsets of P (called blocks) such that every 3-subset of P is contained in at most one block of q. Using graph theoretic terminology we will say that an element x of P has degree d(x) = h, if x belongs to exactly h blocks of q. Clearly $\sum_{x \in P} d(x) = 4 |q|$. Finally, if $x \neq y \in P$ we will write $(x, y)_r$ to indicate that x and y belong to exactly r blocks of q.

Two partial quadruple systems (P, q_1) and (P, q_2) are said to be *mutually* balanced, if any given triple of distinct elements of P is contained in a block of q_1 if and only if it is contained in a block of q_2 . Two mutually balanced PQSs are said to be disjoint if they have no block in common. It is easy to see that if (P, q_1) and (P, q_2) are any two mutually balanced PQSs, then $|q_1| = |q_2|$.

In this section we will determine some useful properties of *disjoint* and *mutually* balanced (DMB) PQSs. In what follows (P, q_1) and (P, q_2) will be two DMB PQSs with $P = \{1, 2, ..., n\}$ and $|q_1| = |q_2| = m$.

Property 2.1. $n \ge 8$, $m \ge 8$, and $d(x) \ge 4$ for every $x \in P$.

Proof. If $\{1, 2, 3, 4\} \in q_1$, then necessarily $\{1, 2, 3, x\}$, $\{1, 2, 4, y\}$, $\{1, 3, 4, z\}$ and $\{2, 3, 4, t\}$ belong to q_2 . Since $\{x, y, z, t\} \cap \{1, 2, 3, 4\} = \emptyset$, clearly $n \ge 8$. Let now $x \in P$ and let $\{x, 1, 2, 3\} \in q_1$. If $\{x, 1, 2, y_3\}$, $\{x, 1, 3, y_2\}$ and $\{x, 2, 3, y_1\}$ belong to q_2 , then $\{y_1, y_2, y_3\} \cap \{x, 1, 2, 3\} = \emptyset$ and there exists in q_1 three distinct blocks

containing $\{x, 1, y_3\}$, $\{x, 3, y_2\}$ and $\{x, 2, y_1\}$, respectively. Hence $d(x) \ge 4$. Finally, since $4m = \sum_{x \in P} d(x)$ we must have $m \ge 8$.

Property 2.2. If $h = \max\{d(x) : x \in P\}$, then $m \ge 2h$.

Proof. It is easy to see that if $\{x, a_i, b_i, c_i\} \in q_1, i = 1, ..., h$, there are in q_2 h distinct blocks containing x and h distinct blocks containing the triples $\{a_i, b_i, c_i\}$ but not x.

Property 2.3. If $x \neq y \in P$ and $(x, y)_h$ then $d(x) \ge 2h$, $d(y) \ge 2h$.

Proof. If $\{x, y, a_i, b_i\} \in q_1$, i = 1, 2, ..., h, then there are in q_2 2h distinct blocks containing the triples $\{x, a_i, b_i\}$ and $\{y, a_i, b_i\}$ and at least h additional blocks containing the triples $\{x, y, a_i\}$ and $\{x, y, b_i\}$. Hence $d(x) \ge 2h$, $d(y) \ge 2h$.

Property 2.4. If d(x) > 4, then $d(x) \ge 6$.

Proof. Let $R_i = \{x, a_i, b_i, c_i\}$ (i = 1, ..., 5, ...) be all of the blocks of q_1 containing x. For every $i \neq j$ we have $|R_i \cap R_j| = 1$ or 2. If there exist two indices $i \neq j$ such that $R_i \cap R_j = \{x\}$, then there are in q_2 (at least) six distinct blocks containing $\{x, a_i, b_i\}$, $\{x, a_i, c_i\}$, $\{x, b_i, c_i\}$, $\{x, a_j, b_j\}$, $\{x, a_j, c_j\}$ and $\{x, b_j, c_j\}$ respectively. Hence $d(x) \ge 6$. If for every $i \neq j$ we have $|R_i \cap R_j| = 2$, then since $d(x) \ge 4$ for some $y \in P$ there are $r \ge 3$ blocks containing $\{x, y\}$. Clearly $d(x) \ge 6$.

Property 2.5. If m > 8 and there exists a block R such that d(x) = 4 for every $x \in R$, then $m \ge 14$.

Proof. Let $\{1, 2, 3, 4\} \in q_1$ and let $\{1, 2, 3, 5\}$, $\{1, 2, 4, 6\}$, $\{1, 3, 4, 7\}$ and $\{2, 3, 4, 8\}$ belong to q_2 . If d(1) = d(2) = d(3) = d(4) = 4, then we have (necessarily)

in q ₁ :	$R_1 = \{1, 2, 3, 4\},$	in q_2 :	$T_1 = \{1, 2, 3, 5\},$
	$R_2 = \{1, 2, 5, 6\},\$		$T_2 = \{1, 2, 4, 6\},$
	$R_3 = \{1, 3, 5, 7\},$		$T_3 = \{1, 3, 4, 7\},$
	$R_4 = \{2, 3, 5, 8\},$		$T_4 = \{2, 3, 4, 8\},\$
	$R_5 = \{1, 4, 6, 7\},\$		$T_5 = \{1, 5, 6, 7\},$
	$R_6 = \{2, 4, 6, 8\},\$		$T_6 = \{2, 5, 6, 8\},\$
	$R_7 = \{3, 4, 7, 8\}$		$T_7 = \{3, 5, 7, 8\},\$
			$T_8 = \{4, 6, 7, 8\}.$

If $\{5, 6, 7, 8\} \notin q_1$, then $\{5, 6, 7, x\}$, $\{5, 6, 8, y\}$, $\{5, 7, 8, z\}$ and $\{6, 7, 8, t\}$ belong to q_1 (where x, y, z, t are distinct elements of P) and $\{5, 6, x\}$, $\{5, 7, x\}$, $\{6, 7, x\}$,

{7, 8, z}, {6, 8, t} and {5, 8, y} are contained in six distinct blocks of q_2 , respectively. Clearly $m \ge 14$. If $R_8 = \{5, 6, 7, 8\} \in q_1$, then (A, τ_1) and (A, τ_2) , where $A = \{1, 2, ..., 8\}$, $\tau_1 = \{R_1, ..., R_8\}$ and $\tau_2 = \{T_1, ..., T_8\}$ are two DMB PQSs. Since

$$\left(\bigcup_{\mathbf{B}\in q_1-\tau_1} B, q_1-\tau_1\right)$$
 and $\left(\bigcup_{\mathbf{B}\in q_2-\tau_2} B, q_2-\tau_2\right)$

are two DMB PQSs, it follows that $m \ge 16$.

Property 2.6. If m > 8, then m = 12 or $m \ge 14$.

Proof. We need consider only the case in which every block *B* contains an $x \in P$ with $d(x) \ge 6$ (in the other cases we have immediately our statement from Properties 2.4 and 2.5). From Property 2.2 we have $m \ge 12$. Suppose m = 13. It follows that $\sum_{x \in P} d(x) = 52$ and d(x) = 4 or 6 for every $x \in P$. Further we must have 8 < n < 12. Under these conditions, for every $x \in P$ such that d(x) = 6 there exists a $y \in P$ such that $(x, y)_3$, so that d(y) = 6. Necessarily, we have the following blocks, in q_1 :

$$R_{1} = \{1, 2, 3, 4\}, \quad R_{4} = \{1, 3, 5, x_{1}\}, \quad R_{7} = \{2, 3, 5, y_{1}\}, \quad R_{10} = \{3, 4, v_{1}, t_{1}\},$$

$$R_{2} = \{1, 2, 5, 6\}, \quad R_{5} = \{1, 4, 7, x_{2}\}, \quad R_{8} = \{2, 4, 7, y_{2}\}, \quad R_{11} = \{5, 6, v_{2}, t_{2}\},$$

$$R_{3} = \{1, 2, 7, 8\}, \quad R_{6} = \{1, 6, 8, x_{3}\}, \quad R_{9} = \{2, 6, 8, y_{3}\}, \quad R_{12} = \{7, 8, v_{3}, t_{3}\};$$

in q_2 :

$T_1 = \{1, 2, 3, 5\},\$	$T_4 = \{1, 3, 4, v_1\},\$	$T_7 = \{2, 3, 4, w_1\},\$	$T_{10} = \{3, 5, x_1, u_1\},\$
$T_2 = \{1, 2, 4, 7\},\$	$T_5 = \{1, 5, 6, v_2\},\$	$T_8 = \{2, 5, 6, w_2\},\$	$T_{11} = \{4, 7, x_2, u_2\},\$
$T_3 = \{1, 2, 6, 8\},\$	$T_6 = \{1.\ 7,\ 8,\ v_3\},\$	$T_9 = \{2, 7, 8, w_3\},\$	$T_{12} = \{6, 8, x_3, u_3\}.$

where $\{x_1, x_2, x_3\} = \{v_1, v_2, v_3\}$, $\{y_1, y_2, y_3\} = \{w_1, w_2, w_3\}$, $\{x_1, x_2, x_3\} \cap \{y_1, y_2, y_3\} = \emptyset$ and

$$(x_1, x_2, x_3) \text{ and } (v_1, v_2, v_3) = \begin{cases} (7, 6, 3) \text{ and } (6, 7, 3) \text{ respectively, or} \\ (y_1, y_2, y_3) \text{ and } (w_1, w_2, w_3) = \begin{cases} (7, 6, 3) \text{ and } (6, 7, 3) \text{ respectively, or} \\ (8, 5, 4) \text{ and } (8, 4, 5) \text{ respectively, or} \\ (a, a, a) \text{ with } a \notin \{1, 2, \dots, 8\}. \end{cases}$$

 $\{x_1, y_1\} = \{7, 8\},\$ then If that for we can see every i = 1, 2, 3 $\{2i+1, 2i+2, v_i, w_i\} \notin q_1$. Hence $m \ge 15$. Suppose, therefore, $\{x_i, y_i\} \cap \{9, 10\} \neq \emptyset$. Let $x_i = 9$ (or, likewise, $y_i = 9$). If $w_i = t_i$ and $y_i = u_i$ for every i = 1, 2, 3, 3then for $A = \{1, 2, ..., 8, x_i, y_i, t_i; i = 1, 2, 3\}, R' = \{R_i : i = 1, ..., 12\}$ and $T = \{T_i : i = 1, ..., 12\}, (A, R') \text{ and } (A, T) \text{ are two DMB PQSs.}$ Since $(\bigcup_{B \in q_1-R'} B, q_1-R')$ and $(\bigcup_{B \in q_2-T} B, q_2-T)$ are also a pair of DMB PQSs, it follows that $m \ge 20$. If there exist at least $m \ge 0$ indices $i, j \in \{1, 2, 3\}$ such that $w_i \neq t_i$, $w_j \neq t_j$ (or, likewise, $y_i \neq u_i$, $y_j \neq u_j$), then $m \ge 14$. Suppose, therefore, that $w_i \neq t_i$ (or $y_i \neq u_i$) for exactly one index $i \in \{1, 2, 3\}$. Necessarily, $t_{i+1} = w_{i+1}$, $t_{i+2} = w_{i+2}$ ($\{i, i+1, i+2\} = \{1, 2, 3\}$). It follows that $\{d(2i+1), d(2i+2)\} \subseteq \{5, 7\}$. Hence $m \ge 14$. It follows that DMB PQSs with m = 13 do not exist.

Theorem 2.7. For every $v \equiv 2$ or 4 (mod 6) and $v \ge 8$, $J[v] \subseteq I_v$.

Proof. If two SQS(v) (Q, q_1) and (Q, q_2) have k blocks in common, then there exists a pair of DMB P 2Ss (P, s_1) and (P, s_2) such that $P \subseteq Q, s_1 \subseteq q_1, s_2 \subseteq q_2$, and $|s_1| = |s_2| = q_v - k$. The statement follows immediately from Properties 2.1 and 2.6.

3. SQS with blocks in common

In this section we will determine J[v] for all $v = 2^n$, $n \ge 2$, with the possible exception of 7 cases for v = 16 and of 5 cases for each $v \ge 32$. Observe that for $eve_2: v \equiv 2$ or 4 (mod 6) $q_v \in J[v]$ and, since $D(2v) \ge v$ for v > 2 [7] (where D(2v) is the number of pairwise disjoint SQS(2v) on the same set with 2v elements), $0 \in J[v]$ for v > 4. The following well-known doubling construction for quadruple systems is the main tool used in what follows.

Let (X, A) and (Y, B) be any two SQS(v) with $X \cap Y = \emptyset$. Let $F = \{F_1, \ldots, F_{v-1}\}$ and $G = \{G_1, \ldots, G_{v-1}\}$ be any two 1-factorizations of K_v (the complete graph on v vertices) on X and Y, respectively, and let α be any permutation on the set $\{1, 2, \ldots, v-1\}$. Define a collection q of blocks of $Q = X \cup Y$, as follows:

(1) Any block belonging to A or B belongs to q;

(2) If $x_1, x_2 \in X$ and $y_1, y_2 \in Y$, then $\{x_1, x_2, y_1, y_2\} \in q$ if and only if $\{x_1, x_2\} \in F_i$, $\{y_1, y_2\} \in G_i$, ia = j.

It is a routine matter to see that (Q, q) is a SQS(2v) (cf. [13, 16]). We will denote (Q, q) by $[X \cup Y](A, B, F, G, \alpha)$ and for every F, G, α by $\Gamma(F, G, \alpha)$ the collection of all of the blocks $\{x_1, x_2, y_1, y_2\}$ such that $\{x_1, x_2\} \in F_i$, $\{y_1, y_2\} \in G_j$, and $i\alpha = j$.

Further, if w is a positive integer, we define α_i ; i = 0, 1, 2, ..., w-2, w; to be the permutation on $\{1, 2, ..., w\}$ given by

$$\alpha_i = \begin{pmatrix} 1 & 2 & 3 \cdots & w \\ x_1 & x_2 & x_3 \cdots & x_w \end{pmatrix}, \text{ where } x_j = \begin{cases} w, j = i+1, \\ j, j < i+1, \\ j-1, j > i+1. \end{cases}$$

Theorem 3.1. $J[4] = \{1\}; J[8] = \{0, 2, 5, 14\}.$

Proof. $J[4] = \{1\}$ is trivial. Since $0, 14 \in J[8]$ and $J[8] \subseteq I_8$ we need show only that $2, 6 \in J[8]$. Let $X = \{1, 2, 3, 4\}$, $Y = \{5, 6, 7, 8\}$, $A = \{X\}$, $B = \{Y\}$; and let $F = \{F_1, F_2, F_3\}$ and $G = \{G_1, G_2, G_3\}$ be two 1-factorizations of K_4 on X and Y respectively. If α_0, α_1 and α_3 are the permutations defined on $\{1, 2, 3\}$

in the remarks preceding Theorem 3.1, then $[X \cup Y](A, B, F, G, \alpha_3)$ and $[X \cup Y](A, B, F, G, \alpha_0)$ are two SQS(3) with 2 blocks in common and $[X \cup Y](A, B, F, G, \alpha_1)$ and $[X \cup Y](A, B, F, G, \alpha_3)$ are two SQS(8) with 6 blocks in common.

Theorem 3.2. For k = 105, 113, 117, 125 there are SQS(16) having exactly k blocks in common.

Proof. Let $A = \{1, 2, 3, 4\}$, $B = \{5, 6, 7, 8\}$, $C = \{9, 10, 11, 12\}$, $D = \{13, 14, 15, 16\}$. $Q = A \cup B \cup C \cup D$ and let $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ be the following 1-factorizations of K_4 on A, B, C, and D respectively:

	A_1	A_2	A_3		B_1	B ₂	B ₃
A =	1, 2	1, 3	1,4	98 =	5,6	5,7	5,8
	3,4	2,4	2, 3		7,8	6, 8	6, 7
	C_1	<i>C</i> ₂	<i>C</i> ₃		D_1	D_2	D_3
C ==	9, 10	9, 11	9, 12	<i>D</i> =	13, 14	13, 15	13, 16
	11, 12	10, 12	10, 11		-	14, 16	-

Let α_0 , α_1 and α_3 be the permutations defined on $\{1, 2, 3\}$ as above and consider the collections of blocks of Q, as shown in Fig. 1.

Observe that $(A \cup B \cup C, X_1)$ and $(A \cup B \cup C, X_2)$ are two DMB PQSs with m = 15 blocks. Further we can prove that $(Q, X_1 \cup Y \cup Z \cup \Gamma(\mathcal{A}, \mathcal{C}, \alpha_3) \cup \Gamma(\mathcal{B}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{A}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{C}, \mathcal{D}, \alpha_3))$ is an SQS(16). It follows that

(i) $(Q, X_1 \cup Y \cup Z \cup \Gamma(\mathcal{A}, \mathcal{C}, \alpha_3) \cup \Gamma(\mathcal{B}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{A}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{C}, \mathcal{D}, \alpha_3))$ and $(Q, X_2 \cup Y \cup Z \cup \Gamma(\mathcal{A}, \mathcal{C}, \alpha_3) \cup \Gamma(\mathcal{B}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{A}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{C}, \mathcal{D}, \alpha_3))$ are two SQS(16) with k = 125 blocks in common;

(ii) $(Q, X_1 \cup Y \cup Z \cup \Gamma(\mathcal{A}, \mathcal{C}, \alpha_3) \cup \Gamma(\mathcal{B}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{A}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{C}, \mathcal{D}, \alpha_3))$ and $(Q, X_2 \cup Y \cup Z \cup \Gamma(\mathcal{A}, \mathcal{C}, \alpha_1) \cup \Gamma(\mathcal{B}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{A}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{C}, \mathcal{D}, \alpha_3))$ are two SQS(16) with k = 117 blocks in common;

(iii) $(Q, X_1 \cup Y \cup Z \cup \Gamma(\mathcal{A}, \mathcal{C}, \alpha_3) \cup \Gamma(\mathcal{B}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{A}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{C}, \mathcal{D}, \alpha_3))$ and $(Q, X_2 \cup Y \cup Z \cup \Gamma(\mathcal{A}, \mathcal{C}, \alpha_3) \cup \Gamma(\mathcal{B}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{A}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{C}, \mathcal{D}, \alpha_3))$ are two SQS(16) with 113 blocks in common;

(iv) $(Q, X_1 \cup Y \cup Z \cup \Gamma(\mathcal{A}, \mathcal{C}, \alpha_3) \cup \Gamma(\mathcal{B}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{A}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{C}, \mathcal{D}, \alpha_3))$ and $(Q, X_2 \cup Y \cup Z \cup \Gamma(\mathcal{A}, \mathcal{C}, \alpha_1) \cup \Gamma(\mathcal{B}, \mathcal{D}, \alpha_0) \cup \Gamma(\mathcal{A}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{C}, \mathcal{D}, \alpha_3))$ are two SQS(16) with 105 blocks in common.

Theorem 3.3. If $k \in I_{16} \setminus \{103, 111, 115, 119, 121, 122, 123\}$, then $k \in J[16]$.

Quadruple systems with a prescribed number of blocks in common

·			
X ₁	X2		Y
1, 2, 5, (5 1, 2, 4	B, 5 I, 6	1, 2, 7, 8 1, 3, 6, 8
		1, 7	1,4, 5, 8
. , .,		5, 7 1, 8	2, 4, 5, 7 2, 3, 6, 7
		5, 8	3, 4, 5, 6
		, 8	5, 6, 11, 12
5, 6, 7, 9	9 4, 6, 7	, 8	5, 7, 10, 12
5, 6, 8, 10		9, 10	5, 8, 9, 12
5, 7, 8, 1		9, 11	6, 7, 10, 11
5, 9, 10, 1			6, 8, 9, 11
6, 7, 8,12 6, 9,10,12			7, 8, 9, 10
7, 9, 11, 12			
8, 10, 11, 12			
· · · · · · · · · · · · · · · · · · ·	$Z = \{13, 14,$	15, 16}∪	en andre en Andre en andre en andr
13, 1, 5, 9	14, 1, 5, 10	15, 1, 5, 11	16, 1, 5, 12
	14, 1, 6, 9	15, 1, 6, 10	
13, 1, 7, 11	14, 1, 7, 12	15, 1, 7, 9	
13, 1, 8, 10	14, 1, 8, 11	15, 1, 8, 12	
13, 2, 5, 12 13, 2, 6, 11	14, 2, 5, 9 14, 2, 6, 12	15, 2, 5, 10 15, 2, 6, 9	
	14, 2, 7, 11	15, 2, 7, 12	
13, 2, 8, 9	14, 2, 8, 10	15, 2, 8, 11	
13, 3, 5, 11	14, 3, 5, 12	15, 3, 5, 9	
13, 3, 6, 10	14, 3, 6, 11	15, 3, 6, 12	
	14, 3, 7, 10	15, 3, 7, 11	
	14, 3, 8, 9	15, 3, 8, 10	
	14, 4, 5, 11	15, 4, 5, 12	
	14, 4, 6, 10 14, 4, 7, 9	15, 4, 6, 11 15, 4, 7, 10	
	14, 4, 7, 9 14, 4, 8, 12	15, 4, 7, 10	

Fig. 1.

Proof. Let $X = \{a, b, c, d, e, f, g, h\}, Y = \{1, 2, ..., 8\}.$

(1) First, we prove the statement for k even. Let F, H be the 1-factorizations on X given by Fig. 2, and let G, L and M be the 1-factorizations on Y given by Fig. 3.

	F_1	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇		H_1	H_2	H ₃	
	a, 5	a, d	a, f	a, h	a, c	a, e	a, g		a, b	a, d	a, f	$H_4 = F_4$
F	c, d	c, h	b, c	b, g	b, d	b, f	b, h	H=	c, d	b, c	b, e	$H_5 = F_5$
r	e, f	b, e	c, f	e, g	e, g	c, g	с, е	п-	f, g	e, f	c, h	$H_6 = F_6$
	g, h	f, g	d, g	d, e	f, h	d, h	d, f		e, h	g, h	d, g	$H_7 = F_7$

Fig. 2.

M. Gionfriddo, C.C. Lindner

	G_1	G ₂	G_3	G₄	G_5	<i>G</i> ₆	<i>G</i> ₇
G =	3, 5 4, 7	1, 3 2, 5 4, 6 7, 8	2,6 3,7	2, 3 4, 8	2, 4 3, 8	2, 8 3, 4	2,7 3,6

	L_1	L ₂	L ₃			$M_1 = L_1$ $M_3 = G_3$
L =	3, 5 4, 6	2,6 4,7	2, 5 3, 7	$L_4 = G_4$ $L_5 = G_5$ $L_6 = G_6$ $L_7 = G_7$	1, 3 2, 5	$M_{4} = G_{4} = L_{4}$ $M_{5} = G_{5} = L_{5}$ $M_{6} = G_{6} = L_{6}$ $M_{7} = G_{7} = L_{7}$

	^
H10	- 4
I IE.	

Further, let β_i and γ be the following permutations on $\{1, 2, ..., 7\}$: For i = 0, 1, 2, 4

$$\beta_{i} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 2 & y_{1} & y_{2} & y_{3} & y_{4} \end{pmatrix}, \text{ where } y_{i} = \begin{cases} 7, j = i+1, \\ j+3, j < i+1, \\ j+2, j > i+1 \end{cases}$$
$$\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 6 & 6 & 7 \\ 1 & 4 & 5 & 6 & 7 & 2 & 3 \end{pmatrix}.$$

Let $\rho(8) = \{0, 2, 4, 6, 8, 12, 14, 16, 20, 28\}$. If $h \in \rho(8)$, then it is possible to construct four $SQS(8) \quad (X, A_i)$ and $(Y, B_i), \quad i = 1, 2,$ such that $|A_1 \cap A_2| + |B_1 \cap B_2| = h$. Let α_i be defined on $\{1, 2, \dots, 7\}$ as in the remarks preceding Theorem 3.1. Consider k = 16i + h, for i = 0, 1, 2, 3, 4, 5, 7, and $h \in \rho(8)$, and let (X, A_i) , (Y, B_i) , j = 1, 2, be SQS(8) with $|A_1 \cap A_2| + |B_1 \cap B_2| = h$. Since for $i \neq 6$ $|\Gamma(F, G, \alpha_7) \cap \Gamma(F, G, \alpha_i)| = 16i$, it follows that $[X \cup Y](A_1, B_1, F, G, \alpha_i) = 16i$. G, α_7) and $[X \cup Y](A_2, B_2, F, G, \alpha_i)$ are two SQS(16) with 16i + h blocks in common. For i = 6, consider the SQS(16) $[X \cup Y](A_1, B_1, F, G, \alpha_7)$ and $[X \cup Y](A_2, B_2, F, M, \alpha_7)$. Since $|\Gamma(F, G, \alpha_7) \cap \Gamma(F, M, \alpha_7)| = 96$, these SQS(16) have 96+h blocks in common. It follows that if $k \in I_{16}$, $k \neq 16i+10$ $(i = 0, 1, \dots, 7)$, then $k \in J[16]$.

Let k = 16i + 10 for i = 0, 1, ..., 6. For i = 0 we consider two SQS(8) (X, A_i) and $(Y, B_i), j = 1, 2$, such that $|A_1 \cap A_2| = |B_1 \cap B_2| = 2$. Since $|\Gamma(F, G, \alpha_1) \cap \Gamma(H, L, \gamma)| = 6$, clearly $[X \cup Y](A_1, B_1, F, G, \alpha_1)$ and $[X \cup Y](A_2, B_2, H, L, \gamma)$ have 10 blocks in common. For i = 1, 2, ..., 6, let (X, A_i) and $(Y, B_i), j = 0, 1, 2, 3$, be SQS(8) such that $|A_u \cap A_{u+2}| + |B_u \cap B_{u+2}| = 16u + 12$ for u = 0, 1. Since $|\Gamma(F, G, \beta_4) \cap \Gamma(H, L, \beta_i)| = 16i + 14$ for i = 0, 2, 4, it follows that $[X \cup Y](A_u, B_u, F, G, \beta_4)$ and $[X \cup Y](A_{u+2}, B_{u+2}, H, L, \beta_i)$ for every $(u, i) \in \{0, 1\} \times \{0, 2, 4\}$ are SQS(16) with 16(i + u) + 26 blocks in common.

J	1	Jz	J 3	J ₄	J ₅	J ₆	 J ₇		N ₁	N2	N3	
a, c, d, e,	f g l	цс ,с ,f ,h	a, d b, e c, g f, h	a, e b, d c, h f, g	a, f b, h c, d e, g	a, g b, c d, h e, f	a, h b, g c, e d, f	N-	a, b c, g d, e f, h	c, c b, f d, g e, h	a, d b, e c, f g, h	$N_{4} = J_{4}$ $N_{5} = J_{5}$ $N_{6} = J_{6}$ $N_{7} = J_{7}$
),),	02	O 3		0,		0 7		Ř ₁	R 2	R 3	
ئېسېد د _	b (ц с	a, d	a, e	a, f	a, g	a, h		a, b	a, c	a, d	$R_4 = O_4$ $R_5 = O_5$

Quadruple systems with a prescribed number of blocks in common

Fig. 4.

(2) Now, we prove the statement for k odd. From Theorem 3.2 there exist SOS(16) with k = 105, 113, 117, 125 blocks in common. Let J, N, O, R be the 1-factorizations on X given by Fig. 4, and let S, T, U, V be the 1-factorizations on Y given by Fig. 5.

Further, let δ_1 and δ_2 be the permutations on $\{1, 2, ..., 7\}$ given by

$$\delta_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 4 & 5 & 6 & 7 & 2 & 3 \end{pmatrix} \text{ and } \delta_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 5 & 6 & 7 & 2 & 3 & 4 \end{pmatrix}$$

Let k = 79 + 2h; h = 0, 1, 2, 3, ..., 10, 11, 14, 15; and let (X, A_i) and (Y, B_i) , j = 1, 2, be SQS(8) such that for every h

	S ₁	S ₂	S3	S4	S ₅	S ₆	S 7			T ₁	T ₂	T ₃	
	1, 2	1,3	1,4	1,5	1,6	1,7	1,8		-	1,2	1, 3	1,4	$T_4 = S_4$
=	6,8	2,6	2,5	2,4	2,8	2,3	2,7	7	[=]	3,6	2,6	2, 5	$T_5 = S_5$
-	3,7	4,7	3,6	3,8	3,4	4,8	3, 5			4,7	4, 5	3,7	$T_5 = S_6$
	4, 5	5,8	7,8	6,7	5,7	5,6	4,6	•	-	5,8	7,8	6,8	$T_7 = S_7$
								-	-				
	U ₁	U_2	U ₃	U_4	U_5	U ₆	U7		-	V ₁	V ₂	V ₃	
	1, 2	1, 3	1,4	1, 5	1,6	1, 7	1, 8			1,2	1, 3	1,4	$V_4 = U_4$
Г. —	3,6	2,8	2,7	2,3	2,4	2,5	2,6	1	/=	3,8	Real Process	2,8	$V_5 = U_5$
- 1972 - 1	4,8	4, 5	3, 8	4,6	3,7	3,4	3, 5	jezh e e e		4,5			$V_6 = U_6$
	5,7	6,7	5,6	7,8	5,8	6,8	4,7			6,7	5,6	5,7	$V_7 = U_2$

(2h if h is even.

Fig. 5.

Since $|\Gamma(O, U, \alpha_7) \cap \Gamma(R, V, \alpha_7)| = 79$ and $|\Gamma(J, S, \alpha_7) \cap \Gamma(N, T, \alpha_7)| = 81$, it follows that for *h* even $[X \cup Y](A_1, B_1, O, U, \alpha_7)$ and $[X \cup Y](A_2, B_2, R, V, \alpha_7)$ are two SQS(16) with k = 79 + 2h blocks in common, and for *h* odd $[X \cup Y](A_1, B_1, J, S, \alpha_7)$ and $[X \cup Y](A_2, B_2, N, T, \alpha_7)$ are SQS(16) with k = 81 + 2(h-1) blocks in common.

Now, let k = 1 + 16i + r for i = 0, 1, 2, 3 and $r \in \rho(8) = \{0, 2, 4, 6, 8, 12, 14, 16, 20, 28\}$. Consider two SQS(8) (X, A_i) and (Y, B_i) , j = 1, 2, such that $|A_1 \cap A_2| + |B_1 \cap B_2| = r$. For i = 0, since $|\Gamma(J, S, \delta_1) \cap \Gamma(N, T, \delta_2)| = 1$, the SQS(16) $[X \cup Y](A_1, B_1, J, S, \delta_1)$ and $[X \cup Y](A_2, B_2, N, T, \delta_2)$ have 1 + r blocks in common. For $i \neq 0$, we have $|\Gamma(J, S, \delta_7) \cap \Gamma(N, T, \alpha_{i+2})| = (6i+1)$ and so $[X \cup Y](A_1, B_1, J, S, \alpha_7)$ and $[X \cup Y](A_2, B_2, N, T, \alpha_{i+2})$ have 1 + 16i + r blocks in common.

Finally, let k = 67, 71, 73, cr 16i + 11 for i = 0, 1, 2, 3, 4. Let (X, A_i) and $(Y, B_i), i = 1, 2, ..., 10$, be SQS(8) such that

$$|A_u \cap A_{u+5}| + |B_u \cap B_{u+5}| = r_u = \begin{cases} 16(u-1) & \text{if } u = 1, 2, \\ 3u-1 & \text{if } u = 3, 5, \\ 12 & \text{if } u = 4. \end{cases}$$

Since

$$|\Gamma(J, S, \alpha_2) \cap \Gamma(N, T, \alpha_{v})| = s_v = \begin{cases} 59 & \text{if } v = 3, \\ 43 & \text{if } v = 4, \\ 11 & \text{if } v = 7, \end{cases}$$

it follows that $[X \cup Y](A_u, B_u, J, S, \alpha_2)$ and $[X \cup Y](A_{u+5}, B_{u+5}, N, T, \alpha_v)$ are two SQS(16) with $k = r_u + s_v$ blocks in common, for every $(u, v) \in \{1, 2, 3, 4, 5\} \times \{3, 4, 7\}$.

Theorem 3.4. Let $v = 2^n$, $n \ge 5$. If $k \in I_v \setminus \{q_v - h : h = 17, 18, 19, 21, 25\}$, then $k \in J[v]$.

Proof. Let $v = 2^n$, $n \ge 5$, $w = 2^{n-1}$, $X = \{1, 2, ..., w\}$ and $Y = \{1', 2', ..., w'\}$ with $X \cap Y = \emptyset$. Let $\rho(w)$ be the set of all h such that there exist four SQS(w) (X, A_j), (Y, B_j) , j = 1, 2, with $|A_1 \cap A_2| + |B_1 \cap B_2| = h$. Let F, G, be two 1-factorizations on X and Y respectively and let α_i be defined on $\{1, 2, ..., w-1\}$ in the usual way.

Assume n = 5. If $k \in I_{32} \setminus \{1215, 1219, 1221, 1222, 1223\}$, it is easy to show that there exists an $(r, u) \in \{0, 1, 2, ..., 13, 15\} \times \rho(16)$ such that k = 64r + u. It follows that, if $(X, A_j), (Y, B_j), j = 1, 2$, are SQS(16) such that $|A_1 \cap A_2| + |B_1 \cap B_2| = u$, then $[X \cup Y](A_1, B_1, F, G, \alpha_{15})$ and $[X \cup Y](A_2, B_2, F, G, \alpha_r)$ are two SQS(32) with k blocks in common. This finishes the proof for n = 5. Assume therefore $n \ge 6$ and assume that for all m < n ($m \ge 5$) if $u = 2^m$ and $k \in I_u \setminus \{q_u - h : h = 17, 18, 19, 21, 25\}$ that $k \in J[u]$. Let $k \in I_v \setminus \{q_v - h : h = 17, 18, 19, 21, 25\}$. Observe that if $k > (w - 3)w^2/4 + 2q_w - 26$, since $w^2/4 < q_w - 13$ and $q_v = 2q_w + (w - 1)w^2/4$, then there exists an $r \in \rho(w)$ such that $k = (w-1)w^2/4 + r$; and if $k \le (w-3)w^2/4 + 2q_w - 26$, then there exists an

$$(r, u) \in \{0, 1, 2, \dots, w-3\} \times \{0, 1, 2, \dots, 2q_w - 26\}$$

such that $k = rw^2/4 + u$. In every case, therefore, we have $k = rw^2/4 + u$ for r = 0, 1, 2, ..., w - 3, w - 1 and $r \in \rho(w)$. Since for every

$$(r, u) \in \{0, 1, 2, \dots, w-3, w-1\} \times \rho(w) | \Gamma(F, G, \alpha_{w-1}) \cap \Gamma(F, G, \alpha_r)| = rw^2/4,$$

and it is possible to construct four SQS(w) (X, A_j) and $(Y, B_j), j = 1, 2$, such that $|A_1 \cap A_2| + |B_1 \cap B_2| = u$, our statement follows from the doubling construction.

Collecting together Theorems 2.7, 3.1, 3.2, 3.3 and 3.4 gives the following theorem (which is, of course, the main result).

Theorem 3.5.

 $J[v] \subseteq I_v \text{ for all } v \equiv 2 \text{ or } 4 \pmod{6} \text{ and } v \ge 8,$ $J[4] = \{1\}, \quad J[8] = I_8 = \{0, 2, 6, 14\},$ $I_{16} \setminus \{103, 111, 115, 119, 121, 122, 123\} \subseteq J[16],$

and

 $I_v \setminus \{q_v - h : h = 17, 18, 19, 21, 25\} \subseteq J[v] \text{ for all } v = 2^n, n \ge 5.$

References

- [1] J. Doyen and A. Rosa, An extended bibliography and survey of Steiner systems, Proc. 7th Manitoba Conference on Numerical Math. and Computing (1977) 297-361.
- [2] B. Ganter, Finite partial quadruple systems can be finitely embedded, Discrete Math. 10 (1974) 397-400.
- [3] P.B. Gibbons, R. Mathon and D.G. Corneil, Swiner quadruple systems on 16 symbols, Proc. 6th Southeastern Conf. Combinatorics, Graph Theory and Computing, Boca Raton (1975) 345-365.
- [4] H. Hanani, On quadruple systems, Canad. J. Math. 12 (1960) 145-157.
- [5] E.S. Kramer and D.M. Mesner, Intersections among Steiner systems, J. Combinatorial Theory 16(A) (1974) 273-285.
- [6] C.C. Lindner, On the construction of noncomposition Steiner quadruple systems, Colloq. Math. 29 (1974) 303–306.
- [7] C.C. Lindner, A note on disjoint Steiner juadruple systems, Ars Combinatoria 3 (1977) 271-276.
- [8] C.C. Lindner, Construction of Steiner triple systems having exactly one triple in common, Canad. J. Math. 26 (1974) 225-232.
- [9] C.C. Lindner, E. Mendelsohn and A. Rosa, On the number of 1-factorizations of the complete graph, J. Combinatorial Theory 20(B) (1976) 265-282.
- [10] C.C. Lindner and A. Rosa, Finite embedding heorems for partial Steiner quadruple systems, Bull, Soc. Math. Belg. 27 (1975) 315-323.
- [11] C.C. Lindner and A. Rosa, Steiner triple systems having a prescribed number of triples in common, Canad. J. Math. 27 (1975) 1166-1275.
- [12] C.C. Lindner and A. Rosa, Construction of large sets of almost disjoint Steiner triple systems, Canad. J. Math. 27 (1975) 256-260.
- [13] C.C. Lindner and A. Rosa, Steiner quadruple systems all of whose derived Steiner triple systems are nonisomorphic, J. Combinatorial Theory 21(A) (1976) 35-43.

- [14] C.C. Lindner and A. Rosa, Steiner quadruple systems--a survey, Discrete Math. 21 (1978) 147-181.
- [15] A. Rosa, A theorem on the maximum number of disjoint Steiner triple systems, J. Combinatorial Theory 18(A) (1975) 305-312.
- [16] A. Rosa. Algebraic properties of designs and recursive constructions, Proc. Conf. Algebraic Aspects of Combinatorics, University of Toronto (1975) 183-200.