CONSTRUCTION OF STEINER QUADRUPLE SYSTEM HAVING A PRESCRIBED NUMBER OF BLOCKS **IN COMMON**

M. GIONFRIDDO*

Istituto di Matematica, Università di Messina, 98100 Messina, It. lia

C.C. LINDNER**

Mathematics Department, Auburn University, Auburn, AL 36830, USA

Received 21 September 1979 Revised 19 November 1979 and 21 May 1980

Let $q_n = v(v-1)(v-2)/24$ and let $I_n = \{0, 1, 2, ..., q_n - 14\} \cup \{q_v - 12, q_v - 8, q_v\}$, for $v \ge 8$. Further, let $J[v]$ denote the set of all k such that there exists a pair of Steiner quadruple systems of order v having exactly k blocks in common. We determine $J[v]$ for all $v = 2ⁿ$, $n \ge 2$. with the possible exception of 7 cases for $v = 16$ and of 5 cases for each $v \ge 32$. In particular we show: $J[v] \subseteq I_0$ for all $v = 2$ or 4 (mod 6) and $v \ge 8$, $J[4] = \{1\}$, $J[8] = I_8 = \{0, 2, 6, 14\}$, I_{16} $\{103, 111, 115, 119, 121, 122, 123\} \subseteq J[16]$, and $I_v \setminus \{q_v - h : h = 17, 18, 19, 21, 25\} \subseteq J[v]$ for all $v = 2^n$, $n \ge 5$. 医腹膜 网络小

1. Introduction

A Steiner quadruple system (SQS) is a pair (Q, q) where Q is a finite set and q is a collection of 4-subsets of Q (called blocks) such that every 3-subset of Q is contained in exactly one block of q. The number $|Q|$ is called the order of the quadruple system (Q, q) and in 1960 Hanani [4] proved that a necessary and sufficient condition for the existence of a Steiner quadruple system of order v $(SQS(v))$ is $v = 2$ or 4 (mod 6). It is easy to see that if (Q, a) is an $SOS(v)$, then $|q| = v(v-1)(v-2)/24$. A very interesting question naturally arises: For a given $v = 2$ or 4 (mod 6), for which $k \le v(v-1)(v-2)/24$ is it possible to construct a pair of SQS(v) having exactly k blocks in common? [14]. To date, the only known results are $J[4] = \{1\}$, $J[8] = \{0, 2, 6, 14\}$, and $J[10] = \{0, 2, 4, 6, 8, 12, 14, 30\}$ (Kramer and Messner [5]). The similar problem for Steiner triple systems has been completely settled by Lindner and Rosa in [11]. This paper is the first general attack on settling the (much more difficult) block intersection problem for SOS. A. S. The A. A.

* Research supported by the GNSAGA of the CNR (Italia).

** Research supported by NSF Grant MCS 77-03464 A01.

en sindario collungi.

Let $q_v = v(v - 1)(v - 2)/24$ and let

$$
I_{v} = \{0, 1, 2, \ldots, q_{v} - 14\} \cup \{q_{v} - 12, q_{v} - 8, q_{v}\},\
$$

for $v \ge 8$. Further, let $J[v]$ denote the set of all k such that there exists a pair of $SOS(v)$ having exactly k blocks in common. We determine $J[v]$ for all $v = 2ⁿ$, $n \ge 2$, with the possible exception of 7 cases for $v = 16$ and of 5 cases for each $v \ge 32$. In particular we show:

$$
J[v] \subseteq I_v \text{ for all } v \equiv 2 \text{ or } 4 \pmod{6} \text{ and } v \ge 8,
$$

\n
$$
J[4] = \{1\}, \qquad J[8] = I_8 = \{0, 2, 6, 14\},
$$

\n
$$
I_{16} \setminus \{103, 111, 115, 119, 121, 122, 123\} \subseteq J[16],
$$

\n
$$
I_v \setminus \{q_v - h : h = 17, 18, 19, 21, 25\} \subseteq J[v] \text{ for all } v = 2^n, n \ge 5.
$$

Although it is surely true that $J[v] = I_v$ for all $v = 2ⁿ$, $n \ge 3$, the authors have not as yet been able to handle the few exceptions listed above,. Nevertheless we do not hesitate to make the following conjecture.

Conjecture. $J[v] = I$, for all $v = 2ⁿ$ and $v \ge 8$.

2. Disjoint and mutually balanced POS

A *partial quadruple system* (FGS) is a pair (P, q) where P is a finite set and q is a collection of 4-subsets of P (called blocks) such that every 3-subset of P is contained in at most one block of q . Using graph theoretic terminology we will say that an element x of P has *degree* $d(x) = h$, if x belongs to exactly h blocks of q. Clearly $\sum_{x \in P} d(x) = 4 |q|$. Finally, if $x \neq y \in P$ we will write (x, y) , to indicate that x and y belong to exactly r blocks of q .

Two partial quadruple systems (P, q_1) and (P, q_2) are said to be mutually balanced, if any given triple of distinct elements of P is contained in a block of q_1 if and only if it is contained in a block of q_2 . Two mutually balanced PQSs are said to be *disjoint* if they have no block in common. It is easy to see that if (P, q_1) and (P, q_2) are any two mutually balanced PQSs, then $|q_1| = |q_2|$.

In this section we will determine some useful properties of *disjoint* and *mutucolly balanced* (10MB) PQSs. In what follows (P, q_1) and (P, q_2) will be two DMB PQSs with $P = \{1, 2, ..., n\}$ and $|q_1|=|q_2|=m$.

Property 2.1. $n \ge 8$, $m \ge 8$, and $d(x) \ge 4$ for every $x \in P$.

Proof. If $\{1, 2, 3, 4\} \in q_1$, then necessarily $\{1, 2, 3, x\}$, $\{1, 2, 4, y\}$, $\{1, 3, 4, z\}$ and $\{2, 3, 4, t\}$ belong tc q_2 . Since $\{x, y, z, t\} \cap \{1, 2, 3, 4\} = \emptyset$, clearly $n \ge 8$. Let now $x \in P$ and let $\{x, 1, 2, 3\} \in q_1$. If $\{x, 1, 2, y_3\}$, $\{x, 1, 3, y_2\}$ and $\{x, 2, 3, y_1\}$ belong to q_2 , then $\{y_1, y_2, y_3\} \cap \{x, 1, 2, 3\} = \emptyset$ and there exists in q_1 three distinct blocks containing $\{x, 1, y_3\}$, $\{x, 3, y_2\}$ and $\{x, 2, y_1\}$, respectively. Hence $d(x) \ge 4$. Finally, since $4m = \sum_{x \in P} d(x)$ we must have $m \ge 8$.

Property 2.2. If $h = \max\{d(x) : x \in P\}$, then $m \ge 2h$.

Proof. It is easy to see that if $\{x, a_i, b_i, c_i\} \in q_1, i = 1, \ldots, h$, there are in q_2 h. distinct blocks containing x and h distinct blocks containing the triples $\{a_i, b_i, c_i\}$ but not x .

Property 2.3. If $x \neq y \in P$ and $(x, y)_h$ then $d(x) \geq 2h$, $d(y) \geq 2h$.

Proof. If $\{x, y, a_i, b_i\} \in q_1$, $i = 1, 2, \ldots, h$, then there are in q_2 2h distinct blocks containing the triples $\{x, a_i, b_i\}$ and $\{y, a_i, b_i\}$ and at least h additional blocks containing the triples $\{x, y, a_i\}$ and $\{x, y, b_i\}$. Hence $d(x) \ge 2h$, $d(y) \ge 2h$.

Property 2.4. If $d(x) > 4$, then $d(x) \ge 6$.

Proof. Let $R_i = \{x, a_i, b_i, c_i\}$ ($i = 1, \ldots, 5, \ldots$) be all of the blocks of q_1 containing x. For every $i \neq j$ we have $|R_i \cap R_j| = 1$ or 2. If there exist two indices $i \neq j$ such that $R_i \cap R_j = \{x\}$, then there are in q_2 (at least) six distinct blocks containing $\{x, a_i, b_i\}, \{x, a_i, c_i\}, \{x, b_i, c_i\}, \{x, a_i, b_i\}, \{x, a_i, c_i\}$ and $\{x, b_i, c_i\}$ respectively. Hence $d(x) \geq 6$. If for every $i \neq j$ we have $|R_i \cap R_j| = 2$, then since $d(x) > 4$ for some $y \in P$ there are $r \ge 3$ blocks containing $\{x, y\}$. Clearly $d(x) \ge 6$.

Property 2.5. If $m > 8$ and there exists a block R such that $d(x) = 4$ for every $x \in R$, then $m \ge 14$.

Proof. Let $\{1, 2, 3, 4\} \in q_1$ and let $\{1, 2, 3, 5\}$, $\{1, 2, 4, 6\}$, $\{1, 3, 4, 7\}$ and $\{2, 3, 4, 8\}$ belong to q_2 . If $d(1) = d(2) = d(3) = d(4) = 4$, then we have (necessarily)

If $\{5, 6, 7, 8\} \notin \{a_1, \text{ then } \{5, 6, 7, x\}, \{5, 6, 8, y\}, \{5, 7, 8, z\} \text{ and } \{6, 7, 8, t\} \text{ belong}$ **to** q_1 **(where x, y, z, t are distinct elements of P) and** $\{5, 6, x\}$ **,** $\{5, 7, x\}$ **,** $\{6, 7, x\}$ **,** $\{7, 8, z\}$, $\{6, 8, t\}$ and $\{5, 8, y\}$ are contained in six distinct blocks of q_2 , respectively. Clearly $m \ge 14$. If $R_8 = \{5, 6, 7, 8\} \in q_1$, then (A, τ_1) and (A, τ_2) , where $A = \{1, 2, ..., 8\}, \tau_1 = \{R_1, ..., R_8\}$ and $\tau_2 = \{T_1, ..., T_8\}$ are two DMB PQSs. Since

$$
\left(\bigcup_{B\in q_1-\tau_1} B, q_1-\tau_1\right) \quad \text{and} \quad \left(\bigcup_{B\in q_2-\tau_2} B, q_2-\tau_2\right)
$$

are two DMB PQSs, it follows that $m \ge 16$.

Property 2.6. If $m > 8$, then $m = 12$ or $m \ge 14$.

Proof. We need consider only the case in which every block B contains an $x \in P$ with $d(x) \ge 6$ (in the other cases we have immediately our statement from Properties 2.4 and 2.5). From Property 2.2 we have $m \ge 12$. Suppose $m = 13$. It follows that $\sum_{x \in P} d(x) = 52$ and $d(x) = 4$ or 6 for every $x \in P$. Further we must have $8 < n < 12$. Under these conditions, for every $x \in P$ such that $d(x) = 6$ there exists a $y \in P$ such that $(x, y)_3$, so that $d(y) = 6$. Necessarily, we have the following blocks, in q_1 :

 $R_1 = \{1, 2, 3, 4\}, R_4 = \{1, 3, 5, x_1\}. R_7 = \{2, 3, 5, y_1\}, R_{10} = \{3, 4, v_1, t_1\},$ $R_2 = \{1, 2, 5, 6\}, R_5 = \{1, 4, 7, x_2\}, R_8 = \{2, 4, 7, y_2\}, R_{11} = \{5, 6, v_2, t_2\},$ $R_3 = \{1, 2, 7, 8\}, R_5 = \{1, 6, 8, x_3\}. R_9 = \{2, 6, 8, y_3\}, R_{12} = \{7, 8, y_3, t_3\}.$

in q_2 :

 $T_1 = \{1, 2, 3, 5\},$ $T_2 = \{1, 3, 4, v_1\},$ $T_3 = \{2, 3, 4, w_1\},$ $T_{10} = \{3, 5, x_1, u_1\},$ $T_2 = \{1, 2, 4, 7\}, T_5 = \{1, 5, 6, v_2\}, T_6 = \{2, 5, 6, w_2\}, T_1 = \{4, 7, x_2, u_2\},$ $T_3 = \{1, 2, 6, 8\},$ $T_6 = \{1, 7, 8, v_3\},$ $T_9 = \{2, 7, 8, w_3\},$ $T_{12} = \{6, 8, x_3, u_3\}.$

where $\{x_1, x_2, x_3\} = \{v_1, v_2, v_3\}$, $\{y_1, y_2, y_3\} = \{w_1, w_2, w_3\}$, $\{x_1, x_2, x_3\} \cap \{y_1, y_2, y_3\} =$ **@** and

$$
(x_1, x_2, x_3)
$$
 and $(v_1, v_2, v_3) =$
 (y_1, y_2, y_3) and $(w_1, w_2, w_3) =$
 $(8, 5, 4)$ and $(8, 4, 5)$ respectively, or (y_1, y_2, y_3) and $(w_1, w_2, w_3) =$
 (a, a, a) with $a \notin \{1, 2, ..., 8\}$.

If $\{x_1, y_1\} = \{7, 8\}$, then we can see that for every $i = 1, 2, 3$ $\{2i + 1, 2i + 2, v_i, w_i\} \notin q_1$. Hence $m \ge 15$. Suppose, therefore, $\{x_i, y_i\} \cap \{9, 10\} \neq \emptyset$. Let $x_i = 9$ (or, likewise, $y_i = 9$). If $w_i = t_i$ and $y_i = u_i$ for every $i = 1, 2, 3$, then for $A = \{1, 2, ..., 8, x_i, y_i, t_i; i = 1, 2, 3\}, R' = \{R_i : i = 1, ..., 12\}$ and $T = \{T_i : i = 1, \ldots, 12\}$, (A, R') and (A, T) are two DMB PQSs. Since $(\bigcup_{B \in q_1 - R'} B, q_1 - R')$ and $(\bigcup_{B \in q_2 - T} B, q_2 - T)$ are also a pair of DMB PQSs, it follows that $m \ge 20$. If there exist at least Γ_0 3 indices i, $j \in \{1, 2, 3\}$ such that $w_i \neq t_i$, $w_j \neq t_j$ (or, likewise, $y_i \neq u_i$, $y_j \neq u_j$), then $m \ge 14$. Suppose, therefore, that

 $w_1 \neq t_1$ (or $y_1 \neq u_1$) for exactly one index $i \in \{1, 2, 3\}$. Necessarily, $t_{i+1} = w_{i+1}, t_{i+2} = 1$ w_{i+2} ({*i*, *i* + 1, *i* + 2} = {1, 2, 3}). It follows that { $d(2i + 1)$, $d(2i + 2)$ } \subseteq {5, 7}. Hence $m \ge 14$. It follows that DMB PQSs with $m = 13$ do not exist.

Theorem 2.7. For every $v = 2$ or 4 (mod 6) and $v \ge 8$, $\text{Id } v \subseteq L$.

Proof. If two $SQS(v)$ (Q, q_1) and (Q, q_2) have k blocks in common, then there exists a pair of DMB PQSs (P, s₁) and (P, s₂) such that $P \subseteq Q$, $s_1 \subseteq q_1$, $s_2 \subseteq q_2$, and $|s_1| = |s_2| = q_v - k$. The statement follows immediately from Properties 2.1 and 2.6.

3. SQS wi& blocks in common

In this section we will determine $J[v]$ for all $v = 2ⁿ$, $n \ge 2$, with the possible exception of 7 cases for $v = 16$ and of 5 cases for each $v \ge 32$. Observe that for ev_{2} : $v = 2$ or 4 (mod 6) $a_n \in J[v]$ and, since $D(2v) \ge v$ for $v > 2$ [7] (where $D(2v)$ is the number of pairwise disjoint $SOS(2v)$ on the same set with 2v elements), $0 \in J[v]$ for $v > 4$. The following well-known doubling construction for quadruple systems is the main tool used in what follows.

Let (X, A) and (Y, B) be any two $SQS(v)$ with $X \cap Y = \emptyset$. Let $F =$ $\{F_1, \ldots, F_{n-1}\}\$ and $G = \{G_1, \ldots, G_{n-1}\}\$ be any two 1-factorizations of K_n (the complete graph on v vertices) on X and Y, respectively, and let α be any permutation cn the set $\{1, 2, \ldots, v-1\}$. Define a collection q of blocks of $Q = X \cup Y$, as follows:

(1) Any block belonging to A or B belongs to q ;

(2) If $x_1, x_2 \in X$ and $y_1, y_2 \in Y$, then $\{x_1, x_2, y_1, y_2\} \in q$ if and only if $\{x_1, x_2\} \in F_i$, $\{y_1, y_2\} \in G_i$, ia = j.

It is a routine matter to see that (Q, q) is a $SQS(2v)$ (cf. [13, 16]). We will denote (Q, q) by $[X \cup Y](A, B, F, G, \alpha)$ and for every F, G, α by $\Gamma(F, G, \alpha)$ the collection of all of the blocks $\{x_1, x_2, y_1, y_2\}$ such that $\{x_1, x_2\} \in F_i$, $\{y_1, y_2\} \in G_i$, and $i\alpha = j$.

Further, if w is a positive integer, we define α_i ; $i = 0, 1, 2, \ldots, w - 2$, w; to be the permutation on $\{1, 2, \ldots, w\}$ given by

$$
\alpha_i = \begin{pmatrix} 1 & 2 & 3 & \cdots & w \\ x_1 & x_2 & x_3 & \cdots & x_w \end{pmatrix}, \text{ where } x_j = \begin{cases} w, j = i + 1, \\ j, j < i + 1, \\ j - 1, j > i + 1. \end{cases}
$$

Theorem 3.1. $J[4] = \{1\}; J[8] = \{0, 2, 5, 14\}.$

Proof. $J[4] = \{1\}$ is trivial. Since 0, $14 \in J[8]$ and $J[8] \subseteq I_8$ we need show only that 2, $6 \in J[8]$. Let $X = \{1, 2, 3, 4\}$, $Y = \{5, 6, 7, 8\}$, $A = \{X\}$, $B = \{Y\}$; and let $F = \{F_1, F_2, F_3\}$ and $G = \{G_1, G_2, G_3\}$ be two l-factorizations of K_4 on X and Y respectively. If α_0, α_1 and α_3 are the permutations defined on {1, 2, 3}

in the remarks preceding Theorem 3.1, then $[X \cup Y](A, B, F, G, \alpha_3)$ and $[X \cup Y](A, B, F, G, \alpha_0)$ are two SQS(3) with 2 blocks in common and $[X \cup Y](A, B, F, G, \alpha_1)$ and $[X \cup Y](A, B, F, G, \alpha_2)$ are two SQS(8) with 6 blocks in common.

Theorem 3.2. For $k = 105$, 113, 117, 125 there are SQS(16) having exactly k blocks in common.

Proof. Let $A = \{1, 2, 3, 4\}, B = \{5, 6, 7, 8\}, C = \{9, 10, 11, 12\}, D = \{13, 14, 15, 16\}$ $Q = A \cup B \cup C \cup D$ and let $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ be the following 1-factorizations of K_4 on $A, B, C, and D$ respectively:

Let α_0 , α_1 and α_3 be the permutations defined on {1, 2, 3} as above and consider the cellections of blocks of \vee , as shown in Fig. 1.

Observe that $(A \cup B \cup C, X_1)$ and $(A \cup B \cup C, X_2)$ are two DMB PQSs with $m = 15$ blocks. Further we can prove that $(Q, X_1 \cup Y \cup Z \cup \Gamma(\mathcal{A}, \mathcal{C}, \alpha_3) \cup$ $\Gamma(\mathcal{B}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{A}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{C}, \mathcal{D}, \alpha_3)$ is an SQS(16). It follows that

(i) $(Q, X_1 \cup Y \cup Z \cup \Gamma(\mathcal{A}, \mathcal{C}, \alpha_3) \cup \Gamma(\mathcal{B}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{A}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{C}, \mathcal{D}, \alpha_3))$ and $(Q, X_2 \cup Y \cup Z \cup \Gamma(\mathcal{A}, \mathcal{C}, \alpha_3) \cup \Gamma(\mathcal{B}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{A}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{C}, \mathcal{D}, \alpha_3)$ are two SQS(16) with $k = 125$ blocks in common:

(ii) $(Q, X_1 \cup Y \cup Z \cup \Gamma(\mathcal{A}, \mathcal{C}, \alpha_1) \cup \Gamma(\mathcal{B}, \mathcal{D}, \alpha_1) \cup \Gamma(\mathcal{A}, \mathcal{D}, \alpha_1) \cup \Gamma(\mathcal{C}, \mathcal{D}, \alpha_1))$ and $(Q, X_2 \cup Y \cup Z \cup \Gamma(\mathcal{A}, \mathcal{C}, \alpha_1) \cup \Gamma(\mathcal{B}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{A}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{C}, \mathcal{D}, \alpha_3)$ are two SQS(16) with $k = 117$ blocks in common;

(iii) $(Q, X_1 \cup Y \cup Z \cup \Gamma(\mathcal{A}, \mathcal{C}, \alpha_3) \cup \Gamma(\mathcal{B}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{A}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{C}, \mathcal{D}, \alpha_3))$ and $(Q, X_2 \cup Y \cup Z \cup \Gamma(\mathcal{A}, \mathcal{C}, \alpha_3) \cup \Gamma(\mathcal{B}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{A}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{C}, \mathcal{D}, \alpha_3)$ are two SQS(16) with 113 blocks in common;

 (v) $(Q, X_1 \cup Y \cup Z \cup \Gamma(\mathcal{A}, \mathcal{C}, \alpha_3) \cup \Gamma(\mathcal{B}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{A}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{C}, \mathcal{D}, \alpha_3))$ and $(Q, X_2 \cup Y \cup Z \cup \Gamma(\mathcal{A}, \mathcal{C}, \alpha_1) \cup \Gamma(\mathcal{B}, \mathcal{D}, \alpha_0) \cup \Gamma(\mathcal{A}, \mathcal{D}, \alpha_3) \cup \Gamma(\mathcal{C}, \mathcal{D}, \alpha_3)$ are two $SQS(16)$ with 105 blocks in common.

Theorem 3.3. If $k \in I_{16} \setminus \{103, 111, 115, 119, 121, 122, 123\}$, then $k \in J[16]$.

Quadruple systems with a prescribed number of blocks in common

X_1	$\boldsymbol{X_2}$		Y
2, 3, 1, 1, 2, 5. 1, 3, 5, ı, 4, 6, 2, 3, 5, 2, 6, 4. 3, 7. 4. 7, 5. 6, 5, 6, 5, 7, 5. 9, 10, 11 6, 7, 8, 12 6, 9, 10, 12 7, 9, 11, 12	4 2, 1, 1, 2, 6 7 3, 1, 7 5, 1, 8 2, $\mathbf{3},$ 8 2, 5, 8 3. 5. 9 4. 6, 8, 10 6, 5, 8, 11 5, 7, 5, 6. Ú, 7,	$\mathbf{3}$ 5 4, 6 4, 7 7 6. 4, Ŗ 6. 8 7, 8 7, 8 9,10 9, 11 8, 10, 11 7, 9, 12 8, 10, 12 8, 11, 12	7, 1, 2, 8 1, 3, 8 6, 1, 4, 5, 8 5, 2, 4, 7 2, 3, 6, 7 3, 4, 5, 6 5, 6, 11, 12 5, 7, 10, 12 5, 8, 9, 12 6, 7, 10, 11 6, 8, 9, 11 7, 8, 9, 10
8, 10, 11, 12	9, 10, 11, 12		
		$Z = \{13, 14, 15, 16\} \cup$	
13, 1, 5, 9	14, 1, 5, 10	15, 1, 5, 11	16, 1, 5, 12
13, 1, 6, 12	14, 1, 6, 9	15, 1, 6, 10	16, 1, 6, 11
13, 1, 7, 11	14, 1, 7, 12	15, 1, 7, 9	16, 1, 7, 10
13, 1, 8, 10	14, 1, 8, 11	15, 1, 8, 12	16, 1, 8, 9
13, 2, 5, 12	14, 2, 5, 9	15, 2, 5, 10	16, 2, 5, 11
13, 2, 6, 11	14, 2, 6, 12	15, 2, 6, 9	16, 2, 6, 10
13, 2, 7, 10 13, 2, 8, 9	14, 2, 7, 11	15, 2, 7, 12	16, 2, 7, 9
13, 3, 5, 11	14, 2, 8, 10 14, 3, 5, 12	15, 2, 8, 11	16, 2, 8, 12
13, 3, 6, 10	14, 3, 6, 11	15, 3, 5, 9 15, 3, 6, 12	16, 3, 5, 10 16, 3, 6, 9
13, 3, 7, 9	14, 3, 7, 10	15, 3, 7, 11	16, 3, 7, 12
13, 3, 8, 12	14, 3, 8, 9	15, 3, 8, 10	16, 3, 8, 11
13, 4, 5, 10	14, 4, 5, 11	15, 4, 5, 12	16, 4, 5, 9
13, 4, 6, 9	14, 4, 6, 10	15, 4, 6, 11	16, 4, 6, 12
13, 4, 7, 12	14, 4, 7, 9	15, 4, 7, 10	16, 4, 7, 11
13, 4, 8, 11	14, 4, 8, 12	15, 4, 8, 9	16, 4, 8, 10

Fig. 1.

Proof. Let $X = \{a, b, c, d, e, f, g, h\}$, $Y = \{1, 2, ..., 8\}$.

(1) First, we prove the statement for k even. Let F , H be the 1-factorizations on X given by Fig. 2, and let G, L and M be the 1-factorizations on Y given by Fig. 3.

Fig. 2.

Further, let β_i and γ be the following permutations on $\{1, 2, ..., 7\}$: For $i = 0, 1, 2, 4$

$$
\beta_i = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 2 & y_1 & y_2 & y_3 & y_4 \end{pmatrix}, \text{ where } y_j = \begin{cases} 7, j = i + 1, \\ j + 3, j < i + 1, \\ j + 2, j > i + 1 \end{cases}
$$

$$
\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 6 & 6 & 7 \\ 1 & 4 & 5 & 6 & 7 & 2 & 3 \end{pmatrix}.
$$

Let $\rho(8) = \{0, 2, 4, 6, 8, 12, 14, 16, 20, 28\}$. If $h \in \rho(8)$, then it is possible to construct four $SQS(8)$ (X, A_i) and (Y, B_i) , $i = 1, 2$, such that $|A_1 \cap A_2| + |B_1 \cap B_2| = h$. Let α_i be defined on $\{1, 2, ..., 7\}$ as in the remarks preceding Theorem 3.1. Consider $k = 16i + h$, for $i = 0, 1, 2, 3, 4, 5, 7$, and $h \in \rho(8)$, and let (X, A_i) , (Y, B_i) , $j = 1, 2$, be SQS(8) with $|A_1 \cap A_2| + |B_1 \cap B_2| = h$. Since for $i \neq 6$ $|\Gamma(F, G, \alpha_7) \cap \Gamma(F, G, \alpha_i)| = 16i$, it follows that $[X \cup Y](A_1, B_1, F,$ G, α_7) and $[X \cup Y](A_2, B_2, F, G, \alpha_i)$ are two SQS(16) with $16i + h$ blocks in common. For $i=6$, consider the SQS(16) $[X \cup Y](A_1, B_1, F, G, \alpha_7)$ and $[X \cup Y](A_2, B_2, F, M, \alpha_7)$. Since $|\Gamma(F, G, \alpha_7) \cap \Gamma(F, M, \alpha_7)| = 96$, these SQS(16) have $96+h$ blocks in common. It follows that if $k \in I_{16}$, $k \ne 16i+10$ $(i = 0, 1, \ldots, 7)$, then $k \in J[16]$.

Let $k = 16i + 10$ for $i = 0, 1, \ldots, 6$. For $i = 0$ we consider two SQS(8) (X, A_i) $|A_1 \cap A_2| = |B_1 \cap B_2| = 2.$ $(Y, B_i), i = 1, 2,$ such that **Since** and $|\Gamma(F, G, \alpha_1) \cap \Gamma(H, L, \gamma)| = 6$, clearly $[X \cup Y](A_1, B_1, F, G, \alpha_1)$ and $[X \cup Y]$ (A_2, B_2, H, L, γ) have 10 blocks in common. For $i = 1, 2, \ldots, 6$, let (X, A_i) and (Y, B_i) , $j = 0, 1, 2, 3$, be SQS(8) such that $|A_u \cap A_{u+2}| + |B_u \cap B_{u+2}| = 16u + 12$ for $u = 0, 1$. Since $|\Gamma(F, G, \beta_4) \cap \Gamma(H, L, \beta_1)| = 16i + 14$ for $i = 0, 2, 4$, it follows that $[X \cup Y](A_u, B_u, F, G, \beta_4)$ and $[X \cup Y](A_{u+2}, B_{u+2}, H, L, \beta_1)$ for every $(u, i) \in$ $\{0, 1\} \times \{0, 2, 4\}$ are SQS(16) with $16(i+u) + 26$ blocks in common.

Quadruple systems with a prescribed number of blocks in common

 \triangle Fig. 4. \triangle and \triangle

(2) Now, we prove the statement for k odd. From Theorem 3.2 there exist SQS(16) with $k = 105$, 113, 117, 125 blocks in common. Let J, N, O R \pm e the 1-factorizations on X given by Fig. 4, and let S, T, U, V be the 1-factorizations on Y given by Fig. 5.

Further, let δ_1 and δ_2 be the permutations on $\{1, 2, ..., 7\}$ given by

$$
\delta_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 4 & 5 & 6 & 7 & 2 & 3 \end{pmatrix} \text{ and } \delta_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 5 & 6 & 7 & 2 & 3 & 4 \end{pmatrix}
$$

Let $k = 79 + 2h$; $h = 0, 1, 2, 3, ..., 10, 11, 14, 15$; and let (X, A_i) and (Y, B_i) , $i = 1, 2$, be SQS(8) such that for every h

Fig. 5.

Since $|\Gamma(O, U, \alpha_7) \cap \Gamma(R, V, \alpha_7)| = 79$ and $|\Gamma(J, S, \alpha_7) \cap \Gamma(N, T, \alpha_7)| = 81$, it follows that for h even $[X \cup Y](A_1, B_1, O, U, \alpha_7)$ and $[X \cup Y](A_2, B_2, R, V, \alpha_7)$ are two SQS(16) with $k = 79+2h$ blocks in common, and for h odd $[X \cup Y]$ $(A_1, B_1, J, S, \alpha_7)$ and $[X \cup Y](A_2, B_2, N, T, \alpha_7)$ are SQS(16) with $k = 81 + 2(h - 1)$ blocks in common.

Now, let $k = 1 + 16i + r$ for $i = 0, 1, 2, 3$ and $r \in \rho(8) = \{0, 2, 4, 6, 8, 12, 14, 16.$ 20, 28}. Consider two SQS(8) $(X \ A_i)$ and (Y, B_i) , $j = 1, 2$, such that $|A_1 \cap A_2| + |B_1 \cap B_2| = r$. For $i = 0$, since $|\Gamma(\overline{J}, S, \delta_1) \cap \Gamma(N, T, \delta_2)| = 1$, the SQS(16) $[X \cup Y](A_1, B_1, J, S, \delta_1)$ and $[X \cup Y](A_2, B_2, N, T, \delta_2)$ have $1+r$ blocks in common. For $i \neq 0$, we have $|\Gamma(J, S, \delta_7) \cap \Gamma(N, T, \alpha_{i+2})| = 1.6i + 1$ and so $[X \cup Y](A_1, B_1, J, S, \alpha_7)$ and $[X \cup Y](A_2, B_2, N, T, \alpha_{i+2})$ have $1+16i+r$ blocks in common.

Finally, let $k = 67, 71, 73$, cr $16i + 11$ for $i = 0, 1, 2, 3, 4$. Let (X, A_i) and $(Y, B_i), j = 1, 2, \ldots, 10$, be SQS(8) such that

$$
|A_u \cap A_{u+5}| + |B_u \cap B_{u+5}| = r_u = \begin{cases} 16(u-1) & \text{if } u = 1, 2, \\ 3u-1 & \text{if } u = 3, 5. \\ 12 & \text{if } u = 4. \end{cases}
$$

Since

$$
|\Gamma(J, S, \alpha_2) \cap \Gamma(N, T, \alpha_0)| = s_v = \begin{cases} 59 & \text{if } v = 3, \\ 43 & \text{if } v = 4, \\ 11 & \text{if } v = 7, \end{cases}
$$

it follows that $[X \cup Y](A_u, B_u, J, S, \alpha_2)$ and $[X \cup Y](A_{u+5}, B_{u+5}, N, T, \alpha_v)$ are two SQS(16) with $k = r_u + s_v$ blocks in common, for every $(u, v) \in$ $\{1, 2, 3, 4, 5\} \times \{3, 4, 7\}.$

Theorem 3.4. Let $v = 2^n$, $n \ge 5$. If $k \in I_v \setminus \{q_v - h : h = 17, 18, 19, 21, 25\}$, then $k \in$ $J[v]$.

Proof. Let $v = 2^n$, $n \ge 5$, $w = 2^{n-1}$, $X = \{1, 2, ..., w\}$ and $Y = \{1', 2', ..., w'\}$ with $X \cap Y = \emptyset$. Let $\rho(w)$ be the set of all *h* such that there exist four SQS(w) (X, A_i), (Y, B_i) , $j = 1, 2$, with $|A_1 \cap A_2| + |B_1 \cap B_2| = h$. Let F, G, be two 1-factorizations on X and Y respectively and let α_i be defined on $\{1, 2, \ldots, w-1\}$ in the usual Wi:!y.

Assume $n = 5$. If $k \in I_{32} \setminus \{1215, 1219, 1221, 1222, 1223\}$, it is easy to show that there exists an $(r, u) \in \{0, 1, 2, ..., 13, 15\} \times \rho(16)$ such that $k = 64r + u$. It follows that, if (X, A_i) , (Y, B_i) , $j = 1, 2$, are SQS(16) such that $|A_1 \cap A_2| + |B_1 \cap B_2| = u$, then $[X \cup Y](A_1, B_1, F, G, \alpha_{15})$ and $[X \cup Y](A_2, B_2, F, G, \alpha_r)$ are two SQS(32) with k blocks in common. This finishes the proof for $n = 5$. Assume therefore $n \ge 6$ and assume that for all $m < n$ ($m \ge 5$) if $u = 2^m$ and $k \in I_u \setminus \{q_u - h : h = 17$. 18, 19, 21, 25} that $k \in J[u]$. Let $k \in I_0 \setminus \{q_0 - h : h = 17, 18, 19, 21, 25\}$. Observe that if $k > (w - 3)w^2/4 + 2q_w - 26$, since $w^2/4 < q_w - 13$ and $q_v = 2q_w + (w - 1)w^2/4$, then there exists an $r \in \rho(w)$ such that $k = (w-1)w^2/4 + r$; and if $k \le$ $(w-3)w^2/4+2q_w-26$, then there exists an

$$
(r, u) \in \{0, 1, 2, \ldots, w-3\} \times \{0, 1, 2, \ldots, 2q_w \cdot 26\}
$$

such that $k = rw^2/4 + u$. In every case, therefore, we have $k = rw^2/4 + u$ for $r = 0, 1, 2, \ldots, w-3, w-1$ and $r \in \rho(w)$. Since for every

$$
(r, u) \in \{0, 1, 2, \ldots, w-3, w-1\} \times \rho(w) | \Gamma(F, G, \alpha_{w-1}) \cap \Gamma(F, G, \alpha_r) | = rw^2/4,
$$

and it is possible to construct four $SQS(w)$ (X, A_i) and (Y, B_i) , $j = 1, 2$, such that $|A_1 \cap A_2|$ + $|B_1 \cap B_2|$ = u, our statement follows from the doubling construction.

Collecting together Theorems 2.7, 3.1, 3.2, 3.3 and 3.4 gives the following theorem (which is, of course, the main result).

Theorem 3.5.

 $J[v] \subseteq I$, for all $v \equiv 2$ or 4 (mod 6) and $v \ge 8$. $J[4] = \{1\}, \qquad J[8] = I_s = \{0, 2, 6, 14\}.$ I_{16} {103, 111, 115, 119, 121, 122, 123} \subseteq J[16].

and

 $I_n \setminus \{q_n - h : h = 17, 18, 19, 21, 25\} \subseteq J[v]$ for all $v = 2^n, n \ge 5$.

References

- [1] J. Doyen and A. Rosa, An extended bibliography and survey of Steiner systems, Proc. 7th Manitoba Conference on Numerical Math. and Computing (1977) 297-361.
- [2] B. Ganter, Finite partial quadruple systems can be finitely embedded, Discrete Math. 10 (1974) 397-400.
- [3] P.B. Gibbons, R. Mathon and D.G. Corneil, Striner quadruple systems on 16 symbols, Proc. 6th Southeastern Conf. Combinatorics, Graph Theory and Computing, Boca Raton (1975) 345-365.
- [4] H. Hanani, On quadruple systems, Canad. J. Math. 12 (1960) 145-157.
- [5] E.S. Kramer and D.M. Mesner, Intersections among Steiner systems, J. Combinatorial Theory 16(A) (1974) 273-285.
- [6] C.C. Lindner, On the construction of non a sorphic Steiner quadruple systems, Colloq. Math. 29 (1974) 303-306.
- [7] C.C. Lindner, A note on disjoint Steiner unadruple systems, Ars Combinatoria 3 (1977) $271 - 276.$
- [8] C.C. Lindner, Construction of Steiner triple systems having exactly one triple in common, Canad. J. Math. 26 (1974) 225-232.
- [9] C.C. Lindner, E. Mendelsohn and A. Rosa, On the number of 1-factorizations of the complete graph, J. Combinatorial Theory 20(B) (1976) 265-282.
- [10] C.C. Lindner and A. Rosa, Finite embedding heorems for partial Steiner quadruple systems, Bull, Soc. Math. Belg. 27 (1975) 315-323.
- [11] C.C. Lindner and A. Rosa, Steiner triple systems having a prescribed number of triples in common, Canad. J. Math. 27 (1975) 1166-1275.
- [12] C.C. Lindner and A. Rosa, Construction of large sets of almost disjoint Steiner triple systems, Canad, J. Math. 27 (1975) 256-260.
- [13] C.C. Lindner and A. Rosa, Steiner quadruple systems all of whose derived Steiner triple systems are nonisomorphic, J. Combinatorial Theory 21(A) (1976) 35-43.
- [14] C.C. Lindner and A. Rosa, Steiner quadruple systems-a survey, Discrete Math. 21 (1978) $147 - 181.$
- [15] A. Rosa, A theorem on the maximum number of disjoint Steiner triple systems, J. Combinatorial Theory 18(A) (1975) 305-312.
- [16] A. Rosa. Algebraic properties of designs and recursive constructions, Proc. Conf. Algebraic Aspects of Combinatorics, University of Toronto (1975) 183-200.

÷.