On the 1-Factors of a Non-separable Graph*

LOWELL W. BEINEKE AND MICHAEL D. PLUMMER

Department of Mathematics, Purdue University, Fort Wayne, Indiana
and Department of Mathematics, University of Michigan,
Ann Arbor, Michigan

Communicated by F. Harary

ABSTRACT

The main result presented is that every 2-connected graph with a 1-factor has more than one. Furthermore, any graph with a 1-factor has more than one if and only if there is a cycle of even length whose edges are alternately in and not in the given 1-factor. A simple extension of the main result to n-connected graphs is also provided.

1. INTRODUCTION

A 1-factor of a graph G is a spanning subgraph in which each vertex has degree 1. In Figure 1, graph G₁ has a 1-factor (the heavy edges) whereas G₂ does not. Tutte [1, 2] has given the following characterization of graphs with 1-factors.

THEOREM (TUTTE).

A necessary and sufficient condition for a graph G to have a 1-factor is that for every set S of vertices of G, the order of S is at least as large as the number of components of G – S having an odd number of vertices.

Again in Figure 1 it may be seen that graph G₂ has a set of two vertices whose removal leaves three components of one vertex each. On the other hand, G₁ has a 1-factor in addition to the one shown. The main purpose

* Work supported in part by the U.S. Air Force Office of Scientific Research under Grant AF-AFOSR-754-65.
of this note is to show that, if a non-separable graph (a block) with more than two points has a 1-factor, then it has more than one.

2. TERMINOLOGY

A graph G consists of a finite non-empty set of vertices $V(G)$ and a set of edges $E(G)$ each of which is an unordered pair of vertices. The edge uv is incident with each of its vertices. Two vertices (edges) joined by an edge (vertex) are said to be adjacent. The degree of a vertex v is the number of edges incident with it. An end vertex v has degree one.

A path P of G is an alternating sequence of distinct vertices and edges beginning and ending with vertices (said to be joined by P) such that each edge is incident with the vertices before and after it. If the first vertex of P is u and the last is v, we shall call P a u-v path. We shall also have occasion to denote a path by the sequence of its vertices, e.g., $P = v_1v_2v_3 \cdots v_n$. A path is said to be non-trivial if it contains at least one edge. A cycle consists of a path with at least two edges together with an additional edge joining the first and last vertices.

The graph G is connected if every two vertices are joined by a path. A vertex v is a cut vertex of the connected graph G if the deletion of v (together with all edges incident with v) results in a disconnected graph. A connected graph is called non-separable (or a block) if it has no cut vertices. A subgraph B of a graph G is a block of G if it is a maximal connected subgraph of G containing no cut vertices of itself. If B is a block of the graph G and further, if it contains exactly one cut vertex of G, it is called an end block of G. A graph is n-connected if the removal of no set of $n - 1$ or fewer vertices results in a disconnected graph.

3. THE MAIN THEOREM

Let G be a graph with a 1-factor F. A cycle (of even length) of G is called F-alternating if its edges are alternately in and not in F. Obviously,
if G has an alternating cycle, it has another 1-factor, obtainable from F by taking the other edges of this cycle. Our theorem will result from the following lemma.

Lemma. A nonseparable graph with more than two points and a 1-factor has an alternating cycle.

Proof: The proof is by contradiction, so we assume that G is a non-separable graph which has a 1-factor F, but no alternating cycles. For convenience, the edges which are in F will be called red and the other edges blue. Furthermore, in this proof, which is quite lengthy, a connected subgraph H of G is called t-admissible if it has the following properties:

1. H has a 1-factor whose edges are in F.
2. t is an end vertex of H.
3. H has precisely two end blocks.
4. For any vertex v of H, there is an alternating $t-v$ path.
5. If v is on a cycle or is an end vertex in H, some alternating $t-v$ path has both end edges red.

Figure 2 gives some indication of what a t-admissible subgraph looks like. There is a "string" of blocks (perhaps consisting of single edges). Clearly, any non-trivial path from t has a red edge at t, since F is a 1-factor, and we speak of an alternating $t-v$ path as red-terminal if there is a red edge at both ends. Finally, we note the following: If w is in the end block which does not contain t and if v is not a cut vertex of H, then every cut vertex of H lies on every $t-w$ path.

![Figure 2](image)

Now, using induction on the number of edges, we will in effect show that G itself is t-admissible, which is of course impossible. To begin with, G obviously has a path $v_0v_1v_2v_3$ containing two red lines v_0v_1 and v_2v_3. Taking the vertex v_0 as t, this is clearly a t-admissible subgraph with three edges. Assume that H is t-admissible and has m edges. Let B denote the end block of H not containing t. Then, since G is non-separable, there is a vertex u in B, not a cut vertex of H, from which there is an edge uw not in H. There are two cases to consider:
(a) If \(v \) is not in \(H \), since \(F \) is a 1-factor of \(G \), there is a red edge \(vw \) with \(w \) not in \(H \). By adding path \(uvw \) to \(H \), we form a new graph having \(m + 2 \) edges. That this new graph is also \(t \)-admissible is readily verified.

(b) The second case is somewhat more complicated. This time \(v \) is already in \(H \). Let \(H' \) be the graph obtained from \(H \) by adding the edge \(uv \). Since \(v \neq t \) (otherwise there would be an alternating cycle), it is clear that properties (2) and (3) hold for \(H' \). Furthermore, \(H' \) satisfies (1) and (4) since \(H \) did. Therefore, to show that \(H' \) is admissible, all that remains is to show that any vertex \(w \) which was not, but now is, on a cycle is joined to \(t \) by a red-terminal alternating path. Of course, we only need consider the case in which there was no red-terminal alternating \(t-w \) path in \(H \).

Since \(w \) is not on a cycle in \(H \), it is on the red-terminal alternating \(t-u \) path, and since by assumption there is no red-terminal alternating \(t-w \) path, there must be a red-terminal alternating \(w-u \) path.

We also claim that there is a red-terminal alternating \(t-v \) path. If \(v \) is on a cycle of \(H \), this follows from the fact that \(H \) is \(t \)-admissible. If \(v \) is not on a cycle and there is no such path, then (as for \(w \)) there would be a red-terminal alternating \(v-u \) path, which together with the edge \(uv \) gives an alternating cycle, which is impossible.

Next we observe that this \(t-v \) path must be disjoint from the \(w-u \) path. This is because \(w \) was put on a cycle by the addition of edge \(uv \) and was not on a cycle before.

This \(t-v \) path followed by the edge \(uv \) and the \(u-w \) path thus gives an alternating red-terminal \(t-w \) path. This proves that \(H' \) satisfies property (5) also and is therefore a \(t \)-admissible subgraph of \(G \) having \(m + 1 \) edges.

This shows that edges can always be added to \(t \)-admissible subgraphs until \(G \) is formed. However, since \(G \) is non-separable, it is not \(t \)-admissible. This contradiction completes the proof of the lemma. This lemma is essentially all that is needed for the main theorem.

Theorem 1. If a non-separable graph with more than two points has a 1-factor, it has more than one.

Now consider any graph with two 1-factors. Form the subgraph induced by the edges which lie in one or the other of these 1-factors, but not in both. In this subgraph, each vertex has degree 2 (1 from each 1-factor), and there is therefore a cycle with its edges alternately in the
two 1-factors. Taken together with the lemma, this observation proves the following result, which remains valid when the graph even possesses cut vertices.

Theorem 2. Any graph with a 1-factor F has more than one if and only if it has an F-alternating cycle.

From the same sort of observation, the following corollary is obtained.

Corollary. Let G be a graph with a 1-factor F and let x be an edge of G:

1. x is in every 1-factor of G if and only if x is in F and is in no F-alternating cycle;
2. x is in no 1-factor of G if and only if it is not in F and is in no F-alternating cycle;
3. x is in some, but not all, 1-factors of G if and only if it is in an F-alternating cycle.

Can our main result be generalized to n-connected graphs? Our final theorem does this, but the result is not thought to be the best possible.

Theorem 3. If an n-connected graph has a 1-factor, then it has at least n of them.

The proof is by induction, and the result is true for $n = 2$ by Theorem 1. Assume it is true for $n = k$, and suppose that G is $(k + 1)$-connected and has a 1-factor F. Then there is an edge x not in F which lies in an F-alternating cycle. The removal of x results in a graph G' which is k-connected and has F as a 1-factor, and therefore has at least k 1-factors. But G has at least one more, obtainable from F by changing the edges of the F-alternating cycle containing x. This completes the proof.

References