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Abstract

We study theoretical properties of two inexact Hermitian/skew-Hermitian splitting (IHSS) iteration meth-
ods for the large sparse non-Hermitian positive definite system of linear equations. In the inner iteration
processes, we employ the conjugate gradient (CG) method to solve the linear systems associated with
the Hermitian part, and the Lanczos or conjugate gradient for normal equations (CGNE) method to solve
the linear systems associated with the skew-Hermitian part, respectively, resulting in IHSS(CG, Lanczos)
and IHSS(CG, CGNE) iteration methods, correspondingly. Theoretical analyses show that both IHSS(CG,
Lanczos) and IHSS(CG, CGNE) converge unconditionally to the exact solution of the non-Hermitian positive
definite linear system. Moreover, their contraction factors and asymptotic convergence rates are dominantly
dependent on the spectrum of the Hermitian part, but are less dependent on the spectrum of the skew-
Hermitian part, and are independent of the eigenvectors of the matrices involved. Optimal choices of the
inner iteration steps in the IHSS(CG, Lanczos) and IHSS(CG, CGNE) iterations are discussed in detail by
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considering both global convergence speed and overall computation workload, and computational efficien-
cies of both inexact iterations are analyzed and compared deliberately.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the solution of large sparse system of linear equations

Ax = b, A ∈ Cn×n non�singular, and x, b ∈ Cn, (1.1)

where A is a non-Hermitian and positive definite matrix. Because the coefficient matrix A naturally
possesses a Hermitian/skew-Hermitian (HS) splitting [12,18,14,17] A = H + S, with

H = 1

2
(A + A∗) and S = 1

2
(A − A∗).

Bai et al. [5] recently presented the following Hermitian/skew-Hermitian splitting (HSS) method to
iteratively compute a reliable and accurate approximate solution for the system of linear equations
(1.1):

The HSS iteration method. Given an initial guess x(0). For k = 0, 1, 2, . . . until {x(k)}
converges, compute{

(αI + H)x(k+ 1
2 ) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI − H)x(k+ 1
2 ) + b,

(1.2)

where α is a given positive constant.

The HSS iteration (1.2) converges unconditionally to the exact solution of the system of linear
equations (1.1), and the upper bounds of its contraction factor in a special weighted norm and its
asymptotic convergence rate are only dependent on the spectrum of the Hermitian part H , but
are independent of the spectrum of the skew-Hermitian part S as well as the eigenvectors of the
matrices H , S and A. In addition, the optimal value of the parameter α can be determined by the
lower and the upper eigenvalue bounds of the matrix H .

To invert the matrices αI + H and αI + S efficiently at each step of the HSS iteration in
actual implementations, Bai et al. [5] further proposed to solve the linear systems with coefficient
matrices αI + H and αI + S inexactly by iterative methods, e.g., solving the linear systems with
coefficient matrix αI + H by the conjugate gradient (CG) method [15] and those with coefficient
matrix αI + S by the Lanczos [12,18] or the conjugate gradient for normal equations (CGNE)
method [15], to some prescribed accuracies, and obtained two special but quite practical inexact
Hermitian/skew-Hermitian splitting (IHSS) iterations, briefly called as IHSS(CG, Lanczos) and
IHSS(CG, CGNE), respectively. See [1,9,7] for a similar approach.

The main aim of this paper is to study the convergence properties of both IHSS(CG, Lanczos)
and IHSS(CG, CGNE) in depth and investigate the optimal numbers of inner iteration steps
in detail by considering both global convergence speed and overall computation workload. In
particular, we show that the asymptotic convergence rates of IHSS(CG, Lanczos) and IHSS(CG,
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CGNE) are essentially the same. In addition, the convergence rates of IHSS(CG, Lanczos) and
IHSS(CG, CGNE) tend to the convergence rate of HSS when the tolerances of the inner iterations
tend to zero as the outer iterations increase. We also investigate their computational efficiencies
of IHSS(CG, Lanczos) and IHSS(CG, CGNE). We find that they are quite comparable.

The organization of this paper is as follows. In Section 2, we establish IHSS(CG, Lanczos)
and IHSS(CG, CGNE) iterations. In Section 3, we review some useful lemmas. In Section 4, we
study their convergence properties. Their computational efficiencies are analyzed and compared
in Section 5, and numerical results for IHSS iterations are given in Section 6. Finally, in Section
7 we draw a brief conclusion and some remarks. In Appendix, we give the proofs of the theorems
presented in Section 4.

2. The IHSS iterations

The two-half steps at each HSS iterate require exact inverses of the n-by-n matrices αI + H and
αI + S. However, this may be very costly and impractical in actual implementations. To overcome
this disadvantage and further improve efficiency of the HSS iteration, we can solve the resulting
two sub-problems iteratively. More specifically, we may employ CG to solve the system of linear
equations with coefficient matrix αI + H and some Krylov subspace method such as Lanczos or
CGNE to solve the system of linear equations with coefficient matrix αI + S to some prescribed
accuracies at each step of the HSS iteration.3 This results in the inexact Hermitian/skew-Hermitian
splitting (IHSS) iterations based on CG and Lanczos (IHSS(CG, Lanczos)), or based on CG and
CGNE (IHSS(CG, CGNE)), for solving the system of linear equations (1.1).

The tolerances (or numbers of inner iteration steps) for CG and Lanczos (or CGNE) may be
different and changed according to the outer iterate. Therefore, the resulted IHSS iterations are
actually two non-stationary iterative methods for solving the system of linear equations (1.1).
Moreover, when the tolerances of the inner iterations tend to zero as the outer iterations increase,
the asymptotic convergence rates of the IHSS iterations approach that of the HSS iteration.

2.1. IHSS(CG, Lanczos)

For the IHSS(CG, Lanczos) iteration, employing the CG to solve linear systems with coefficient
matrix αI + H is quite natural, because αI + H is Hermitian positive definite. For iteration solv-
ers for the linear systems with the coefficient matrix αI + S, we can choose the Lanczos method
studied in [12,18]; it has a three-term recurrence form which has an unconditional convergence
property, and a comparable computation workload to that of CG.

The IHSS(CG, Lanczos) iteration method. Input an initial guess x(0), the stopping
tolerance ε for the outer iteration,the largest admissible number kmax of the
outer iteration steps, two stopping tolerances εcg and εlan for the inner CG
and the inner Lanczos iterations, and two positive integer sequences {μk}
and {νk} of the largest admissible inner CG and inner Lanczos iteration
steps, respectively.

1. k := 0.
2. r(k) = b − Ax(k) and ρk = ‖r(k)‖2

2.

3 αI + H and αI + S are called shifted Hermitian and shifted skew-Hermitian matrices, respectively.
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3. if
√

ρk � ε‖b‖2 or k > kmax then goto 10.

4. call cg(H, α, r(k), ρk, μk, εcg, y
(μk)).

5. x(k+ 1
2 ) = x(k) + y(μk).

6. r(k+ 1
2 ) = αy(μk) − Sy(μk) and ρ

k+ 1
2

= ‖r(k+ 1
2 )‖2

2.

7. call Lanczos (S, α, r(k+ 1
2 ), ρ

k+ 1
2
, νk, εlan, z

(νk)).

8. x(k+1) = x(k+ 1
2 ) + z(νk).

9. Set k := k + 1 and goto 2.
10. Set x := x(k) and output x.

subroutine cg(H, α, r, ρ, μ, εcg, y) subroutine Lanczos(S, α, r, ρ, ν, εlan, y)

1. y := 0, ρ0 := ρ and � := 0 1. y = w := 0, ρ0 := ρ and � := 0
2. if ρ� � ε2

cgρ0 or � > μ 2. if ρ� � ε2
lanρ0 or � > ν

then output y then output y
else else
(a) if � = 0 then v = r (a) if � = 0 then ω = 1

else else
β = ρ�

ρ�−1
and v := r + βv β = ρ�

ρ�−1
and ω = ω

ω+β

(b) w = αv + Hv (b) w := ω
α
r − (1 − ω)w

(c) ω = ρ�

v∗w (c) u = αw + Sw
(d) y := y + ωv (d) y := y + w
(e) r := r − ωw (e) r := r − u

(f) ρ�+1 = ‖r‖2
2 (f) ρ�+1 = ‖r‖2

2
(g) � := � + 1 (g) � := � + 1

Subroutine of CG iteration for Subroutine of Lanczos iteration for
the linear system (αI + H)y = r the linear system (αI + S)y = r

Assume that χ(H) and χ(S) are the flops required to compute the matrix-vector products Hy

and Sy, respectively, for a given vector y ∈ Cn. Then straightforward computations show that each
step of the CG and the Lanczos iterations requires χ(H) + 12n and χ(S) + 9n + 4 flops, respec-
tively, and each step of the IHSS(CG, Lanczos) iteration requires another χ(H) + 2χ(S) + 7n

flops besides the amount of operations of the cg and the Lanczos subroutines. Therefore, the
total workload at each step of the IHSS(CG, Lanczos) iteration is

μk(χ(H) + 12n) + νk(χ(S) + 9n + 4) + χ(H) + 2χ(S) + 7n

flops. If we assume that each row of the matrices H and S has at most τh and τs non-zero entries,
respectively, then χ(H) = (2τh − 1)n, χ(S) = (2τs − 1)n, and the total workload at each step
of the IHSS(CG, Lanczos) iteration is therefore

W(τh, τs, μk, νk) = (2τh + 11)nμk + [(2τs + 8)n + 4]νk + (2τh + 4τs + 4)n.

Because in many applications (e.g., discretization matrices from partial differential equations) we
have τ ≡ τh = τs + 1, it immediately follows that

W(τ, μk, νk) ≡ W(τh, τs, μk, νk)

= (2τ + 11)nμk + 2[(τ + 3)n + 2]νk + 6τn.
(2.1)
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2.2. IHSS(CG, CGNE)

Besides the Lanczos method, we can also solve the sub-systems of linear equations with
coefficient matrix αI + S by other Krylov subspace methods such as CGNE [15] at each step of
the IHSS iterate. Like Lanczos, CGNE also has a three-term recurrence form, an unconditional
and monotonical convergence property, and a comparable computer storage and computation
workload to that of CG.

The IHSS(CG, CGNE) iteration method. Input an initial guess x(0), the stopping
tolerance ε for the outer iteration,the largest admissible number kmax of the
outer iteration steps, two stopping tolerances εcg and εcgne for the inner CG
and the inner CGNE iterations, and two positive integer sequences {μk}
and {νk} of the largest admissible inner CG and inner CGNE iteration steps,
respectively.

1. k := 0.
2. r(k) = b − Ax(k) and ρk = ‖r(k)‖2

2.
3. if

√
ρk � ε‖b‖2 or k > kmax then goto 10.

4. call cg(H, α, r(k), ρk, μk, εcg, y
(μk)).

5. x(k+ 1
2 ) = x(k) + y(μk).

6. r(k+ 1
2 ) = αy(μk) − Sy(μk) and ρ

k+ 1
2

= ‖r(k+ 1
2 )‖2

2.

7. call cgne(S, α, r(k+ 1
2 ), ρ

k+ 1
2
, νk, εcgne, z

(νk)).

8. x(k+1) = x(k+ 1
2 ) + z(νk).

9. Set k := k + 1 and goto 2.
10. Set x := x(k) and output x.

subroutine cg(H, α, r, ρ, μ, εcg, y) subroutine cgne(S, α, r, ρ, ν, εcgne, y)

1. y := 0, ρ0 := ρ and � := 0 1. y := 0, ρ0 := ρ and � := 0
2. if ρ� � ε2

cgρ0 or � > μ 2. if ρ� � ε2
cgneρ0 or � > ν

then output y then output y
else else
(a) if � = 0 then v = r (a) if � = 0 then v = r

else else
β = ρ�

ρ�−1
and v := r + βv β = ρ�

ρ�−1
and v := r + βv

(b) w = αv + Hv (b) w = α2v − S2v
(c) ω = ρ�

v∗w (c) ω = ρ�

v∗w
(d) y := y + ωv (d) y := y + ωv
(e) r := r − ωw (e) r := r − ωw

(f) ρ�+1 = ‖r‖2
2 (f) ρ�+1 = ‖r‖2

2
(g) � := � + 1 (g) � := � + 1

Subroutine of CG iteration for Subroutine of CGNE iteration for
the linear system (αI + H)y = r the linear system (αI + S)y = r

After straightforward computations we know that each step of the CG and the CGNE iterations
requires χ(H) + 12n and 2χ(S) + 14n + 1 flops, respectively, and each step of the IHSS(CG,
CGNE) iteration requires another χ(H) + 2χ(S) + 7n flops besides the amount of operations
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of the cg and the cgne subroutines. Therefore, the total workload at each step of the IHSS(CG,
CGNE) iteration is

μk(χ(H) + 12n) + νk(2χ(S) + 14n + 1) + χ(H) + 2χ(S) + 7n

flops. If we assume that each row of the matrices H and S has at most τh and τs non-zero entries,
respectively, then χ(H) = (2τh − 1)n, χ(S) = (2τs − 1)n, and the total workload at each step
of the IHSS(CG, CGNE) iteration is thereby

Wo(τh, τs, μk, νk) = (2τh + 11)nμk + [(4τs + 14)n − 1]νk + (2τh + 4τs + 4)n.

When τ ≡ τh = τs + 1, it immediately follows that

Wo(τ, μk, νk) ≡ Wo(τh, τs, μk, νk)

= (2τ + 11)nμk + 4[(τ + 2)n + 1]νk + 6τn. (2.2)

In general, we could assume that the matrices H and S have the same sparsity as the matrix
A so that simpler formulas about the workloads W(τh, τs, μk, νk) and Wo(τh, τs, μk, νk) can be
obtained, but this may be not always the case. For example, for a Hessenberg-type matrix A, the
numbers of the non-zero entries in H and S may be considerably different from that in A. So,
a more realistic assumption on the numbers of non-zero entries for the matrices involved in the
IHSS iteration methods may be the one imposed on the matrices H and S rather than on the matrix
A itself, just as what we have done in the above.

It should be mentioned that if good preconditioners to the matrices αI + H and αI + S are
cheaply obtainable, we can employ the preconditioned conjugate gradient method and the precon-
ditioned Lanczos method (or the preconditioned conjugate gradient for normal equation method)
instead of CG and Lanczos (or CGNE) at each of the iteration steps so that the computational
efficiency of IHSS(CG, Lanczos) (or IHSS(CG, CGNE)) may be considerably improved.

3. Basic lemmas

For the positive definite matrix A ∈ Cn×n, let H = 1
2 (A + A∗) and S = 1

2 (A − A∗) be its
Hermitian and skew-Hermitian parts, respectively; represent the lower and the upper bounds of
the eigenvalues of the matrix H by γh − ρh and γh + ρh, and the upper bound of the absolute
values of the eigenvalues of the matrix S by ρs . We note that the lower bound of the absolute
values of the eigenvalues of the matrix S is 0, and it always holds that γh > ρh. Define

κh = γh + ρh

γh − ρh

and κh,s = 1 + ρ2
s

γ 2
h − ρ2

h

.

If α is a positive constant, then both matrices αI + H and αI + S are non-singular. In this
situation, we can define a vector norm |||x||| = ‖(αI + S)x‖2 (∀x ∈ Cn), which naturally induces
the matrix norm |||X||| = ‖(αI + S)X(αI + S)−1‖2 (∀X ∈ Cn×n).

Since S is skew-Hermitian, it holds that

‖αI − S‖2 = ‖αI + S‖2 and ‖(αI − S)−1‖2 = ‖(αI + S)−1‖2.

Moreover, it follows from⎧⎪⎪⎨⎪⎪⎩
A(αI + H)−1 = [(αI + H) − (αI − S)](αI + H)−1

= I − (αI − S)(αI + H)−1,

A(αI + S)−1 = [(αI + S) − (αI − H)](αI + S)−1

= I − (αI − H)(αI + S)−1
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that {‖A(αI + H)−1‖2 � 1 + ‖αI − S‖2‖(αI + H)−1‖2,

‖A(αI + S)−1‖2 � 1 + ‖αI − H‖2‖(αI + S)−1‖2.

The following lemma summarizes the convergence property of the HSS iteration.

Lemma 3.1 [5]. Let A ∈ Cn×n be a positive definite matrix and α be a positive constant. Then
the iterative sequence {x(k)} generated by the HSS iteration can be equivalently expressed as

x(k+1) = M(α)x(k) + G(α)b, k = 0, 1, 2, . . . ,

where

M(α) = (αI + S)−1(αI − H)(αI + H)−1(αI − S)

and

G(α) = 2α(αI + S)−1(αI + H)−1.

Moreover, it holds that

|||M(α)||| � ‖(αI + H)−1(αI − H)‖2 � max
γh−ρh�λ�γh+ρh

∣∣∣∣α − λ

α + λ

∣∣∣∣ ≡ σ(α) < 1.

In particular, if

α∗ ≡ arg min
α

{
max

γh−ρh�λ�γh+ρh

∣∣∣∣α − λ

α + λ

∣∣∣∣} =
√

γ 2
h − ρ2

h,

then

σ(α∗) =
√

γh + ρh − √
γh − ρh√

γh + ρh + √
γh − ρh

= γh

ρh

⎡⎣1 −
√

1 −
(

ρh

γh

)2
⎤⎦

≈ ρh

2γh

(
1 +

(
ρh

2γh

)2
)

.

The following three lemmas describe convergence properties of CG, Lanczos and CGNE,
respectively, which are essential for us to establish convergence theorems for IHSS(CG, Lanczos)
and IHSS(CG, CGNE).

Lemma 3.2. Let H ∈ Cn×n be a Hermitian positive definite matrix, α be a positive constant, and
y(μk) be the μkth approximate solution generated by the μkth step of CG iteration for solving the
Hermitian positive definite system of linear equations (αI + H)y = b. Then y(μk) is of the form

y(μk) = y∗ + pcg
μk

(αI + H)(y(0) − y∗),

where y∗ = (αI + H)−1b is the exact solution, y(0) is an initial guess, and p
cg
μk

is a polynomial
of degree less than or equal to μk satisfying p

cg
μk

(0) = 1. Moreover, if

σh(α, μk) ≡ 2

(√
κ(αI + H) − 1√
κ(αI + H) + 1

)μk

� 2

⎛⎝
√

α+(γh+ρh)
α+(γh−ρh)

− 1√
α+(γh+ρh)
α+(γh−ρh)

+ 1

⎞⎠μk

,
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then it holds that

‖y(μk) − y∗‖2 � σh(α, μk)‖y(0) − y∗‖2,

where κ(·) denotes the spectral condition number of the corresponding matrix.

Lemma 3.3 [18, 16]. Let S ∈ Cn×n be a skew-Hermitian matrix, α be a positive constant, and
y(νk) be the νkth approximate solution generated by the νkth step of Lanczos iteration for solving
the non-singular system of linear equations (αI + S)y = b. If

σs(α, νk) ≡
2
√

α2 + ‖S‖2
2

α

⎛⎝ ‖S‖2

α +
√

α2 + ‖S‖2
2

⎞⎠2	 νk
2 


� 2
√

α2 + ρ2
s

α

(√
α2 + ρ2

s − α√
α2 + ρ2

s + α

)	 νk
2 


,

then it holds that

‖y(νk) − y∗‖2 � σs(α, νk)‖y(0) − y∗‖2,

where y∗ = (αI + S)−1b is the exact solution, y(0) is an initial guess, and 	·
 denotes the integer
part of the corresponding positive real.

Lemma 3.4 (See Lemma 3.2). Let S ∈ Cn×n be a skew-Hermitian matrix, α be a positive constant,
and y(νk) be the νkth approximate solution generated by the νkth step of CGNE iteration for solving
the non-singular system of linear equations (αI + S)y = b. Then y(νk) is of the form

y(νk) = y∗ + pcg
νk

(α2I − S2)(y(0) − y∗),

where y∗ = (αI + S)−1b is the exact solution, y(0) is an initial guess, and p
cg
νk

is a polynomial
of degree less than or equal to νk satisfying p

cg
νk

(0) = 1. Moreover,

‖pcg
νk

(α2I − S2)‖2 � 2

(√
κ(α2I − S2) − 1√
κ(α2I − S2) + 1

)νk

� 2

(√
α2 + ρ2

s − α√
α2 + ρ2

s + α

)νk

. (3.1)

At the end of this section, we list some useful estimates related to the matrices αI ± H and
αI ± S in the following lemma.

Lemma 3.5. Let H ∈ Cn×n be a Hermitian positive definite matrix, S ∈ Cn×n be a skew-
Hermitian matrix, and α be a positive constant. Then

‖(αI + H)−1‖2 = max

{
1

α + (γh − ρh)
,

1

α + (γh + ρh)

}
= 1

α + (γh − ρh)
,

‖(αI + S)−1‖2 = max

{
1

α
,

1√
α2 + ρ2

s

}
= 1

α
,

‖αI − H‖2 = max {|α − (γh − ρh)|, |α − (γh + ρh)|} ,

‖αI − S‖2 = max

{
α,

√
α2 + ρ2

s

}
=
√

α2 + ρ2
s .
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Therefore,

ch(α)≡‖αI − S‖2‖(αI + H)−1‖2 �
√

α2 + ρ2
s

α + (γh − ρh)
,

cs(α)≡‖αI − H‖2‖(αI + S)−1‖2 � 1

α
max{|α − (γh − ρh)|, |α − (γh + ρh)|}.

In particular, when α = α∗ =
√

γ 2
h − ρ2

h, it holds that

ch(α
∗) �

√
κhκh,s√
κh + 1

and cs(α
∗) � √

κh − 1.

Proof. The equalities and inequalities follow from straightforward computations. �

4. Convergence analyses

Based on Lemmas 3.2–3.5, we can demonstrate the convergence theorems for IHSS(CG,
Lanczos) and IHSS(CG, CGNE). The proofs of the theorems in this section can be found in
Appendix.

4.1. Convergence of IHSS(CG, Lanczos)

The following theorem describes the convergence of IHSS(CG, Lanczos).

Theorem 4.1. Let A ∈ Cn×n be a positive definite matrix, H = 1
2 (A + A∗) and S = 1

2 (A − A∗)
be its Hermitian and skew-Hermitian parts, respectively, and α be a positive constant. Let {μk}
and {νk} be two sequences of positive integers. If the iterative sequence {x(k)} is generated by the
IHSS(CG, Lanczos) iteration from an initial guess x(0), then it holds that

|||x(k+1) − x∗||| � (σ (α) + ε(α, μk, νk))|||x(k) − x∗|||,
where x∗ ∈ Cn is the exact solution of the system of linear equations (1.1),

ε(α, μk, νk) = ch(α)(1 + cs(α))[(1 + cs(α))σh(α, μk)σs(α, νk)

+ cs(α)σh(α, μk) + σs(α, νk)]
with σ(α), σh(α, μk) and σs(α, νk) being defined as in Lemmas 3.1–3.3, respectively. Therefore,
if there exists a non-negative constant σ ihss(α) ∈ [0, 1) such that

σ(α) + ε(α, μk, νk) � σ ihss(α), k = 0, 1, 2, . . . ,

then the iterative sequence {x(k)} converges to x∗ ∈ Cn with a convergence factor being at most
σ ihss(α).

Theorem 4.1 presents an estimate for the contraction factor of the IHSS(CG, Lanczos) iteration.
Moreover, we can take α = α∗, the optimal parameter determined in Lemma 3.1, to further
minimize the contraction factor and, consequently, accelerate the convergence speed of IHSS(CG,
Lanczos). More precisely, we have the following theorem.
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Theorem 4.2. Let A ∈ Cn×n be a positive definite matrix, H = 1
2 (A + A∗) and S = 1

2 (A − A∗)
be its Hermitian and skew-Hermitian parts, respectively, and α = α∗ =

√
γ 2
h − ρ2

h. Let {μk}
and {νk} be two sequences of positive integers. If the iterative sequence {x(k)} is generated by the
IHSS(CG, Lanczos) iteration from an initial guess x(0), then it holds that

|||x(k+1) − x∗||| �
(√

κh − 1√
κh + 1

+ εh,s(μk, νk)

)
|||x(k) − x∗|||,

where

εh,s(μk, νk) = 2κh
√

κh,s√
κh + 1

[(√
κh − 1

) ( 4
√

κh − 1
4
√

κh + 1

)μk

+ √
κh,s

(√
κh,s − 1√
κh,s + 1

)	 νk
2 


+ 2
√

κhκh,s

(
4
√

κh − 1
4
√

κh + 1

)μk
(√

κh,s − 1√
κh,s + 1

)	 νk
2 
]

.

Therefore, if {μk} and {νk} are chosen such that

εh,s(μk, νk) <
2√

κh + 1
, k = 0, 1, 2, . . . ,

there exists a non-negative constant σ ihss(α∗) ∈ [0, 1) such that

|||x(k+1) − x∗||| � σ ihss(α∗)|||x(k) − x∗|||, k = 0, 1, 2, . . . ,

and consequently, the iterative sequence {x(k)} generated by IHSS(CG, Lanczos) with the optimal
parameter α∗ converges to the exact solution x∗ ∈ Cn of the system of linear equations (1.1).

Theorems 4.1 and 4.2 show that the contraction factor of the IHSS(CG, Lanczos) iteration is
bounded by

√
κh − 1√
κh + 1

+ εh,s(μk, νk) =
√

κh − 1√
κh + 1

+ 2κh
√

κh,s

(√
κh − 1√
κh + 1

)(
4
√

κh − 1
4
√

κh + 1

)μk

+ 2κhκh,s√
κh + 1

(√
κh,s − 1√
κh,s + 1

)	 νk
2 


+ 4κh
√

κhκh,s√
κh + 1

(
4
√

κh − 1
4
√

κh + 1

)μk
(√

κh,s − 1√
κh,s + 1

)	 νk
2 


,

whose dominant term
√

κh−1√
κh+1 is approximately equal to the contraction factor of CG applied

to the system of linear equations Hy = b. To make εh,s(μk, νk) approach to zero quickly and
economically with increasing of μk and νk , we should choose the inner CG iteration step μk and
the inner Lanczos iteration step νk at the kth outer iterate such that the two factors

2κh
√

κh,s

(√
κh − 1√
κh + 1

)(
4
√

κh − 1
4
√

κh + 1

)μk

and
2κhκh,s√
κh + 1

(√
κh,s − 1√
κh,s + 1

)	 νk
2 


approach to zero with comparable speeds. This could be achieved by letting(√
κh − 1

) ( 4
√

κh − 1
4
√

κh + 1

)μk

= √
κh,s

(√
κh,s − 1√
κh,s + 1

)	 νk
2 
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or in other words,

νk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2

[
ln
(√

κh−1√
κh,s

)
+μk ln

(
4√κh−1
4√κh+1

)]
ln
(√

κh,s−1√
κh,s+1

) , for νk even,

2

[
ln
(√

κh−1√
κh,s

)
+μk ln

(
4√κh−1
4√κh+1

)]
ln
(√

κh,s−1√
κh,s+1

) + 1, for νk odd.

(4.1)

In this situation, the contributions from the inner CG and the inner Lanczos processes to the kth
outer IHSS(CG, Lanczos) iterate are well balanced, and it holds that

εh,s(μk, νk) = 4κh
√

κh,s

(√
κh − 1√
κh + 1

)[(
4
√

κh − 1
4
√

κh + 1

)μk

+ √
κh

(
4
√

κh − 1
4
√

κh + 1

)2μk
]

and √
κh − 1√
κh + 1

+ εh,s(μk, νk) �
√

κh − 1√
κh + 1

[
1 + 2κh

√
κh,s

(
4
√

κh − 1
4
√

κh + 1

)μk
]2

. (4.2)

If μk is chosen so that

κh
√

κh,s

(
4
√

κh − 1
4
√

κh + 1

)infk�0{μk}
= c, (4.3)

with

c <
1

2

(√√
κh + 1√
κh − 1

− 1

)
, (4.4)

or in other words,

μk �
ln
(

c
κh

√
κh,s

)
ln
(

4√κh−1
4√κh+1

) , (4.5)

then we have

|||x(k+1) − x∗||| � (2c + 1)2
√

κh − 1√
κh + 1

|||x(k) − x∗|||, k = 0, 1, 2, . . . .

The above analysis is summarized in the following theorem.

Theorem 4.3. Let A ∈ Cn×n be a positive definite matrix, H = 1
2 (A + A∗) and S = 1

2 (A − A∗)
be its Hermitian and skew-Hermitian parts, respectively, and α = α∗ =

√
γ 2
h − ρ2

h. Let {μk} and
{νk} be two sequences of positive integers satisfying (4.1) and (4.5). Then the IHSS(CG, Lanczos)
iteration converges to the exact solution x∗ ∈ Cn of the system of linear equations (1.1), with the

convergence factor being less than (2c + 1)2
√

κh−1√
κh+1 , where c is defined by (4.3) and satisfies (4.4).

Moreover, if lim μk = lim νk = +∞, then the asymptotic convergence factor of the IHSS(CG,

Lanczos) iteration tends to σ(α∗) =
√

κh−1√
κh+1 of that of the HSS iteration.

In the HSS iteration (1.2), if the system of linear equations with coefficient matrix αI + S

at its second-half step could be solved exactly by a direct method (see [15]), and the system of
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linear equations with coefficient matrix αI + H at its first-half step is being solved inexactly by
conjugate gradient method, we can get a partially inexact Hermitian/skew-Hermitian splitting
(PIHSS) iteration method, which has the convergence behaviour

|||x(k+1) − x∗||| � (2̃c + 1)

√
κh − 1√
κh + 1

|||x(k) − x∗|||, k = 0, 1, 2, . . . ,

where the constant

c̃ = √
κh

(
4
√

κh − 1
4
√

κh + 1

)infk�0{μk}

and satisfies c̃ < 1√
κh−1 . Note that c̃ � c holds in general.

4.2. Convergence of IHSS(CG, CGNE)

The following theorem describes a tight expression for IHSS(CG, CGNE).

Theorem 4.4. Let A ∈ Cn×n be a positive definite matrix, H = 1
2 (A + A∗) and S = 1

2 (A − A∗)
be its Hermitian and skew-Hermitian parts, respectively, and α be a positive constant. Let {μk}
and {νk} be two sequences of positive integers. If the iterative sequence {x(k)} is generated by the
IHSS(CG, CGNE) iteration from an initial guess x(0), then it is of the form

x(k+1) = x∗ + M(α, μk, νk)(x
(k) − x∗), (4.6)

where

M(α, μk, νk) = M(α) + E(α, μk, νk), (4.7)

E(α, μk, νk) = (αI + S)−1(αI − H)pcg
μk

(αI + H)(αI + H)−1A

+ pcg
νk

(α2I − S2)(αI + S)−1A(αI + H)−1(αI − S)

+ pcg
νk

(α2I − S2)(αI + S)−1Apcg
μk

(αI + H)(αI + H)−1A, (4.8)

and M(α) is defined by (3.1).

According to Theorem 4.4, the iteration matrix M(α, μk, νk) of IHSS(CG, CGNE) is a cor-
rection of the iteration matrix M(α) of HSS by the correction term E(α, μk, νk). The following
result about the relationship between the iteration matrix M(α, μk, νk) and the coefficient matrix
A holds.

Theorem 4.5. Let A ∈ Cn×n be a positive definite matrix, H = 1
2 (A + A∗) and S = 1

2 (A − A∗)
be its Hermitian and skew-Hermitian parts, respectively, and α be a positive constant. Let {μk}
and {νk} be two sequences of positive integers and M(α, μk, νk) be the kth iteration matrix of
IHSS (CG, CGNE) defined in Theorem 4.4. Then

M(α, μk, νk) = I − G(α, μk, νk)A, (4.9)

where

G(α, μk, νk)=G(α) − (αI + S)−1(αI − H)pcg
μk

(αI + H)(αI + H)−1
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− (αI + S)−1pcg
νk

(α2I − S2)(αI − S)(αI + H)−1

− (αI + S)−1pcg
νk

(α2I − S2)Apcg
μk

(αI + H)(αI + H)−1, (4.10)

and the matrix G(α) is defined by (3.1). Moreover, the matrix G(α, μk, νk) is non-singular if and
only if 2α is not an eigenvalue of the matrix

F(α, μk, νk) = (αI − H)pcg
μk

(αI + H) + pcg
νk

(α2I − S2)(αI − S)

+ pcg
νk

(α2I − S2)Apcg
μk

(αI + H).

Next, we analyze the contraction factor (in the ||| · |||-norm) for the iteration matrices
M(α, μk, νk) (k = 0, 1, 2, . . .) and, therefore, establish convergence theorem for the IHSS(CG,
CGNE) iteration.

Theorem 4.6. Let A ∈ Cn×n be a positive definite matrix, H = 1
2 (A + A∗) and S = 1

2 (A − A∗)
be its Hermitian and skew-Hermitian parts, respectively, and α be a positive constant. Let {μk}
and {νk} be two sequences of positive integers, and M(α, μk, νk) be the kth iteration matrix of
the IHSS(CG, CGNE) iteration defined in Theorem 4.4. Then

|||M(α, μk, νk)||| � σ(α) + ε(α, μk, νk),

where σ(α) is the contraction factor of the HSS iteration defined in Lemma 3.1, and the correction
error

ε(α, μk, νk) = σ(α)(1 + cs(α))‖pcg
μk

(αI + H)‖2 + (1 + ch(α))‖pcg
νk

(α2I − S2)‖2

+ (1 + ch(α))(1 + cs(α))‖pcg
μk

(αI + H)‖2‖pcg
νk

(α2I − S2)‖2.

Therefore, if there exists a non-negative constant σ ihss(α) ∈ [0, 1) such that

σ(α) + ε(α, μk, νk) � σ ihss(α), k = 0, 1, 2, . . . ,

then the iterative sequence {x(k)} generated by the IHSS(CG, CGNE) iteration from an initial
guess x(0) converges to the exact solution x∗ ∈ Cn of the system of linear equations (1.1), with
the convergence factor being at most σ ihss(α).

Theorem 4.6 presents an upper bound for the contraction factor of the IHSS(CG, CGNE)
iteration. Moreover, when the eigenvalue bounds of both Hermitian part H and skew-Hermitian
part S of the matrix A are available, we can use the optimal parameter α∗ determined in Lemma
3.1 to improve the contraction factor and, consequently, accelerate the convergence speed of
IHSS(CG, CGNE). More precisely, we have the following theorem.

Theorem 4.7. Let A ∈ Cn×n be a positive definite matrix, H = 1
2 (A + A∗) and S = 1

2 (A − A∗)
be its Hermitian and skew-Hermitian parts, respectively, and α be a positive constant. Then,

when α = α∗ =
√

γ 2
h − ρ2

h, we have

ε(α∗, μk, νk) � 2
√

κh

(√
κh − 1√
κh + 1

)(
4
√

κh − 1
4
√

κh + 1

)μk

+ 2

(
1 +

√
κhκh,s√
κh + 1

)(√
κh,s − 1√
κh,s + 1

)νk
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+ 4
√

κh

(
1 +

√
κhκh,s√
κh + 1

)(
4
√

κh − 1
4
√

κh + 1

)μk
(√

κh,s − 1√
κh,s + 1

)νk

≡ εh,s(μk, νk)

and

|||M(α∗, μk, νk)||| �
√

κh − 1√
κh + 1

+ εh,s(μk, νk),

where μk and νk are the inner CG and the inner CGNE iteration steps at the kth outer iterate of
the IHSS(CG, CGNE) iteration, respectively. Therefore, if {μk} and {νk} are chosen such that

εh,s(μk, νk) <
2√

κh + 1
, k = 0, 1, 2, . . . ,

there exists a non-negative constant σ ihss(α∗) ∈ [0, 1) such that

|||M(α∗, μk, νk)||| � σ ihss(α∗), k = 0, 1, 2, . . . ,

and consequently, the iterative sequence {x(k)} generated by the IHSS(CG, CGNE) iteration with
the optimal parameter α∗ from an initial guess x(0) converges to the unique solution x∗ ∈ Cn of
the system of linear equations (1.1).

From Theorems 4.6 and 4.7, we know that the contraction factor of the IHSS(CG, CGNE)
iteration is bounded by

√
κh − 1√
κh + 1

+ εh,s(μk, νk)=
√

κh − 1√
κh + 1

+ 2
√

κh

(√
κh − 1√
κh + 1

)(
4
√

κh − 1
4
√

κh + 1

)μk

+ 2

(
1 +

√
κhκh,s√
κh + 1

)(√
κh,s − 1√
κh,s + 1

)νk

+ 4
√

κh

(
1 +

√
κhκh,s√
κh + 1

)(
4
√

κh − 1
4
√

κh + 1

)μk
(√

κh,s − 1√
κh,s + 1

)νk

,

where the first term is the contraction factor of the HSS iteration, the second and the third terms
are the contraction factors of the inner CG and the inner CGNE iterations, respectively, and the
last term is a higher-order error due to the inexactness of the iteration, at the kth outer iterate

of IHSS(CG, CGNE). Evidently, the best possible case of |||M(α∗, μk, νk)||| is
√

κh−1√
κh+1 , which

is approximately equal to the contraction factor of CG applied to the system of linear equations
Hy = b. To make εh,s(μk, νk) approach to zero quickly with increasing of μk and νk , we should
suitably choose the inner CG iteration step μk and the inner CGNE iteration step νk at the kth
outer iterate such that the two factors

√
κh

(√
κh − 1√
κh + 1

)(
4
√

κh − 1
4
√

κh + 1

)μk

and

(
1 +

√
κhκh,s√
κh + 1

)(√
κh,s − 1√
κh,s + 1

)νk

approach to zero with comparable speeds. Therefore, it is reasonable for us to choose μk and νk

such that

√
κh

(√
κh − 1√
κh + 1

)(
4
√

κh − 1
4
√

κh + 1

)μk

=
(

1 +
√

κhκh,s√
κh + 1

)(√
κh,s − 1√
κh,s + 1

)νk

,
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or in other words,

νk =
ln
( √

κh(
√

κh+1)√
κh(

√
κh,s+1)+1

(√
κh−1√
κh+1

))
+ μk ln

(
4√κh−1
4√κh+1

)
ln
(√

κh,s−1√
κh,s+1

) . (4.11)

In this situation, the contributions from the inner CG and the inner CGNE processes to the kth
outer iterate of IHSS(CG, CGNE) are well balanced, and it holds that

εh,s(μk, νk) = 4
√

κh

(√
κh − 1√
κh + 1

)(
4
√

κh − 1
4
√

κh + 1

)μk

+ 4κh

(√
κh − 1√
κh + 1

)(
4
√

κh − 1
4
√

κh + 1

)2μk

and

|||M(α∗, μk, νk)||| �
√

κh − 1√
κh + 1

(
1 + 2

√
κh

(
4
√

κh − 1
4
√

κh + 1

)μk
)2

. (4.12)

If μk is chosen so that

√
κh

(
4
√

κh − 1
4
√

κh + 1

)infk�0{μk}
= c (4.13)

with

c <
1

2

(√√
κh + 1√
κh − 1

− 1

)
, (4.14)

or in other words,

μk �
ln
(

c√
κh

)
ln
(

4√κh−1
4√κh+1

) , (4.15)

then we have

|||M(α∗, μk, νk)||| � (2c + 1)2
√

κh − 1√
κh + 1

< 1.

Therefore, it follows from (4.6) that

|||x(k+1) − x∗||| � (2c + 1)2
√

κh − 1√
κh + 1

|||x(k) − x∗|||, k = 0, 1, 2, . . . .

The above analysis is summarized in the following theorem.

Theorem 4.8. Let A ∈ Cn×n be a positive definite matrix, H = 1
2 (A + A∗) and S = 1

2 (A − A∗)
be its Hermitian and skew-Hermitian parts, respectively, and α = α∗ =

√
γ 2
h − ρ2

h. Let {μk}
and {νk} be two sequences of positive integers satisfying (4.11) and (4.15). Then the IHSS(CG,
CGNE) iteration converges to the exact solution x∗ ∈ Cn of the system of linear equations (1.1),

with the convergence factor being less than (2c + 1)2
√

κh−1√
κh+1 , where c is defined by (4.13) and

satisfies (4.14). Moreover, if lim μk = lim νk = +∞, then the asymptotic convergence factor of

the IHSS(CG, CGNE) iteration tends to σ(α∗) =
√

κh−1√
κh+1 of that of the HSS iteration.
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At the end of this section, we remark that the number of inner iteration steps μk can be
optimized according to the computing efficiency of the IHSS iterations. When such a nearly
optimal μk is obtained, the nearly optimal νk can be determined by (4.1) for the IHSS(CG,
Lanczos) iteration and by (4.11) for the IHSS(CG, CGNE) iteration, respectively. This makes both
IHSS(CG, Lanczos) and IHSS(CG, CGNE) can achieve their maximum computing efficiencies.
See [1,7] and references therein for analogous analyses.

5. Efficiency analyses

A simple calculation shows that the memory required for the IHSS iterations is to store x(k),
b, and five auxiliary vectors in the CG-type methods; see [9,1]. Moreover, it is possible for us
not to store the matrices H and S, as all we need is two subroutines that perform the matrix-
vector multiplications with respect to these two matrices. Therefore, the total amount of computer
memory required is O(n), which has the same order of magnitude as the number of unknowns.

From the above convergence analyses we know that the workload of the Lanczos is one time less
than that of the CGNE, but its convergence speed is one time slower than that of CGNE, when they
are employed in the IHSS iteration to solve the system of linear equations with coefficient matrix
αI + S. Therefore, it is not obvious whether the IHSS(CG, Lanczos) iteration is comparable to the
IHSS(CG, CGNE) iteration from only their asymptotic convergence rates or their computational
workloads, although they possess almost the same contraction factor. A more reasonable and
objective standard for assessing and comparing the effectiveness of these two iterations may be
their computational efficiencies.

Without loss of generality, assume that each row of the matrices H and S has at most τ and
τ − 1 non-zero entries, respectively, and denote by

σ∗ ≡ σ(α∗) =
√

κh−1√
κh+1 , σo =

√
κh−1√
κh,s

, δo =
√

κh(
√

κh+1)√
κh(

√
κh,s+1)+1 ,

σh = 4√κh−1
4√κh+1 , σh,s =

√
κh,s−1√
κh,s+1 , and θ = ln(σh)

ln(σh,s )
.

(5.1)

Then we know from (2.1) and (4.2) that the computational efficiency E(μ) of the IHSS(CG,
Lanczos) iteration can be defined by

E(μ) = − ln
(
σ∗[1 + 2κh

√
κh,sσ

μ
h ]2

)
(2τ + 11)nμ + 2[(τ + 3)n + 2]ν(μ) + 6τn

,

where

ν(μ) =
{

2(ln(σo)+μ ln(σh))
ln(σh,s )

, for ν(μ) even,
2(ln(σo)+μ ln(σh))

ln(σh,s )
+ 1, for ν(μ) odd,

and from (2.2) and (4.12) that the computational efficiency Eo(μ) of the IHSS(CG, CGNE)
iteration can be defined by

Eo(μ) = − ln
(
σ∗[1 + 2

√
κhσ

μ
h ]2

)
(2τ + 11)nμ + 4(τ + 2)nνo(μ) + (8τ + 1)n

,

where

νo(μ) = ln(δoσ∗) + μ ln(σh)

ln(σh,s)
.

Here, we remark that the efficiency functions E(μ) and Eo(μ) are well-defined under the restric-
tions
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σ∗[1 + 2κh
√

κh,sσ
μ
h ]2 < 1 and σ∗[1 + 2

√
κhσ

μ
h ]2 < 1, (5.2)

respectively.
To find positive integersμ such thatE(μ) andEo(μ) are maximized, we can solve the non-linear

equations

0 = f (μ) = 4κh
√

κh,sσ
μ
h ln(σh)

(1 + 2κh
√

κh,sσ
μ
h ) ln(σ∗[1 + 2κh

√
κh,sσ

μ
h ]2)

− (2τ + 11)n ln(σh,s) + 4[(τ + 3)n + 2] ln(σh)

ln(σh,s)[(2τ + 11)nμ + 2((τ + 3)n + 2)ν(μ) + 6τn] (5.3)

and

0 = fo(μ) = 4
√

κhσ
μ
h ln(σh)

(1 + 2
√

κhσ
μ
h ) ln(σ∗[1 + 2

√
κhσ

μ
h ]2)

− (2τ + 11)n ln(σh,s) + 4(τ + 2)n ln(σh)

ln(σh,s)[(2τ + 11)nμ + 4(τ + 2)nνo(μ) + (8τ + 1)n] , (5.4)

respectively, e.g., by the Newton’s method iterating for several steps. Note that

f (0)f (+∞) < 0 and fo(0)fo(+∞) < 0,

we know that f (μ) and fo(μ) have positive roots which satisfy (5.2), respectively. Let μ∗ and
μ∗

o be the smallest ones of such roots of the functions f (μ) and fo(μ), correspondingly. Then we
have

E(μ∗) = − 4κh
√

κh,sσ
μ∗
h ln(σh) ln(σh,s)

(1 + 2κh
√

κh,sσ
μ∗
h )[(2τ + 11)n ln(σh,s) + 4((τ + 3)n + 2) ln(σh)]

(5.5)

and

Eo(μ
∗
o) = − 4

√
κhσ

μ∗
o

h ln(σh) ln(σh,s)

(1 + 2
√

κhσ
μ∗

o

h )[(2τ + 11)n ln(σh,s) + 4(τ + 2)n ln(σh)]
. (5.6)

It then follows that

E(μ∗)
Eo(μ∗

o)
= σ

μ∗−μ∗
o

h

⎛⎝ 1
2
√

κh
+ σ

μ∗
o

h

1
2κh

√
κh,s

+ σ
μ∗
h

⎞⎠(
2τ + 11 + (4τ + 8)θ

2τ + 11 + (4τ + 12 + 8
n
)θ

)
(5.7)

≈ 2τ + 11 + (4τ + 8)θ

2τ + 11 + (4τ + 12)θ
, for κh 
 1 and n 
 1

= 1 − 4θ

2τ + 11 + 4(τ + 3)θ
∈
(

τ + 2

τ + 3
, 1

)
.

This implies that E(μ∗) � ( τ+2
τ+3 )Eo(μ

∗
o) in general, and E(μ∗) ≈ Eo(μ

∗
o) when θ is small.

Theorem 5.1. Let A ∈ Cn×n be a positive definite matrix, H = 1
2 (A + A∗) and S = 1

2 (A − A∗)
be its Hermitian and skew-Hermitian parts, respectively, and α = α∗ =

√
γ 2
h − ρ2

h.

(a) If {μk} and {νk} are, respectively, the sequences of inner CG and inner Lanczos iteration
steps of the IHSS(CG, Lanczos) iteration such that {μk} = {μ∗} and {νk} = {ν∗}, where μ∗ is the
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smallest positive root of the non-linear function f (μ) in (5.3) satisfying σ∗(1 + 2κh
√

κh,sσ
μ∗
h )2 <

1 and

ν∗ ≡ ν∗(μ∗) =
{

2(ln(σo)+μ∗ ln(σh))
ln(σh,s )

, when ν∗(μ∗) is even,

2(ln(σo)+μ∗ ln(σh))
ln(σh,s )

+ 1, when ν∗(μ∗) is odd,

then the IHSS(CG, Lanczos) iteration converges to the exact solution x∗ ∈ Cn of the system of

linear equations (1.1), with the convergence factor being less than σ∗(1 + 2κh
√

κh,sσ
μ∗
h )2, and

with the computational efficiency E(μ∗) being given by (5.5).

(b) If {μk} and {νk} are, respectively, the sequences of inner CG and inner CGNE iteration
steps of the IHSS(CG, CGNE) iteration such that {μk} = {μ∗

o} and {νk} = {ν∗
o }, where μ∗

o is the

smallest positive root of the non-linear function fo(μ) in (5.4) satisfying σ∗(1 + 2
√

κhσ
μ∗

o

h )2 < 1
and

ν∗
o ≡ ν∗

o (μ∗
o) =

ln
(( √

κh(
√

κh+1)√
κh(

√
κh,s+1)+1

) (√
κh−1√
κh+1

))
+ μ∗

o ln
(

4√κh−1
4√κh+1

)
ln
(√

κh,s−1√
κh,s+1

) ,

then the IHSS(CG, CGNE) iteration converges to the exact solution x∗ ∈ Cn of the system of

linear equations (1.1), with the convergence factor being less than σ∗(1 + 2
√

κhσ
μ∗

o

h )2, and with
the computational efficiency Eo(μ

∗
o) being given by (5.6).

Furthermore, the efficiency E(μ∗) of IHSS(CG, Lanczos) is about 1 − 4θ
2τ+11+4(τ+3)θ

times as
much as the efficiencyEo(μ

∗
o) of IHSS(CG, CGNE) when n 
 1 and ρh 
 0. Here, the constants

σ∗, σo, σh, σh,s, δo and θ are defined by (5.1).

In actual computations, we easily know the stopping tolerance ε and the corresponding CPU
time T (or To) required by the IHSS(CG, Lanczos) (or the IHSS(CG, CGNE)) iteration. There-
fore, we can define the average computational efficiencies E and Eo of IHSS(CG, Lanczos) and
IHSS(CG, CGNE) by

E = − ln(ε)

T
and Eo = − ln(ε)

To

,

respectively, which are computable approximations to the asymptotic computational efficiencies
E(μ) (or E(μ∗)) and Eo(μo) (or Eo(μ

∗
o)). In this sense, when T and To are available, we

can easily make comparison between the computational efficiencies of IHSS(CG, Lanczos) and
IHSS(CG, CGNE) iterations as E

Eo
= To

T
. See [2] for more discussions about the average and the

asymptotic computational efficiencies.
We remark that for specific linear systems arising from applications the quantities κh and κh,s

may be simply expressed in the orders of magnitudes with respect to certain problem parameters,
e.g., the discretization stepsize h and the mesh Reynolds number Re for a finite-difference matrix
of a partial differential equation. It then follows that the constant factors appearing in Theorems
4.2, 4.3, 4.7, 4.8 and 5.1 can be intuitively expressed in the orders of magnitudes with respect to
those problem parameters. See [5].

6. A numerical example

In this section, we test the IHSS iterations by numerical experiments. All tests are started from
the zero vector, performed in MATLAB with machine precision 10−16, and terminated when
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the current iterate satisfies ‖r(k)‖2/‖r(0)‖2 < 10−6, where r(k) is the residual of the kth IHSS
iteration.

We solve the two-dimensional convection–diffusion equations

−(uxx + uyy) + q exp(x + y)(xux + yuy) = f (x, y)

on the unit square � = [0, 1] × [0, 1] with the homogeneous Dirichlet boundary conditions. The
numbers N of grid points in the two directions are the same, and the linear systems with respect to
theN2-by-N2 coefficient matricesαI + H andαI + S are solved by the preconditioned conjugate
gradient (PCG) method, and the preconditioned Lanczos (PLanczos) or preconditioned CGNE
(PCGNE) method, respectively, with transform-based preconditioners [5]. The use of the precon-
ditioning techniques can speed up the convergence of the inner iteration solvers for the shifted
Hermitian and the shifted skew-Hermitian linear sub-systems. Here we remark that n = N2. In
our computations, the inner PCG and the inner PLanczos/PCGNE iterates are terminated if the
current residuals of the inner iterations satisfy

‖p(j)‖2

‖r(k)‖2
� 1 × 10−δH and

‖q(j)‖2

‖r(k)‖2
� 1 × 10−δS ,

where p(j) and q(j) are, respectively, the residuals of the j th inner PCG and the j th inner PLanc-
zos/PCGNE iterates at the kth outer IHSS iterate. Here δH and δS are the control tolerances
for iterations about the shifted Hermitian and the shifted skew-Hermitian linear sub-problems,
respectively. In our tests, we take δH and δS to be 1, 2, 3 and 4.

In Tables 6.1–6.6, we list numerical results for the centered difference scheme for N = 64
when q = 10, 100 and 1000. The optimal parameters α are set to be the values given in Table 5.1
of [5]. In the tables, “∗∗” denotes that the number of IHSS iterations is larger than 1000. We remark
that the numbers of HSS iterations are 127, 39 and 53 for q = 10, 100 and 1000, respectively,
where in each HSS iteration, we solve the linear systems with the coefficient matrices αI + H

and αI + S exactly by using direct solvers.

Table 6.1
Number of outer (average inner PCG, average inner PLanczos) iterations for q = 10

δH δS

1 2 3 4

1 ∗∗ 372 (1.73, 3.96) 281 (1.72, 7.04) 296 (1.72, 11.18)
2 ∗∗ 353 (3.37, 4.03) 348 (3.17, 7.46) 240 (3.34, 13.37)
3 ∗∗ 327 (5.01, 4.24) 242 (5.14, 7.63) 239 (5.02, 13.03)
4 ∗∗ 332 (7.28, 3.92) 242 (7.48, 7.12) 239 (7.23, 12.83)

Table 6.2
Number of outer (average inner PCG, average inner PLanczos) iterations for q = 100

δH δS

1 2 3 4

1 45 (1.82, 1.56) 40 (2.00, 4.55) 40 (1.88, 8.30) 40 (1.75, 15.53)
2 46 (3.33, 1.50) 39 (3.79, 4.51) 39 (3.72, 7.97) 39 (3.54, 15.21)
3 47 (5.19, 1.51) 40 (5.53, 4.73) 39 (5.56, 7.87) 39 (5.15, 14.97)
4 46 (7.15, 1.52) 40 (7.92, 4.63) 39 (7.67, 7.85) 39 (7.26, 15.02)
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Table 6.3
Number of outer (average inner PCG, average inner PLanczos) iterations for q = 1000

δH δS

1 2 3 4

1 54 (1.13, 3.63) 55 (1.13, 7.49) 56 (1.14, 11.71) 56 (1.14, 14.48)
2 64 (2.09, 3.02) 65 (2.08, 6.29) 65 (2.08, 10.06) 65 (2.09, 12.49)
3 65 (3.00, 2.91) 65 (2.94, 6.20) 66 (2.94, 9.86) 66 (2.94, 12.26)
4 65 (4.26, 2.85) 65 (4.14, 6.32) 65 (4.18, 9.98) 66 (4.21, 12.27)

Table 6.4
Number of outer (average inner PCG, average inner PCGNE) iterations for q = 10

δH δS

1 2 3 4

1 623 (1.59, 1.15) 290 (1.73, 1.65) 305 (1.71, 4.34) 293 (1.71, 7.18)
2 224 (2.74, 1.78) 227 (3.37, 1.92) 238 (3.16, 3.95) 241 (3.33, 7.13)
3 214 (4.72, 1.89) 218 (5.08, 1.94) 239 (5.14, 3.18) 241 (5.01, 6.36)
4 214 (7.00, 1.79) 218 (7.27, 2.02) 240 (7.48, 3.15) 241 (7.24, 6.24)

Table 6.5
Number of outer (average inner PCG, average inner PCGNE) iterations for q = 100

δH δS

1 2 3 4

1 53 (1.26, 1.23) 42 (1.93, 4.19) 41 (1.90, 7.10) 41 (1.76, 8.68)
2 45 (3.40, 1.42) 39 (3.77, 4.23) 40 (3.60, 7.18) 40 (3.45, 8.83)
3 46 (5.33, 1.35) 40 (5.45, 4.23) 40 (5.45, 6.68) 40 (5.13, 8.73)
4 46 (7.11, 1.28) 40 (8.00, 4.08) 40 (7.48, 6.88) 40 (7.13, 8.85)

Table 6.6
Number of outer (average inner PCG, average inner PCGNE) iterations for q = 1000

δH δS

1 2 3 4

1 65 (1.70, 3.09) 58 (1.12, 5.72) 57 (1.12, 8.18) 57 (1.12, 12.54)
2 81 (1.69, 2.36) 69 (2.00, 4.57) 66 (2.06, 6.91) 66 (2.09, 11.32)
3 81 (2.40, 2.28) 69 (2.75, 4.43) 67 (2.97, 6.69) 67 (2.88, 11.18)
4 82 (3.36, 2.22) 69 (3.93, 4.36) 67 (4.07, 6.71) 67 (4.18, 11.01)

In Figs. 6.1–6.3, we further show the number of IHSS iterations, the total number of inner PCG
iterations, and the total numbers of inner PLanczos and inner PCGNE iterations for different values
of α, δH and δS , when q = 100 and N = 64.

In the following, we summarize the observations from Tables 6.1–6.6 and Figs. 6.1–6.3:

• When q is large, the numbers of IHSS(PCG, PLanczos) and IHSS(PCG, PCGNE) iterations
are about the same as those of HSS iterations required for convergence. However, when q is
small, the numbers of IHSS(PCG, PLanczos) and IHSS(PCG, PCGNE) iterations are larger



Z.-Z. Bai et al. / Linear Algebra and its Applications 428 (2008) 413–440 433

0.5 1 1.5 2 2.5 3
20

40

60

80

100

120

140

alpha

to
ta

l n
um

be
r o

f I
H

SS
 it

er
at

io
ns

0.5 1 1.5 2 2.5 3
30

40

50

60

70

80

90

100

110

120

alpha

to
ta

l n
um

be
r o

f I
H

SS
 it

er
at

io
ns

Fig. 6.1. Number of IHSS(PCG, PLanczos) (left) and IHSS(PCG, PCGNE) (right) iterations for different α, δH and δS .

0.5 1 1.5 2 2.5
50

100

150

200

250

300

350

alpha

to
ta

l n
um

be
r o

f P
C

G
 it

er
at

io
ns

0.5 1 1.5 2 2.5
50

100

150

200

250

300

350

400

alpha

to
ta

l n
um

be
r o

f P
C

G
 it

er
at

io
ns

Fig. 6.2. Total numbers of inner PCG iterations in IHSS(PCG, PLanczos) (left) and IHSS(PCG, PCGNE) (right) for
different α, δH and δS .

than those of HSS iterations required for convergence. These results suggest the use of inexact
iterations when the skew-Hermitian part is dominant.

• We also record the number of operations required by each iteration. We find that the total
computational cost of IHSS(PCG, PCGNE) iteration is smaller than that of IHSS(PCG, PLanc-
zos) iteration. These results imply that the computational efficiency of IHSS(PCG, PCGNE)
iteration is higher than that of IHSS(PCG, PLanczos) iteration. See (5.7).

• When δH or δS increases linearly, the number of inner PCG, inner PLanczos or inner PCGNE
iteration also increases linearly.

• For different values of δH and δS , the optimal parameters αihss for both IHSS(PCG, PLanczos)
and IHSS(PCG, PCGNE) iterations are about the same as the optimal parameters for the HSS
iterations.

• In most cases, we find that the total computation cost is the least when δH = 1 and δS = 1 are
used in IHSS(PCG, PLanczos) or IHSS(PCG, PCGNE). These results suggest that we can use
the inexact iterations with large tolerances.
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Fig. 6.3. Total numbers of inner PLanczos iterations in IHSS(PCG, PLanczos) (left) and inner PCGNE iterations in
IHSS(PCG, PCGNE) (right) for different α, δH and δS .

• For α < αihss or α > αihss, the number of IHSS iterations is significantly larger than that of
IHSS iterations when α = αihss, but the total number of inner PCG iterations is slightly larger
than that for the optimal case. It is interesting to note that the total number of inner PLanczos
or inner PCGNE iterations is almost the same for α > αihss. This phenomenon appears for
different values of δH and δS . Again, these results show that the inexact iterations can be
applied especially when the skew-Hermitian part is dominant.

7. Conclusion and remarks

For the non-Hermitian positive definite system of linear equations, we study two specific
but very practical inexact Hermitian/skew-Hermitian splitting methods based on some Krylov
subspace iterations such as CG, Lanczos and CGNE, and demonstrate that they, like the Hermi-
tian/skew-Hermitian splitting method, converge unconditionally to the exact solution of the linear
system.

Moreover, instead of Lanczos and CGNE, we can employ other efficient CG-type methods
to solve the system of linear equations with coefficient matrix αI + S involved at each step of
the HSS iteration. In particular, when GMRES is applied to the linear system with coefficient
matrix αI + S, it automatically reduces to a three-term recurrence process, and its convergence
property is only dependent on the eigenvalues, but independent of the eigenvectors, of the shifted
skew-Hermitian matrix αI + S. The corresponding convergence theory of the resulted inexact
iteration can be demonstrated in an analogous way to IHSS(CG, CGNE).

Recently, the preconditioned HSS iterations and the extension of the HSS method to positive
definite and positive semidefinite linear systems have been studied in [6,10,4,11,13,8,3]. In these
papers. the authors have studied how to precondition HSS iteration to speed up the convergence
rate of the method, and extended the HSS method to a larger class of linear systems. However,
the inexact HSS iterations were not investigated in these works. We remark that the results and
techniques in this paper can be equally employed to the preconditioned HSS iterations and the
extensions of the HSS iteration as well.
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8. Appendix

The proofs of the convergence theorems presented in Section 4 are listed in this section.

Proof of Theorem 4.1. For a fixed iterate index k, define x(k+ 1
2 ,∗) and x(k+1,∗) by{

x(k+ 1
2 ,∗) = (αI + H)−1[(αI − S)x(k) + b],

x(k+1,∗) = (αI + S)−1[(αI − H)x(k+ 1
2 ) + b], (8.1)

respectively. Then from Lemmas 3.2 and 3.3 we have

‖x(k+ 1
2 ) − x(k+ 1

2 ,∗)‖2 � σh(α, μk)‖x(k) − x(k+ 1
2 ,∗)‖2 (8.2)

and

‖x(k+1) − x(k+1,∗)‖2 � σs(α, νk)‖x(k+ 1
2 ) − x(k+1,∗)‖2. (8.3)

Because x∗ is the exact solution of the system of linear equations (1.1), it satisfies the sub-systems
of linear equations{

(αI + H)x∗ = (αI − S)x∗ + b,

(αI + S)x∗ = (αI − H)x∗ + b.
(8.4)

After subtracting x∗ from (8.1) and making use of (8.4), accordingly, we obtain{
(αI + H)(x(k+ 1

2 ,∗) − x∗) = (αI − S)(x(k) − x∗),
(αI + S)(x(k+1,∗) − x∗) = (αI − H)(x(k+ 1

2 ) − x∗).
(8.5)

The equalities in (8.5) straightforwardly yield

x(k+1,∗) − x∗ = (αI + S)−1(αI − H)(x(k+ 1
2 ) − x∗)

= (αI + S)−1(αI − H)(x(k+ 1
2 ) − x(k+ 1

2 ,∗))

+ (αI + S)−1(αI − H)(x(k+ 1
2 ,∗) − x∗)

= (αI + S)−1(αI − H)(x(k+ 1
2 ) − x(k+ 1

2 ,∗))

+ (αI + S)−1(αI − H)(αI + H)−1(αI − S)(x(k) − x∗) (8.6)

and

x(k+1,∗) − x(k+ 1
2 ,∗) = (x(k+1,∗) − x∗) − (x(k+ 1

2 ,∗) − x∗)
= (αI + S)−1(αI − H)(x(k+ 1

2 ) − x(k+ 1
2 ,∗))

+ (αI + S)−1(αI − H)(αI + H)−1(αI − S)(x(k) − x∗)
− (αI + H)−1(αI − S)(x(k) − x∗)

= (αI + S)−1(αI − H)(x(k+ 1
2 ) − x(k+ 1

2 ,∗))

+ [(αI + S)−1(αI − H) − I ](αI + H)−1(αI − S)(x(k) − x∗).

Therefore,

x(k+ 1
2 ) − x(k+1,∗) = (x(k+ 1

2 ) − x(k+ 1
2 ,∗)) − (x(k+1,∗) − x(k+ 1

2 ,∗))

= [I − (αI + S)−1(αI − H)](x(k+ 1
2 ) − x(k+ 1

2 ,∗))

+ [I − (αI + S)−1(αI − H)](αI + H)−1(αI − S)(x(k) − x∗).
(8.7)



436 Z.-Z. Bai et al. / Linear Algebra and its Applications 428 (2008) 413–440

Besides, from (8.1) and the equations b = Ax∗ we can get

x(k) − x(k+ 1
2 ,∗) = x(k) − (αI + H)−1[(αI − S)x(k) + b]

= (αI + H)−1[(αI + H)x(k) − (αI − S)x(k) − b]
= (αI + H)−1A(x(k) − x∗), (8.8)

and from (8.6) we can get

x(k+1) − x∗ = (x(k+1) − x(k+1,∗)) + (x(k+1,∗) − x∗)
= (x(k+1) − x(k+1,∗)) + (αI + S)−1(αI − H)(x(k+ 1

2 ) − x(k+ 1
2 ,∗))

+ (αI + S)−1(αI − H)(αI + H)−1(αI − S)(x(k) − x∗).

It then follows that

|||x(k+1) − x∗||| � |||x(k+1) − x(k+1,∗)|||
+ |||(αI + S)−1(αI − H)||| · |||x(k+ 1

2 ) − x(k+ 1
2 ,∗)|||

+ |||(αI + S)−1(αI − H)(αI + H)−1(αI − S)||| · |||x(k) − x∗|||.
(8.9)

From (8.2) and (8.8) it holds that

‖x(k+ 1
2 ) − x(k+ 1

2 ,∗)‖2 � σh(α, μk)‖x(k) − x(k+ 1
2 ,∗)‖2

= σh(α, μk)‖(αI + H)−1A(x(k) − x∗)‖2

� σh(α, μk)‖(αI + H)−1A(αI + S)−1‖2|||x(k) − x∗|||,
and from (8.3) and (8.7) it holds that

‖x(k+1) − x(k+1,∗)‖2 � σs(α, νk)‖x(k+ 1
2 ) − x(k+1,∗)‖2

� σs(α, νk){‖I − (αI + S)−1(αI − H)‖2‖x(k+ 1
2 ) − x(k+ 1

2 ,∗)‖2

+ ‖[I − (αI + S)−1(αI − H)](αI + H)−1

× (αI − S)(αI + S)−1‖2|||x(k) − x∗|||}
� σs(α, νk){‖I − (αI + S)−1(αI − H)‖2

× σh(α, μk)‖(αI + H)−1A(αI + S)−1‖2

+ ‖[I − (αI + S)−1(αI − H)](αI + H)−1

× (αI − S)(αI + S)−1‖2}|||x(k) − x∗|||.
Through substituting these two estimates into (8.9), applying Lemma 3.5, and considering the
fact that

Q(α) ≡ (αI − S)(αI + S)−1

is a Cayley transform and thus unitary, we obtain

|||x(k+1) − x∗||| � ‖αI + S‖2‖x(k+1) − x(k+1,∗)‖2

+ ‖(αI − H)(αI + S)−1‖2‖αI + S‖2‖x(k+ 1
2 ) − x(k+ 1

2 ,∗)‖2

+ ‖(αI − H)(αI + H)−1(αI − S)(αI + S)−1‖2|||x(k) − x∗|||
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� {‖αI + S‖2σs(α, νk)‖I − (αI + S)−1(αI − H)‖2

× σh(α, μk)‖(αI + H)−1A(αI + S)−1‖2

+ ‖αI + S‖2σs(α, νk)‖[I − (αI + S)−1(αI − H)](αI + H)−1‖2

+ ‖αI + S‖2‖(αI − H)(αI + S)−1‖2

× σh(α, μk)‖(αI + H)−1A(αI + S)−1‖2

+ ‖(αI − H)(αI + H)−1‖2}|||x(k) − x∗|||
� {‖αI + S‖2‖[I − (αI + S)−1(αI − H)](αI + H)−1‖2

× [‖I − (αI + S)−1(αI − H)‖2σs(α, νk)σh(α, μk)

+ σs(α, νk) + ‖(αI − H)(αI + S)−1‖2σh(α, μk)]
+ ‖(αI − H)(αI + H)−1‖2}|||x(k) − x∗|||

� {‖αI + S‖2‖(αI + H)−1‖2(1 + ‖(αI + S)−1‖2‖αI − H‖2)

× [(1 + ‖(αI + S)−1‖2‖αI − H‖2)σh(α, μk)σs(α, νk)

+ σs(α, νk) + ‖αI − H‖2‖(αI + S)−1‖2σh(α, μk)]
+ ‖(αI − H)(αI + H)−1‖2}|||x(k) − x∗|||

= {ch(α)(1 + cs(α))[(1 + cs(α))σh(α, μk)σs(α, νk) + σs(α, νk)

+ cs(α)σh(α, μk)] + σ(α)}|||x(k) − x∗|||
= (σ (α) + ε(α, μk, νk))|||x(k) − x∗|||.

Therefore, the conclusion what we were proving follows. �

Proof of Theorem 4.2. By substituting α = α∗ =
√

γ 2
h − ρ2

h into the quantities σh(α, μk) in
Lemma 3.2, σs(α, νk) in Lemma 3.3, as well as ε(α, μk, νk) in Theorem 4.1, respectively, and

noticing that σ(α∗) =
√

κh−1√
κh+1 and that ch(α

∗) �
√

κhκh,s√
κh+1 and cs(α

∗) � √
κh − 1 from Lemma 3.5,

we can obtain the estimates

σh(α
∗, μk) � 2

(
4
√

κh − 1
4
√

κh + 1

)μk

, σs(α
∗, νk) � 2

√
κh,s

(√
κh,s − 1√
κh,s + 1

)	 νk
2 


,

and

ε(α∗, μk, νk) � εh,s(μk, νk).

Therefore, the conclusion what we were proving follows immediately from Theorem 4.1. �

Proof of Theorem 4.4. For a fixed iterate index k, define x(k+ 1
2 ,∗) and x(k+1,∗) be the exact

solutions of the systems of linear equations{
(αI + H)x(k+ 1

2 ,∗) = (αI − S)x(k) + b,

(αI + S)x(k+1,∗) = (αI − H)x(k+ 1
2 ) + b,

(8.10)

respectively. Then by Lemmas 3.2 and 3.4, we have

x(k+ 1
2 ) − x(k+ 1

2 ,∗) = pcg
μk

(αI + H)(x(k) − x(k+ 1
2 ,∗)) (8.11)

and

x(k+1) − x(k+1,∗) = pcg
νk

(α2I − S2)(x(k+ 1
2 ) − x(k+1,∗)). (8.12)
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By multiplying the matrix αI + H on both sides of (8.11) and the matrix αI + S on both sides
of (8.12), we get

b + (αI − S)x(k) − (αI + H)x(k+ 1
2 )

= pcg
μk

(αI + H)[b + (αI − S)x(k) − (αI + H)x(k)]
and

b + (αI − H)x(k+ 1
2 ) − (αI + S)x(k+1)

= pcg
νk

(α2I − S2)[b + (αI − H)x(k+ 1
2 ) − (αI + S)x(k+ 1

2 )].
Let x∗ be the exact solution of the system of linear equations (1.1). Then x∗ satisfies (8.4). A
combination of (8.10) and (8.4) results in the identity

x(k+ 1
2 ,∗) − x∗ = (αI + H)−1(αI − S)(x(k) − x∗).

By applying this identity to (8.11) we obtain

x(k+ 1
2 ) − x∗ =(x(k+ 1

2 ) − x(k+ 1
2 ,∗)) + (x(k+ 1

2 ,∗) − x∗)
=pcg

μk
(αI + H)(x(k) − x(k+ 1

2 ,∗)) + (x(k+ 1
2 ,∗) − x∗)

=pcg
μk

(αI + H)(x(k) − x∗) + [I − pcg
μk

(αI + H)](x(k+ 1
2 ,∗) − x∗)

={pcg
μk

(αI + H) + [I − pcg
μk

(αI + H)](αI + H)−1(αI − S)}
× (x(k) − x∗). (8.13)

On the other hand, by using (8.10), (8.12) and (8.4) and following a similar argument to (8.13),
we have

x(k+1) − x∗ ={pcg
νk

(α2I − S2) + [I − pcg
νk

(α2I − S2)](αI + S)−1(αI − H)}
× (x(k+ 1

2 ) − x∗). (8.14)

Substituting (8.13) into (8.14), we then immediately obtain (4.6), where

M(α, μk, νk) = {pcg
νk

(α2I − S2) + [I − pcg
νk

(α2I − S2)](αI + S)−1(αI − H)}
× {pcg

μk
(αI + H) + [I − pcg

μk
(αI + H)](αI + H)−1(αI − S)}.

Finally, it straightforwardly follows from A = H + S that the matrix M(α, μk, νk) can be ex-
pressed as the sum of the matrices M(α) and E(α, μk, νk). �
Proof of Theorem 4.5. According to Lemma 3.1 we know that M(α) = I − G(α)A. Because

A(αI + H)−1(αI − S)A−1 = A(αI + H)−1[(αI + H) − A]A−1

= I − A(αI + H)−1

= [(αI + H) − A](αI + H)−1

= (αI − S)(αI + H)−1,
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(4.9) and (4.10) follow straightforwardly from (4.7) and (4.8), respectively. Moreover, Noticing
that

(αI + S)G(α, μk, νk)(αI + H) = 2αI − (αI − H)pcg
μk

(αI + H)

− pcg
νk

(α2I − S2)(αI − S)

− pcg
νk

(α2I − S2)Apcg
μk

(αI + H)

= 2αI − F(α, μk, νk),

we immediately see that G(α, μk, νk) is non-singular if and only if 2α is not an eigenvalue of the
matrix F(α, μk, νk). �
Proof of Theorem 4.6. We note from Theorem 4.4 that

|||M(α, μk, νk)||| = |||M(α) + E(α, μk, νk)||| � |||M(α)||| + |||E(α, μk, νk)|||,
and from Lemma 3.1 that

|||M(α)||| � σ(α).

In addition, from (4.8) we can obtain

|||E(α, μk, νk)||| = ‖(αI + S)E(α, μk, νk)(αI + S)−1‖2

� ‖pcg
μk

(αI + H)(αI + H)−1(αI − H)A(αI + S)−1‖2

+ ‖pcg
νk

(α2I − S2)A(αI + H)−1(αI − S)(αI + S)−1‖2

+ ‖pcg
νk

(α2I − S2)Apcg
μk

(αI + H)(αI + H)−1A(αI + S)−1‖2

� ‖pcg
μk

(αI + H)‖2‖(αI + H)−1(αI − H)‖2‖A(αI + S)−1‖2

+ ‖pcg
νk

(α2I − S2)‖2‖A(αI + H)−1‖2

+ ‖pcg
νk

(α2I − S2)‖2‖A(αI + H)−1‖2

× ‖pcg
μk

(αI + H)‖2‖A(αI + S)−1‖2

� ε(α, μk, νk).

Therefore, the conclusion what we were proving follows immediately. �

Proof of Theorem 4.7. By substituting α = α∗ =
√

γ 2
h − ρ2

h into the quantities σh(α, μk), the
upper bound of (3.1), ch(α) and cs(α) in Lemma 3.5, as well as ε(α, μk, νk) and |||M(α, μk, νk)|||
in Theorem 4.6, respectively, we then obtain the estimates about ch(α

∗) and cs(α
∗) in Lemma

3.5, as well as

‖pcg
μk

(α∗I + H)‖2 � 2

(
4
√

κh − 1
4
√

κh + 1

)μk

and

‖pcg
νk

((α∗)2I − S2)‖2 � 2

(√
κh,s − 1√
κh,s + 1

)νk

,

and thereby, ε(α∗, μk, νk) and |||M(α∗, μk, νk)|||, correspondingly. �
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