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Endoplasmic Reticulum stress reduces COPII vesicle formation and
modifies Sec23a cycling at ERESs
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a b s t r a c t

Exit from the Endoplasmic Reticulum (ER) of newly synthesized proteins is mediated by COPII ves-
icles that bud from the ER at the ER Exit Sites (ERESs). Disruption of ER homeostasis causes accumu-
lation of unfolded and misfolded proteins in the ER. This condition is referred to as ER stress.
Previously, we demonstrated that ER stress rapidly impairs the formation of COPII vesicles. Here,
we show that membrane association of COPII components, and in particular of Sec23a, is impaired
by ER stress-inducing agents suggesting the existence of a dynamic interplay between protein fold-
ing and COPII assembly at the ER.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction protein ALG2 [25], the TFG1 oncoprotein [26] and by post-transla-
Protein and lipids exit the Endoplasmic Reticulum (ER) [1] in
COPII coated vesicles budding from ER membrane domains called
exit sites (ERES) or transitional ER (tER) [2–5]. COPII formation be-
gins when the GTP exchange factor Sec12 converts the Sar1 GTPase
into its GTP bound form. Sar1-GTP inserts its amphiphilic a-elix
into the ER membrane [6,7], starts membrane bending and recruits
the Sec23/Sec24 dimers forming the pre budding complex that en-
gages cargo proteins interacting with Sec24 [8–11]. Finally, Sec13/
Sec31 heterotetramers complete membrane curvature and COPII
vesicle formation [12,13].

COPII function is regulated by distinct factors. During the initial
steps, COPII assembly is organized by the ERES resident protein
Sec16 that nucleates COPII formation by interacting with Sec23
[14] and Sar1 [15]. In addition, Sec16 stabilizes prebudding com-
plexes by preventing Sec31 stimulation of Sec23 GAP activity
[16,17].

Disassembly of COPII depends on Sec23 GAP activity on Sar1
GTPase [18,19], which is fully activated in the presence of Sec31.

COPII assembly is regulated by cargo proteins [20–23], and by
other factors, such the ERES protein p125 [24], the Ca2+-binding
tional modifications of its components [27].
ER stress is a perturbing condition that activates the Unfolded

Protein Response (UPR) [28] pathway required to stimulate sur-
vival response to protein unfolding [29] or the cell death program
[30]. Previously, we showed that thapsigargin, a powerful inducer
of the ER stress, decreases transport of cargo proteins from the ER
to the Golgi complex [31–34].

Here, we report that ER stress modifies COPII assembly by alter-
ing Sec23a cycling indicating the existence of feedback circuits be-
tween protein folding and COPII coat assembly at the ER.

2. Materials and methods

2.1. Cell cultures

Huh7 cells were grown in DMEM, 4.5 g/l D-glucose, 1 mM Na-
pyruvate, 2 mM L-glutamine, 10% FCS. To induce ER stress, Huh7
cells were incubated with 300 nM thapsigargin (Sigma–Aldrich),
2 lM dithiothreitol, 10 lg/ml MG132 (Sigma–Aldrich).

2.2. Antibodies

Antibodies used were: anti-GM130 (BD Transduction Laborato-
ries), anti-Sec31a [35], anti-KIAA0310 (Bethyl Laboratories), anti-
Sar1 (Millipore); anti-Sec23a (ABR), anti-GAPDH and anti-calreti-
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Fig. 1. Effect of the ER stress on the amount of membrane bound Sec23a and Sar1a/b proteins. (A) Control Huh7 cells (C) were treated with 300 nM TG, 2 mM DTT or 10 lg/ml
MG132. Total cell lysates obtained from cells treated with inactive SLO (input: I), membrane fraction (bound: B) and cytosolic fraction (unbound: U) obtained by SLO-p cells
were analysed by western blot with specific antibodies. GAPDH and VAPA were used as reference for cytosolic and vesicular proteins, respectively. One out of three separate
experiments is shown. (B) Histograms show the percent of input (I) membrane bound (B) and unbound (U) Sec23a and Sar1a/b. Values obtained by densitometry of auto-
radiographs performed by the Image J program are the mean ± S.D. of three independent experiments. (C) Histograms show the relative abundance of Sec23a and Sar1a/b in
the input samples calculated from densitometry of immunoblots represented in (A) using GAPDH as internal standard. Statistical analysis was performed using the Student t-
test (n = 6–9). ⁄P-value 6 0.5; ⁄⁄P-value 6 0.1.
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culin (Sigma–Aldrich). FITC-, Texas Red- (Jackson Immuno
Research Laboratories), TRITC- and CY5- (GE Healthcare) conju-
gated antibodies were used for immunofluorescence analyses;
HRP-conjugated anti-IgG (Sigma–Aldrich) were used for immuno-
blotting analysis.

2.3. Streptolysin-O permeabilization assay

Streptolysin-O permeabilization (SLO-p) was performed as de-
scribed [36] with some modifications. Streptolysin-O (SLO) toxin
(0.8 U/ml) was preactivated (5 min at 37 �C) in SLO buffer
(20 mM Hepes-KOH pH 7.2, 110 mM KOAc, 2 mM Mg(OAc)2,
1 mM DTT). Huh7 cells were washed with SB containing SLO and
incubated 10 min 4 �C. Cells were washed at 4 �C with Transport
Buffer (TB: 25 mM HEPES KOH, 2.5 mM Mg(OAc)2, 110 mM KOAc,
5 mM EGTA, 1.8 mM CaCl2, 100 mM ATP, 500 mM phosphocrea-
tine, 1000 U/ml Creatine phosphokinase) and incubated 15 min at
37 �C to allow permeabilization (SLO-p cells) or at 4 �C to keep
SLO inactivated (input) .

Total lysates (Tris–HCl 10 mM, NaCl 150 mM, EDTA pH 8.00
1 mM, 1% Triton X-100) of unpermeabilised cells (input), cytosolic
proteins recovered from the incubation buffer (TB) (unbound) and
membrane bound proteins recovered from cell lysates of adherent
cells (bound) of SLO-p cells were subjected to SDS–PAGE and ana-
lyzed by Western Blot [37]. Cytosolic glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) and the 33 kDa membrane protein VAMP
(vesicle-associated membrane protein)-associated protein (VAPA)
were used to monitor SLO-p efficiency. The amount of bound and
unbound proteins was measured by densitometry of auto-radio-
graphs and referred as the percent of the input proteins. Values
were the mean ± S.D. of three independent experiments. Statistical
analysis was performed using the Student t-test (n = 6–9).

2.4. Immunofluorescence

SLO-p cells were fixed in PBS-4% paraformaldehyde and treated
for 30 min with PBS containing 0.5% BSA and 50 mM NH4Cl. Cells
were incubated with anti-GM130 antibody that accessed exclu-
sively SLO-p cells, successively treated with PBS-Saponin 1% and
stained with the indicated primary antibodies. Intact cells incu-
bated with inactivated (4 �C) SLO-p, fixed, treated with PBS-Sapo-
nin 1% and visualized with the indicated antibodies. Images were
collected by LSM 510 Zeiss confocal microscopy. Fluorescence
intensity in the region of interest was normalized for the fluores-
cence intensity obtained in an equal area of the Golgi complex la-
belled by the anti-GM130 antibody. In the Fig. 5,
immunofluoresence was carried out as previously reported [34].
Co-localization of fluorescence signals was quantified by using
the LSM 510 wizard. The number of co-localized pixels was nor-
malized for the total fluorescent pixels in the image.

2.5. Transfection, Fluorescence Recovery after Photobleaching (FRAP)
and Fluorescence Loss in Photobleaching (FLIP)

Huh7 cells grown on live cell dishes (Mattek) were transfected
with 2 lg of GFP-Sec23a or GFP-Sec16a (kindly provided by Dr. D.J.



Fig. 2. Quantitative analysis of GFP-Sec23a and GFP-Sec16a Fluorescence Recovery After Photobleaching (FRAP). Huh7 cells were transfected with 2 lg of either GFP-Sec23a
or GFP-Sec16a expressing vector. 24 h after transfection cells were analysed by FRAP while treated (TG) or not (C) with 300 nM TG for 2 h. Fluorescence of GFP-Sec23a (A) or
GFP-Sec16a (B) from individual ERES is shown. Plots of individual T½ values in seconds are reported for GFP-Sec23a (C) or GFP-Sec16a (E). Bars indicate the mean of T½ values
of individual ERES from 15 different cells. (D, F) Average recovery curve for GFP-Sec23a (D) and GFP-Sec16a (F). Insets show these data fitted to a single exponential. (G, H)
Tables report the number of individual ERES analysed (N), the rate of fluorescence recovery in seconds (T½); the percent of GFP-Sec23a or GFP-Sec16a proteins bound to the
membrane during post-bleach cycles (Immobile Fraction).

Fig. 3. Quantitative analysis of GFP-Sec23a Fluorescence Loss In Photobleaching (FLIP). Huh7 cells were transfected with 2 lg of GFP-Sec23a expressing vector. 24 h after
transfection cells were analysed by FLIP while treated (TG) or not (C) with 300 nM TG for 2 h. Plots of individual T½ values (A) and immobile fraction (C) of individual 25 ERES
from 15 different cells. Bars indicate the mean of T½ values or immobile fraction. (B) Averaged FLIP curve for the 25 ERES analyzed. The inset shows this curve fitted to a single
exponential. (D) Table shows the number of individual ERES analysed (N), the rate of fluorescence loss in seconds (T ½); the percent of GFP-Sec23a protein remaining bound
to the membrane during post-bleach cycles (Immobile Fraction).
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Stephens; Department of Biochemistry, University of Bristol) plas-
mid using Fugene 6 (Roche). 24 h after transfection, cells were im-
aged [38] with Zeiss LSM 510 META scanning confocal microscope
enclosed in a heated box in DMEM, supplemented with 30 mM
HEPES, pH 7.4 and 10% FCS. For FRAP measurements a 63� 1.4
NA Plan-Apochromat objective was used. Photobleaching was per-
formed on individual Sec16a or Sec23a spots with five iterations of
the 488 laser at 100% AOTF power. Post bleaching images were
collected for 40 s, 1 frame every 1 s and twofold line averaging.
Fluorescence recovery was quantified using Zeiss LSM 510 FRAP
Wizard and exported for analysis to Microsoft excel. Recycling
kinetics were obtained by curve fitting to a one phase exponential
f(t) = A � (1 – e�kt) + B, where, A is the mobile fraction, B is the
fluorescence directly after photo bleaching (%), and k is the
rate of fluorescence recovery from which t½ is determined
[t½ = ln(2)/k].

For FLIP analysis, a region of 8 � 8 lm encompassing about 40%
of the cytoplasm was intermittently photo bleached with 488 laser
at 100% AOTF power. Fluorescence loss was measured from indi-
vidual Sec16a or Sec23a spots for 80 s outside of the bleached area.



Fig. 4. Analysis of membrane bound Sec31a in SLO permeabilized Huh7 cells. (A) SLO-p Huh7 control cells (C) or cells treated for 1 h with 300 nM TG, 2 mM DTT or 10 lg/ml
MG132 were fixed and co-labelled by immunofluorescence with anti-Sec31a and anti-GM130 antibodies as indicated. In the same experimental conditions, SLO-p cells were
stained with the ER marker calreticulin (CLR). Histograms show the percent of Sec31a held on membranes normalized for GM130 mean intensity of fluorescence in SLO-p
cells. Intact cells were fixed, permeabilized with PBS-1% saponin and stained for GM130 and Sec31a proteins. For each condition, a minimum of 100 different cells were
analysed in three independent experiments. (B) Western blot analysis of Sec31a/b in SLO-p Huh7 cells. Total cell extracts (input: I), membrane fraction (bound: B) and
cytosolic fraction (unbound: U) were analysed by western blot with anti Sec31a/b antibody. Histogram shows the percent membrane bound (B) and unbound (U) Sec31a/b.
The mean ± S.D. of three independent experiments is reported. Statistical analysis was performed using the Student t-test (n = 6–9) described in the methods section ⁄P-
value 6 0.5; ⁄⁄P-value 6 0.1.
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Five different cells and for each cell five sec23a spots were
analysed and quantified as for FRAP experiments. Statistical signif-
icance was determined using standard deviation and the Student’s
unpaired t-test.

3. Results

3.1. ER stress reduces membrane bound Sec23a

To investigate the effect of ER stress on COPII assembly Huh7
cells were treated with 300 nM thapsigargin (TG) or 2 lM DTT or
10 lg/ml MG132, three different ER-stress inducers that act via
distinct mechanisms (Fig. 1). The amount of membrane bound
Sec23a or both Sar1a and Sar1b was measured in SLO-p cells as de-
scribed in the Methods section. Our experiments showed that,
compared to control cells, membrane retained Sec23a in SLO-p
cells was reduced by 50 ± 3% in TG-treated cells, 66 ± 2.9 in DTT-
or 61 ± 2.1% in MG132-treated cells (Fig. 1B). Albeit at lesser ex-
tent, we observed reduced membrane association of Sar1a/b pro-
teins (TG = 62 ± 3.1; DTT = 70 ± 2.9 and MG132 = 60 ± 3.0)
(Fig. 1B). Instead, the intracellular level of either Sec23a and
Sar1a/b was not modified (Fig. 1C) suggesting that ER stress could
affect membrane stability of COPII components.
3.2. ER stress accelerates Sec23a cycling

Next, we performed FRAP measurements [21] for GFP-Sec23a
from individual ERES by using TG, as representative inducer of
ER stress (Fig. 2A). In agreement with previous results [21,38],
FRAP assays revealed that GFP-Sec23a cycles at ERES of control
cells with a T1/2 of 5.52 ± 1.5 s (Fig. 2C and G). Instead, GFP-Sec23a
cycled more rapidly in TG treated cells (T1/2 = 4.45 ± 1.1 s). This re-
sult was statistically significant (P = 0.042) and indicated a faster
turnover of GFP-Sec23a at ERESs of ER stressed cells. Additionally,
FRAP results confirmed that TG reduced membrane bound GFP-
Sec23a (see Fig. 2G: GFP-Sec23a, immobile fraction).

In contrast, GFP-Sec-16a cycling exhibited similar rate in
control and in TG-treated cells (T1/2 = 7.011 ± 1.5 s and
T1/2 = 7.6 ± 1.3 s, respectively), indicating that membrane associa-
tion of Sec16a is not affected by ER stress (Fig. 2B, E and H). More-
over, Sec16a was stably bound to membranes as shown by the
higher percentage of immobile GFP-Sec16a compared to GFP-
Sec23a (see Fig. 2H: GFP-Sec16a, immobile fraction).

Finally, to further define the effect of ER stress on Sec23a cy-
cling, we performed FLIP measurements of GFP-Sec23a fluores-
cence at individual ERES (Fig. 3). Fluorescence loss measured
outside of bleached regions showed that GFP-Sec23a fluorescence



Fig. 5. Immunofluorescence analysis of Sec31a and Sec16a distribution in unstressed or ER stressed cells. Huh7 cells seeded on glass cover slips were either untreated (C) or
treated with 300 nM TG for 2 h, 2 mM DTT or 10 lg/ml MG132, fixed and analyzed by immunofluorescence with the anti-Sec16a (Sec16a) and anti-Sec31a (Sec31a)
antibodies. Percent of Sec31a pixels colabeling with Sec16a pixels is shown on the right.
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declined faster in the TG-treated cells starting with a T1/2 =
23.01 ± 4.3 in the control cells to T1/2 = 17.52 ± 1.78 in TG-treated
cells (Fig. 3A and D) suggesting that ER stress could induce Sec23a
release.

3.3. ER stress alters the association of Sec31a to intracellular
membrane

Next, to further evaluate the effect of ER stress on COPII assem-
bly, we analysed the association of Sec31a with intracellular mem-
branes. Sec31a retained at Huh7 endomembranes was measured
by immunofluorescence in SLO-p cells, either in presence or in ab-
sence of TG or DTT or MG132 (Fig. 4A).

Semiquantitative results revealed that, with respect to control
cells, TG (20 ± 3.8%) and, at lower extent, MG132 (38 ± 3.9%) and
DTT (42 ± 4.0%), reduced membrane bound Sec31a confirming that
ER stress restrains COPII assembly (Fig. 4A). Notably, neither SLO-p
nor exposure to stress induced ER morphology changes as revealed
by the ER marker calreticulin (Fig. 4A). Moreover, semi-quantita-
tive immunofluorescence analysis was confirmed by WB analysis
of SLO-p cells (Fig. 4B), which revealed, in line with immunufluor-
esence results, that the amount of bound Sec31a/b in the ER
stressed cells declined to 40 ± 3.9%, 45 ± 4.0% and 50 ± 4.1% in the
TG, MG132 and DTT treated cells, respectively (Fig. 4B).

Finally, we compared the intracellular distribution of Sec31a to
that of the endogenous Sec16a protein before and following
exposure of Huh7 cells to TG or DTT or MG132 (Fig. 5). As we ex-
pected from our previous results [34], fluorescence intensity of
Sec31a spots declined in the stress induced cells compared to con-
trol cells, being 44.3 ± 3.3% in the TG-, 73.6 ± 12.3% DTT- and
53.1 ± 5.9% in the MG132-induced cells (Fig. 5). Instead, ER stress
did not induce changes on the intracellular pattern of Sec16a,
which instead co-localized with Sec31a in the ER stressed cells at
the same extent as in control cells, suggesting that Sec16a nor-
mally nucleates COPII assembly at ERESs (Fig. 5).

4. Discussion

In this work, we tried to gain insight on the molecular events
underlying the control of COPII assembly during ER stress. To this
aim, we examined the effect of ER stress by the parallel use of dis-
tinct ER-stress inducers on the intracellular distribution and mem-
brane association of proteins having different roles in COPII
assembly.

Our data show that ER stress induces reduced stability of COPII
components. Such an effect is particularly evident on Sec23, which
plays a crucial role in the formation of prebudding complexes, in
the coat assembly and in the COPII disassembly throughout its
GAP activity on Sar1 [19]. Therefore, reduced COPII vesicle forma-
tion during ER stress could be simply explained by reduced Sec23
stability and/or by delayed COPII turnover due to insufficient Sec23
GAP activity on Sar1.
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On the other hand, vesicle bound Sec23 interacts with the teth-
ering factor TRAPPI to ensure directionality of ER to Golgi transport
[39,40]. Sec23a, as suggested by FLIP assay, is rapidly released from
intracellular membranes of ER stressed cells leading to reduced
Sec23/TRAPP interactions. Subsequently, reduced Sec23/TRAPP
complexes would certainly reduce tethering and fusion events re-
quired for efficient cargo transport thus reducing transport of cargo
proteins as we observe in ER stressed cells [34].

In yeast cells, a Golgi-associated kinase, (CK1d orthologue)
phosphorylates Sec23p within the Sec23p/Sec24p complex [40]
indicating that phosphorylation is needed for vesicle budding. Fur-
thermore yeast Sec23p undergoes to ubiquitination/de-ubiquitina-
tion cycles and this balance is essential for a proper secretory
function [41]. Hence, the question arises as to whether ER stress,
presumably throughout the UPR, would induce similar Sec23 mod-
ifications to regulate COPII assembly in mammalian cells.

In conclusion, our results enforce the hypothesis that COPII
assembly plays central role throughout the ER stress response by
preventing post-ER compartments from the accumulation of mis-
folded proteins that could more efficiently either refold in the ER
or be destined to degradation through the ERAD.
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