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The scototaxis test has been introduced recently to assess anxiety-like phenotypes in fish, including zebrafish.
Parametric analyses suggest that scototaxis represents an approach–avoidance conflict, which hints at
anxiety. In this model, white avoidance represents anxiety-like behavior, while the number of shuttling
events represents activity. Acute or chronic fluoxetine, buspirone, benzodiazepines, ethanol, caffeine and
dizocilpine were assessed using the light–dark box (scototaxis) test in zebrafish. Acute fluoxetine treatment
did not alter white avoidance, but altered locomotion in the higher dose; chronic treatment (2 weeks), on the
other hand, produced an anxiolytic effect with no locomotor outcomes. The benzodiazepines produced a
hormetic (inverted U-shaped) dose–response profile, with intermediate doses producing anxiolysis and no
effect at higher doses; clonazepam, a high-potency benzodiazepine agonist, produced a locomotor
impairment at the highest dose. Buspirone produced an anxiolytic profile, without locomotor impairments.
Moclobemide did not produce behavioral effects. Ethanol also produced a hormetic profile in white avoidance,
with locomotor activation in 0.5% concentration. Caffeine produced an anxiogenic profile, without locomotor
effects. These results suggest that the light–dark box is sensitive to anxiolytic and anxiogenic drugs in
zebrafish.
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1. Introduction

Zebrafish (Danio rerio Hamilton 1822) are small cyprinid fishes
which have long been used as models in developmental and genetic
studies (Key and Devine, 2003). Its physiology is relatively simple,
intermediary between humans and, e.g., flies and worms, makes it
suitable for high-throughput research in pharmacology, toxicology,
behavioral genetics and pharmacogenomics (Gerlai, 2010; Stewart
et al., 2010). They also present neuroanatomical landmarks and
neurotransmitter systems which are very similar to those observed
in mammals (Maximino and Herculano, 2010; Panula et al., 2010),
and respond in a predictable fashion to anxiolytic and anxiogenic
drugs in behavioral screens such as the novel tank diving test
(Bencan et al., 2009; Cachat et al., 2010; Egan et al., 2009) or the
open-field (López-Patiño et al., 2008). In fact, recentlymany different
behavioral tests of anxiety, fear and stress have been proposed using
zebrafish (Maximino et al., 2010a).
Aside from the alreadymentioned novel tank diving test and open-
field, the scototaxis test has also been proposed as a model of anxiety-
like behavior in different teleost species (Maximino et al., 2010c;
Stewart et al., 2010). Different from the novel tank diving test (Bencan
et al., 2009; Egan et al., 2009; Grossman et al., 2010; Sackerman et al.,
2010; Sallinen et al., 2009; Stewart et al., 2010; Stewart et al., in press
a; Wong et al., 2010), in which the novelty of the environment is the
main aversive stimulus (Bencan et al., 2009; Wong et al., 2010),
behavior in the scototaxis test is driven mainly by a approach–
avoidance motivational conflict (Maximino et al., 2010c). The test is
deceptively simple, very similar to the murine light/dark box (Bourin
and Hascöett, 2003), relying on the exploration, by fish, in a black and
white tank for the establishment of preference (Maximino et al.,
2010c; Stewart et al., 2010). In general, anxiolytic drugs and
treatments increase the time the animal spends in the white
compartment while anxiogenic drugs decrease this time (Grossman
et al., 2010; Sackerman et al., 2010; Stewart et al., 2010).

Other models of anxiety in zebrafish (such as open-field and the
novel tank diving test) have demonstrated behavioral effects of
anxiolytic and anxiogenic agents (Bencan et al., 2009; Egan et al.,
2009; Grossman et al., 2010; López-Patiño et al., 2008; Sackerman
et al., 2010; Sallinen et al., 2009; Stewart et al., 2010; Stewart et al., in
press b; Wong et al., 2010). The scototaxis test has the advantage of
being more extensively validated (behaviorally) than other tasks. For
example, high-avoidant animals (i.e., animals which spend less time
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in the white compartment when first exposed to the apparatus),
when confined in the white compartment, show increased freezing
and erratic movement (Blaser et al., 2010), which suggest that
approach to the black compartment is not what determines the
preference for the dark environment in this model. High-avoidant
animals also show increased thigmotaxis (“clinging” to the walls of
the apparatus) in the black compartment (Blaser et al., 2010).
Moreover, intra- and inter-session habituation of locomotion, but
not of white avoidance, suggest that the white compartment is indeed
aversive, but that a second component elicits exploration of this
compartment as the session evolves (Maximino et al., 2010b).
Increasing lighting levels above the white portion of the tank
decreases the time spent in it during the session (Stewart et al.,
2010); confining animals thrice in thewhite compartment prior to the
experiment does not alter spatiotemporal measures of preference, but
decrease the frequency of burst swimming, freezing and thigmotaxis
in the white compartment, suggesting that this treatment diminishes
fear (Maximino et al., 2010b). When animals are separated in high-
avoidant versus low-avoidant, one single confinement event
decreases the time spent in the white compartment in high-avoidant,
but increases this lattermeasure in low-avoidant zebrafish (Blaser et al.,
2010). Overall, these results suggest that scototaxis is not resultant from
approach to the black compartment nor from avoidance of the white
compartment, being instead the compound result of an approach–
avoidance conflict; stimulus control, then, is the resultant from these
conflicting motivations. This is important, since it has been suggested
that, at least in rodents, novelty is not enough to produce anxiety,
inducing a state more akin to arousal (Misslin and Cigrang, 1986). The
choice of drugs in the present experiments reflects the objective of
further analyzing scototaxis as an anxiety model.

Pharmacological analyses of this test have been few and far in
between. Preliminary results from our laboratory and by Su Guo
uncovered an anxiolytic effect of low doses of chlordiazepoxide (Lau
et al., 2010; Maximino et al., 2010c), a compoundwhich reduces theta
frequency in the hippocampus of rats (Woodnorth and McNaughton,
2002) and produces anxiolytic effects in the light–dark transitions box
in mice (Chaouloff et al., 1997; Griebel et al., 1996; Hascoet and
Bourin, 1998; Shimada et al., 1995) and in the cat odor challenge
model in rats (Zangrossi and File, 1992); interestingly, chlordiaz-
epoxidewas not detected as an anxiolytic compound in the novel tank
diving test (Bencan et al., 2009). Caffeine is also anxiogenic in the
novel tank test (Cachat et al., 2010; Egan et al., 2009) and in the
scototaxis test (Stewart et al., 2010), and the A1 adenosine receptor
inverse agonist DPCPX is also anxiogenic in the scototaxis task
(Stewart et al., 2010). Nicotine did not produce any significant effect
on total locomotion or white avoidance in a modified version of the
scototaxis test, but acute ethanol and chlordiazepoxide increased the
time spent in the white arms (Sackerman et al., 2010). The acute
exposure of zebrafish to acute citalopram (an selective serotonin
reuptake inhibitor which binds on the allosteric site of the serotonin
transporter) or yohimbine (an α-adrenoceptor antagonist, and, to a
lesser extent, 5-HT1B, 5-HT1D, 5-HT2A, 5-HT2B, and D2 receptor
antagonist, and 5-HT1A receptor partial agonist) do not produce an
anxiogenic effect, though (Sackerman et al., 2010). Acute exposure to
LSD also produces an anxiolytic-like effect in zebrafish (Grossman
et al., 2010).

The present article extends these findings, analyzing the effects
of acute and chronic treatment with fluoxetine, a selective serotonin
reuptake inhibitor (SSRI) which binds to the orthosteric site of the
serotonin transporter; diazepam and chlordiazepoxide, classic
benzodiazepine receptor agonists; clonazepam, a high-potency
benzodiazepine receptor agonist; buspirone, a 5-HT1A partial
agonist; moclobemide, a monoamine oxidase inhibitor; acute
ethanol; and caffeine. These drugs were chosen based on their
clinical effects on generalized anxiety disorder (SSRIs, classic and
high-potency benzodiazepines, and buspirone) or panic disorder
(SSRIs, MAOIs, and high-potency benzodiazepines) (Lieberman and
Tasman, 2006). Caffeine and ethanol were chosen because they
show effects in other models of anxiety in zebrafish (Cachat et al.,
2010; Egan et al., 2009), and are extensively used by the population
outside of clinical settings.

2. Methods

2.1. Animals and housing

240 unsexed adult wildtype zebrafish (shortfin phenotype) were
kept in collective 40 l tanks (n=20 fish per tank) for two weeks
before experiments begun. The water was reconstituted and buffered
to a pH of 7.0 (Mydor Target 7.0 buffer), and the tanks had constant
filtering, temperature control (27±2 °C), illumination (14/10 h,
beginning of the cycle at 0700 am) and feeding (Oscar Gold pellet
ration). Animals were not used for any other experiment besides the
one presented in this paper. Rearing and welfare conditions were in
accordancewith the standards set by ASAB/ABS (2006) and Colégio de
Experimentação Animal, COBEA/Brazil (Andersen et al., 2008), and
were approved by UFPA's Ethics Committee.

2.2. Drug treatments

Fluoxetine hydrochloride (Eli Lily, Brazil), buspirone hydrochloride
(Bristol-Myers Squibb, Brazil), moclobemide (Roche, Brazil), ethanol
(Cromoline, Brazil), and anhydrous caffeine (Quimis, Brazil) were
dissolved in teleost's normal Ringer solution (115 mM NaCl, 2.9 mM
KCl, 1.8 mM CaCl2, 5 mM HEPES, pH 7.2) (Westerfield, 2000) in fresh
preparations made 2 h before the experiment. Clonazepam (Roche,
Brazil), diazepam (Roche, Brazil), and chlordiazepoxide (Farmasa,
Brazil) were dissolved in a solution of 40% propylene glycol, 10% ethyl
alcohol, 5% sodium benzoate, and 1.5% benzyl alcohol (Maximino et al.,
2010c). Animals were injected with vehicle (teleost's Ringer solution),
5.0, or 10.0 mg kg−1

fluoxetine; vehicle (propylene glycol/ethyl alcohol/
sodium benzoate/benzyl alcohol solution), 0.05, 0.5 or 1.0 mg kg−1

clonazepam; vehicle (propylene glycol/ethyl alcohol/sodium benzoate/
benzyl alcohol solution), 0.02 or 0.2 mg kg−1 diazepam; vehicle
(propylene glycol/ethyl alcohol/sodium benzoate/benzyl alcohol solu-
tion), 0.02 or 0.2 mg kg−1 chlordiazepoxide; vehicle (teleost's Ringer
solution), 25.0 or 50.0 mg kg−1 buspirone; vehicle (teleost's
Ringer solution), 5.0 or 10.0 mg kg−1 moclobemide; vehicle (teleost's
Ringer solution), 0.25%, 0.5% or 1.0% (v.v.) ethanol; or vehicle (teleost's
Ringer solution) or 100 mg kg−1 caffeine. For chronic treatment with
fluoxetine, animals were injected daily, for 2 weeks, with the same doses
as in the acute treatment. Before injection, animals were kept in water
containing (±)menthol (100 mg l−1, Aldrich, St. Louis, MO, USA) until
anesthetized, and were subsequently weighted; control animals were
equally handled, anesthetized and injected with teleost's Ringer solution
daily for 2 weeks. The injected volumewas between4and6 μl, depending
on theweight of thefish (0.4–0.6 g). 30 min. afterdrug treatment, animals
were tested in the 15-min scototaxis test. Caffeine-treated animals were
tested for 10 min, and not 30 min, after drug treatment, as it has been
shown to produce an anxiogenic effect after 15 min, but not 30 min, in
mice (Jain et al., 1995).

2.3. Apparatus and procedure

The test tank consisted of an aquarium made of matte acrylic
(15×10×45 cm), with one horizontal half made of white acrylic and
the other half made of black acrylic. The acrylic chosen was not
reflective, in order to avoid the tendency of those animals which
present shoaling to behave in relation to their own reflection. The
tank contained sliding central doors, colored with the same color of
the aquarium side, defining a central compartment of 15×10×10 cm.
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For the present experiment, we used the protocol described in
Maximino et al. (2010c). Briefly, in each session animals were placed
individually in the central compartment for 3 min (acclimation), after
which the sliding doors were removed. The animals were then
allowed to freely explore the aquarium. The session was terminated
after 900 s. The proportion of the trial that the animal spent in the
white compartment and the number of shuttle events were recorded.
After each trial within one session, the tank was rotated by 180°, so as
to eliminate spatial effects. The tank was illuminated by environmen-
tal light (60 W light bulb, located at 1.80 m above the tank top) which
kept illumination uniform and constant between trials.

2.4. Statistical analyses

Data were analyzed using one-way analyses of variance (ANOVAs)
followed by Dunnett's multiple comparison test when appropriate. Data
from caffeine treatmentwere analyzed using Student's t-test. All analyses
and figures were made using GraphPad Prism 5.00 (GraphPad Software,
Inc.), and data is presented as mean±standard error.

3. Results

Acutefluoxetine treatmentdidnot alterwhite avoidance in zebrafish
(Fig. 1A, F[2, 29]=0.5236, NS), but it increased locomotion at the highest
dose (Fig. 1B, F[2, 26]=5.441, p=0.0113). Chronic treatment, on the
other hand, increased the time spent in the white compartment at the
Fig. 1. Acute (A and B) and chronic (2 weeks; C and D) fluoxetine treatment (n=10 eac
fluoxetine increased locomotion (B), while chronic treatment (2 weeks) increased the tim
Dunnet's post-hoc test.
higher dose (Fig. 1C, F[2, 29]=15.92, pb0.0001) without producing
effects on locomotion (Fig. 1D, F[2, 29]=0.07237, NS).

The smaller dose of chlordiazepoxide (0.02 mg kg−1) significantly
decreasedwhite avoidance, but the highest dose did not (Fig. 2A, F[2, 29]=
8.01, p=0.0019). No locomotor effects were observed for any dose
(Fig. 2B, F[2, 29]=1.157, NS). Clonazepam decreased white avoidance
in the smallest dose (Fig. 2C, F[3, 39]=5.596, p=0.003). The highest dose
of clonazepam, on the other hand, seemed to produce ataxia or sedation,
as it decreased the frequency of shuttle events (Fig. 2D, F[3, 39]=4.367,
p=0.0101). Diazepam decreased white avoidance at 1.25 mg kg−1, but
not 2.5 mg kg−1 (Fig. 2E, F[2, 29]=6.241, p=0.0059); no locomotor
effects were observed (Fig. 2F, F[2, 29]=0.6199, NS).

Buspirone produced an anxiolytic effect (that is, increased time
spent in thewhite compartment) in both doses studied (Fig. 3A, F[2, 29]=
53.94, pb0.0001) without producing locomotor impairment (Fig. 3B,
F[2, 29]=0.4077, NS). The MAO-A inhibitor moclobemide did not
produce effects on either white avoidance (Fig. 3B and C, F[2, 29]=
1.234, NS) nor locomotion (Fig. 3D, F[2, 29]=0.1944, NS).

Acute ethanol treatment increased the time spent in the white
compartment at the smallest concentrations (0.25% and 0.5%), but did
not have effects at 1.0% (Fig. 4A, F[3, 39]=37.56, pb0.0001); there was
a biphasic effect on locomotion, with increase at 0.5% and a non-
significant decrease at 1.0% (Fig. 4B, F[3, 39]=7.687, p=0.0004).

Caffeine produced an anxiogenic (Fig. 5A, t[df= 18]=3.139,
p=0.0057), but not a locomotor effect (Fig. 5B, t[df=16]=0.5226,
p=0.6084).
h) produce a behavioral effect in zebrafish at the highest dose (10.0 mg kg−1). Acute
e spent in the white compartment (C). **pb0.01, ***pb0.0001, one-way ANOVA with



Fig. 2. Effect of benzodiazepines on white avoidance (A, C, and E) and locomotor activity (B, D, and F) in the scototaxis in zebrafish (n=10 each). Chlordiazepoxide, clonazepam and
diazepam produce a hormetic anxiolytic effect. Clonazepam produced a locomotor impairment at the highest dose (1.0 mg kg−1) (D). *pb0.05, **pb0.01, ***pb0.0001, one-way
ANOVA with Dunnet's post-hoc test.
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4. Discussion

4.1. Serotonergic drugs in scototaxis

Fluoxetine, a selective serotonin reuptake inhibitor, produced a
pattern of response that is similar to what is observed in mammals
(including humans) — that is, an anxiolytic effect only in chronic
treatment (Fig. 1). These results are consistent with what was
observed in the novel tank diving test in zebrafish (Egan et al.,
2009) and in the open-field in Chinook salmon (Clements and
Schreck, 2007). The lack of acute effect is consistent with the effect of
another SSRI, citalopram, which did not produce an anxiolytic effect in
a modified version of the dark/light box with acute treatment
(Sackerman et al., 2010). Likewise, acute fluoxetine has no effect in
the novel tank diving test (Stewart et al., in press b), but citalopram
does (Sackerman et al., 2010); this difference in profiles could be
explained by differences in binding site (allosteric versus orthosteric)
occupied by these drugs in the serotonin transporter. Acute
fluoxetine, however, tends to increase anxiety in rodent models
(Burghardt et al., 2007; Drapier et al., 2007; Silva and Brandão, 2000),
as it does in an active avoidance task in goldfish (Beulig and Fowler,
2008).

A possible explanation for this disparity is that zebrafish has two
serotonin transporters with complementary distributions, coded by

image of Fig.�2


Fig. 3. Effect of buspirone (A and B)moclobemide (C andD) and onwhite avoidance and locomotor activity in the scototaxis in zebrafish (n=10 each). Buspirone produced an anxiolytic
effect without locomotor impairment, while moclobemide did not produce behavioral effects at the doses tested. ***pb0.0001, one-way ANOVA with Dunnet's post-hoc test.
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the genes slc6a4a and slc6a4b (Norton et al., 2008; Wang et al., 2006);
the first is expressed in the superior and inferior raphe, and dorsal and
ventral parts of theperiventricular pretectal nucleus,while the second is
expressed mainly in the paraventricular organ, retina and medulla
oblongata (Norton et al., 2008; Wang et al., 2006). It seems, then, that
zSERTAcontrols serotonin reuptake in the centralnervous system,while
zSERTBcontrols reuptake in the cerebrospinalfluid (Norton et al., 2008).
Site-directed mutagenesis experiments (Severinsen et al., 2008)
pointed that residues Ala505, Leu506 and Ile507 in the zSERTA receptor
are responsible for its three-fold increase in Km and two-fold increase in
Vmax in relation to hSERT; these residues are absent in the zSERTB
receptor, which probably has different affinities for 5-HT and SSRIs than
its counterpart. These probable differences in affinity should explain the
low potency of acute fluoxetine in inducing anxiety in zebrafish.

Interestingly, zSERTAalso shows a higher affinity for imipramine (an
reuptake blocker with greater affinity for the noradrenaline transporter
than the serotonin transporter) and desipramine (an reuptake blocker
with greater affinity for the serotonin transporter than the noradren-
aline transporter) in relation to hSERT (Sackerman et al., 2010;
Severinsen et al., 2008); consistent with that, in a modified version of
the light/dark box, desipraminedid not change the total time the animal
spent in the white compartments or the number of entries in the white
compartments (Sackerman et al., 2010); on the other hand, both acute
desipramine and acute citalopram had anxiolytic effects in the novel
tank diving test (Sackerman et al., 2010).

Buspirone also produced an anxiolytic effect on this test, without
any effects on locomotion (Fig. 3A, B). The doses used (25 and
50 mg kg−1) were chosen based on previous work on the effects of
buspirone on the novel tank diving test (Bencan et al., 2009).
Buspirone is thought to preferentially bind 5-HT1A autoreceptors in
the raphe, where it acts as a partial agonist to reduce the synthesis and
release of serotonin (Meller et al., 1990). As is the case with the
duplication of serotonin transporters, zebrafish also posses two
different 5-HT1A receptors, coded by the genes htr1aa and htr1ab
(Norton et al., 2008). Both receptors are expressed in the superior
raphe, which could explain why, despite of the duplication event,
buspirone still produces anxiolysis in both scototaxis and the novel
tank diving test.

Other serotonergic drugs which produce effects on zebrafish
anxiety are LSD (a partial agonist at 5-HT2A receptors) (Grossman
et al., 2010), selegiline (a MAO-B inhibitor), clorgyline (a MAO-A
inhibitor), fluvoxamine (a selective serotonin reuptake inhibitor) and
para-chlorophenylalanine (PCPA, a tryptophan hydroxylase inhibitor)
(Sallinen et al., 2009). In adult zebrafish, LSD produces an anxiolytic-
like profile in the novel tank diving test, in the scototaxis test, and in
the open-field, but it paradoxically increased whole-body cortisol
levels (Grossman et al., 2010). Selegiline and clorgyline decreased
locomotion and bottom-dwelling in larval zebrafish, while also
decreasing monoamine oxidase activity, increasing heart rate and 5-
HT levels (Sallinen et al., 2009), while co-treatment with PCPA rescues
behavioral alterations and serotonin levels. In adult zebrafish, acute
treatment with the non-selective, irreversible MAO inhibitor tranyn-
cypromine produces anxiolysis at low doses and sedation at high
doses (Stewart et al., in pressb). Selegiline and clorgyline act as
monoamine oxidase inhibitors, and zebrafish possess only one copy of
this enzyme (as opposed to the two isoforms observed in mammals)
(Anichtchik et al., 2006; Setini et al., 2005). In vitro and in vivo
pharmacological analyses, as well as sequence data, suggest that

image of Fig.�3


Fig. 4. Acute ethanol treatment produces an anxiolytic (at 0.25% and 0.5% v.v.) and
hyperlocomotor (0.5% v.v.) effect on the scototaxis test (n=10 each). *pb0.05,
**pb0.01, ***pb0.0001, one-way ANOVA with Dunnet's post-hoc test.

Fig. 5. Acute caffeine (100 mg kg−1) is anxiogenic, but not locomotor activating, in the
scototaxis test (n=10 each). **pb0.01, one-way ANOVA with Dunnet's post-hoc test.
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zMAO is more akin to human MAO-A than MAO-B (Anichtchik et al.,
2006; Sallinen et al., 2009; Setini et al., 2005), which explains the
selective effects of MAO inhibitors on serotonin levels. In the present
article, however, MAO inhibition did not produce any effects on
zebrafish behavior (Fig. 3C, D). These results are different fromwhat is
observed in the novel tank diving test (Sallinen et al., 2009; Stewart
et al., in pressb), suggesting a difference in the types of anxiety which
are modeled by each test. Indeed, monoamine oxidase inhibitors are
thought to be effective against panic disorder, but not generalized
anxiety disorder (Lieberman and Tasman, 2006).

4.2. Benzodiazepines and ethanol in scototaxis

Benzodiazepines produced an anxiolytic-like hormetic profile in
the scototaxis test (Fig. 2), a predominant result with benzodiaze-
pines (Calabrese, 2008). The highest dose of clonazepam produced a
locomotor impairment, with the smallest dose (0.05 mg kg−1)
producing anxiolysis. At doses equivalent to those used in the present
experiments, diazepam, but not chlordiazepoxide, was effective in the
novel tank diving test (Egan et al., 2009; Sackerman et al., 2010). In a
modified version of the scototaxis test, chlordiazepoxide increased
the number of entries in the white compartments and the time spent
there (Sackerman et al., 2010). Not surprisingly, pentylenetetrazole, a
GABA antagonist, increases the time spent in the top and impairs
habituation of bottom-dwelling and erratic movements in the novel
tank diving test (Wong et al., 2010).

Among other effects, acute ethanol treatment affects GABAA and
NMDA receptors (Krystal and Tabakoff, 2002). In this article, ethanol
produced a biphasic effect on both anxiety and locomotion (Fig. 4).
These results parallel the anxiolytic effect of 0.5% ethanol on the
modified scototaxis test (Sackerman et al., 2010) and in the novel tank
diving test (Egan et al., 2009), as well as the biphasic locomotor effect
in an open-field (Gerlai et al., 2000). The locomotor-activating effect
of ethanol, in zebrafish larvae, seems to be dependent on adenylate
cyclase-mediated phosphorylation of extracellular signal-regulated
kinases (ERKs), while the locomotor-depressing effects are not (Peng
et al., 2009). Ethanol, however, presents effects on many different
systems, including GABAA-Rs, NMDA-Rs, μ-opioid receptors, dopa-
mine and norepinephrine receptors, and voltage-sensitive calcium
receptors (Krystal and Tabakoff, 2002). Allied to the fact that the
anxiolytic-like effect is accompanied by a hyperlocomotor effect at the
0.5% concentration, this makes it difficult to interpret the outcomes of
acute ethanol intoxication in zebrafish.
4.3. Caffeine in scototaxis

Caffeine is a non-selective antagonist at A1, A2A and A2B

adenosine receptors, also inhibiting phosphodiesterases (Daly
et al., 1999). In zebrafish, caffeine produces an anxiogenic effect on
the scototaxis test (Stewart et al., 2010) and in the novel tank diving
test (Egan et al., 2009; Wong et al., 2010); an inverted U-shaped
dose–response function was observed in locomotion in the scoto-
taxis test (Stewart et al., 2010). The anxiogenic effects were
attributed to antagonism at A1 receptors, since DPCPX (a selective
A1-R antagonist) also increases anxiety; the locomotor effect was
attributed to A2A receptors, since ZM241,385 (an A2A-R antagonist)
increased locomotion, but not anxiety (Stewart et al., 2010). In the
present work, these results were replicated, with the caffeine dose
used (100 mg kg−1) being effective in producing an anxiogenic, but
not hyperlocomotor effect (Fig. 5).

image of Fig.�4
image of Fig.�5
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5. Conclusion

This work presented the effects of drugs which are used in the
clinical treatment of anxiety disorders, including benzodiazepines,
fluoxetine and buspirone, as well as investigated the modulation of
anxiety by ethanol and caffeine. Overall, the results obtained were
consistent with results obtained in rodent models, such as the murine
light–dark box (Bourin and Hascöet, 2003), and in the novel tank
diving test (Bencan et al., 2009; Cachat et al., 2010; Egan et al., 2009;
Stewart et al., in press b). Some differences in the pharmacology of the
novel tank diving test and the scototaxis test are observed; the novel
tank diving test, for example, seems to be sensitive to diazepam, but
no chlordiazepoxide, while our results show that the scototaxis test is
sensitive to other benzodiazepines as well. In the novel tank diving
test, citalopram (a selective serotonin reuptake inhibitor) is anxiolytic
in acute treatment, while fluoxetine did not show the same effect in
the present work and in the novel tank test; our results are consistent
with the time course of SSRIs in the clinical management of anxiety
disorders. Our results also show a lack of sensitivity for moclobemide,
a MAO-A inhibitor, which suggest selectivity for anxiolytic (and not
panicolytic) drugs.

Overall, the present results show the feasibility of the scototaxis
test for pharmacological assessment of anxiety. At the present
moment, the scototaxis test represents a reliable and low-cost
alternative for behavioral phenotyping in zebrafish. Also, the fact
that drugs which have clinical efficacy on generalized anxiety disorder
but not on panic disorder (e.g., buspirone, early benzodiazepines) or
vice-versa (e.g., moclobemide), as well as the previous observations
that the preference for dark environments is better explained by a
approach–avoidance conflict and not simply a reaction to novelty
(Blaser et al., 2010; Maximino et al., 2010b,c), suggest that the
scototaxis test could be a model of generalized anxiety in zebrafish.
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