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Abstract

The mutual compatibility of the dynamical equations and constraints describing a massive particle of
arbitrary spin, though essential for consistency, is generically lost in the presence of interactions. The con-
ventional Lagrangian approach avoids this difficulty, but fails to ensure light-cone propagation and becomes
very cumbersome. In this paper, we take an alternative route—the involutive form of the equations and
constraints—to guarantee their algebraic consistency. This approach enormously simplifies the search for
consistent interactions, now seen as deformations of the involutive system, by keeping manifest the causal
propagation of the correct number of degrees of freedom. We consider massive particles of arbitrary integer
spin in electromagnetic and gravitational backgrounds to find their possible non-minimal local couplings.
Apart from easily reproducing some well-known results, we find restrictions on the backgrounds for con-
sistent propagation of such a particle in isolation. The results can be altered by non-local interactions that
may arise from additional massive states in the interacting theory.

© 2013 The Authors. Published by Elsevier B.V. 

1. Introduction

Any fundamental particle described in Quantum Field Theory carries an irreducible unitary
representation of the Poincaré group. Massive particles of arbitrary spin, which belong to the first
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Wigner class, are customarily represented by symmetric traceless tensors (bosons) or symmetric
γ -traceless tensor-spinors (fermions).1 A spin-s bosonic field of mass m, which we denote by
ϕμ1...μs , is required to satisfy the Klein–Gordon equation,(

∂2 − m2)ϕμ1...μs = 0, (1.1)

and is subject to the divergence condition,

∂ · ϕμ1...μs−1 ≡ ∂μs ϕμ1...μs = 0. (1.2)

Of course, the field ϕμ1...μs is traceless to begin with:

ϕ′
μ1...μs−2

≡ ϕμ1...μs−1
μs−1 = 0. (1.3)

The dynamical equation (1.1) and the constraints (1.2) and (1.3) comprise a set of Fierz–Pauli
conditions, from which one finds that in d dimensions the total number of propagating degrees
of freedom (DoF) is given by

D=
(

d − 4 + s

s

)
+ 2

(
d − 4 + s

s − 1

)
. (1.4)

In particular when d = 4, this number reduces to 2s + 1 as expected.
As first noted by Fierz and Pauli [1], turning on interactions for these higher-spin (HS) fields

at the level of equations of motion (EoM) and constraints, by replacing ordinary derivatives with
covariant ones in Eqs. (1.1)–(1.3), results in inconsistencies. Consider, for example, a massive
spin-s field, ϕμ1...μs , minimally coupled to electromagnetism (EM). The naïve covariantization,
∂μ → Dμ = ∂μ + ieAμ, of Eqs. (1.1)–(1.3) gives(

D2 − m2)ϕμ1...μs = 0, D · ϕμ1...μs−1 = 0, ϕ′
μ1...μs−2

= 0. (1.5)

The Klein–Gordon equation and the transversality condition, however, yield[
Dμ1,D2 − m2]ϕμ1...μs = 0, (1.6)

which results in unwarranted constraints because covariant derivatives do not commute. For a
constant EM field strength Fμν , for example, one gets

ieFμ1ρDρϕμ1...μs = 0. (1.7)

This constraint disappears when the interaction is turned off, and so the system (1.5) does not
describe the same number of DoFs as the free theory. To avoid such difficulties, Fierz and Pauli
suggested [1] that one take recourse to the Lagrangian formulation, which would automatically
render the resulting EoMs and constraints algebraically consistent.

However, a Lagrangian formulation guarantees neither that no unphysical DoFs start prop-
agating nor that the physical ones propagate only within the light cone. Indeed, superluminal
propagation can occur in non-trivial external EM backgrounds even for infinitesimally small val-
ues of the EM field invariants. This is the notorious Velo–Zwanziger problem [2]. This pathology
manifests itself in general for all charged massive HS particles with s � 3/2. Field theoretically it
is quite challenging to construct consistent interactions of massive HS particles since this prob-
lem persists for a wide class of non-minimal generalizations of the theory and also for other
interactions [3–5].

1 While spin is not a good quantum number in d > 4, the rank of the symmetric (γ -)traceless Lorentz tensor(-spinor)
continues to define “spin” in arbitrary dimensions.
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Addition of non-minimal terms and/or new dynamical DoFs may rescue causality. For a
massive charged spin- 3

2 field, the problem is elegantly solved by N = 2 (broken) supergrav-
ity [6–8] or by judiciously constructed non-minimal models [9]. For s � 2, the only explicit
solution known to date comes from open string field theory [10,11], which spells out highly non-
minimal terms so that any field belonging to the first Regge trajectory propagates causally in
a constant EM background. Explicit string-theoretic Lagrangians are known for s = 2 [10] and
s = 3 [12], and they are guaranteed to exist for any HS field [11]. These horribly complicated
Lagrangians give rise in the critical dimension a very simple but consistent set of Fierz–Pauli
conditions [10,11]:

(
D2 − m2)ϕμ1...μs − 2iesFα

(μ1
ϕμ2...μs)α = 0,

D · ϕμ1...μs−1 = 0, ϕ′
μ1...μs−2

= 0. (1.8)

The enormous simplicity at the level of EoMs and constraints makes one wonder whether a
Lagrangian formulation, originally proposed in [1], is really the best way of understanding HS
interactions. After all, in the context of massless HS fields consistent interacting theories ap-
pear in AdS space at the level of EoMs [13], which have resisted so far any embedding into a
Lagrangian framework, if it exists at all.

Given this, one can step back to revisit the issue of introducing interactions at the level of the
EoMs and constraints. Notice that the free system (1.1)–(1.3) and its consistent deformation (1.8)
are strikingly similar: they both not only set the divergence and trace exactly to zero, but also have
in common some not-so-apparent features that are important for consistency.2 While the naïve
covariantization (1.5) fails, the consistent set (1.8) is not a major modification either. Is it pos-
sible to find a systematic procedure to deform the free equations in the presence of interactions
without hurting their algebraic consistency? The answer is yes. Indeed, the authors of Ref. [14]
have addressed precisely this issue and proposed a universal covariant method for constructing
consistent interactions at the level of field equations. Unlike the Lagrangian framework, their
method may not need any auxiliary fields and relies on the involution and preservation of gauge
symmetries and identities (to be explained in Section 2) of the EoMs and constraints, which guar-
antee algebraic consistency. This approach may simplify the search for consistent interactions to
a great extent by keeping manifest the causal propagation of the correct number of DoFs. In
this paper, we employ this method to find non-minimal local couplings of massive particles of
arbitrary integer spin exposed to external EM and gravitational backgrounds.

The organization of the paper is as follows. In the remaining of this section we clarify our
conventions and notations and present our main results. In Section 2 we get familiar with the
formalism proposed in Ref. [14] by explaining some key ideas and working out warm-up exam-
ples of a massive spin-1 particle in EM and gravitational backgrounds. Section 3 is devoted to
both EM and gravitational interactions of massive particles of arbitrary integer spin. A general
methodology is developed throughout this section, which we apply in either case to find the pos-
sible non-minimal local couplings and identify the backgrounds that may consistently propagate
such a particle in isolation. The resulting couplings are the magnetic dipole and the gravitational
quadrupole moments, quantified respectively by the g- and the h-factors. Their values are exam-
ined in Section 4, where we also see how they may get modified by the presence of non-locality
and/or additional dynamical fields. We conclude in Section 5 with some remarks.

2 We will investigate and exploit these features, à la Ref. [14], to construct consistent interactions.
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1.1. Conventions and notations

We work with a mostly positive metric. The notation (i1 . . . in) means totally symmetric ex-
pression in all the indices i1, . . . , in with the normalization factor 1

n! . The tensor ηα1...αn,μ1...μn ≡
ηα1β1 · · ·ηαnβnδ

μ1...μn

β1...βn
will appear in many places. We denote EM and gravitational covariant

derivatives respectively as Dμ and ∇μ, whose commutators obey

[Dμ,Dν] = ieFμν,

[∇μ,∇ν]V ρ = Rρ
σμνV

σ .

1.2. Results

• In isolation a massive charged HS particle with local EM interactions may consistently prop-
agate only as a probe in an EM background. For s = 1, the background is required to satisfy
the source-free Maxwell equations: ∂μFμν = 0, whereas for s � 2, the symmetrized gradient
of the field strength must vanish: ∂(μFν)ρ = 0.

• Consistent local gravitational interactions of a solitary massive HS particle may exist only in
an external gravitational background. The Ricci tensor of this manifold must be covariantly
constant (Ricci symmetric space), and for s � 3, the gradient of the Weyl tensor must also
satisfy: ∇(μWν

α
ρ)

β = 0. No such restrictions exist for s = 1.
• The covariant transversality condition in both cases requires no modification.
• The above results—derived for irreducible representations: symmetric Lorentz tensors with

vanishing trace—hold whether or not the system comes from a Lagrangian, provided that
interactions are local and no other DoFs are present. Therefore, consistent propagation of
massive HS particles in arbitrary EM and gravitational backgrounds calls for non-locality
and/or a (possibly infinite) tower of massive states.

• The gyromagnetic ratio or g-factor, that quantifies the magnetic dipole moment of the par-
ticle, must be g = 2. Other values are possible only when non-local interactions and/or
additional massive states are present.

• The gravimagnetic ratio or h-factor of the particle, that quantifies its gravitational quadrupole
moment, must be h = 1. This value may get altered again by non-local interactions and/or
the presence of other massive particles.

2. Formalism and warm-up examples

In this section, we explain some basic notions to summarize the formalism—the deformation
of involutive equations—proposed in Ref. [14] for covariant construction of consistent interac-
tions. We will skip some technical details; readers may take a look at Ref. [14] and references
therein. While our ultimate goal is to study the EM and gravitational couplings of massive parti-
cles of any integer spin, we will consider all along the example of spin 1 for the sake of simplicity.
The methodology for arbitrary spin will be developed in Section 3, which will then be employed
to find consistent non-minimal couplings.

2.1. Involution

Let us consider a system of partial differential equations

T a
[
Φi, ∂μΦi, . . . , ∂μ · · · ∂μq Φ

i
] = 0, a = 1,2, . . . , t, (2.1)
1



I. Cortese et al. / Nuclear Physics B 879 [FS] (2014) 143–161 147
that governs the dynamics of some fields Φi , i = 1,2, . . . , f . The maximal order of these equa-
tions defines the order of this system, which is q . The system (2.1) is said to be involutive if it
contains all the differential consequences of order � p derivable from any order-p subsystem:
T b[Φi, ∂μΦi, . . . , ∂μ1 · · ·∂μpΦi] = 0, b ⊂ a, p � q .

To illustrate the difference between involutive and non-involutive systems, let us consider the
second order Lagrangian EoMs of the Proca field ϕμ in flat space-time

∂2ϕμ − ∂μ∂ · ϕ − m2ϕμ = 0, m2 �= 0. (2.2)

Its divergence however gives rise to the first order transversality condition:

∂ · ϕ = 0. (2.3)

The Proca system (2.2) does not include this lower order differential consequence, and is there-
fore non-involutive. On the other hand, when the EoMs (2.2) are supplemented by Eq. (2.3), they
leave us with a second-order involutive system of equations:

T μ = (
∂2 − m2)ϕμ = 0, T = ∂ · ϕ = 0, (2.4)

which is of course equivalent to the original non-involutive one (2.2). The involutive system (2.4)
is non-Lagrangian as it consists of d +1 equations—too many to result directly from the variation
of a Lagrangian functional of the d-component field ϕμ.

As a matter of fact, any field theory can be brought to an involutive form [14], which is
equivalent to the original system in that they both have the same solution space. Generically, an
involutive system may or may not be a Lagrangian one. Free massive HS fields, in particular,
have non-involutive Lagrangian equations, but they can also be described by an involutive non-
Lagrangian system, namely Eqs. (1.1)–(1.3). The involutive form retains all the symmetries of
the original system, and can be very useful in the study of covariant field equations, as we will
see.

2.2. Gauge symmetries and gauge identities

Let the system (2.1) be involutive. In general, it may enjoy local gauge symmetries

δεΦ
i = εαRi

α, δεTa| T =0 = 0, α = 1,2, . . . , r, (2.5)

where εα are the gauge parameters, while Ri
α are the gauge symmetry generators, which are

differential operators of finite order for local symmetries.
More importantly, the involutive system may possess non-trivial gauge identities, which may

or may not be related to gauge symmetries. Their schematic form is

LA 	 T ≡ LA
a T a = 0, A = 1,2, . . . , l, (2.6)

with the gauge identity generators LA
a being local differential operators. Note that for Lagrangian

systems there is an isomorphism between symmetries and Noether identities. For generic non-
Lagrangian involutive systems, no such correspondence exists; still one can have non-trivial
gauge identities. In other words, gauge identities are more generic than Noether ones, and may
exist even in the absence of any gauge symmetry. However, the two coincide for a set of La-
grangian equations if they are involutive from the outset [14].

Our spin-1 example do not have any gauge symmetry, but it is easy to see that the involutive
form (2.4) possesses the gauge identity

L 	 T ≡ LμTμ + LT = ∂μTμ − (
∂2 − m2)T = 0, (2.7)
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where the gauge identity generators are given by

Lμ = ∂μ, L = −(
∂2 − m2). (2.8)

Eq. (2.7) is a third order gauge identity. In general, the order of the gauge identity (2.6) is defined
as the maximal order of individual terms appearing in the summation LA

a T a .
The gauge identities of an involutive system are important in that they reflect algebraic con-

sistency and play a crucial role in the DoF count, to which we now turn.

2.3. Compatibility and DoF count

The compatibility coefficient of an involutive system, say Eq. (2.1), is defined as

Δ = f −
∑

k

(tk − lk + rk) = f − t + l − r, (2.9)

where tk, lk and rk are respectively the number of equations, independent gauge identities and
gauge symmetries of order k. If Δ = 0, the system is said to be absolutely compatible.

Again, the Proca system (2.4) in d dimension consists of d second order equations T μ, and
another first order one T . As we have seen, this system has a gauge identity (2.7), but no gauge
symmetries. Because the field ϕμ contains f = d components to begin with, one finds from
definition (2.9) that Δ = d − (d + 1) + 1 = 0, so that the system (2.4) is absolutely compatible.
The same is true for arbitrary spin, as we will show in Section 3.

In fact, all known physical systems are absolutely compatible. It is plausible that any reason-
able field theory has Δ = 0. If an involutive system of equations is absolutely compatible, the
number of DoFs it describes is given by [14]:

D= 1

2

∑
k

k(tk − lk − rk), (2.10)

provided both the gauge symmetry and gauge identity generators are irreducible. This simple
formula enables one to covariantly control the number of physical DoFs.

Accordingly, the involutive Proca system (2.4) has the DoF count

D= 1

2

[
1 × (1 − 0 − 0) + 2 × (d − 0 − 0) + 3 × (0 − 1 − 0)

] = d − 1,

which is indeed the correct number of physical polarizations of a massive spin-1 field. For mas-
sive particles of arbitrary spin, we will see in Section 3 that the counting (2.10) matches with the
formula (1.4), as expected.

2.4. Consistent deformations

As suggested in Ref. [14], one can control the consistency of interactions by exploiting the
involutive form and the gauge symmetries and identities of the free field equations. Given an orig-
inal system of free fields, the following procedure enables one to introduce consistent couplings
at the level of EoMs.

1. The free system of equations are written down in an involutive form.
2. All the gauge symmetries and identities of the free involutive system are identified.
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3. Interactions are realized through deformations of the equations, gauge symmetries and iden-
tities. Perturbatively in some coupling constant λ, the deformations are:

T a = T a
0 + λT a

1 + λ2T a
2 + · · · ,

LA
a = LA

0a + λLA
1a + λ2LA

2a + · · · ,
Ri

α = Ri
0α + λRi

1α + λ2Ri
2α + · · · . (2.11)

4. The deformations (2.11) are chosen such that at every order in λ three requirements are ful-
filled: (a) the system remains involutive and absolutely compatible; (b) the deformed system
has the same number of gauge symmetry and identities, i.e., the quantities l = ∑

lk and
r = ∑

rk remain the same; (c) the number of physical polarizations given by Eq. (2.10)
remains the same as in the free theory.

The requirements (a) and (b) guarantee that the system remains algebraically consistent with
perturbatively included interactions, while condition (c) ensures the deformed system has the
same number of physical DoFs as the original one.3

2.5. Warm-up example: Spin 1

The free involutive Proca system (2.4) and its gauge identity generators (2.8) can be minimally
coupled to EM by the substitution ∂μ → Dμ = ∂μ + ieAμ, so that we have

T
μ

0 = (
D2 − m2)ϕμ = 0, T0 = D · ϕ = 0, (2.12)

L
μ
0 = Dμ, L0 = −(

D2 − m2). (2.13)

This is indeed the zeroth order deformation in the coupling constant e, because the associated
gauge identity fails or become anomalous only at O(e):

L0 	 T0 ≡ L
μ
0 T0μ + L0T0 = [

Dμ,D2]ϕμ =O(e), (2.14)

due to the non-commutativity of the covariant derivatives. This is precisely the anomaly noticed
by Fierz and Pauli [1]. But this failure can be rectified at O(e) by the inclusion of appropriate
first order deformations, such that

(L0 + L1) 	 (T0 + T1) = L0 	 T0 + L0 	 T1 + L1 	 T0 + L1 	 T1 =O
(
e2). (2.15)

That is, the first order deformations must obey

L0 	 T1 + L1 	 T0 = −L0 	 T0 +O
(
e2) = [

D2,Dμ

]
ϕμ +O

(
e2). (2.16)

One can explicitly compute the commutator on the right hand side; it is given by[
D2,Dμ

]
ϕμ = Dμ

(
2ieFμνϕν

) − ie∂μFμνϕν. (2.17)

The left hand side of consistency condition (2.16) can also be made more explicit:

L0 	 T1 + L1 	 T0 = DμT
μ
1 − (

D2 − m2)T1 + L
μ
1

(
D2 − m2)ϕμ + L1(D · ϕ). (2.18)

3 Notice that the orders of the equations, gauge identities and symmetries may increase (but never decrease) at any order
in λ. One should be careful about possible inclusion of higher derivative kinetic terms, which may signal propagating
ghosts.



150 I. Cortese et al. / Nuclear Physics B 879 [FS] (2014) 143–161
One can now compare Eqs. (2.17) and (2.18) to identify T
μ

1 = 2ieFμνϕν . The term ∂μFμνϕν ,
however, cannot be identified with anything else if one wants to avoid non-local deformations
containing the operator (D2 − m2)−1. Local deformations are still possible if the photon is a
background that obeys the source-free Maxwell equations:

∂μFμν = 0. (2.19)

Then, a set of consistent deformations up to O(e) is given by

T μ = (
D2 − m2)ϕμ + 2ieFμνϕν = 0, T = D · ϕ = 0, (2.20)

Lμ = Dμ, L = −(
D2 − m2). (2.21)

Actually, these deformations are correct up to all orders since L 	 T vanishes. It is easy to see
that the deformed system (2.20) is involutive. Actually, the individual values of tk and lk do not
change ∀k. Therefore, this system is algebraically consistent and describes the same number of
DoFs as the free theory, namely d − 1. The propagation of these DoFs is manifestly causal since
the deformed equations contain no higher derivative kinetic terms.

Similarly, for gravitational coupling the zeroth order deformations4 are obtained from
Eqs. (2.4) and (2.8) by the minimal substitution ∂μ → ∇μ. That is,

T
μ
0 = (∇2 − m2)ϕμ = 0, T0 = ∇ · ϕ = 0, (2.22)

L
μ
0 = ∇μ, L0 = −(∇2 − m2), (2.23)

where [∇μ,∇ν]ϕρ = R
ρ
σμνϕ

σ . The gauge identity anomaly in this case is given by

L0 	 T0 = −[∇2,∇μ

]
ϕμ = ∇μ

(
Rμνϕν

)
. (2.24)

This anomaly is cured up to all orders, without any restrictions on the gravitational field, by first
order deformations with only T

μ
1 = −Rμνϕν non-vanishing:

T μ = (∇2 − m2)ϕμ − Rμνϕν = 0, T = ∇ · ϕ = 0, (2.25)

Lμ = ∇μ, L = −(∇2 − m2). (2.26)

The Proca field therefore interacts consistently with an arbitrary gravitational field because in-
deed the above deformations identically satisfy the gauge identity to all orders:

L 	 T = −[∇2,∇μ

]
ϕμ − ∇μ

(
Rμνϕν

) = 0. (2.27)

Having worked out the simple but instructive examples of spin 1, we are now ready to consider
the EM and gravitational couplings of arbitrary-spin particles.

3. Arbitrary spin: Non-minimal couplings

In this section we are going to deform the free massive HS system to construct consistent
couplings to EM and gravitational backgrounds, using the formalism previously explained. As
we go along, we will develop a methodology meant for deformations of this particular system.
The same methodology works for EM as well as for gravitational couplings.

4 In this case, one may think that the Riemann curvature incorporates the deformation parameter.
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3.1. Free involutive system

The staring point is the free involutive system for a massive spin-s particle, which is

Tμ1...μs = (
∂2 − m2)ϕμ1...μs = 0, (3.1)

Tμ1...μs−1 = ∂ · ϕμ1...μs−1 = 0. (3.2)

Note that, unlike the Fierz–Pauli conditions (1.1)–(1.3), this system does not incorporate the
trace constraint as a zeroth order differential equation. In fact, the field ϕμ1...μs appearing in the
involutive system (3.1)–(3.2) is an irreducible representation of the Lorentz group: a symmetric
traceless rank-s tensor. Because of this reason, the number of second order equations in the
system (3.1)–(3.2) is the same as the number of independent components of a rank-s symmetric
traceless tensor,5 which is

t2 =
(

d − 1 + s

s

)
−

(
d − 3 + s

s − 2

)
. (3.3)

Similarly, the transversality condition amounts to

t1 =
(

d − 2 + s

s − 1

)
−

(
d − 4 + s

s − 3

)
(3.4)

first order equations. On the other hand, the system possesses third order gauge identities:

∂μs Tμ1...μs − (
∂2 − m2)Tμ1...μs−1 = [

∂μs , ∂2 − m2]ϕμ1...μs = 0. (3.5)

In the compact form (2.6), they read

Lα1...αs−1 	 T = [
∂μ, ∂2]ϕμα1...αs−1 = 0, (3.6)

where the gauge identity generators are given by

Lα1...αs−1,μ1...μs = ηα1...αs−1,(μ1...μs−1∂μs), (3.7)

Lα1...αs−1,μ1...μs−1 = −ηα1...αs−1,μ1...μs−1
(
∂2 − m2). (3.8)

Notice that the trace of the identity (3.6) is vanishing on account of the tracelessness of the field
itself. The number of independent gauge identities is again given by that of the independent
components of a of a rank-(s − 1) symmetric traceless tensor, namely

l3 =
(

d − 2 + s

s − 1

)
−

(
d − 4 + s

s − 3

)
. (3.9)

Finally, the system (3.1)–(3.2) enjoys no gauge symmetries whatsoever. To summarize, at k-th
order in derivatives, the number of equations tk , independent gauge identities lk , and gauge sym-
metries rk are respectively given by

tk = t1δ
1
k + t2δ

2
k , lk = l3δ

3
k , rk = 0. (3.10)

Clearly, the compatibility coefficient (2.9) vanishes,

Δ = f − t1 − t2 + l3 = 0, (3.11)

5 This is also the number of fields f described by the system.
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on account of the equalities f = t2 and t1 = l3. That is, the system is absolutely compatible. Then
the number of physical DoFs is given by formula (2.10); it is

D= 1

2

∑
k

k(tk − lk) = 1

2
(t1 + 2t2 − 3l3) = t2 − t1. (3.12)

In view of the expressions (3.3), (3.4) and (3.9), this coincides with the formula (1.4) for the
propagating DoFs of a massive spin-s particle in d dimensions.

3.2. Deformation in EM background

As we have identified the gauge identities of the free system, we would like to exploit its
involutive form to introduce consistent interactions. First, we consider EM coupling. With this
end in view, we consider the deformations of the equations,

T
μ1...μs

free → T μ1...μs =
∞∑

n=0

T μ1...μs
n = 0, (3.13)

T
μ1...μs−1
free → T μ1...μs−1 =

∞∑
n=0

T
μ1...μs−1
n = 0, (3.14)

and also of the gauge identity generators,

L
α1...αs−1,

free μ1...μs → Lα1...αs−1,
μ1...μs =

∞∑
n=0

L
α1...αs−1,
n μ1...μs , (3.15)

L
α1...αs−1,

free μ1...μs−1 → Lα1...αs−1,
μ1...μs−1 =

∞∑
n=0

L
α1...αs−1,
n μ1...μs−1 , (3.16)

where n denotes the order of the perturbative expansion in the EM charge e. We require that the
deformed system satisfy the gauge identities

Lα1...αs−1 	 T =
∞∑

m=0

∞∑
n=0

(
L

α1...αs−1
m 	 Tn

) = 0. (3.17)

If the system (3.13)–(3.14) remains involutive, then at each order of the deformation the equa-
tions (i.e., ∀n the quantities T

μ1...μs
n and T

μ1...μs−1
n ) must be symmetric and traceless.6 Similarly,

the gauge identities (3.17) must also remain symmetric and traceless since otherwise it would
mean an unwarranted change in their total number.

The deformed gauge identities (3.17) break down into a cascade, order by order in e. The
zeroth order gauge identities may become anomalous at O(e), and they read

Aα1...αs−1 ≡ −L
α1...αs−1
0 	 T0 =O(e), (3.18)

where Aα1...αs−1 is called the (symmetric traceless) anomaly tensor. At first order this anomaly
must be rectified so as to push the failure of the gauge identities to O(e2). The first order gauge
identities can be rewritten as

Aα1...αs−1 = L
α1...αs−1
0 	 T1 + L

α1...αs−1
1 	 T0 + · · · , (3.19)

6 Otherwise, at any given order one would find unwarranted constraints on the field, which vanish when the interaction
is turned off. The involutive form eliminates this unacceptable possibility.
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where the ellipses stand for O(e2) terms. It is important to note that if there are no such O(e2)

terms, then the system requires no higher order deformations provided that

Cα1...αs−1 ≡ L
α1...αs−1
1 	 T1 = 0. (3.20)

Eqs. (3.18)–(3.20) constitute the core of our analysis. The program is to compute the anomaly
tensor (3.18) and rewrite it in a suitable form, so that one can read off the first order deformations
from Eq. (3.19). If these identifications leave us with no second order terms and if Eq. (3.20) is
satisfied, then the deformations consistently stop at first order.

Note that the zeroth order equations are given not by the free system (3.1)–(3.2) itself, but by
the minimally coupled version resulting from ∂μ → Dμ for EM interactions:

T
μ1...μs

0 = (
D2 − m2)ϕμ1...μs = 0, (3.21)

T
μ1...μs−1

0 = D · ϕμ1...μs−1 = 0, (3.22)

while the zeroth order gauge identity generators follow similarly from Eqs. (3.7)–(3.8):

L
α1...αs−1,μ1...μs

0 = ηα1...αs−1,(μ1...μs−1Dμs), (3.23)

L
α1...αs−1,μ1...μs−1
0 = −ηα1...αs−1,μ1...μs−1

(
D2 − m2). (3.24)

These indeed qualify as the correct zeroth order deformations since the anomaly tensor is

Aα1...αs−1 = [
D2,Dμ

]
ϕμα1...αs−1 =O(e). (3.25)

Next, one has to rewrite this expression for the anomaly tensor in a form that facilitates the
comparison with the first order deformations through Eq. (3.19). We are particularly interested
in finding the non-minimal couplings that show up as corrections to the Klein–Gordon equa-
tion (3.21). In Eq. (3.19) they appear in the following form

L
α1...αs−1,

0 μ1...μs T
μ1...μs

1 = Dαs T
α1...αs

1 . (3.26)

Therefore, we should extract from the anomaly tensor total derivatives of symmetric traceless
objects. Divergence of the field may also appear in Eq. (3.19) through the term

L
α1...αs−1,

1 μ1...μs−1T
μ1...μs−1
0 = L

α1...αs−1,

1 μ1...μs−1D · ϕμ1...μs−1 . (3.27)

The anomaly tensor may also give rise to terms which are neither of the above two forms. The
sum Bα1...αs−1 of all such terms must be identified through Eq. (3.19) as

Bα1...αs−1 = L
α1...αs−1,

1 μ1...μs

(
D2 − m2)ϕμ1...μs − (

D2 − m2)T
α1...αs−1
1 . (3.28)

This identification, however, can only give non-local solutions for the relevant first order de-
formations.7 Problematic for local deformations, such terms must vanish if locality has to be
preserved in the absence of additional DoFs. This may impose some restrictions on the external
background. Constraints on the field, however, must be avoided lest the very involutive form of
the system should be ruined.

In order to rewrite the anomaly tensor (3.25), we use properties of the commutator and the
product rule for covariant derivatives. Thus we obtain

Aα1...αs−1 = −2ieDμ

(
Fρμϕρ

α1...αs−1
) − ie∂μFμνϕν

α1...αs−1 . (3.29)

7 We will comment on non-locality in the next section.
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The total derivative term can be cast into the form (3.26) if the rank-s tensor inside the paren-
theses is made symmetric and traceless. While this is done at the cost of adding and subtracting
some total derivatives, the left-over terms give rise to divergence pieces of the form (3.27) on
account of the product rule. The final result is

Aα1...αs−1 = Dμ

[−2iesF ρ(μϕρ
α1...αs−1)

] + 2ie(s − 1)F ρ(α1D · ϕρ
α2...αs−1)

+ 2ie(s − 1)∂μFν
(α1ϕα2...αs−1)μν − ie∂μFμνϕν

α1...αs−1 . (3.30)

In view of Eq. (3.19), the first line of the above expression gives us the identifications

T
μ1...μs

1 = −2iesF ρ(μ1ϕρ
μ2...μs), (3.31)

L
α1...αs−1,

1 μ1...μs−1 = −2ie(s − 1) δ
α1...αs−1
ρ(μ1...μs−2

F
ρ

μs−1)
, (3.32)

thanks to Eqs. (3.26) and (3.27). On the other hand, the second line of Eq. (3.30) is identified as
Bα1...αs−1 , which should vanish, as we already pointed out from Eq. (3.28). Splitting the gradient
of the field strength into irreducible Lorentz tensors, one obtains

Bα1...αs−1 = 2ie(s − 1)Qμν
(α1ϕα2...αs−1)μν − ie

(
2s + d − 3

d − 1

)
∂μFμνϕν

α1...αs−1 , (3.33)

where Qμν
α is the symmetric traceless gradient of the field strength in d dimensions:

Qμν
α ≡ ∂(μFν)

α −
(

1

d − 1

)[
ημν∂ρFρα + δα

(μ∂ρFν)ρ

]
, (3.34)

and the (anti)symmetric tensors ∂(μFνα) and ∂[μFνα] are zero identically. For s > 1, it is clear
from Eq. (3.33) that Bα1...αs−1 can be zero, without incurring unwarranted constraints on the
HS field, if and only if both the quantities Qμν

α and ∂μFμν vanish. The above conditions are
tantamount to requiring that the EM background satisfy:

∂(μFν)ρ = 0. (3.35)

This admits, in particular, Fμν = constant as a consistent background.8 For s = 1, however, it
suffices to require that the background obey the source-free Maxwell equations: ∂μFμν = 0.
Finally, the deformations can be made consistent up to all orders by the choice:

T
μ1...μs−1
1 = 0, L

α1...αs−1,

1 μ1...μs = 0. (3.36)

Indeed, this choice renders the tensor Cα1...αs−1 appearing in Eq. (3.20) vanishing.
To summarize, we have found the following consistently deformed involutive system:

T μ1...μs = (
D2 − m2)ϕμ1...μs − 2iesF ρ(μ1ϕρ

μ2...μs) = 0, (3.37)

T μ1...μs−1 = D · ϕμ1...μs−1 = 0, (3.38)

for a class of EM backgrounds. Augmented by the implicit trace condition, ϕ′
μ1...μs−2

= 0, the
same equations show up, quite curiously, in string theory as well [10,11]. This system is alge-
braically consistent by construction. The DoF count is also correct for an obvious reason: this
system and the free one shares the same set of tk and lk given in Eq. (3.10). The Laplacian kinetic
operator in Eq. (3.37) also makes causal propagation manifest.

8 Non-constant EM backgrounds may also qualify. In d = 4, for example, the generic solution of Eq. (3.35) is: F 0i =
εi + εijkαj xk and F ij = εijk(βk + αkt), with εi , αi , βi constants and i = 1,2,3.
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3.3. Deformation in gravitational background

Now we turn to gravitational coupling. In this case, the Riemann curvature is assumed to
have incorporated the deformation parameter, and the covariant derivatives are denoted by ∇μ.
Modulo these, the steps and analyses of the previous subsection hold verbatim in this case until
one writes down an explicit expression like (3.29) for the anomaly tensor. While

Aα1...αs−1 = [∇2,∇μ

]
ϕμα1...αs−1, (3.39)

similar steps lead to the gravitational counterpart of Eq. (3.29), which reads

Aα1...αs−1 = ∇μ

(
2

s−1∑
i=1

Rμ
ν
αi

ρ ϕα1...αi−1αi+1...αs−1νρ − Rρμϕρ
α1...αs−1

)

−
s−1∑
i=1

∇μRμ
ν
αi

ρ ϕα1...αi−1αi+1...αs−1νρ. (3.40)

In deriving the above we have used the symmetry properties of the Riemann tensor, which im-
ply in particular Rμ

(ρ
ν
σ) = R(μ

ρ
ν)

σ . Again, from the total derivative term in the first line of
Eq. (3.40) one can extract the gravitational counterpart of Eq. (3.26), namely

L
α1...αs−1,

0 μ1...μs T
μ1...μs

1 = ∇αs T
α1...αs

1 . (3.41)

The feat is achieved by rendering the rank-s tensor inside the parentheses symmetric and trace-
less. The left-over terms from the last step again produce covariant divergences—the gravita-
tional counterpart of Eq. (3.27)—of the form

L
α1...αs−1,

1 μ1...μs−1T
μ1...μs−1
0 = L

α1...αs−1,

1 μ1...μs−1∇ · ϕμ1...μs−1, (3.42)

thanks to the product rule. On the other hand, one can massage the second line of Eq. (3.40) by
using the contracted Bianchi identity: ∇μRμ

ν
α

ρ = ∇αRνρ − ∇ρRν
α . All these steps lead us to

the following expression for the anomaly tensor:

Aα1...αs−1 = ∇μ

[
s(s − 1)R(μ

ν
α1

ρϕα2...αs−1)νρ − sRρ(μϕρ
α1...αs−1)

]
− (s − 1)

[
(s − 2)R(α1

μ
α2

ν∇ · ϕα3...αs−1)μν − Rμ(α1∇ · ϕμ
α2...αs−1)

]
+ (s − 1)

[
2∇μRν

(α1ϕα2...αs−1)μν − ∇(α1Rμνϕ
α2...αs−1)μν

]
− (s − 1)(s − 2)∇μR(α1

ν
α2

ρ ϕα3...αs−1)μνρ. (3.43)

When plugged into the first order gauge identity (3.19), the first line of this expression gives us,
in view of Eq. (3.41), the following identification for the deformation of equations:

T
μ1...μs

1 = s(s − 1)R(μ1
ν
μ2

ρϕμ3...μs)νρ − sRρ(μ1ϕρ
μ2...μs). (3.44)

Similarly, from the second line one identifies, on account of Eq. (3.42),

L
α1...αs−1,

1 μ1...μs−1

= −(s − 1)
[
(s − 2) δ

α1...αs−1
ρσ(μ1...μs−3

Rρ
μs−2

σ
μs−1) − δ

α1...αs−1
ρ(μ1...μs−2

Rρ
μs−1)

]
. (3.45)

The remaining third and fourth lines in the expression (3.43) for the anomaly tensor are identi-
fied as Bα1...αs−1 , which must be set to zero in order to avoid non-locality. Now Bα1...αs−1 contains
gradients of the Riemann and Ricci tensors, and the latter quantities can be split into irreducible
Lorentz tensors, so that one obtains the expression



156 I. Cortese et al. / Nuclear Physics B 879 [FS] (2014) 143–161
Bα1...αs−1 = − (s − 1)(s − 2)

d − 2

[
(d − 2)Xμνρ

(α1α2 ϕα3...αs−1)μνρ + Yμνρ g(α1α2ϕα3...αs−1)μνρ
]

+
(

s − 1

d − 2

)[
(2s + d − 6)Yμν

(α1ϕα2...αs−1)μν

−
(

s + 2d − 6

3

)
Zμν

(α1ϕα2...αs−1)μν

]

+ 2(s − 1)(s + d − 2)

(d − 1)(d + 2)
(∇μR)ϕα1...αs−1 μ, (3.46)

where Xμνρ
αβ , Yμν

α and Zμν
α are the following irreducible Lorentz tensors:

Xμνρ
αβ = ∇(μWν

α
ρ)

β −
(

2

d + 2

)
g(μν∇σ Wρ)

(α
σ

β), (3.47)

Yμνρ = ∇(μRνρ) −
(

2

d + 2

)
g(μν∇ρ)R, (3.48)

Zμνρ = 2∇[ρRμ]ν +
(

1

d − 1

)
gν[ρ∇μ]R + (μ ↔ ν), (3.49)

with Wμανβ denoting the Weyl tensor.9 Now that Bα1...αs−1 must be set to zero without imposing
any further constraints on the HS field, we have three different cases:

• s = 1: Because all the dangerous terms in Eq. (3.46) are proportional to s − 1, they vanish
automatically for the Proca field and pose no restrictions on the background.

• s = 2: In this case, the first line in Eq. (3.46) vanishes. In order to kill the other terms, one
must set to zero all the quantities Yμνρ , Zμνρ and ∇μR, which is tantamount to having a
covariantly constant Ricci tensor:

∇μRνρ = 0. (3.50)

Thus, consistency requires that the gravitational background be Ricci symmetric.
• s � 3: For higher spins, on top of having a Ricci symmetric space, one needs additional

conditions on the Weyl tensor, namely Xμνρ
αβ = 0. Because the divergence of the Weyl

tensor can be expressed in terms of Zμνρ and ∇μR as a consequence of the Bianchi identities,
we have the equivalent set of conditions:

∇μRνρ = 0, ∇(μWν
α

ρ)
β = 0, (3.51)

which a gravitational background must satisfy in order to propagate consistently an arbitrary-
spin particle in isolation, under the assumption of locality. Note, in particular, that symmetric
spaces do qualify as consistent backgrounds, since they have covariantly constant Riemann
tensors: ∇μRναρβ = 0.

Given one of the appropriate restrictions, one can render the deformations (3.44) and (3.45)
consistent up to all orders by simply choosing

T
μ1...μs−1
1 = 0, L

α1...αs−1,

1 μ1...μs = 0. (3.52)

9 The quantities (3.47)–(3.49) are all traceless, thanks to the identity ∇μRμν = 1 ∇νR.
2
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Surely, the tensor Cα1...αs−1 appearing in Eq. (3.20) vanishes with this choice. Thus, we end up
having the following consistently deformed involutive system:

T μ1...μs = (∇2 − m2)ϕμ1...μs + [
s(s − 1)R(μ1

ν
μ2

ρϕμ3...μs)νρ − sRρ(μ1ϕρ
μ2...μs)

]
= 0, (3.53)

T μ1...μs−1 = ∇ · ϕμ1...μs−1 = 0, (3.54)

with the aforementioned restrictions on the gravitational background. The algebraic consistency,
preservation of the correct number of DoFs and causal propagation are guaranteed precisely the
same way as they are in an EM background and in the free theory.

4. On g- and h-factors and non-locality

The EM and gravitational non-minimal couplings we found in Section 3 are respectively
called the magnetic dipole and the gravitational quadrupole terms. The magnetic dipole mo-
ment is quantified by the so-called gyromagnetic ratio or the g-factor. For a spin-s boson of mass
m and charge e, the g-factor appears at the level of EoM as follows [5]:(

D2 − m2)ϕμ1...μs − iegsFρ(μ1ϕρ
μ2...μs) = 0. (4.1)

Direct comparison of this with our result (3.37) reveals that, for all spins,

g = 2. (4.2)

This may not come as a surprise, since g = 2 turns out to be the “preferred” tree-level value
for any spin [15,16]. Moreover, open string theory predicts the same universal value for g [10,
11,16]. On the other hand, it has been observed that Kaluza–Klein (KK) reductions of consistent
higher dimensional models give g = 1 for all spins [17–19]. How does this fact go along with
our results?

The answer lies in non-locality—a possibility we did not explore. In fact, KK theories describe
a tower of massive particles, not a single one. If one is interested in the dynamics of a particular
state, one may integrate out the other ones, some of which are of comparable mass. This results
in a non-local theory. The conclusion is that additional dynamical states and/or non-local terms
may change the value of g. Indeed, sum rules from low-energy Compton scattering can show that
in the presence of other massive state g − 2 may become O(1) [20]. Let us see how this could be
understood within our framework.

For simplicity, let us consider s = 2. Under the condition (3.35), the anomaly tensor (3.30)
can be rewritten, for an arbitrary gyromagnetic ratio g, as

Aα = Dμ

[−2iegFρ(μϕρ
α)

] + iegFραD · ϕρ − ie(g − 2)FμνDμϕα
ν . (4.3)

The first two terms on the right hand side can again be incorporated into local first order de-
formations. Note, in particular, that the first term gives rise to the value g for the gyromagnetic
ratio. Even when the background satisfies the condition (3.35), the last term with g �= 2 signals
breakdown of locality. More explicitly, the consistency of the first order gauge identity (3.19)
requires the identification

ie(g − 2)FμνDμϕα
ν = −L

α,
0 μT

μ
1 − L

α,
1 μνT

μν
0

= (
D2 − m2)T α − L

α,
μν

(
D2 − m2)ϕμν. (4.4)
1 1
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This may admit only non-local solutions for the relevant first order deformations, like

L
α,μν
1 = 0, T

μ
1 = ie(g − 2)

(
1

D2 − m2

)(
Fρσ Dρϕμ

σ

)
, (4.5)

that modify the transversality condition. The presence of the operator (D2 − m2)−1 is tanta-
mount to non-locality, which might have arisen from integrating out other massive states of the
theory. Thus non-locality and/or additional DoFs of comparable mass may give g �= 2. Non-local
interactions, however, are beyond the scope of our present analysis.

On the other hand, the gravitational quadrupole moment is quantified analogously by the
gravimagnetic ratio or the h-factor. A careful definition of the h-factor was given in Ref. [21]. At
the level of EoM it shows up as

(∇2 − m2)ϕα(s) + h

[
Rμνρσ

1

2

(
Σμν

)α(s)

β(s)

1

2

(
Σμν

)β(s)

γ (s)

]
ϕγ (s) + · · · = 0, (4.6)

where the ellipses denote possible on-shell vanishing terms, and

(
Σμν

)
α(s)

β(s) ≡ 2sδ
[μ
(α1

ην](β1δ
β2...βs )

α2...αs )
= −(

Σμν
)β(s)

α(s)
, (4.7)

are the components of the Lorentz generators in the spin-s bosonic representation.
These are antisymmetric in μν, and symmetric in the indices of the individual sets α(s) and

β(s). These symmetry properties result in the tracelessness of Σμν in the α(s) indices and hence
in the β(s) indices as well.10 A straightforward computation gives(∇2 − m2)ϕα1...αs + h

[
s(s − 1)Rμ

(α1
ν
α2ϕα3...αs )μν − sRμ(α1ϕμ

α2...αs )
] + · · · = 0. (4.8)

Upon comparing our results (3.53) with this definition, one immediately concludes

h = 1. (4.9)

This also happens to be the preferred field theory value from considerations of tree-level
unitarity and supersymmetry [22]. However, the study of three-point functions in superstring
theory suggests h �= 1 in general [21], and this happens because of the existence of a whole
tower of states of arbitrarily large masses and spins. Quite similarly to the g-factor analysis, one
can show for gravitational couplings that h �= 1 necessarily results in non-locality, thanks to the
consistency of the first order gauge identity (3.19). For a spin-2 particle in a Ricci symmetric
space, the gravitational counterpart of the identification (4.4) admits a non-local solution

L
α,μν
1 = 0, T σ

1 = −(h − 1)

(
1

∇2 − m2

)(
2Rμνρσ + Rμνgρσ

)∇μϕνρ. (4.10)

Here the presence of the operator (∇2 − m2)−1 is a telltale sign of non-locality. This might
be taken as a hint for the existence of other interacting massive DoFs, which when taken into
account, may restore locality in the effective theory.

10 The definition of the Lorentz generators given in Ref. [21], though, is plagued with typographic errors. We thank
M. Porrati for pointing this out and clarifying the properties of Σμν . Note also that the antisymmetry (4.7) between the
α(s) and β(s) sets renders any cross contraction of indices vanishing.
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5. Concluding remarks

In this paper, we have exploited properties of involutive differential equations to consistently
couple an arbitrary-spin massive particle to EM and gravitational backgrounds. Originally de-
veloped in [14], the method works at the level of field equations with a consistent perturbative
scheme to introduce interactions. The virtues of this framework are manifold—manifest covari-
ance, built-in algebraic consistency, stability of the number of physical DoFs and their manifest
causal propagation, and striking simplicity.

It is surprising to see how easily this approach may produce non-trivial results and shed light
on some intricacies of interacting massive HS particles. Among others, we could reproduce the
preferred field theory values of the g- and h-factors, and see how these values may/do get altered
in the presence of other massive states. For EM coupling, we have seen that a solitary Proca
field requires a background obeying source-free Maxwell equations, whereas an arbitrary HS
field requires that the EM field strength satisfy the condition ∂(μFν)ρ = 0. We also find that an
isolated massive HS particle may have consistent non-minimal local interactions with a gravita-
tional background, which (a) has no restrictions for s = 1, (b) must be a Ricci symmetric space
for s = 2, and (c) must be a Ricci symmetric space with additional conditions for s � 3 on the
Weyl tensor: ∇(μWν

α
ρ)

β = 0. Curiously, the consistency of the Lagrangian dynamics of spin-
ning particles in various dimensions imposes similar restrictions on the backgrounds [23,24].
Also, the study of gravitating partially massless spin-2 fields leads naturally to Ricci symmetric
spaces [25], which however do not suffice for consistency in this case.

Let us emphasize that our results for the non-minimal couplings show up as consistent de-
formations on top of minimal coupling, whose existence has been implicitly assumed. For EM
interactions this assumption may not hold; indeed, massive HS fields may not have an EM charge
but still possess higher multipoles. In this case our conclusions will not be valid. For gravitational
interactions, however, our assumption is well justified since minimal coupling is required in order
for the principle of equivalence to hold [26].

A couple of comments on our consistent local deformations are due. First, the choices (3.36)
and (3.52) for the first order corrections respectively for EM and gravity are unique in that they
not only keep locality intact, but also make the inclusion of higher order deformations unnec-
essary. In particular, they leave the covariant transversality conditions undeformed. Any other
choices for these first order deformations will call for either non-locality or higher order correc-
tions or both. Last but not the least, the restrictions on the EM and gravitational backgrounds are
required only for the sake of locality. This does not mean that a massive HS field cannot propa-
gate consistently in an arbitrary background, but that it can do so only if non-local interactions
are allowed and/or other interacting DoFs are present. It is possible that if one begins with an
enlarged (possibly infinite) set of HS fields, one may find consistent local deformations of the
free theory for arbitrary backgrounds. While from bottom-up it is a priori not possible to know
which set of fields, if any, may achieve this feat, top-down approaches like KK incarnations of
string theory or supergravity provide some concrete examples of this kind.

Our results cover a wider range of possibilities since the approach does not assume any La-
grangian embedding. Requiring that the system of equations results from a local Lagrangian
may therefore result in further restrictions. Indeed, Lagrangians for a charged massive HS field
are known to exist for a constant EM background only in d = 26 [10,11]; it is not clear whether
they exist in arbitrary dimensions, which may require additional dynamical fields [27]. Another
example is a massive spin-2 field in a gravitational background; a local Lagrangian approach
seem to call for Einstein manifolds [28]—a subset of Ricci symmetric manifolds we require.
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In short, the requirements we find are necessary but may not be sufficient for the existence of
local Lagrangians.

The possible non-existence of a local Lagrangian is perhaps the most uncomfortable feature
of this formalism. How does one quantize such non-Lagrangian involutive systems? The authors
in Refs. [29,30] have tried to address this issue through a formalism based on a generalized
Lagrangian structure, called the Lagrange anchor. This structure contains information beyond
the solutions to the EoMs, much like the Lagrangian does, that can help one perform a path
integral for the non-Lagrangian system.

The approach of deformation of involutive equations is a powerful one that can be applied
to many different systems. The immediate things to consider are fermions and mixed symmetry
tensors in EM and gravitational backgrounds [31]. One may also try partially massless fields
to see if the results of [25] could be reproduced. Note that the Lagrangian formulation requires
auxiliary fields, which can be incorporated into the trace of some otherwise traceless tensor
fields. In order to make more contact with the Lagrangian framework, it is desirable to start with
traceful fields. In this case, as one casts the original system into an involutive form, the free
system enjoys a much richer gauge structure with many more gauge identities [31]. The correct
DoF count crucially depends on taking all the independent identities into account. Unlike in the
traceless set-up, there exist relations among the gauge identities themselves; one needs to be
careful while deforming the free system. We leave this as future work.
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