A trace inequality arising from quantum information theory

Jun Ichi Fujii

Department of Arts and Sciences (Information Science), Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan

Received 26 July 2004; accepted 10 November 2004

Available online 7 January 2005

Submitted by T. Ando

Abstract

We introduce a skew information of Lieb’s type

\[S_{f,g}(A, X) = \text{Tr} f(A)Xg(A)X - \text{Tr} f(A)g(A)X^2 \]

for selfadjoint matrices \(A, X \). We give conditions for \(f \) and \(g \) so that \(S_{f,g} \) is positive or negative. As another important application, we settle the problem posed by Yanagi, Furuichi and Kuriyama from quantum information theory.

© 2004 Elsevier Inc. All rights reserved.

AMS classification: 47A30; 15A42; 94A05

Keywords: Trace inequality; Skew information; Jensen’s inequality

1. Introduction

In [7], Holevo discussed the reliability function of a classical-quantum channel and used the trace function
\[\mu(s, \pi) = -\log \text{Tr} \left[\left(\sum_k \pi_k S_k^{1+s} \right)^{1+s} \right], \]

where \(\{\pi_k\}^n_1 \) is a probability distribution and \(\{S_k\}^n_1 \) is a family of density matrices. He posed a question if \(\mu(s) \) is a concave function. When all density matrices commute, this is the case. In [6], Furuichi et al. showed that it is concave if the inequality

\[
\text{Tr} \left[\left(\sum_k \pi_k S_k^{1+s} \right) \sum_k \pi_k S_k^{1+s} \left(\log S_k^{1+s} \right)^2 \right] \geq \text{Tr} \left[\left(\sum_k \pi_k S_k^{1+s} \right)^{s-1} \left(\sum_k \pi_k S_k^{1+s} \log S_k^{1+s} \right)^2 \right]
\]

holds. They discussed the special case \(n = 2 \) with \(\pi_1 = \pi_2 = \frac{1}{2} \). In this special case, with \(A = S_1^{1+s} \) and \(B = S_2^{1+s} \), the inequality under consideration is equivalent to the following.

Problem 1. *If \(A \) and \(B \) are positive-definite contractive matrices, then

\[
\text{Tr} \left(A + B \right)^s \{ A (\log A)^2 + B (\log B)^2 \} \geq \text{Tr} \left[(A + B)^{s-1} (A \log A + B \log B)^2 \right]
\]

holds for any real number \(s \in [0, 1] \).*

We consider this problem by introducing another informational quantity for real-valued (continuous) functions \(f \) and \(g \):

\[
S_{f,g}(A, X) = \text{Tr} f(A)Xg(A)X - \text{Tr} f(A)g(A)X^2
\]

for selfadjoint matrices \(A \) and \(X \). Here we call \(S_{f,g}(A, X) \) a *generalized skew information* since it is an extension of Lieb’s skew information in [8]:

\[
S_s(\rho, X) = \text{Tr} \rho^{1-s}X\rho^sX - \text{Tr} \rho X^2
\]

for positive numbers \(s \in (0, 1) \), a density matrix \(\rho \geq 0 \) and an observable \(X = X^* \). In this note, we show that the above problem is solved by the positivity of \(S_{f,g}(A, X) \) for \(f(x) = x^s \) and \(g(x) = 1/x \).

2. Skew information

Lieb’s skew information \(S_s(\rho, X) \) is non-positive by the following classical Hilbert–Schmidt norm inequality:

\[
\|\rho^{\frac{1}{2}} X \rho^{\frac{1}{2}}\|_2 \leq \|\rho^{\frac{1}{2}} X\|_2.
\]
We try to find conditions for f and g so that the generalized skew information should be negative or positive, which will enables us in Section 3 to solve Problem 1. According to Bourin [3,4], (f,g) is called a monotone pair (resp. antimonotone pair) of functions on the domain $D \subset \mathbb{R}$ if

$$(f(a) - f(b))(g(a) - g(b)) \geq 0 \quad \text{(resp. } (f(a) - f(b))(g(b) - g(a)) \geq 0)$$

for any $a, b \in D$. For example, for a positive function f on D and real numbers r, s, t with $t > 0$, put $g(x) = tf(x)^t + s$. Then (f,g) is a monotone (resp. antimonotone) pair if $r \geq 0$ (resp. $r \leq 0$). If f and g are positive, the following theorem was shown in [3,4] (see also [1]). Here we give a direct proof:

Theorem 2 (Bourin). If (f,g) is a monotone (resp. antimonotone) pair, then the generalized skew information is non-positive, $S_{f,g}(A, X) \leq 0$ (resp. non-negative, $S_{f,g}(A, X) \geq 0$).

Proof. Since (f,g) is a monotone pair if and only if $(f,-g)$ is an antimonotone one, it suffices to consider the monotone case, that is,

$$f(a)g(b) + f(b)g(a) \leq f(a)g(a) + f(b)g(b).$$

We may assume that A is diagonal; $A = \text{diag}(t_1, \ldots, t_n)$. Since $x_{ij}x_{ji} = |x_{ij}|^2$ for selfadjoint $X = (x_{ij})$, we have

$$\text{Tr } f(A)Xg(A)X = \sum_{k=1}^{n} f(t_k)g(t_k)|x_{kk}|^2 + \sum_{k<j} (f(t_k)g(t_j) + f(t_j)g(t_k))|x_{kj}|^2 \leq \sum_{k=1}^{n} f(t_k)g(t_k)|x_{kk}|^2 + \sum_{k<j} (f(t_k)g(t_k) + f(t_j)g(t_j))|x_{kj}|^2 = \sum_{k,j=1}^{n} f(t_k)g(t_k)|x_{kj}|^2 = \text{Tr } f(A)g(A)X^2.$$

Thus $S_{f,g}(A, X) \leq 0$. □

The functions x^{1-s} and x^s for $0 < s < 1$ form a monotone pair, which also implies that the original Lieb skew information $S_s(\rho, X)$ is non-positive.

3. Yanagi–Furuichi–Kuriyama inequality

Yanagi et al. [9] solved Problem 1 when the matrices are 2×2 ones. For general matrices, they solved it only for $s = 0$ and $s = 1$ in [9]. Here we solve it completely as an application of Theorem 2:
Theorem 3. If A and B are $n \times n$ positive-definite matrices with $m \leq A, B \leq M$ for positive numbers m and M, then the following inequalities hold for any $s \geq 0$:

$$S_{x^s,1/s}(A + B, A \log A + B \log B) + \frac{(\log \frac{M}{m})^2}{4} \text{Tr}(A + B)^s + 1 \geq \text{Tr}[(A + B)^s(A \log A + B \log B)]$$

$$- \text{Tr}[(A + B)^{s-1}(A \log A + B \log B)^2] \geq S_{x^s,1/s}(A + B, A \log A + B \log B) \geq 0.$$

The inside of the trace in the expression $\text{Tr}[(A + B)^s(A \log A + B \log B)^2]$ may be understood as the following positive-definite matrices;

$$(A + B)^{s/2}(A \log A + B \log B)^{s/2}$$

or

$$\frac{(A \log A)^2 + B \log B}{2} (A + B)^{s/2}(A \log A + B \log B)^{s/2}.$$

Then, note that Problem 1 cannot be extended to operator inequalities even for 2×2 matrices with $s = 1$ (see [5]).

$$(A + B)^{1/2}(A \log A + B \log B)^{1/2} \neq (A \log A + B \log B),$$

$$(A \log A)^2 + B \log B \geq (A \log A + B \log B)^2.$$

In the original problem of Yanagi, Furuichi and Kuriyama, A and B are assumed to be contractive since they use the Jensen’s operator inequality on the positive interval $[0, \infty)$. To prove Theorem 3, recall the following Jensen’s inequality (e.g., [2]; Theorem V.2.3): If $C^*C + D^*D \leq 1$, then

$$C^*X^2C + D^*Y^2D \geq (C^*XC + D^*YD)^2$$

holds for any Hermitian operators X, Y since $f(x) = x^2$ is operator convex on any interval. To estimate the upper bound in Theorem 3, we need the following lemma:

Lemma 4. If X and Y are Hermitian with $\ell \leq X, Y \leq L$ for real numbers ℓ and L and if $C^*C + D^*D = 1$, then

$$C^*X^2C + D^*Y^2D \leq (C^*XC + D^*YD)^2 + \frac{(L - \ell)^2}{4}.$$

Proof. For any selfadjoint Z such that $\ell \leq Z \leq L$, we have obviously

$$Z^2 \leq (L + \ell)Z - \ell L \leq Z^2 + \frac{(L - \ell)^2}{4}.$$

Apply the first inequality to X and Y in place of Z to get
Since $\ell \leq C^*XC + D^*YD \leq L$, apply the second inequality to $C^*XC + D^*YD$ in place of Z to get

$$(L + \ell)(C^*XC + D^*YD) - \ell L \leq (C^*XC + D^*YD)^2 + \frac{(L - \ell)^2}{4}.$$

Combining those two inequalities we arrive at the inequality in the assertion. \square

Proof of Theorem 3. Putting $C = A^{1/2}(A + B)^{-1/2}$ and $D = B^{1/2}(A + B)^{-1/2}$, we can apply the above Jensen’s inequality:

$$C^*(\log A)^2 C + D^*(\log B)^2 D \geq [C^*(\log A)C + D^*(\log B)D]^2,$$

and hence

$$(A + B)^{s/2}[A(\log A)^2 + B(\log B)^2](A + B)^{s/2} \geq (A + B)^{(s+1)/2}[C^*(\log A)C + D^*(\log B)D]^2(A + B)^{(s+1)/2}.$$

Put $E = A \log A + B \log B$. Then it follows that

$$\text{Tr}[(A + B)^t[A(\log A)^2 + B(\log B)^2]] = \text{Tr}[(A + B)^{t+1/2}[C^*(\log A)C + D^*(\log B)D]^2(A + B)^{(s+1)/2}].$$

Since $(x^t, 1/x)$ is an antimonotone pair of functions, we have by Theorem 2

$$\text{Tr}[(A + B)^t[A(\log A)^2 + B(\log B)^2]] \leq \text{Tr}[(A + B)^{t-1/2}[C^*(\log A)C + D^*(\log B)D] + (\log M/m)^2/4](A + B)^{(s+1)/2}.$$

This proves the second inequality of Theorem 3. Applying Lemma 4 for $\ell = \log m$ and $L = \log M$, we also have

$$\text{Tr}[(A + B)^t[A(\log A)^2 + B(\log B)^2]] = \text{Tr}[(A + B)^{t+1/2}[C^*(\log A)^2 C + D^*(\log B)^2 D](A + B)^{t+1/2}] \leq \text{Tr}[(A + B)^{t+1/2}[C^*(\log A)C + D^*(\log B)D]^2 + (\log M/m)^2/4](A + B)^{t+1/2}.$$

$$= \text{Tr}[(A + B)^tE(A + B)^{-1}E] + \frac{(\log M/m)^2}{4}\text{Tr}(A + B)^{t+1}.$$
and hence

\[S_{x,1/x}(A + B, E) + \frac{(\log \frac{M}{m})^2}{4} \text{Tr} (A + B)^{x+1} \]
\[= \text{Tr} (A + B)^x E (A + B)^{-1} E + \frac{(\log \frac{M}{m})^2}{4} \text{Tr} (A + B)^{x+1} \]
\[- \text{Tr} [(A + B)^{x-1} E^2] \]
\[\geq \text{Tr} [(A + B)^x (A \log A)^2 + B (\log B)^2] \]
\[- \text{Tr} [(A + B)^{x-1} (A \log A + B \log B)^2] \]

This proves the first inequality of Theorem 3. □

The inequality in Problem 1 follows from the second inequality of Theorem 3.

Acknowledgments

We would like to express our hearty thanks to Prof. Ritsuo Nakamoto, Prof. Kenjiro Yanagi and the referees for their valuable advice.

References