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The determinant treated in this note came up in a recent investigation 
of computer-blurred pictures by D. SLEPIAN [l]. The problem was to 
determine when the original picture can be uniquely reconstructed from 
the blurred picture. In the mathematical model the picture is a n x m 
matrix of nonnegative integers. The blurring is a replacement of each 
entry by a weighted average of the elements in some specified neighborhood 
of that entry. One of the most simple (but fundamental) cases led to the 
following determinant. 

Definition: P( , ) n a is the determinant of the n by n matrix F 
with entries ftj (i = 1, . . ., n; j = 1, . . ., n) defined as follows : 

2 if i+j<a+l or i+j>2n--a+l, 

k:= 0 if ]j-ij>a+l, 

1 otherwise. 

We make the restriction acn. 
To our great surprise this relatively harmless looking determinant 

turned out to be connected with the Jacobi symbol. 
In fact we shall prove 

Theorem : 
F(n, a) = (2a+ l)( - l)a(n-l) - 

For a definition of the Jacobi symbol (h/k) we refer to textbooks on ele- 
mentary number theory, e.g. [2], Chapter 11. Here we make the additional 
convention 

:=0 if (h,k)>l. 

Proof of Theorem: We define the n vectors g:(k) (k=O, 1, . . . . n- 1) 
bY 

rtk 3nk ~os~,cos~,...,COS 
(%a- 1)nk 

2n 
> 

. 
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Using the standard elementary trigonometric identities one immediately 
sees that the g(k) are a set of n orthogonal vectors. We claim that the 
p(k) are eigenvectors of the matrix F. For k = 0 this is obvious since all 
rowsums of F are 2a+ 1. We see that 2a+ 1 is an eigenvalue of F. For 
k=l, . ..) n- 1 we use the fact that the cosine is an even function. From 
this it follows that the inner product of row 1 of F and the vector p(k) is 

sinnk(2a+ 1) 

i 
cos nkPl- 1 - v = 2n nk(ZE- 1) 

i--a 2n . nk 
CO8 

2n * 
s1n2n 

Therefore 
sinnk(2a+ 1) 

2n 
g:(k) FT = 

. nk 
g:(k). 

s1n2n 

and we have thus proved that 

(1) 

sin 
nk(2a+ 1) 

n-1 2n 
F(n, @=(%+I) n 

k-l .nk ’ 
s1n2n 

We divide the integers mod 4n which are not divisible by n into the n- 1 
disjoint subsets ck: = {k, 2n-k, 2nf k, 4n - k). Notice that for every k 
and for every j E ck the value of [sin nj/2nl depends only. on k. If we 
multiply the integers mod 4n by 2a + 1 and if (2a + 1, n) = 1 then this 
mapping induces a permutation of the sets ck (k= 1, . . ., n- 1). From 
these two statements it follows that the product on the right hand side 
of (1) has absolute value 1 if (2a+ 1, n)=l. If (2a+l, n)>l then the 
product contains a factor equal to 0 in the numerator and F(n, a) =O. 
It remains to determine the sign of the product in the case (2a + 1, n) = 1. 
To do this we must count the number of integers k E [l, n - l] for which 
(2a+ l)k(mod 4 n is in the interval (2n, an). Now the number of integers ) 
k E [l, n-l] for which (2afl)k is in the interval ((2e-1)2n, (2e)2n) is 

mink-l, [2e&]) - [(2Y-1)&] 

for 2e--l<a. 
Therefore the number of integers we are counting is 
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where m(a) = 0 if a is even and m(a) = n - 1 if a is odd. Hence the product 
on the right hand side of (1) is equal to 

The theorem now follows from the well known identity 

(cf. [2], p. 90 Theorem 37). 

Remark : The reader may 
proof of this theorem. Let 

=(-1) 
,sp A] 2a+l , 

be interested in finding a more elementary 

G(n, a). = ( - V(+l) F(n7 4 
(2USl) ’ 

By elementary row and column operations it is possible to show that 
G(n, a) is periodic in n with period 2a f 1. Then, for a suitable subset of 
values of n, elementary row and column operations, if suitably chosen, 
lead to the relation 

G(n,a)=G(n-2a-1, --&+f2n-55a-2+)). 

Using the quadratic reciprocity law (cf. [2], Chapter 10) one can show 
that the Jacobi symbol satisfies the same relation and then the result 
easily follows. Although this is the approach one is most likely to take 
at first (and in fact this is how we arrived at the theorem), the details are 
tedious and the proof is less elegant than the one presented here. 

Remark : Work on this problem was done when the author was a 
visiting research worker at Bell Laboratories, Murray Hill, N.J. Although 
the theorem of this note is not significant in any way, it is interesting 
that such amusing mathematical problems came up in the study of 
blurring pictures and the retrieval of information. 
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