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Abstract

An eigentime identity is proved for transient symmetrizable Markov chains. For general Markov
chains, if the trace of Green matrix is finite, then the expectation of first leap time is uniformly
bounded, both of which are proved to be equivalent for single birth processes. For birth—death
processes, the explicit formulas are presented. As an application, we give the bounds of exponen-
tial convergence rates of (sub-) Markov semigratigrom /o 10 lso.
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1. Introduction and main results

Let 0-matrix Q = (g;;: i, j € E) be conservative, totally stable and irreducible on a
countably infinite state spacés. Let X;, r+ > 0, be the corresponding continuous-time
Markov chain with the minimalQ-function P(¢) = (p;;(t): i, j € E) for its transition
function. See [2,3] for more details.

Let &, be the successive jumps, that is,

& =0, Er=inf{t:1>&,_1, X, #Xe, 1}, n=1,
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and the first leap timé = lim,,_,  &,. From [2, Chapter 2], we know that
pij(t) =Pi[X, =j, t <&]. (1.1)

The process is assumed to be transient, that is, the Green @adtigg;;: i, j € E) satis-
fies

00
8ij Z:/pij(t)dt < oo, for i,jek,
0

so that lim_, o p;j(t) = 0.

In this paper we will study the relationship among the trace of Green matrithe
expectation of the first leap time and eigenvalues of the corresponding Markov generator.
These results extend the so-called eigentime identity for ergodic Markov chains to the
present setting. The explicit formulas are given for single birth processes (or upward skip-
free process) and especially for birth—death processes.

We remark that the term of “eigentime identity” comes from Aldous and Fill [1], which
is initially proved for finite Markov chains in a form different from (1.3). For an irreducible
finite Markov chain, discrete or continuous time, it will always be ergodic. In [7], this
identity was extended to continuous-time ergodic Markov chains on infinitely countable
state space.

First of all, we have

Theorem 1.1. Let tr(G) := ZjeE gjj then sup.p ;£ < tr(G). Therefore the process is
explosive if tr(G) < oc.

In general the converse assertion of Theorem 1.1 is not true. See the paragraph just fol-
lowing Proposition 1.7. However for the single birth process (or upward skip-free process),
this converse assertion is still true. For the precise definition of a single birth process, see
Section 3.

Theorem 1.2. For a single birth process, we have tr(G) = sug. Ei£.

In what follows we will focus on the symmetrizable processes. Suppos@thatsym-
metric with respect to a measure= (u; > 0, i € E), that is, u;q;; = njq;; for any
i, j € E, whose total mass is infinite)(; ., u; = o). Let L be the self-adjoint operator
in L2(w) associated withQ = (gij) and (P, t > 0) be the Markov semi-group with the
Markov generator.. Denote byo (L) andoesd L) the spectrum and essential spectrum
of —L in L2(w), respectively. The essential spectrum consists of continuous spectrum and
eigenvalues with infinite multiplicity. Sincg is infinite, oesd L) may be non-empty. When
oesdL) =¥, denote byr; < A2 < --- all the eigenvalues of L, counting multiplicity. Ac-
tually, we will prove

Theorem 1.3. Assume that the process is symmetrizable. If tr(G) < oo, then P, is a
Hilbert—Schmidt operator for any ¢ > 0. Therefore oesd L) = ¢ and Z@ofw < oo for
anyt > 0.
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Sinceu(E) = 0o, we haveh; > 0 whenoesd L) = . Now let £ be an eigenfunction
corresponding ta., such that{ f™: n > 1} is an orthonormal sequence irf(u). By [3,
Theorem 6.7]P; is (weakly) symmetric with respect jo, then by Kendall's representation
(cf. [2, Section 1.6]), we have

pij@ =p;y e . (1.2)
n>1

The proof of (1.2) is given in Section 2.

Now we will investigate the probability meaning of &) for Q-processX;. Lett =
inf(t: &1 <t <&, X, = j} be the (first) return time tg after finite times jumps, with the
convention inf) = co. We have the following eigentime identity.

Theorem 1.4. Assume that the process is symmetrizable and cesd L) = ¢, then
1
Al =tr(G) = _— 13

gl" ()ZJHD[+ -t (1.3)

nz JjeE
In particular, if tr(G) < oo, then A, 1 =o(n™t) asn — oo.

Next, we give the explicit eigentime formula for birth—death processes, the unique type

of single birth processes which is symmetrizable. The birth—dgattatrix 0 = (¢;;) on

Z, is defined byyg; i1 =5; (i 20), gii—1=a; (i > 1) andq,-j =0forall|i — j| > 2.
Define the potential coefficients to g =1, u; = bob1---b;_1/a1az---a; (i > 1). Set

R= Z LS - ZMzZ

i—o Mibi = par el L

Let (X;, t > 0) be the minimal birth—death process f@r, according to [2, Chapter 8],

R is the expectation of first passage timeXpffrom O toco and alsoR = sup E;& = Eoé.
When R < oo, the corresponding-process is not unique, for details see [2, Chapter 8]
or [3, Chapter 4]. This is the reason why we consider here only the minimal birth—death
process. ActuallyR is just the trace of Green matrix and as a consequence of Theorems 1.2
and 1.4, we have

Corollary 1.5. Let P(t) = (p;;(?)) be the transition probability matrix of minimal birth—
death process (X;,t > 0) for Q. Assumethat } ", _ 1; = oo and R < oo, then the asser-
tionsin Theorem 1.4 hold and the eigentime formula reads:

> at=R. (1.4)

n>1

Example 1.6. Letq; =i” fori > 1 andb; = (i + 1)¥ fori > 0, theny; = 1 and so that
u=oc and fory > 2,

0
R= Z(i + 17 < .
i=0
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Thus it holds that

Yot i+t
=0

n>1 i

Theorem 1.4 enables us to provide a counterexample to the converse of Theorem 1.1
based on Example 1.6.

Proposition 1.7. Assume y > 2. Let X, bethe associated minimal processwith the Markov
generator L asin Example 1.6. Then there exists a constant C < oo such that

Mm<Cn?, n>1 (1.5)

Assume 2< y < 3. Now letX!, i = 1,2, 3, be three independent copies Xf, then
X, = (X}, X?, X3) has the Markov generatdr=L @ I @ I + I QLRI+ QI ® L
with o (L) = {A, + Am + A;: n,m, [ > 1}, so by Theorem 1.4 and (1.5) we have

~ 1 1
MO =2, 2 25 S P X

nz2lm>11>1 n>21lm>1

1
> CZZ m =0oQ.
n>1

Let £,, &1 be the successive jumps for the corresponding proceXseand X}, re-
spectively, then obviouslg, < &1, so that := lim,_, « &, < &. Thus it follows from
Theorems 1.1 and 1.4 that Spp Ei, i,é < sup, ,;, Ei.i,&t = sup, B, &t < tr(GY) =
p 1/n7~t < 0.

Before moving to the detailed proofs of the results, we would like to give an application
to the uniform decay op;; (¢).

Let I, be Banach space of bounded functions Brwith the sup-norm|| oo =
Supeg | fil. The transition matrixP; = (p;;(¢)) gives rise to a bounded linear operator
from I t0 I, With operator norm|| P |loc—o0c = SURcE ZjeE pij(?). Cf. [2, Chap-
ter 1]. We will study the convergence G|l co—o00 8St — 00. Since || Pr4slloo—oco <
1 P |l co—s 00 || Ps llco—s 00, W€ have lim, o || P llco—o0o = O if and only if there exist > 0
andC < oo such that]| P; || so— 00 < Ce™ L. Thus we define

B =supfe > 0: 3C < oo such thatts >0, || P[lco—oo < Ce™ '} (1.6)
to be the (exponential) uniform decay rate. We have
Theorem 1.8.
(1) Ingeneral, we have 8 > (sup.; E:&)~2.

(2) If in addition the process is symmetrizable and oesdL) = #, then (3_,51 4,171 <
B < A1
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Corollary 1.9. For birth-death processes, thereexists C < oo suchthat R=1 < g < CR™L.
Furthermore, if R < oo, then (3,512, ) 1 <B<C(, 514, D7

2. Proofsof Theorems1.1, 1.3and 1.4

Proof of Theorem 1.1. Recall thatr;r =inf{r: & <t <&, X, = j}is the return time of
j after finite times jumps, so that’;r =00l = [t;r >£]. Let Fj(1) =P [t;r < 1] be the
distribution function ofrf, and define the Laplace transforms

o0 o0
P = [Hpywan Fy00= [eHarw. ano
0 0

It follows from Kolmogorov’s backward equation that

t

pij(l‘)Z(Sijeiqit+/pjj(l‘—s)dFij(S). (2.1)
0
Taking Laplace transforms in (2.1), we have
1
Pji(A) = and fori £ j, Pij(0)=%;;A)Pj;(A).

A+q)L—=F;;0)
By letting » — 0 and noting that + .%;;(0) = IP’,-[tJ?“ =o0] = IP’,-[rj?“ > £], we get
1

JrilTy =

8jj
SinceIE”,-[r/.+ < o0] <1, we have forany € E,

D g <D g =tr(G).

JjeE JjeE

hence supzj gij <tr(G) < oo by assumption.
On the other hand, by (1.1) we have

Y opit)=Y PilX;=j, &> t]=Pi[& > 1].

jeE JjeE
Thus
o0
> ey = [ Bile = ndi =B
JjEE 0

Therefore, supy E;£ <tr(G) <oco. O

To prove Theorem 1.3, we need the following lemma.
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Lemma2.1. If tr(G) < oo, thenfor any ¢t > 0, ¢ (¢) := ZjeE pjj(t) <oo.

Proof. Note that
o0
tr(G) =/¢(t)dt < 00,
0

then¢ (1) < oo for a.e.r € (0, 00). Since for any;j € E, p;;(¢) is decreasing im € (0, co)
by Kendall's representation (cf. [2]), so i(r), then it follows thatg (1) < co for any
te(0,00). O

Proof of Theorem 1.3. Fix t > 0, setk;; = p;;(t)/u;. To prove thatP; is a Hilbert—
Schmidt operator, by [6, Proposition 1.b.15] we need only to show(thate L2(u x ).
In fact,

Z li'U“’/LJ Z “'lplj(t) /M] Zﬂjpjz(t)Pu(t)/ﬂj

i,jeE i,jeE ij

=Y piipij (1) < Z pjj(21) < o0

ij
by Lemma 2.1. The other assertions will follow easily (cf. [5, Chapter 4}).
Before going to prove Theorem 1.4, we prove (1.2) first.(.e} be the inner product in

L?(1). SinceP; is self-adjoint inL2(u) for anyr > 0, then by spectral theorem (cf. [10]),
there exists a family of projections, = (-, ™) f® such that

P = Z e M E,.

n>1
Lete/ be defined by! = 8;;, we have

wipij @) = ( P,e] ei ZZMke Pt (En e] ek—,u,Ze Pt (En e] (2.3)

SinceE e/ = (e/, fM)fm =3, ;Lke,{ o = Mjfj(")ﬂ"), then (1.2) follows from
(2.3).

Proof of Theorem 1.4. Sinceoesd L) = @, it follows from (1.2) that

gjj—/ZM e[ Pdr =y 3o AP

o n=1 n>1

thus
tr(G) = Zg”—ZM] (AP mt =Y at
n=1 n=1

The second equahty in (1.3) follows from (2.2) directlyo
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3. Single birth processes

In this section, we will prove Theorems 1.2 and 1.5 concerning about single birth and
birth—death processes. For these purposes, we shall compute out the trace of Green matrix
tr(G) for these processes. By Theorem 1.4, we need computé’,cpu}* = oo] for any
j=0.

Recall that theQ-matrix Q = (g;;: i, j € Zy) of a single birth process is defined by:
gii+1>0,g;;+; =0foralli e Z andj > 2. Assume thaQ is totally stable and conser-
vative:q; = —qii =) ,; gij < oo foralli e Z. Defmeq(") Z];:anj forO<k<n
(k,neZy)and

n
my=Y_ F/gir1, n>0,

k=0
FM=1  F9= Z WED 0<i<n.
qn,n+1 i
Then
o0
R::Zmn _Z ZF("). (3.1)
n=0 k>0 Tkk+1 =

Especially, if in additiong;; = 0 for j <i — 2, then the corresponding single birth
process is called a birth—death process. For the birth—death process, we have

Z Zw ZmZ

'U“J

Proof of Theorem 1.2. Let t = I|m,_>oor be the first time arriving, thent = &,
a.e. and by the property of single birth, supE;§ = sup>oEit = Eor = R. See [11,
Theorem 1.1] and [9, §6.3].

From [11, Theorem 1.2], we have

qj,j+1
Pi[tf = o] =1-Pj[c} <¢]= — DI
J ]Zk>J Fk(])
It follows from (2.2) and (3.1) that
1 )
tr(G _ = F’ =R.
rG) = Z P, [7; = ool Z Zk O

i>0 qj >0 04i.j+1 k>

Proof of Proposition 1.7. To prove (1.5), we need the following classical result due to
the max—min principle (cf. [8, Proposition 5.1]). LéD, D(D)) be the Dirichlet form
associated with the Markov generator Supposeresd L) = @. For anyn > 1, if there is
{g®yr_y c D(D) with 1(|g®|?) =1 andu(g®g®) = D(g®, g) = 0 fork #1, then

a <max{D(g®, g®): 1<k <n}. (3.2)
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Sincey > 2, we haveresd L) = ¥ by Theorem 1.3. Let/ be defined byzl.j =4;; and
setg® = ¢%_ Noting thatu; = 1, it is easy to check that(|g®|?) = 1 andu(g®g?) =
D(g®, g»y=0fork #1. Fork < n, we have

k k
(k) (k) Zu a;( ( ) _ gl )1) =ay +axs1 <22k + 1)
i1

Hencei, < Cn? for someC <oco. O

4. Uniform decay
To prove Theorem 1.8, we need the following lemma.

Lemma 4.1. Let M = sup.g E;€, then for any n > 0, sup.g E;£" < n!M". Therefore
suppEie*® <(1—aM)~tfor < 1/M.

Proof. SinceP;[¢ >t] = ZjeE pij(t) andp;; (1) is the minimal non-negative solution for
backward integral equation

t

Pij(t)zfsije_qit+/€_qiSZQikij(Z_5)dS,
5 ki

by (1.1) we have

t
P;[& > 1] —e 4! +/e_q"SZqik]P’k[§ >t —s]ds.
0 kti

Then

t

o0 o0
]El'E'H_l n!
" :f "Pi[E > 1]dt = —— /t" d:Z/Pk[g >t —sle % g ds
n 0 ‘11 5 ki

= 1 +Z/ o dS/(s+u)n[Pk[§ > ulqix du
4; ki

(n —m)! B+

g ()

+1 +1

q; k% m=0 g/~ om+1
n! Ek$m+1

= n+1+2qlk2(m+l)! n—m+1’

4g; k#i m=0

that is,
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‘11 [$n+l_ quan—l ql lg_—n+l
(141! DB I E e (m+ D! +Z WD

m=0 k#i
IEE” ”E-S”""l
=4 +Z%k7q' l .
n! - (n+ D!
ki

Sincep;;(¢) is minimal, it follows that(E;£", i € E) is the minimal non-negative solution
of

Z%kxk-i- JEEL i€E n>1 (4.1)
q k#i

Whenn = 1, setE;£% = 1. SinceE;& < M, we assume by induction tha;e" 1 <
(n—1IM" 1 Let (x}, i € E) be the minimal non-negative solution of

1 nmM" 1
=— ZCIika + .
qi oy qi
When comparing with (4.1) forn = 1, it follows from [4, Corollary 3.3.3] that =
n!M"1E;€ < n!M". But by the comparison theorem (cf. [3, Chapter 2]), welgjét* <
x'<nlM". O

Proof of Theorem 1.8. (1) From the proof of Theorem 1.1, we know tha || co— 0o =
Supcg Pi[€ > 1]. Then it follows from Lemma 4.1 that for arly< 1/M,

e—)»t

1—aM’

hences > X foranyA < 1/M, sothatg > 1/M.
(2) From (1) and Theorems 1.1 and 1.4, it follows tat (3°,~, 2,51 We will
prove s < A1. First note that by symmetryi p;; (t) = 1 pji (t)), we have

sz](t)fj

JjeE

< osup Y iy pilf]

HfHLl(mglleE jEE

= ZZM]P]:(I)U(]

HfHLl(ﬂ)glteE jeE

SUDZ sz(t)

]eEtEE

||Pl||00~>00 X

1Pl Lruy—>rry =  SUP Z,uz
HfHLl(M)glleE

= ||Pt||oo%oo.

Applying the interpolation theorem, we ha¥&; || 12,y 12(,) < | Ptlloo— o0, SO that

. 1
AL= t'l)”go —7 10g 11 Pl L2()— L2¢u) = B- O
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Proof of Corollary 1.9. By Theorem 1.8, we need to prove that there exi5ts oo such
that 8 < C(Y_,512, )% Indeed, by the definition of, there existsC < oo such that

SURcp PilE > 1] = || Prlloosoo < Ce™P1/2/2, thus

9]

SUPE; £ < / SUpP, (£ > 1]dt < C/B.
icE 5 ieE

The assertion follows from Corollary 1.5.0
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