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Abstract

An eigentime identity is proved for transient symmetrizable Markov chains. For general M
chains, if the trace of Green matrix is finite, then the expectation of first leap time is unifo
bounded, both of which are proved to be equivalent for single birth processes. For birth
processes, the explicit formulas are presented. As an application, we give the bounds of e
tial convergence rates of (sub-) Markov semigroupPt from l∞ to l∞.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction and main results

Let Q-matrix Q = (qij : i, j ∈ E) be conservative, totally stable and irreducible o
countably infinite state spacesE. Let Xt , t � 0, be the corresponding continuous-tim
Markov chain with the minimalQ-function P(t) = (pij (t): i, j ∈ E) for its transition
function. See [2,3] for more details.

Let ξn be the successive jumps, that is,

ξ0 = 0, ξn = inf{t : t > ξn−1, Xt �= Xξn−1}, n � 1,
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and the first leap timeξ = limn→∞ ξn. From [2, Chapter 2], we know that

pij (t) = Pi[Xt = j, t < ξ ]. (1.1)

The process is assumed to be transient, that is, the Green matrixG = (gij : i, j ∈ E) satis-
fies

gij :=
∞∫

0

pij (t) dt < ∞, for i, j ∈ E,

so that limt→∞ pij (t) = 0.
In this paper we will study the relationship among the trace of Green matrixG, the

expectation of the first leap time and eigenvalues of the corresponding Markov gen
These results extend the so-called eigentime identity for ergodic Markov chains
present setting. The explicit formulas are given for single birth processes (or upward
free process) and especially for birth–death processes.

We remark that the term of “eigentime identity” comes from Aldous and Fill [1], wh
is initially proved for finite Markov chains in a form different from (1.3). For an irreduc
finite Markov chain, discrete or continuous time, it will always be ergodic. In [7],
identity was extended to continuous-time ergodic Markov chains on infinitely coun
state space.

First of all, we have

Theorem 1.1. Let tr(G) := ∑
j∈E gjj , then supi∈E Eiξ � tr(G). Therefore the process is

explosive if tr(G) < ∞.

In general the converse assertion of Theorem 1.1 is not true. See the paragraph
lowing Proposition 1.7. However for the single birth process (or upward skip-free pro
this converse assertion is still true. For the precise definition of a single birth proces
Section 3.

Theorem 1.2. For a single birth process, we have tr(G) = supi∈E Eiξ .

In what follows we will focus on the symmetrizable processes. Suppose thatQ be sym-
metric with respect to a measureµ = (µi > 0, i ∈ E), that is,µiqij = µjqij for any
i, j ∈ E, whose total mass is infinite (

∑
i∈E µi = ∞). Let L be the self-adjoint operato

in L2(µ) associated withQ = (qij ) and(Pt , t � 0) be the Markov semi-group with th
Markov generatorL. Denote byσ(L) andσess(L) the spectrum and essential spectr
of −L in L2(µ), respectively. The essential spectrum consists of continuous spectru
eigenvalues with infinite multiplicity. SinceE is infinite,σess(L) may be non-empty. Whe
σess(L) = ∅, denote byλ1 � λ2 � · · · all the eigenvalues of−L, counting multiplicity. Ac-
tually, we will prove

Theorem 1.3. Assume that the process is symmetrizable. If tr(G) < ∞, then Pt is a
Hilbert–Schmidt operator for any t > 0. Therefore σess(L) = ∅ and

∑
n�0 e−λnt < ∞ for

any t > 0.
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Sinceµ(E) = ∞, we haveλ1 > 0 whenσess(L) = ∅. Now letf (n) be an eigenfunction
corresponding toλn such that{f (n): n � 1} is an orthonormal sequence inL2(µ). By [3,
Theorem 6.7],Pt is (weakly) symmetric with respect toµ, then by Kendall’s representatio
(cf. [2, Section 1.6]), we have

pij (t) = µj

∑
n�1

e−λntf
(n)
i f

(n)
j . (1.2)

The proof of (1.2) is given in Section 2.
Now we will investigate the probability meaning of tr(G) for Q-processXt . Let τ+

j =
inf{t : ξ1 < t < ξ, Xt = j} be the (first) return time toj after finite times jumps, with th
convention inf∅ = ∞. We have the following eigentime identity.

Theorem 1.4. Assume that the process is symmetrizable and σess(L) = ∅, then
∑
n�1

λ−1
n = tr(G) =

∑
j∈E

1

qjPj [τ+
j = ∞] . (1.3)

In particular, if tr(G) < ∞, then λ−1
n = o(n−1) as n → ∞.

Next, we give the explicit eigentime formula for birth–death processes, the uniqu
of single birth processes which is symmetrizable. The birth–deathq-matrix Q = (qij ) on
Z+ is defined by:qi,i+1 = bi (i � 0), qi,i−1 = ai (i � 1) andqij = 0 for all |i − j | � 2.
Define the potential coefficients to beµ0 = 1, µi = b0b1 · · ·bi−1/a1a2 · · ·ai (i � 1). Set

R =
∞∑
i=0

1

µibi

i∑
j=0

µj =
∞∑
i=0

µi

∞∑
j=i

1

µjbj

.

Let (Xt , t � 0) be the minimal birth–death process forQ, according to [2, Chapter 8
R is the expectation of first passage time ofXt from 0 to∞ and alsoR = supi Eiξ = E0ξ .
WhenR < ∞, the correspondingq-process is not unique, for details see [2, Chapte
or [3, Chapter 4]. This is the reason why we consider here only the minimal birth–
process. Actually,R is just the trace of Green matrix and as a consequence of Theorem
and 1.4, we have

Corollary 1.5. Let P(t) = (pij (t)) be the transition probability matrix of minimal birth–
death process (Xt , t � 0) for Q. Assume that

∑
i∈E µi = ∞ and R < ∞, then the asser-

tions in Theorem 1.4hold and the eigentime formula reads:∑
n�1

λ−1
n = R. (1.4)

Example 1.6. Let ai = iγ for i � 1 andbi = (i + 1)γ for i � 0, thenµi = 1 and so tha
µ = ∞ and forγ > 2,

R =
∞∑

(i + 1)1−γ < ∞.
i=0
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Thus it holds that

∑
n�1

λ−1
n =

∞∑
i=0

(i + 1)1−γ .

Theorem 1.4 enables us to provide a counterexample to the converse of Theor
based on Example 1.6.

Proposition 1.7. Assume γ > 2. Let Xt be the associated minimal process with the Markov
generator L as in Example 1.6. Then there exists a constant C < ∞ such that

λn � Cnγ , n � 1. (1.5)

Assume 2< γ � 3. Now letXi
t , i = 1,2,3, be three independent copies ofXt , then

X̃t = (X1
t ,X

2
t ,X

3
t ) has the Markov generator̃L = L ⊗ I ⊗ I + I ⊗ L ⊗ I + I ⊗ I ⊗ L

with σ(L̃) = {λn + λm + λl : n,m, l � 1}, so by Theorem 1.4 and (1.5) we have

tr(G̃) =
∑
n�1

∑
m�1

∑
l�1

1

λn + λm + λl

� C1

∑
n�1

∑
m�1

1

(n + m)γ−1

� C2

∑
n�1

1

(n + 1)γ−2
= ∞.

Let ξ̃n, ξ
1
n be the successive jumps for the corresponding processesX̃t and X1

t , re-
spectively, then obviouslỹξn � ξ1

n , so thatξ̃ := limn→∞ ξ̃n � ξ1. Thus it follows from
Theorems 1.1 and 1.4 that supi1,i2

Ei1,i2 ξ̃ � supi1,i2 Ei1,i2ξ
1 = supi1 Ei1ξ

1 � tr(G1) =∑
n�1 1/nγ−1 < ∞.
Before moving to the detailed proofs of the results, we would like to give an applic

to the uniform decay ofpij (t).
Let l∞ be Banach space of bounded functions onE with the sup-norm‖f ‖∞ =

supi∈E |fi |. The transition matrixPt = (pij (t)) gives rise to a bounded linear opera
from l∞ to l∞, with operator norm‖Pt‖∞→∞ = supi∈E

∑
j∈E pij (t). Cf. [2, Chap-

ter 1]. We will study the convergence of‖Pt‖∞→∞ as t → ∞. Since‖Pt+s‖∞→∞ �
‖Pt‖∞→∞‖Ps‖∞→∞, we have limt→∞ ‖Pt‖∞→∞ = 0 if and only if there existε > 0
andC < ∞ such that‖Pt‖∞→∞ � Ce−εt . Thus we define

β = sup
{
ε > 0: ∃C < ∞ such that∀t � 0, ‖Pt‖∞→∞ � Ce−εt

}
(1.6)

to be the (exponential) uniform decay rate. We have

Theorem 1.8.

(1) In general, we have β � (supi∈E Eiξ )−1.
(2) If in addition the process is symmetrizable and σess(L) = ∅, then (

∑
n�1 λ−1

n )−1 �
β � λ1.
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Corollary 1.9. For birth–death processes, there exists C < ∞ such that R−1 � β � CR−1.
Furthermore, if R < ∞, then (

∑
n�1 λ−1

n )−1 � β � C(
∑

n�1 λ−1
n )−1.

2. Proofs of Theorems 1.1, 1.3 and 1.4

Proof of Theorem 1.1. Recall thatτ+
j = inf{t : ξ1 < t < ξ, Xt = j} is the return time o

j after finite times jumps, so that[τ+
j = ∞] = [τ+

j � ξ ]. Let Fij (t) = Pi[τ+
j � t] be the

distribution function ofτ+
j , and define the Laplace transforms

Pij (λ) =
∞∫

0

e−λtpij (t) dt, Fij (λ) =
∞∫

0

e−λt dFij (t), λ > 0.

It follows from Kolmogorov’s backward equation that

pij (t) = δij e
−qi t +

t∫
0

pjj (t − s) dFij (s). (2.1)

Taking Laplace transforms in (2.1), we have

Pjj (λ) = 1

(λ + qj )(1− Fjj (λ))
and fori �= j , Pij (λ) = Fij (λ)Pjj (λ).

By lettingλ → 0 and noting that 1− Fij (0) = Pi[τ+
j = ∞] = Pi[τ+

j � ξ ], we get

gjj = 1

qjPj [τ+
j = ∞] and fori �= j , gij = gjjPi[τ+

j < ∞]. (2.2)

SincePi[τ+
j < ∞] � 1, we have for anyi ∈ E,

∑
j∈E

gij �
∑
j∈E

gjj = tr(G),

hence supi
∑

j gij � tr(G) < ∞ by assumption.
On the other hand, by (1.1) we have∑

j∈E

pij (t) =
∑
j∈E

Pi[Xt = j, ξ > t] = Pi[ξ > t].

Thus

∑
j∈E

gij =
∞∫

0

Pi[ξ > t]dt = Eiξ.

Therefore, supi∈E Eiξ � tr(G) < ∞. �
To prove Theorem 1.3, we need the following lemma.
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Lemma 2.1. If tr(G) < ∞, then for any t > 0, φ(t) := ∑
j∈E pjj (t) < ∞.

Proof. Note that

tr(G) =
∞∫

0

φ(t) dt < ∞,

thenφ(t) < ∞ for a.e.t ∈ (0,∞). Since for anyj ∈ E, pjj (t) is decreasing int ∈ (0,∞)

by Kendall’s representation (cf. [2]), so isφ(t), then it follows thatφ(t) < ∞ for any
t ∈ (0,∞). �
Proof of Theorem 1.3. Fix t > 0, setkij = pij (t)/µj . To prove thatPt is a Hilbert–
Schmidt operator, by [6, Proposition 1.b.15] we need only to show that(kij ) ∈ L2(µ × µ).
In fact,∑

i,j∈E

k2
ijµiµj =

∑
i,j∈E

µipij (t)
2/µj =

∑
ij

µjpji(t)pij (t)/µj

=
∑
ij

pji(t)pij (t) �
∑
j

pjj (2t) < ∞

by Lemma 2.1. The other assertions will follow easily (cf. [5, Chapter 4]).�
Before going to prove Theorem 1.4, we prove (1.2) first. Let(·,·) be the inner product in

L2(µ). SincePt is self-adjoint inL2(µ) for any t � 0, then by spectral theorem (cf. [10
there exists a family of projectionsEn = (· , f (n))f (n) such that

Pt =
∑
n�1

e−λntEn.

Let ej be defined byej
i = δij , we have

µipij (t) = (
Pte

j , ei
) =

∑
k

∑
n

µke
−λnt

(
Ene

j
)
k
ei
k = µi

∑
n

e−λnt
(
Ene

j
)
i
. (2.3)

SinceEne
j = (ej , f (n))f (n) = ∑

k µke
j
kf

(n)
k f (n) = µjf

(n)
j f (n), then (1.2) follows from

(2.3).

Proof of Theorem 1.4. Sinceσess(L) = ∅, it follows from (1.2) that

gjj =
∞∫

0

∑
n�1

µje
−λnt

[
f

(n)
j

]2
dt = µj

∑
n�1

λ−1
n

[
f

(n)
j

]2
,

thus

tr(G) =
∑
j

gjj =
∑
j

µj

[
f

(n)
j

]2 ∑
n�1

λ−1
n =

∑
n�1

λ−1
n .

The second equality in (1.3) follows from (2.2) directly.�
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3. Single birth processes

In this section, we will prove Theorems 1.2 and 1.5 concerning about single birt
birth–death processes. For these purposes, we shall compute out the trace of Gree
tr(G) for these processes. By Theorem 1.4, we need compute outPj [τ+

j = ∞] for any
j � 0.

Recall that theQ-matrix Q = (qij : i, j ∈ Z+) of a single birth process is defined b
qi,i+1 > 0, qi,i+j = 0 for all i ∈ Z+ andj � 2. Assume thatQ is totally stable and conse

vative:qi = −qii = ∑
j �=i qij < ∞ for all i ∈ Z+. Defineq

(k)
n = ∑k

j=0 qnj for 0 � k < n

(k,n ∈ Z+) and

mn =
n∑

k=0

F (k)
n /qk,k+1, n � 0,

F (n)
n = 1, F (i)

n = 1

qn,n+1

n−1∑
k=i

q(k)
n F

(i)
k , 0� i < n.

Then

R :=
∞∑

n=0

mn =
∑
k�0

1

qk,k+1

∑
n�k

F (k)
n . (3.1)

Especially, if in additionqij = 0 for j � i − 2, then the corresponding single bir
process is called a birth–death process. For the birth–death process, we have

R =
∞∑
i=0

1

µibi

i∑
j=0

µj =
∞∑
i=0

µi

∞∑
j=i

1

µjbj

.

Proof of Theorem 1.2. Let τ = limi→∞ τ+
i be the first time arriving∞, then τ = ξ ,

a.e. and by the property of single birth, supi�0 Eiξ = supi�0 Eiτ = E0τ = R. See [11,
Theorem 1.1] and [9, §6.3].

From [11, Theorem 1.2], we have

Pj

[
τ+
j = ∞] = 1− Pj

[
τ+
j < ξ

] = qj,j+1

qj

∑
k�j F

(j)
k

.

It follows from (2.2) and (3.1) that

tr(G) =
∑
j�0

1

qjPj [τj = ∞] =
∑
j�0

1

qj,j+1

∑
k�j

F
(j)
k = R. �

Proof of Proposition 1.7. To prove (1.5), we need the following classical result due
the max–min principle (cf. [8, Proposition 5.1]). Let(D,D(D)) be the Dirichlet form
associated with the Markov generatorL. Supposeσess(L) = ∅. For anyn � 1, if there is
{g(k)}nk=0 ⊂ D(D) with µ(|g(k)|2) = 1 andµ(g(k)g(l)) = D(g(k), g(l)) = 0 for k �= l, then

λn � max
{
D

(
g(k), g(k)

)
: 1� k � n

}
. (3.2)
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Sinceγ > 2, we haveσess(L) = ∅ by Theorem 1.3. Letej be defined byej
i = δij and

setg(k) = e2k . Noting thatµi = 1, it is easy to check thatµ(|g(k)|2) = 1 andµ(g(k)g(l)) =
D(g(k), g(l)) = 0 for k �= l. Fork � n, we have

D
(
g(k), g(k)

) =
∑
i�1

µiai

(
g

(k)
i − g

(k)
i−1

)2 = a2k + a2k+1 � 2(2k + 1)γ .

Henceλn � Cnγ for someC < ∞. �

4. Uniform decay

To prove Theorem 1.8, we need the following lemma.

Lemma 4.1. Let M = supi∈E Eiξ , then for any n � 0, supi∈E Eiξ
n � n!Mn. Therefore

supi∈E Eie
λξ � (1− λM)−1 for λ < 1/M .

Proof. SincePi[ξ > t] = ∑
j∈E pij (t) andpij (t) is the minimal non-negative solution fo

backward integral equation

pij (t) = δij e
−qi t +

t∫
0

e−qis
∑
k �=i

qikpkj (t − s) ds,

by (1.1) we have

Pi[ξ > t] = e−qi t +
t∫

0

e−qis
∑
k �=i

qikPk[ξ > t − s]ds.

Then

Eiξ
n+1

n + 1
=

∞∫
0

tnPi[ξ > t]dt = n!
qn+1
i

+
∞∫

0

tn dt
∑
k �=i

t∫
0

Pk[ξ > t − s]e−qi sqik ds

= n!
qn+1
i

+
∑
k �=i

∞∫
0

e−qis ds

∞∫
0

(s + u)nPk[ξ > u]qik du

= n!
qn+1
i

+
∑
k �=i

qik

n∑
m=0

(
n

m

)
(n − m)!
qn−m+1
i

Ekξ
m+1

m + 1

= n!
qn+1
i

+
∑
k �=i

qik

n∑
m=0

n!
(m + 1)!

Ekξ
m+1

qn−m+1
i

,

that is,



Y.-H. Mao / J. Math. Anal. Appl. 315 (2006) 415–424 423

n

qn+1
i Eiξ

n+1

(n + 1)! = 1+
n−1∑
m=0

∑
k �=i

qik

qm
i Eiξ

m+1

(m + 1)! +
∑
k �=i

qik

qn
i Eiξ

n+1

(n + 1)!

= qn
i Eiξ

n

n! +
∑
k �=i

qik

qn
i Eiξ

n+1

(n + 1)! .

Sincepij (t) is minimal, it follows that(Eiξ
n, i ∈ E) is the minimal non-negative solutio

of

xi = 1

qi

∑
k �=i

qikxk + n

qi

Eiξ
n−1, i ∈ E, n � 1. (4.1)

When n = 1, setEiξ
0 = 1. SinceEiξ � M , we assume by induction thatEiξ

n−1 �
(n − 1)!Mn−1. Let (x∗

i , i ∈ E) be the minimal non-negative solution of

xi = 1

qi

∑
k �=i

qikxk + n!Mn−1

qi

.

When comparing with (4.1) forn = 1, it follows from [4, Corollary 3.3.3] thatx∗
i =

n!Mn−1
Eiξ � n!Mn. But by the comparison theorem (cf. [3, Chapter 2]), we getEiξ

n �
x∗
i � n!Mn. �

Proof of Theorem 1.8. (1) From the proof of Theorem 1.1, we know that‖Pt‖∞→∞ =
supi∈E Pi[ξ > t]. Then it follows from Lemma 4.1 that for anyλ < 1/M ,

‖Pt‖∞→∞ � e−λt

1− λM
,

henceβ � λ for anyλ < 1/M , so thatβ � 1/M .
(2) From (1) and Theorems 1.1 and 1.4, it follows thatβ � (

∑
n�1 λ−1

n )−1. We will
proveβ � λ1. First note that by symmetry (µipij (t) = µjpji(t)), we have

‖Pt‖L1(µ)→L1(µ) = sup
‖f ‖

L1(µ)
�1

∑
i∈E

µi

∣∣∣∣
∑
j∈E

pij (t)fj

∣∣∣∣
� sup

‖f ‖
L1(µ)

�1

∑
i∈E

µi

∑
j∈E

pij (t)|fj |

= sup
‖f ‖

L1(µ)
�1

∑
i∈E

∑
j∈E

µjpji(t)|fj |

� sup
j∈E

∑
i∈E

pji(t)

= ‖Pt‖∞→∞.

Applying the interpolation theorem, we have‖Pt‖L2(µ)→L2(µ) � ‖Pt‖∞→∞, so that

λ1 = lim −1
log‖Pt‖L2(µ)→L2(µ) � β. �
t→∞ t
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y.edu/

92.

4), in

nal. 194
Proof of Corollary 1.9. By Theorem 1.8, we need to prove that there existsC < ∞ such
that β � C(

∑
n�1 λ−1

n )−1. Indeed, by the definition ofβ, there existsC < ∞ such that

supi∈E Pi[ξ > t] = ‖Pt‖∞→∞ � Ce−βt/2/2, thus

sup
i∈E

Eiξ �
∞∫

0

sup
i∈E

Pi[ξ > t]dt � C/β.

The assertion follows from Corollary 1.5.�
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