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1. Introduction

Biharmonic maps between two Riemannian manifolds (M, g) and (N,h), M compact, generalize harmonic maps
(see [13]) and represent the critical points of the bienergy functional

E2 : C∞(M, N) → R, E2(φ) = 1

2

∫
M

∣∣τ (φ)
∣∣2

v g,

where τ (φ) = trace∇dφ denotes the tension field associated to the map φ. We recall that harmonic maps are characterized
by the vanishing of the tension field (see, for example, [12]).

The first variation of E2, obtained by G.Y. Jiang in [16], shows that φ is a biharmonic map if and only if its bitension field
vanishes

τ2(φ) = − J
(
τ (φ)

) = −�τ(φ) − trace RN(
dφ·, τ (φ)

)
dφ·

= 0, (1.1)

i.e. τ (φ) ∈ Ker J , where J is, formally, the Jacobi operator associated to φ. Here � denotes the rough Laplacian on sections of
the pull-back bundle φ−1(T N) and RN denotes the curvature operator on (N,h), and we use the following sign conventions

�V = − trace ∇2 V , ∀V ∈ C
(
φ−1(T N)

)
,

RN(X, Y ) = [∇X ,∇Y ] − ∇[X,Y ], ∀X, Y ∈ C(T N).
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When M is not compact a map φ : (M, g) → (N,h) is said to be biharmonic if it is a solution of Eq. (1.1). As J is a
linear operator, any harmonic map is biharmonic. We call proper biharmonic the non-harmonic biharmonic maps, and the
submanifolds with non-harmonic (non-minimal) biharmonic inclusion map are called proper biharmonic submanifolds.

One can easily construct proper biharmonic maps between Euclidean spaces, for example by choosing third order poly-
nomial maps or by using the Almansi property (see [3]). Regarding proper biharmonic Riemannian immersions into the
Euclidean space, they are characterized by the equation �H = 0, where H denotes the mean curvature vector field, i.e. they
are also biharmonic in the sense of Chen (see [9]).

A nonexistence result for proper biharmonic maps was obtained by requesting a compact domain and a non-positively
curved codomain [16]. Moreover, the nonexistence of proper biharmonic Riemannian immersions with constant mean curva-
ture in non-positively curved spaces was proved (see [22]). Other nonexistence results, mainly regarding proper biharmonic
Riemannian immersions into non-positively curved manifolds can be found in [4–6,10,11,14,19]. Surprisingly, in [23] the au-
thor constructed examples of proper biharmonic Riemannian immersions (of non-constant mean curvature) in conformally
flat negatively curved spaces.

On the other hand there are many examples of proper biharmonic submanifolds in positively curved spaces.
In this paper we study proper biharmonic submanifolds in Euclidean spheres with additional extrinsic properties: parallel

mean curvature vector field or parallel Weingarten operator associated to the mean curvature vector field, obtaining some
rigidity results.

The paper is organized as follows. In the preliminary section we gather some known results on proper biharmonic
submanifolds in the unit Euclidean sphere S

n . This section also recalls the Moore decomposition lemma.
In the main section we first prove, for compact proper biharmonic submanifolds of S

n , a boundedness condition involving
the mean curvature |H| and the norm |AH | of the Weingarten operator associated to the mean curvature vector field
(Theorem 3.2).

Then, the proper biharmonic submanifolds with parallel mean curvature vector field in unit Euclidean spheres are stud-
ied. It is known that a constant mean curvature proper biharmonic submanifold in S

n satisfies |H| ∈ (0,1], and |H| = 1 if
and only if it is minimal in a small hypersphere S

n−1(1/
√

2 ) (see [21]). We prove here that the mean curvature of the
proper biharmonic submanifolds Mm with parallel mean curvature vector field in S

n takes values in (0, m−2
m ] ∪ {1}, and we

determine the proper biharmonic submanifolds with parallel mean curvature vector field and |H| = m−2
m (Theorem 3.11).

Finally, we investigate proper biharmonic submanifolds in spheres with parallel mean curvature vector field, parallel
Weingarten operator associated to the mean curvature vector field, and |H| ∈ (0, m−2

m ). We first prove that such submanifolds
have exactly two distinct principal curvatures in the direction of H (Corollary 3.15) and then, using the Moore Lemma, we
determine all of them (Theorem 3.16).

We shall work in the C∞ category, i.e. all manifolds, metrics, connections, maps, sections are assumed to be smooth. All
manifolds are assumed to be connected.

2. Preliminaries

The biharmonic equation (1.1) for the inclusion map ı : Mm → S
n of a submanifold M in S

n writes

�H = mH,

where H denotes the mean curvature vector field of M in S
n . Although simple, this equation is not used in order to obtain

examples and classification results. The following characterization, obtained by splitting the bitension field in its normal and
tangent components, proved to be more useful.

Theorem 2.1. (See [22].)

(i) The canonical inclusion ı : Mm → S
n of a submanifold M in an n-dimensional unit Euclidean sphere is biharmonic if and only if{

�⊥H + trace B
(

AH (·), ·) − mH = 0,

4 trace A∇⊥
(·) H (·) + m grad

(|H|2) = 0,
(2.1)

where A denotes the Weingarten operator, B the second fundamental form, H the mean curvature vector field, ∇⊥ and �⊥ the
connection and the Laplacian in the normal bundle of M in S

n, and grad denotes the gradient on M.
(ii) If M is a submanifold with parallel mean curvature vector field, i.e. ∇⊥H = 0, in S

n, then M is biharmonic if and only if

trace B
(

AH (·), ·) = mH, (2.2)

or equivalently,{ |AH |2 = m|H|2,
〈AH , Aη〉 = 0, ∀η ∈ C(N M), η ⊥ H,

(2.3)

where N M denotes the normal bundle of M in S
n.
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We recall that the small hypersphere

S
n−1(1/

√
2 ) = {

(x,1/
√

2 ) ∈ R
n+1: x ∈ R

n, |x|2 = 1/2
} ⊂ S

n (2.4)

and the standard products of spheres S
n1 (1/

√
2 ) × S

n2 (1/
√

2 ), given by{
(x, y) ∈ R

n+1: x ∈ R
n1+1, y ∈ R

n2+1, |x|2 = |y|2 = 1/2
} ⊂ S

n, (2.5)

n1 + n2 = n − 1 and n1 �= n2, are the main examples of proper biharmonic submanifolds in S
n (see [7,16]). Inspired by

these examples, by using their minimal submanifolds, two methods of construction for proper biharmonic submanifolds in
spheres were given.

Theorem 2.2. (See [6].) Let M be a submanifold in a small hypersphere S
n−1(1/

√
2 ) ⊂ S

n. Then M is proper biharmonic in S
n if and

only if M is minimal in S
n−1(1/

√
2 ).

We note that the proper biharmonic submanifolds of S
n obtained from minimal submanifolds of the proper biharmonic

hypersphere S
n−1(1/

√
2 ) are pseudo-umbilical, i.e. AH = |H|2 Id, have parallel mean curvature vector field and mean curva-

ture |H| = 1. Clearly, ∇ AH = 0.

Theorem 2.3. (See [6].) Let n1 , n2 be two positive integers such that n1 + n2 = n − 1, and let M1 be a submanifold in S
n1 (1/

√
2 ) of

dimension m1 , with 0 � m1 � n1 , and let M2 be a submanifold in S
n2 (1/

√
2 ) of dimension m2 , with 0 � m2 � n2 . Then M1 × M2 is

proper biharmonic in S
n if and only if⎧⎪⎪⎨

⎪⎪⎩
m1 �= m2,

τ2(ı1) + 2(m2 − m1)τ (ı1) = 0,

τ2(ı2) − 2(m2 − m1)τ (ı2) = 0,∣∣τ (ı1)
∣∣ = ∣∣τ (ı2)

∣∣,
where ı1 : M1 → S

n1 (1/
√

2 ) and ı2 : M2 → S
n2 (1/

√
2 ) are the canonical inclusions.

Obviously, if M2 is minimal in S
n2 (1/

√
2 ), then M1 × M2 is biharmonic in S

n if and only if M1 is minimal in S
n1 (1/

√
2 ).

The proper biharmonic submanifolds obtained in this way are no longer pseudo-umbilical, but still have parallel mean
curvature vector field and their mean curvature is |H| = |m1−m2|

m ∈ (0,1), where m = m1 + m2. Moreover, ∇ AH = 0 and the
principal curvatures in the direction of H , i.e. the eigenvalues of AH , are constant on M and given by λ1 = · · · = λm1 =
m1−m2

m , λm1+1 = · · · = λm1+m2 = −m1−m2
m .

In the proof of the main results of this paper we shall also use the following lemma.

Lemma 2.4 (Moore Lemma). (See [18].) Suppose that M1 and M2 are connected Riemannian manifolds and that

ϕ : M1 × M2 → R
r

is an isometric immersion of the Riemannian product. If the second fundamental form B̃ of ϕ has the property

B̃(X, Y ) = 0,

for all X tangent to M1 , Y tangent to M2 , then ϕ is a product immersion ϕ = ϕ0 × ϕ1 × ϕ2 , where ϕ0 : M1 × M2 → R
n0 is constant,

ϕi : Mi → R
ni , i = 1,2, and R

r = R
n0 ⊕ R

n1 ⊕ R
n2 is an orthogonal decomposition. Moreover, R

n1 is the subspace of R
r generated

by all vectors tangent to M1 × {p2}, for all p2 ∈ M2 , and R
n2 is the subspace generated by all vectors tangent to {p1} × M2 , for all

p1 ∈ M1 .

3. Main results

3.1. Compact proper biharmonic submanifolds in spheres

The following result for proper biharmonic constant mean curvature submanifolds in spheres was obtained.

Theorem 3.1. (See [21].) Let M be a proper biharmonic submanifold with constant mean curvature in S
n. Then |H| ∈ (0,1]. Moreover,

if |H| = 1, then M is a minimal submanifold of a small hypersphere S
n−1(1/

√
2 ) ⊂ S

n.

If the condition on the mean curvature to be constant is replaced by the condition on the submanifold to be compact,
we obtain the following.
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Theorem 3.2. Let M be a compact proper biharmonic submanifold of S
n. Then either

(i) there exists a point p ∈ M such that |AH (p)|2 < m|H(p)|2 ,

or

(ii) |AH |2 = m|H|2 . In this case, M has parallel mean curvature vector field and |H| ∈ (0,1].

Proof. Let M be a proper biharmonic submanifold of S
n . The first equation of (2.1) implies that〈

�⊥H, H
〉 = m|H|2 − |AH |2,

and by using the Weitzenböck formula,

1

2
�|H|2 = 〈

�⊥H, H
〉 − ∣∣∇⊥H

∣∣2
,

we obtain

1

2
�|H|2 = m|H|2 − |AH |2 − ∣∣∇⊥H

∣∣2
. (3.1)

As M is compact, by integrating Eq. (3.1) on M we get∫
M

(
m|H|2 − |AH |2)v g � 0,

and (i) and the first part of (ii) follow. Then, it is easy to see that

m|H|4 � |AH |2,
for any submanifold of a given Riemannian manifold, so when |AH |2 = m|H|2 we get |H| ∈ (0,1]. Moreover, by integrating
(3.1), we obtain ∇⊥H = 0 and we conclude the proof. �

Regarding the mean curvature, from Theorem 3.2, we get the following result.

Corollary 3.3. Let M be a compact proper biharmonic submanifold of S
n. Then either

(i) there exists a point p ∈ M such that |H(p)| < 1,

or

(ii) |H| = 1. In this case M is a minimal submanifold of a small hypersphere S
n−1(1/

√
2 ) ⊂ S

n.

3.2. Biharmonic submanifolds with ∇⊥H = 0 in spheres

The following result concerning proper biharmonic surfaces with parallel mean curvature vector field was proved.

Theorem 3.4. (See [5].) Let M2 be a proper biharmonic surface with parallel mean curvature vector field in S
n. Then M is minimal in

a small hypersphere S
n−1(1/

√
2 ) in S

n.

We shall further see that, when m > 2, the situation is more complex and, apart from 1, the mean curvature can assume
other lower values, as expected in view of Theorem 2.3.

First, let us prove an auxiliary result, concerning non-full proper biharmonic submanifolds of S
n , which generalizes

Theorem 5.4 in [5].

Proposition 3.5. Let Mm be a submanifold of a small hypersphere S
n−1(a) in S

n, a ∈ (0,1). Then M is proper biharmonic in S
n if and

only if either a = 1/
√

2 and M is minimal in S
n−1(1/

√
2 ), or a > 1/

√
2 and M is minimal in a small hypersphere S

n−2(1/
√

2 ) in
S

n−1(a). In both cases, |H| = 1.

Proof. The converse follows immediately by using Theorem 2.2.
In order to prove the other implication, denote by j and i the inclusion maps of M in S

n−1(a) and of S
n−1(a) in S

n ,
respectively.
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Up to an isometry of S
n , we can consider

S
n−1(a) =

{(
x1, . . . , xn,

√
1 − a2

) ∈ R
n+1:

n∑
i=1

(
xi)2 = a2

}
⊂ S

n.

Then

C
(
T S

n−1(a)
) =

{(
X1, . . . , Xn,0

) ∈ C
(
T R

n+1):
n∑

i=1

xi Xi = 0

}
,

while η = 1
c (x1, . . . , xn,− a2√

1−a2
) is a unit section in the normal bundle of S

n−1(a) in S
n , where c2 = a2

1−a2 , c > 0. The

tension and bitension fields of the inclusion ı = i ◦ j : M → S
n , are given by

τ (ı) = τ (j) − m

c
η, τ2(ı) = τ2(j) − 2m

c2
τ (j) + 1

c

{∣∣τ (j)
∣∣2 − m2

c2

(
c2 − 1

)}
η.

Since M is biharmonic in S
n , we obtain

τ2(j) = 2m

c2
τ (j) (3.2)

and ∣∣τ (j)
∣∣2 = m2

c2

(
c2 − 1

) = m2

a2

(
2a2 − 1

)
.

From here a � 1/
√

2. Also,

∣∣τ (ı)
∣∣2 = ∣∣τ (j)

∣∣2 + m2

c2
= m2.

This implies that the mean curvature of M in S
n is 1.

The case a = 1/
√

2 is solved by Theorem 2.2.
Consider a > 1/

√
2, thus τ (j) �= 0. As |H| = 1, by applying Theorem 3.1, M is a minimal submanifold of a small hyper-

sphere S
n−1(1/

√
2 ) ⊂ S

n , so it is pseudo-umbilical and with parallel mean curvature vector field in S
n [8]. From here it can

be proved that M is also pseudo-umbilical and with parallel mean curvature vector field in S
n−1(a). As M is not minimal

in S
n−1(a), it follows that M is a minimal submanifold of a small hypersphere S

n−2(b) in S
n−1(a). By a straightforward

computation, Eq. (3.2) implies b = 1/
√

2 and the proof is completed. �
Since every small sphere S

n′
(a) in S

n , a ∈ (0,1), is contained into a great sphere S
n′+1 of S

n , from Proposition 3.5 we
have the following.

Corollary 3.6. Let Mm be a submanifold of a small sphere S
n′

(a) in S
n, a ∈ (0,1). Then M is proper biharmonic in S

n if and only if
either a = 1/

√
2 and M is minimal in S

n′
(1/

√
2 ), or a > 1/

√
2 and M is minimal in a small hypersphere S

n′−1(1/
√

2 ) in S
n′

(a). In
both cases, |H| = 1.

Let Mm be a submanifold in S
n . For our purpose it is convenient to define, following [1] and [2], the (1,1)-tensor field

Φ = AH − |H|2 I , where I is the identity on C(T M). We notice that Φ is symmetric, trace Φ = 0 and

|Φ|2 = |AH |2 − m|H|4. (3.3)

Moreover, Φ = 0 if and only if M is pseudo-umbilical.
By using the Gauss equation of M in S

n , one gets the curvature tensor field of M in terms of Φ as follows.

Lemma 3.7. Let Mm be a submanifold in S
n with nowhere zero mean curvature vector field. Then the curvature tensor field of M is

given by

R(X, Y )Z = (
1 + |H|2)(〈Z , Y 〉X − 〈Z , X〉Y

)
+ 1

|H|2
(〈

Z ,Φ(Y )
〉
Φ(X) − 〈

Z ,Φ(X)
〉
Φ(Y )

)
+ 〈

Z ,Φ(Y )
〉
X − 〈

Z ,Φ(X)
〉
Y + 〈Z , Y 〉Φ(X) − 〈Z , X〉Φ(Y )

+
k−1∑{〈

Z , Aηa (Y )
〉
Aηa (X) − 〈

Z , Aηa (X)
〉
Aηa (Y )

}
, (3.4)
a=1
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for all X, Y , Z ∈ C(T M), where {H/|H|, ηa}k−1
a=1 , k = n − m, denotes a local orthonormal frame field in the normal bundle of M

in S
n.

In the case of hypersurfaces, i.e. k = 1, the previous result holds by making the convention that
∑k−1

a=1{. . .} = 0.
For what concerns the expression of trace∇2Φ , which will be needed further, the following result holds.

Lemma 3.8. Let Mm be a submanifold in S
n with nowhere zero mean curvature vector field. If ∇⊥H = 0, then ∇Φ is symmetric and

(
trace∇2Φ

)
(X) = −|Φ|2 X +

(
m + m|H|2 − |Φ|2

|H|2
)

Φ(X) + mΦ2(X) −
k−1∑
a=1

〈Φ, Aηa 〉Aηa (X). (3.5)

Proof. From the Codazzi equation, as ∇⊥H = 0, we get (∇ AH )(X, Y ) = (∇ AH )(Y , X), for all X, Y ∈ C(T M), where

(∇ AH )(X, Y ) = (∇X AH )(Y ) = ∇X AH (Y ) − AH (∇X Y ).

As the mean curvature of M is constant we have ∇Φ = ∇ AH , thus ∇Φ is symmetric.
We recall the Ricci commutation formula

(∇2Φ
)
(X, Y , Z) − (∇2Φ

)
(Y , X, Z) = R(X, Y )Φ(Z) − Φ

(
R(X, Y )Z

)
, (3.6)

for all X, Y , Z ∈ C(T M), where

(∇2Φ
)
(X, Y , Z) = (∇X∇Φ)(Y , Z)

= ∇X
(
(∇Φ)(Y , Z)

) − (∇Φ)(∇X Y , Z) − (∇Φ)(Y ,∇X Z).

Consider {Xi}m
i=1 to be a local orthonormal frame field on M and {H/|H|, ηa}k−1

a=1, k = n − m, a local orthonormal frame
field in the normal bundle of M in S

n . As ηa is orthogonal to H , we get trace Aηa = 0, for all a = 1, . . . ,k − 1. Using also the
symmetry of Φ and ∇Φ , (3.6) and (3.4), we have

(
trace∇2Φ

)
(X) =

m∑
i=1

(∇2Φ
)
(Xi, Xi, X) =

m∑
i=1

(∇2Φ
)
(Xi, X, Xi)

=
m∑

i=1

{(∇2Φ
)
(X, Xi, Xi) + R(Xi, X)Φ(Xi) − Φ

(
R(Xi, X)Xi

)}

=
m∑

i=1

(∇2Φ
)
(X, Xi, Xi) − |Φ|2 X +

(
m + m|H|2 − |Φ|2

|H|2
)

Φ(X) + mΦ2(X)

+
k−1∑
a=1

{
(Aηa ◦ Φ − Φ ◦ Aηa )

(
Aηa (X)

) − 〈Φ, Aηa 〉Aηa (X)
}
.

By a straightforward computation,

m∑
i=1

(∇2Φ
)
(X, Xi, Xi) = ∇X (trace ∇Φ) = ∇X grad(trace Φ) = 0.

Moreover, from the Ricci equation, since ∇⊥H = 0, we obtain Aηa ◦ AH = AH ◦ Aηa , thus Aηa ◦ Φ = Φ ◦ Aηa , and we end the
proof of this lemma. �

We shall also use the following lemma.

Lemma 3.9. Let Mm be a submanifold in S
n with nowhere zero mean curvature vector field. If ∇⊥H = 0 and AH is orthogonal to Aηa ,

for all a = 1, . . . ,k − 1, then

−1

2
�|Φ|2 = |∇Φ|2 +

(
m + m|H|2 − |Φ|2

|H|2
)

|Φ|2 + m trace Φ3. (3.7)
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Proof. Since AH is orthogonal to Aηa and trace Aηa = 0, we get 〈Φ, Aηa 〉 = 0, for all a = 1, . . . ,k − 1, and (3.5) becomes

(
trace ∇2Φ

)
(X) = −|Φ|2 X +

(
m + m|H|2 − |Φ|2

|H|2
)

Φ(X) + mΦ2(X). (3.8)

Now, the Weitzenböck formula,

−1

2
�|Φ|2 = |∇Φ|2 + 〈

Φ, trace ∇2Φ
〉
,

together with the symmetry of Φ and (3.8), leads to the conclusion. �
We also recall here the Okumura Lemma.

Lemma 3.10 (Okumura Lemma). (See [20].) Let b1, . . . ,bm be real numbers such that
∑m

i=1 bi = 0. Then

− m − 2√
m(m − 1)

(
m∑

i=1

b2
i

)3/2

�
m∑

i=1

b3
i � m − 2√

m(m − 1)

(
m∑

i=1

b2
i

)3/2

.

Moreover, equality holds in the right-hand (respectively, left-hand) side if and only if (m − 1) of the bi ’s are non-positive (respectively,
non-negative) and equal.

By using the above lemmas we obtain the following result on the boundedness of the mean curvature of proper bihar-
monic submanifolds with parallel mean curvature vector field in spheres, as well as a partial classification result. We shall
see that |H| does not fill out all the interval (0,1].

Theorem 3.11. Let Mm, m > 2, be a proper biharmonic submanifold with parallel mean curvature vector field in S
n and |H| ∈ (0,1).

Then |H| ∈ (0, m−2
m ]. Moreover, |H| = m−2

m if and only if M is an open part of a standard product

Mm−1
1 × S

1(1/
√

2 ) ⊂ S
n,

where M1 is a minimal submanifold in S
n−2(1/

√
2 ).

Proof. Consider the tensor field Φ associated to M . Since it is traceless, Lemma 3.10 implies that

trace Φ3 � − m − 2√
m(m − 1)

|Φ|3. (3.9)

By (2.3), as M is proper biharmonic with parallel mean curvature vector field, |AH |2 = m|H|2 and 〈AH , Aη〉 = 0, for all
η ∈ C(N M), η orthogonal to H . From (3.3) we obtain

|Φ|2 = m|H|2(1 − |H|2), (3.10)

thus |Φ| is constant. We can apply Lemma 3.9 and, using (3.9) and (3.10), Eq. (3.7) leads to

0 � m2|H|3(1 − |H|2)(2|H| − m − 2√
m − 1

√
1 − |H|2

)
,

thus |H| ∈ (0, m−2
m ].

The condition |H| = m−2
m holds if and only if ∇Φ = 0 and we have equality in (3.9). This is equivalent to the fact that

∇ AH = 0 and, by the Okumura Lemma, the principal curvatures in the direction of H are constant functions on M and
given by

λ1 = · · · = λm−1 = λ = m − 2

m
,

λm = μ = −m − 2

m
. (3.11)

Further, we consider the distributions

Tλ = {
X ∈ T M: AH (X) = λX

}
, dim Tλ = m − 1,

Tμ = {
X ∈ T M: AH (X) = μX

}
, dim Tμ = 1.
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One can easily verify that, as AH is parallel, Tλ and Tμ are mutually orthogonal, smooth, involutive and parallel, and the de
Rham decomposition theorem (see [17]) can be applied.

Thus, for every p0 ∈ M there exists a neighborhood U ⊂ M which is isometric to a product M̃m−1
1 × I , I = (−ε, ε), where

M̃1 is an integral submanifold for Tλ through p0 and I corresponds to the integral curves of the unit vector field Y1 ∈ Tμ

on U . Moreover M̃1 is a totally geodesic submanifold in U and the integral curves of Y1 are geodesics in U . We note that
Y1 is a parallel vector field on U .

In the following, we shall prove that the integral curves of Y1, thought of as curves in R
n+1, are circles of radius 1/

√
2,

all lying in parallel 2-planes. In order to prove this, consider {H/|H|, ηa}k−1
a=1 to be an orthonormal frame field in the normal

bundle and {Xα}m−1
α=1 an orthonormal frame field in Tλ , on U . We have

trace B
(

AH (·), ·) =
m−1∑
α=1

B
(

AH (Xα), Xα

) + B
(

AH (Y1), Y1
)

= λmH − 2λB(Y1, Y1).

This, together with (2.2) and (3.11), leads to

B(Y1, Y1) = −1

λ
H, (3.12)

so |B(Y1, Y1)| = 1. From here, since Aηa and AH commute, we obtain

Aηa (Y1) = 0, ∀a = 1, . . . ,k − 1. (3.13)

We also note that

∇S
n

Y1
B(Y1, Y1) = −1

λ

(∇⊥
Y1

H − AH (Y1)
) = −Y1. (3.14)

Consider c : I → U to be an integral curve for Y1 and denote by γ : I → S
n , γ = ı ◦ c, where ı : M → S

n is the inclusion
map. Denote E1 = γ̇ = Y1 ◦ γ . Since Y1 is parallel, c is a geodesic on M and, using Eqs. (3.12) and (3.14), we obtain the
following Frenet equations for the curve γ in S

n ,

∇S
n

γ̇ E1 = B(Y1, Y1) = −1

λ
H = E2,

∇S
n

γ̇ E2 = −E1. (3.15)

Let now γ̃ = j ◦ γ : I → R
n+1, where j : S

n → R
n+1 denotes the inclusion map. Denote Ẽ1 = ˙̃γ = Y1 ◦ γ̃ . From (3.15) we

obtain the Frenet equations for γ̃ in R
n+1,

∇R
n+1

˙̃γ Ẽ1 = −1

λ
H − γ̃ = √

2 Ẽ2,

∇R
n+1

˙̃γ Ẽ2 = −√
2 Ẽ1,

thus γ̃ is a circle of radius 1/
√

2 in R
n+1 and it lies in a 2-plane with corresponding vector space generated by Ẽ1(0) and

Ẽ2(0).
Since Y1 and − 1

λ
H − x, with x the position vector field, are parallel in R

n+1 along any curve of M̃1, we conclude that
the 2-planes determined by the integral curves of Y1 have the same corresponding vector space, thus are parallel.

Consider the immersions

φ : M̃1 × I → S
n,

and

φ̃ = j ◦ φ : M̃1 × I → R
n+1.

Using the fact that M̃1 is an integral submanifold of Tλ and (3.13), it is not difficult to verify that B̃(X, Y ) = 0, for all
X ∈ C(T M̃1) and Y ∈ C(T I), thus we can apply Lemma 2.4. As the 2-planes determined by the integral curves of Y1 have
the same corresponding vector space and by Corollary 3.6, we obtain the orthogonal decomposition

R
n+1 = R

n−1 ⊕ R
2 (3.16)

and U = M1 × M2, where Mm−1
1 ⊂ R

n−1 and M2 ⊂ R
2 is a circle of radius 1/

√
2. We can see that the center of this circle is

the origin of R
2. Thus M1 ⊂ S

n−2(1/
√

2 ) ⊂ R
n−1 and from Theorem 2.3, since U is biharmonic in S

n , we conclude that M1
is a minimal submanifold in S

n−2(1/
√

2 ) ⊂ R
n−1. Consequently, the announced result holds locally.
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In order to prove the global result we use the connectedness of M . Let p ∈ M and let V be an open neighborhood of p
given by the de Rham Theorem, as above, such that U ∩ V �= ∅. Consider cU and cV two integral curves for Tμ , such that
cU lies in U and cV lies in V and cU ∩ cV �= ∅. It is clear that the 2-plane in R

n+1 where cU lies coincides with the 2-plane
where cV lies. Therefore, the decomposition (3.16) does not depend on the choice of p0.

We can thus conclude that M is an open part of a standard product

M1 × S
1(1/

√
2 ) ⊂ S

n,

where M1 is a minimal submanifold in S
n−2(1/

√
2 ). �

By a standard argument, using the universal covering, we also obtain the following result.

Corollary 3.12. Let Mm, m > 2, be a proper biharmonic submanifold with parallel mean curvature vector field in S
n and |H| ∈ (0,1).

Assume that M is complete. Then |H| ∈ (0, m−2
m ] and |H| = m−2

m if and only if

M = Mm−1
1 × S

1(1/
√

2 ) ⊂ S
n,

where M1 is a complete minimal submanifold of S
n−2(1/

√
2 ).

If we consider the case of hypersurfaces, the condition on the mean curvature vector field to be parallel is equivalent to
the condition on the mean curvature to be constant and Theorem 3.11 leads to the following result.

Corollary 3.13. Let Mm, m > 2, be a proper biharmonic constant mean curvature hypersurface with |H| ∈ (0,1) in S
m+1 . Then

|H| ∈ (0, m−2
m ]. Moreover, |H| = m−2

m if and only if M is an open part of S
m−1(1/

√
2 ) × S

1(1/
√

2 ).

Proof. We recall that |H| = m−2
m if and only if ∇ AH = 0 and the principal curvatures of M in the direction of H are constant,

one of multiplicity 1 and one of multiplicity m − 1. This implies that M is an isoparametric hypersurface and, using a result
in [5,15], we conclude. �
3.3. Biharmonic submanifolds with ∇⊥H = 0 and ∇ AH = 0 in spheres

Inspired by the case |H| = m−2
m of Theorem 3.11, in the following we shall study proper biharmonic submanifolds in S

n

with parallel mean curvature vector field and parallel Weingarten operator associated to the mean curvature vector field.
We shall also need the following general result.

Proposition 3.14. Let Mm be a submanifold in S
n with nowhere zero mean curvature vector field. If ∇⊥H = 0, ∇ AH = 0 and AH

is orthogonal to Aη , for all η ∈ C(N M), η ⊥ H, then M is either pseudo-umbilical, or it has two distinct principal curvatures in the
direction of H. Moreover, the principal curvatures in the direction of H are solutions of the equation

mt2 +
(

m − |AH |2
|H|2

)
t − m|H|2 = 0. (3.17)

Proof. As ∇ AH = 0, the principal curvatures in the direction of H are constant on M . Denote by {Xi}m
i=1 a local orthonormal

frame field on M such that AH (Xi) = λi Xi , i = 1, . . . ,m. Clearly,
∑m

i=1 λi = m|H|2.
Since AH is parallel, ∇X AH (Y ) = AH (∇X Y ), thus R(X, Y ) and AH commute for all X, Y ∈ C(T M). In particular,

R(Xi, X j)AH (X j) = AH
(

R(Xi, X j)X j
)
,

and by considering the scalar product with X j and using the symmetry of AH , we get

(λi − λ j)
〈
R(Xi, X j)X j, Xi

〉 = 0, ∀i, j = 1, . . . ,m. (3.18)

Consider {H/|H|, ηa}k−1
a=1, k = n − m, a local orthonormal frame field in the normal bundle of M in S

n . We have

B(Xi, Xi) = λi

|H|2 H +
k−1∑
a=1

〈
Aηa (Xi), Xi

〉
ηa, (3.19)

and for λi �= λ j , as Xi is orthogonal to X j and AH ◦ Aηa = Aηa ◦ AH , for all a = 1, . . . ,k − 1, we obtain

B(Xi, X j) = 1

|H|2
〈
AH (Xi), X j

〉
H +

k−1∑〈
Aηa (Xi), X j

〉
ηa = 0. (3.20)
a=1
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By using (3.19) and (3.20) in the Gauss equation for M in S
n , one gets

〈
R(Xi, X j)X j, Xi

〉 = 1 + λiλ j

|H|2 +
k−1∑
a=1

〈
Aηa (Xi), Xi

〉 〈
Aηa (X j), X j

〉
. (3.21)

In fact, (3.18), together with (3.21), implies

(λi − λ j)

(
1 + λiλ j

|H|2 +
k−1∑
a=1

〈
Aηa (Xi), Xi

〉 〈
Aηa (X j), X j

〉) = 0, ∀i, j = 1, . . . ,m. (3.22)

Summing on i in (3.22) we obtain

0 = m|H|2 −
(

m − |AH |2
|H|2

)
λ j − mλ2

j +
k−1∑
a=1

〈Aηa , AH 〉〈Aηa (X j), X j
〉 − k−1∑

a=1

trace Aηa

〈
Aηa (X j), AH (X j)

〉
.

Since trace Aηa = 0 and 〈AH , Aηa 〉 = 0, for all a = 1, . . . ,k − 1, we conclude the proof. �
Corollary 3.15. Let Mm, m > 2, be a proper biharmonic submanifold in S

n. If ∇⊥H = 0, ∇ AH = 0 and |H| ∈ (0, m−2
m ], then M has

two distinct principal curvatures λ and μ in the direction of H, of different multiplicities m1 and m2 , respectively, and⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ = m1 − m2

m
,

μ = −m1 − m2

m
,

|H| = |m1 − m2|
m

.

(3.23)

Proof. Since M is proper biharmonic, all the hypotheses of Proposition 3.14 are satisfied. Taking into account (2.3), from
(3.17) follows that the principal curvatures of M in the direction of H satisfy the equation t2 = |H|2. As |H| ∈ (0, m−2

m ],
M cannot be pseudo-umbilical, thus it has two distinct principal curvatures λ = −μ �= 0 in the direction of H . If m1 denotes
the multiplicity of λ and m2 the multiplicity of μ, from trace AH = m|H|2 we have (m1 − m2)λ = mλ2. Since λ �= 0, we
obtain (3.23). Notice also that m1 �= m2. �

The case |H| = m−2
m was solved in Theorem 3.11, thus we shall consider now only the case |H| ∈ (0, m−2

m ). Since |H| =
|m1−m2|

m , m1 �= m2, we have m � 5 and m1 � 2, m2 � 2. We are able to prove the following result.

Theorem 3.16. Let Mm, m � 5, be a proper biharmonic submanifold in S
n with ∇⊥H = 0, ∇ AH = 0 and |H| ∈ (0, m−2

m ). Then, locally,

M = Mm1
1 × Mm2

2 ⊂ S
n1(1/

√
2 ) × S

n2(1/
√

2 ) ⊂ S
n,

where Mi is a minimal submanifold of S
ni (1/

√
2 ), mi � 2, i = 1,2, m1 + m2 = m, m1 �= m2 , n1 + n2 = n − 1.

Proof. We are in the hypotheses of Corollary 3.15, thus AH has two distinct eigenvalues λ = m1−m2
m and μ = −m1−m2

m .
Consider the distributions

Tλ = {
X ∈ T M: AH (X) = λX

}
, dim Tλ = m1,

Tμ = {
X ∈ T M: AH (X) = μX

}
, dim Tμ = m2.

As AH is parallel, Tλ and Tμ are mutually orthogonal, smooth, involutive and parallel, and from the de Rham decomposition
theorem follows that for every p0 ∈ M there exists a neighborhood U ⊂ M which is isometric to a product M̃m1

1 × M̃m2
2 , such

that the submanifolds which are parallel to M̃1 in M̃1 × M̃2 correspond to integral submanifolds for Tλ and the submanifolds
which are parallel to M̃2 correspond to integral submanifolds for Tμ .

Consider the immersions

φ : M̃1 × M̃2 → S
n,

and

φ̃ = j ◦ φ : M̃1 × M̃2 → R
n+1.
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It can be easily verified that B̃(X, Y ) = B(X, Y ), for all X ∈ C(T M̃1) and Y ∈ C(T M̃2). Since AH ◦ Aη = Aη ◦ AH for all
η ∈ C(N M), we have that Tλ and Tμ are invariant subspaces for Aη , for all η ∈ C(N M), thus〈

B(X, Y ),η
〉 = 〈

Aη(X), Y
〉 = 0, ∀η ∈ C(N M).

Thus B̃(X, Y ) = 0, for all X ∈ C(T M̃1) and Y ∈ C(T M̃2), and we can apply Lemma 2.4. In this way we have an orthogonal
decomposition R

n+1 = R
n0 ⊕ R

n1+1 ⊕ R
n2+1 and φ̃ is a product immersion. From Corollary 3.6, since |H| �= 1, follows that

n0 = 0. Thus

φ̃ = φ̃1 × φ̃2 : M̃1 × M̃2 → R
n1+1 ⊕ R

n2+1.

We denote by M1 = φ̃1(M̃1) ⊂ R
n1+1, M2 = φ̃2(M̃2) ⊂ R

n2+1 and we have U = M1 × M2 ⊂ S
n .

Consider now {Xα}m1
α=1 an orthonormal frame field in Tλ and {Y}m2

=1 an orthonormal frame field in Tμ , on U . From
(2.2), by using the fact that λ = −μ = m1−m2

m , we obtain

m1∑
α=1

B(Xα, Xα) = m1

λ
H,

m2∑
=1

B(Y, Y) = −m2

λ
H . (3.24)

Since ∇⊥H = 0, from (3.24) follows that M1 × {p2} is pseudo-umbilical and with parallel mean curvature vector field in
R

n+1, for any p2 ∈ M2. But M1 × {p2} is included in R
n1+1 × {p2} which is totally geodesic in R

n+1, thus M1 is pseudo-
umbilical and with parallel mean curvature vector field in R

n1+1. This implies that M1 is minimal in R
n1+1 or minimal in

a hypersphere of R
n1+1. The first case leads to a contradiction, since M1 × {p2} ⊂ S

n and cannot be minimal in R
n+1. Thus

M1 is minimal in a hypersphere S
n1
c1 (r1) ⊂ R

n1+1, where c1 ∈ R
n1+1 denotes the center of the hypersphere.

In the following we will show that c1 = 0. Since U ⊂ S
n and M1 ⊂ S

n1
c1 (r1), we get |p1|2 + |p2|2 = 1 and |p1 − c1|2 = r2

1 ,
for all p1 ∈ M1. This implies 〈p1, c1〉 = constant for all p1 ∈ M1. Thus 〈u1, c1〉 = 0, for all u1 ∈ T p1 M1 and for all p1 ∈ M1.
From Lemma 2.4 follows that c1 = 0, thus M1 ⊂ S

n1 (r1) ⊂ R
n1+1.

From (3.24) also follows that the mean curvature of M1 × {p2} in S
n is 1, so its mean curvature in R

n+1 is
√

2. As
R

n1+1 × {p2} is totally geodesic in R
n+1 it follows that the mean curvature of M1 in R

n1+1 is
√

2 too. Further, as M1 is
minimal in S

n1 (r1), we get r1 = 1/
√

2.
Analogously, M2 is minimal in a hypersphere S

n2 (1/
√

2 ) in R
n2+1, and we conclude the proof. �

Corollary 3.17. Let Mm, m � 5, be a complete proper biharmonic submanifold in S
n with ∇⊥H = 0, ∇ AH = 0 and |H| ∈ (0, m−2

m ).
Then,

M = Mm1
1 × Mm2

2 ⊂ S
n1(1/

√
2 ) × S

n2(1/
√

2 ) ⊂ S
n,

where Mi is a complete minimal submanifold of S
ni (1/

√
2 ), mi � 2, i = 1,2, m1 + m2 = m, m1 �= m2 , n1 + n2 = n − 1.

Remark 3.18. In the case of a non-minimal hypersurface the hypotheses ∇⊥H = 0 and ∇ AH = 0 are equivalent to ∇⊥B = 0,
i.e. the hypersurface is parallel. Such hypersurfaces have at most two principal curvatures and the proper biharmonic hy-
persurfaces with at most two principal curvatures in S

n are those given by (2.4) and (2.5) (see [5]).

If one searches for a relaxation of the hypothesis ∇ AH = 0 in Theorem 3.16, natural candidates would be R AH = 0 (see,
for example, [24]), or M has at most two distinct principal curvatures in the direction of H everywhere. But the following
can be proved.

Proposition 3.19. Let Mm be a proper biharmonic submanifold in S
n with ∇⊥H = 0. The following statements are equivalent:

(i) R AH = 0, where (R AH )(X, Y , Z) = (R(X, Y )AH )(Z),
(ii) M has at most two distinct principal curvatures in the direction of H everywhere,

(iii) ∇ AH = 0.
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