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The non-parametrizability of the word equation
xyz=zvx: A short proof
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Abstract

Although Makanin proved the problem of satisfiability of word equations to be decidable, the
general structure of solutions is difficult to describe. In particular, Hmelevskii proved that the set of
solutions ofxyz= zvx cannot be described using only finitely many parameters, contrary to the case
of equations in three unknowns. In this paper we give a short, elementary proof of Hmelevskii’s result.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The theory ofword equations, a central subfield ofCombinatorics onWords, was initiated
in 1954byA.A.Markov.Heproposed in [18] the problemof satisfiability ofword equations:
decide whether or not a given word equation has solutions. The problem remained open
for quite a long time and it was solved by Makanin who proved it to be decidable for
free semigroups in [15], and for free groups in [16,17], see also [6] for a recent survey.
However, Makanin’s algorithm is considered as one of the most involved results in the
literature. More recently, Plandowski found a new way to solve word equations and gave
an algorithm with polynomial space complexity for the satisfiability problem, see [21] and
[22]. Nevertheless, neither Makanin’s nor Plandowski’s results can be used to characterize
the general structure of solutions of word equations. However, Razborov gave in [23] an
algorithm which generates all solutions of a given word equation; see also [6].
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There are several results in the literature describing the general structure of solutions of
different types of word equations in terms of parametric functions. Lyndon in[14], proposed
a general pattern for approaching this problem. He introduced the notion ofparametric
wordsand he proved that, using them, the set of solutions of arbitrary one variable equations
in free groups can be finitely characterized. His result was subsequently strengthened and
simplified in [1,11,12].Also, someanalysisof thecaseofquadratic equations, i.e., equations
where every unknown appears twice, are given in [4,7,24]. As a direct consequence of the
defect theorem, constant-free word equations with two unknowns may have only periodic
solutions. For constant-free equations in three unknowns, Hmelevskii proved in [8] that
the solutions can be expressed using only a finite number ofparametric formulas, i.e.,
formulas involving word parameters and numerical parameters. Perhaps more importantly,
he also proved that this is aboundary point—equations with four unknowns need not be
finitely parametrizable. In the same paper, Hmelevskii gave a concrete example of such
an equation for which the set of solutions cannot be finitely characterized:xyz = zvx.
Nevertheless, he did characterize all solutions of this equation, but using an infinite number
of parameters. This characterization has been recently simplified by Weinbaum in [25].
Hmelevskii’s results are also discussed in a chapter, [2], in Lothaire [13].

In this paper, we present a short, elementary proof for the nonparametrizability of the
equationxyz = zvx, simplifying Hmelevskii’s proof. Our approach uses only elementary
techniques on word equations and the well-known property of the Fibonacci word of being
fourth power free, see [9].

The paper is organized as follows. In Section 2 we fix our terminology and introduce
some basic notions and results. In Section 3 we present the main result of this paper, the
fact that the equationxyz = zvx is not finitely parametrizable. In Section 4 we give some
concluding remarks.

The conference version of this paper was published in [20].

2. Preliminaries

In this section we give basic definitions that we need later on, some already known
results and also one preliminary result we will use in the main proof. For more details on
combinatorics on words we refer to [3] and [13].

Let N denote the set of all nonnegative integers. For a finite alphabet� let us denote by
�∗ the set of all finite words over�, by 1 the empty word, and by�+ the set of all nonempty
finite words over�, �+ = �∗\{1}. A word u is a factor (resp.left factor or prefix, right
factor or suffix) of w if we can writew = xuy (resp.w = uy, w = xu) for some words
x, y ∈ �∗. We use the notationprefk(w) (resp.sufk(w)) to denote the prefix (resp. the
suffix) of lengthk of the wordw. For a wordw, let Alph(w) denote the set of all distinct
letters appearing in it and|w| its length, i.e., the number of letters inw. Two wordsu andv
are said to beconjugatesif there exist wordsx, y ∈ �∗ such thatu = xy andv = yx. The
following lemma is a well-known characterization for the conjugacy of two words, see [10].

Lemma 1. Letu, v ∈ �+. The following conditions are equivalent:
(1) u and v are conjugates,
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(2) there exists a word z such thatuz = zv,
(3) there exist wordsz, p, q and a nonnegative integer i such thatu = pq, v = qp, and
z = (pq)ip = p(qp)i .

TheFibonacci sequenceof numbers is a recursive sequence where the first two values are
1 and each successive term is obtained by adding together the two previous ones. However,
to simplify future notations we overlook the first term of this sequence and denote:

f0 = 1, f1 = 2, fn = fn−1 + fn−2 for all n�2. (1)

By analogy, we define now theFibonacci wordas the limit of the sequence of words given
by the following recurrence formula:

w0 = a, w1 = ab, wn = wn−1wn−2 for all n�2 (2)

and notice that for everyn�0, |wn| = fn and

suf2(wn) =
{
ab if n is odd
ba if n is even

for all n�1. (3)

One of the important properties of this word, see[9], is that it is 4-free, i.e., for anyw ∈ �+,
w4 does not appear as one of its factors. In fact, in [19] it is shown that the Fibonacci word
is (2 + �)−-free, where� = 1

2(
√

5 + 1) is the golden number, but in our considerations
we need only the 4-freeness property.

Let us consider next, the words given by the following formula:

Gn = pref(fn−2)wn for all n�1, (4)

wherefn’s are the numbers in the sequence (1). Thus, for all indexesn, the wordsGn are
prefixes of the Fibonacci word.

Let � be a finite alphabet andX a finite set of unknowns, with� ∩X = ∅. An equation
over the alphabet�, with X as the set of unknowns is a pair

(u, v) ∈ (� ∪X)∗ × (� ∪X)∗.
Normally, an equation is written asu = v. We say that an equation isconstant-freeif both
u andv contain only elements fromX. The total lengthof an equationu = v is the sum
of the lengths ofu andv. An equationu = v is calledreducedif pref1(u) �= pref1(v) and
suf1(u) �= suf1(v). A solutionof an equationu = v is a morphism� : (X∪�)∗ → �∗ such
that�(u) = �(v) and�(a) = a for everya ∈ �. Consequently, a solution is a|X|-tuple of
words over the alphabet�.

We defineword parametersandnumerical parametersas parameters whose values are
words over the alphabet�, and nonnegative integers, respectively. Let� be a new alphabet.
A parametric wordover� is defined inductively as follows:
(1) Every letter in� is a parametric word.
(2) If � is a parametric word, andk is a numerical parameter, then�k is a parametric word.
(3) If �1 and�2 are parametric words, then also�1�2 is a parametric word, where�1�2 is

obtained by concatenating�1 and�2.
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We define the concatenation of parametric words as the natural extension of concatenation
of words.

Let us consider now some examples of parametric words. For instance, Lemma1 states
that the set of solutions of the equationuz = zv is expressed by a triple of parametric words
(u, v, z) = (pq, qp, (pq)ip), with p andq word parameters, andi numerical parameter.
Then, let us consider the parametric word(xky)lz, with x, y, andzword parameters and
kandl numerical parameters. If we fix some values for all numerical parameters, e.g.k = 2
andl = 3, we obtain the wordxxyxxyxxyzbelonging to the free monoid generated byx, y,
andz.

Given a parametric word�, every assignment� of values in�∗ to the letters of�, and of
values inN to the numerical parameters, defines a unique word in�∗, called thevalueof �
under�, and is denoted by�(�).

We say that an equation over� and withn unknowns isparametrizableif there exists
a finite number ofn-tuples of parametric wordsF1, . . . , Fk over an alphabet� such that
every value of thesen-tuples is a solution of the equation, and every solution is a value of at
least one of thesen-tuples. EveryFi, 1� i�k, is aparametric solutionof the considered
equation.

Example 1. An example of a parametrizable equation is(xy)nx = (uv)mu, with n,m�2,
which was solved in[5,26]. The set of solutions of this equation is characterized by the
following parametric solution:

(x, y, u, v) = ((t1t2)i t1, t2(t1t2)j , (t1t2)r t1, t2(t1t2)s),
wherei, j, r, s are numerical parameters andt1, t2 are word parameters.

The following technical result is useful for our later considerations.

Lemma 2. Let u = v be a constant-free equation with n unknowns over the alphabet�
with |�|�2 and (T1, . . . , Tn) be a parametric solution. Let (V1, . . . , Vn) ∈ (�∗)n be the
n-tuple obtained from(T1, . . . , Tn) by assigning fixed values to all numerical parameters.
Then, (V1, . . . , Vn) is a solution of the equationu = v over�.

Proof. Since(T1, . . . , Tn) is aparametric solutionof theequationu = v, for anyassignment
�, (�(T1), . . . ,�(Tn)) is a solution ofu = v over the alphabet�.

Let u′ = v′ be the relation over� obtained by substituting(V1, . . . , Vn) in u = v.
Suppose now thatu′ = v′ is not an identity over�. Then, up to cancelling a common prefix,
we may assume that

u′ = �u′′ and v′ = �v′′ with u′′, v′′ ∈ �∗, �, � ∈ � and � �= �. (5)

Consider now any assignment� for (T1, . . . , Tn) that assumes the numerical values fixed
in (V1, . . . , Vn) and takes�(�) = a and �(�) = b, wherea, b ∈ �, a �= b. Then
(�(T1), . . . ,�(Tn)) = (�(V1), . . . ,�(Vn)) and consequently, it follows from (5) that
(�(T1), . . . ,�(Tn)) is not a solution ofu = v over �. But, this is a contradiction. So,
u′ = v′ is an identity over�, i.e., (V1, . . . , Vn) is a solution of the equationu = v

over�. �
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One of the referees of this paper proposed a second proof of this result using the fact
that (V1, . . . , Vn) ∈ (�∗)n and for every assignment� : � → �∗, (�(V1), . . . ,�(Vn)) is
a solution over�; hence if we choose� to be injective we obtain that(V1, . . . , Vn) is a
solution over�.

3. Main result

Hmelevskii in[8] proved that the set of solutions of any constant-free equation in three
unknowns is finitely parametrizable. However, the situation changes when the number of
unknowns increases. In the same paper, Hmelevskii also gives a concrete example of an
equation with four unknowns which is not parametrizable:xyz = zvx. Here, we reprove
this result. Our proof becomes shorter and easier to understand due to an efficient use of
some basic techniques on word equations and of the property of the Fibonacci word of
being 4th power free.

Theorem 3. The set of solutions of the equationxyz = zvx over an alphabet with at least
two distinct letters is not parametrizable.

Proof. Let us begin by supposing that the equationxyz = zvx is parametrizable. By
definition, this means that we have a finite number of 4-tuples(T1, T2, T3, T4), where all
Ti ’s, 1� i�4 are parametric words, from which we can obtain all the solutions, and also
any solution matches at least one of the patterns(T1, T2, T3, T4). Thus, we also have a finite
number of word and numerical parameters in the parametric words of the parametrization.

Let (T1, T2, T3, T4) be one of the parametric solutions of the equationxyz = zvx, and let
�and�be the sets ofword parameters and numerical parameters respectively, which appear
in formulasTi, 1� i�4. Let(V1, V2, V3, V4) be the 4-tuple obtained from(T1, T2, T3, T4)

by assigning some fixed values to each numerical parameter. Now, note that for every
1� i�4, we haveVi ∈ �∗ and we can define the length, prefix, suffix, and alphabet for such
a word like in Section2 and denote them as usual by|Vi |,prefk(Vi), sufk(Vi), andAlph(Vi),
respectively. Moreover, from Lemma 2,(V1, V2, V3, V4) is a solution ofxyz = zvx over
the alphabet�, i.e.,V1V2V3 = V3V4V1 is an identity over the set of word parameters. In
particular we see that the wordsV2 andV4 have the same length, i.e.,|V2| = |V4|.

We also notice that, due to the (almost) symmetric form of the equationxyz = zvx, if
(V1, V2, V3, V4) is a solution over�, then also(V3, V4, V1, V2) is a solution over�. So, we
can suppose, without loss of generality that|V1|� |V3|.

We prove now that for such(V1, V2, V3, V4) we must have

V2 = V4 or Alph(V1V3) ⊆ Alph(V2V4).

We discuss here three cases, depending on the length ofV1.
Case1: |V1| = |V3|. SinceV1V2V3 = V3V4V1 is an identity over�, we obtainV1 = V3

andV2 = V4. Thus, in this case(V1, V2, V3, V4) is such thatV2 = V4.
Case2: |V3| < |V1|� |V3V4| = |V2V3|. In this case, we can writeV1 = V3P andV1 =

QV3, whereP ∈ �+ is a prefix ofV4 andQ ∈ �+ is a suffix ofV2. Thus,QV3 = V3P
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which implies, by Lemma1, that we have

Q = SW, P = WS, V3 = (SW)iS, V1 = (SW)i+1S,

whereS,W are two words over the alphabet�, andi�0 is a nonnegative integer. Now, let
� ∈ Alph(V1V3) ⊆ �. But, this means that� appears in at least one of the wordsSorW, so
it appears both inP and inQ, i.e.,� ∈ Alph(V2V4).

Thus, in this case,(V1, V2, V3, V4) is such thatAlph(V1V3) ⊆ Alph(V2V4).
Case3: |V1| > |V3V4|. In this case, we can writeV1 = V3V4P andV1 = QV2V3, with

P,Q ∈ �+. Substituting these relations in the identityV1V2V3 = V3V4V1, we obtain that
P = Q. So, in this case(V1, V2, V3, V4) is a solution of the equationxyz = zvx over�
if and only if

PV2V3 = V3V4P and V1 = PV2V3,

i.e., (P, V2, V3, V4) is a solution of the equationxyz = zvx over� andV1 = PV2V3. If
V1 = P , i.e.,V2V3 = 1, then we immediately obtain thatV2 = V3 = V4 = 1. So, in
this case the solution(V1, V2, V3, V4) is such thatV2 = V4. Otherwise (i.e.,V1 �= P ), we
reduced the solution(V1, V2, V3, V4) to (P, V2, V3, V4), with |P | < |V1|, andV1 = PV2V3.
Now, we can repeat this reduction step until|P |� |V3V4|, which means that we can apply
Case1 or Case2 for the new solution(P, V2, V3, V4). So, for (P, V2, V3, V4) we have
V2 = V4 or Alph(PV3) ⊆ Alph(V2V4). But, sinceV1 = PV2V3, this implies that for the
solution(V1, V2, V3, V4) we haveV2 = V4 orAlph(V1V3) ⊆ Alph(V2V4).

Thus, for any parametric solution(V1, V2, V3, V4) containing only word parameters,
i.e., obtained from some parametric solution(T1, T2, T3, T4) by fixing some values for all
numerical parameters, we must haveV2 = V4 orAlph(V1V3) ⊆ Alph(V2V4).

Now, we claim that, for the wordsGk defined by formula (4), the 4-tuple
(Gk, ab,Gk−1, ba) is a solution for the equationxyz = zvx over the alphabet� for any odd
indexk. To prove our claim, it is enough to verify thatGkabGk−1 = Gk−1baGk, for any
odd indexk. Using formulas (3) and (4), this identity is equivalent towkGk−1 = wk−1Gk.
Now, using formula (2), we obtainwk−2Gk−1 = Gk, and this can be proved by induction
onk using formulas (2) and (4).

Consider now an assignment� and a parametric solution(T1, T2, T3, T4) such that
(�(T1),�(T2),�(T3),�(T4)) = (Gk, ab,Gk−1, ba) for some odd indexk. We prove now
that the length of�(T1) is bounded by some constant.

First, since everyGk is a prefix of the Fibonacci word, which is 4-free, and�(T1) =
Gk for somek odd, we must have that every power of a factor in�(T1) is less than
4. Consequently, for every numerical parameter	 appearing in the parametric wordT1,
we must have�(	) < 4.

Second, consider the 4-tuple(V1, V2, V3, V4) over� obtained from the parametric solu-
tion (T1, T2, T3, T4) by substituting every numerical parameter	 with its value�(	). Since
�(Ti) = �(Vi) for every 1� i�4, we obtain the following relations:

Gk = �(V1), Gk−1 = �(V3), (6)

ab = �(V2), ba = �(V4). (7)
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Notice now that the values of formulasV2 andV4 under the assignment� must beaband
ba, respectively, soV2 �= V4. Thus, the first part of this proof implies that this 4-tuple
(V1, V2, V3, V4) must be such thatAlph(V1V3) ⊆ Alph(V2V4). Moreover, from relations
(7) we observe that|�(�)|�2, for any word parameter� ∈ Alph(V2V4), which implies that
|�(�)|�2 also for any word parameter� ∈ Alph(V1V3).

So, what we obtained is that for any numerical parameter	 which appears inT1,
�(	) < 4, and for any word parameter� which appears inT1, |�(�)|�2. Consequently,
|�(T1)| is bounded by some positive constant, i.e., we cannot generate arbitrarily large so-
lutions(Gk, ab,Gk−1, ba), with k odd. But this is a contradiction since wordsGk can be
arbitrarily large.

Thus, the equationxyz = zvx is not parametrizable.

4. Conclusions

Although the existence of solutions of a word equation is decidable due to Makanin’s
result, the general structure of solutions is difficult to find. Hmelevskii in [8], proved that
the solutions of constant-free word equations with three unknowns can be expressed using
only finitely many parameters. He also proved, in the same paper, that this result is no longer
valid for equations with four unknowns and he gave as a concrete example the equation
xyz = zvx.

In this paper,wegivea short elementary proof for thenonparametrizability of theequation
xyz = zvx. The “simplicity” of our solution comes from the fact that we only use some
elementary techniques on word equations and some basic properties of the Fibonacci word.
Moreover, this elementary solution gives us hope that there may exists also a simpler proof
for Hmelevskii’s result on the parametrizability of constant-free word equations in three
unknowns.

It is worth noting that in the conference version of the paper, [20], we also investigated
the connection between the graph associated to an equation and the parametrizability of its
solutions and we succeeded to give a simple, necessary, (though nonsufficient) condition
for an equation to be nonparametrizable.
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