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Abstract

Although Makanin proved the problem of satisfiability of word equations to be decidable, the
general structure of solutions is difficult to describe. In particular, Hmelevskii proved that the set of
solutions ofryz = zvx cannot be described using only finitely many parameters, contrary to the case
of equations in three unknowns. In this paper we give a short, elementary proof of Hmelevskii's result.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The theory ofvord equationsa central subfield dEombinatorics on Wordsvas initiated
in 1954 by A.A. Markov. He proposed in [18] the problem of satisfiability of word equations:
decide whether or not a given word equation has solutions. The problem remained open
for quite a long time and it was solved by Makanin who proved it to be decidable for
free semigroups in [15], and for free groups in [16,17], see also [6] for a recent survey.
However, Makanin’s algorithm is considered as one of the most involved results in the
literature. More recently, Plandowski found a new way to solve word equations and gave
an algorithm with polynomial space complexity for the satisfiability problem, see [21] and
[22]. Nevertheless, neither Makanin's nor Plandowski's results can be used to characterize
the general structure of solutions of word equations. However, Razborov gave in [23] an
algorithm which generates all solutions of a given word equation; see also [6].
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There are several results in the literature describing the general structure of solutions of
different types of word equations in terms of parametric functions. Lyndfd@lijpproposed
a general pattern for approaching this problem. He introduced the notiparametric
wordsand he proved that, using them, the set of solutions of arbitrary one variable equations
in free groups can be finitely characterized. His result was subsequently strengthened and
simplifiedin[1,11,12]. Also, some analysis of the casguddratic equationg.e., equations
where every unknown appears twice, are given in [4,7,24]. As a direct consequence of the
defect theorem, constant-free word equations with two unknowns may have only periodic
solutions. For constant-free equations in three unknowns, Hmelevskii proved in [8] that
the solutions can be expressed using only a finite numb@acdmetric formulasi.e.,
formulas involving word parameters and numerical parameters. Perhaps more importantly,
he also proved that this isteoundary poirtk—equations with four unknowns need not be
finitely parametrizable. In the same paper, Hmelevskii gave a concrete example of such
an equation for which the set of solutions cannot be finitely characterized= zvx.
Nevertheless, he did characterize all solutions of this equation, but using an infinite number
of parameters. This characterization has been recently simplified by Weinbaum in [25].
Hmelevskii's results are also discussed in a chapter, [2], in Lothaire [13].

In this paper, we present a short, elementary proof for the nonparametrizability of the
equationxyz = zvx, simplifying Hmelevskii's proof. Our approach uses only elementary
technigues on word equations and the well-known property of the Fibonacci word of being
fourth power free, see [9].

The paper is organized as follows. In Section 2 we fix our terminology and introduce
some basic notions and results. In Section 3 we present the main result of this paper, the
fact that the equationyz = zvx is not finitely parametrizable. In Section 4 we give some
concluding remarks.

The conference version of this paper was published in [20].

2. Preliminaries

In this section we give basic definitions that we need later on, some already known
results and also one preliminary result we will use in the main proof. For more details on
combinatorics on words we refer to [3] and [13].

Let N denote the set of all nonnegative integers. For a finite alphabetus denote by
X* the set of all finite words ove¥, by 1 the empty word, and by the set of all nonempty
finite words overz, X+ = X*\{1}. A word u is afactor (resp.left factor or prefix, right
factor or suffiy of wif we can writew = xuy (resp.w = uy, w = xu) for some words
x,y € X*. We use the notatiopref, (w) (resp.suf, (w)) to denote the prefix (resp. the
suffix) of lengthk of the wordw. For a wordw, let Alph(w) denote the set of all distinct
letters appearing in it anjdv| its length i.e., the number of letters in. Two wordsu andv
are said to beonjugatesf there exist words:, y € X* such that: = xy andv = yx. The
following lemma is a well-known characterization for the conjugacy of two words, see [10].

Lemma 1. Letu, v € XT. The following conditions are equivalent
(1) uand v are conjugates
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(2) there exists a word z such that = zv,
(3) there exist words, p, ¢ and a nonnegative integer i such that= pg, v = ¢p, and

z=(pq)'p=plgp).

TheFibonacci sequenaaf numbers is a recursive sequence where the first two values are
1 and each successive term is obtained by adding together the two previous ones. However,
to simplify future notations we overlook the first term of this sequence and denote:

fo=1 fi=2, fo=fo-1+ fu—2 foraln>2. (2)

By analogy, we define now thébonacci wordas the limit of the sequence of words given
by the following recurrence formula:

wo=a, wi=ab, w,=w,—1w,—2 foral n>2 (2)
and notice that for every >0, |w,,| = f, and

ab if nis odd

sufy(wy,) = {ba if nis even foralln>1. 3)

One of the important properties of this word, §@is that it is 4free, i.e., foranyw € X7,
w* does not appear as one of its factors. In fact, in [19] it is shown that the Fibonacci word
is (24 ¢)~ -free, wherep = %(«/5 + 1) is the golden number, but in our considerations
we need only the 4-freeness property.

Let us consider next, the words given by the following formula:

G, =pref; pw, foralln>1, 4)

where f,’s are the numbers in the sequentg Thus, for all indexes, the wordsG,, are
prefixes of the Fibonacci word.

Let 2 be a finite alphabet and a finite set of unknowns, with' N X = @#. An equation
over the alphabeX, with X as the set of unknowns is a pair

(u,v) € (ZUX)* x (ZUX)*.

Normally, an equation is written as= v. We say that an equation é@nstant-freef both
u andv contain only elements fro. Thetotal lengthof an equation: = v is the sum
of the lengths ofi andv. An equatioru = v is calledreducedif pref;(u) # pref;(v) and
suf;(u) # sufy(v). A solutionof an equatiom = v is amorphismp : (X UX)* — X* such
thatp(u) = @(v) ande(a) = a for everya € X. Consequently, a solution ig & |-tuple of
words over the alphabét

We defineword parameterandnumerical parameteras parameters whose values are
words over the alphabét, and nonnegative integers, respectively. éte a new alphabet.
A parametric wordover 4 is defined inductively as follows:
(1) Every letter in4 is a parametric word.
(2) If 5 is a parametric word, aridis a numerical parameter, théhis a parametric word.
(3) If 51 and o are parametric words, then al§gi, is a parametric word, wher® o, is

obtained by concatenatirg andd.
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We define the concatenation of parametric words as the natural extension of concatenation
of words.

Let us consider now some examples of parametric words. For instance, Leistatas
that the set of solutions of the equatien= zv is expressed by a triple of parametric words
(u,v,2) = (pq.qp, (pq)' p), with p andq word parameters, aridnumerical parameter.
Then, let us consider the parametric wekdy)'z, with x, y, andz word parameters and
k andl numerical parameters. If we fix some values for all numerical parameterk,=.9.
and! = 3, we obtain the woraxyxxyxxybelonging to the free monoid generatedy,
andz.

Given a parametric word, every assignmeni of values inx* to the letters o#, and of
values inN to the numerical parameters, defines a unique woif jrcalled thevalueof ¢
underg, and is denoted by (0).

We say that an equation ov&rand withn unknowns isparametrizabldf there exists
a finite number oh-tuples of parametric wordgi, ..., F; over an alphabetl such that
every value of these-tuples is a solution of the equation, and every solution is a value of at
least one of these-tuples. EveryF;, 1<i <k, is aparametric solutiorof the considered
equation.

Example 1. An example of a parametrizable equatiois)”x = (uv)"u, withn, m > 2,
which was solved irf5,26]. The set of solutions of this equation is characterized by the
following parametric solution:

(x, y,u,v) = ((1t2)' 11, t2(t1t2)’, (1112)" 11, ta2(t112)®),

wherei, j, r, s are numerical parameters andr, are word parameters.
The following technical result is useful for our later considerations.

Lemma 2. Letu = v be a constanfree equation with n unknowns over the alphabet
with |[¥|>2 and (T4, ..., T,) be a parametric solutionLet (Vi, ..., V,) € (4*)" be the
n-tuple obtained fron{74, ..., 7,) by assigning fixed values to all numerical parameters
Then (Va, ..., V,) is a solution of the equatiom = v over 4.

Proof. Since(Ty, ..., T,)isaparametric solution of the equatior= v, for any assignment
@, (p(Ty), ..., o(T,)) is a solution ofx = v over the alphabe¥.

Let u’ = v’ be the relation overl obtained by substitutingVy, ..., V,) in u = v.
Suppose now that = v’ is not an identity over. Then, up to cancelling a common prefix,
we may assume that

u' =ou” and v =pv” withu”,v" € 4%, o, fe A anda#§p. (5)

Consider now any assignmeptfor (74, ..., T,) that assumes the numerical values fixed
in (V1,...,V,) and takesp(x) = a and ¢(f) = b, wherea,b € X, a # b. Then
(p(T1), ..., o(Ty)) = (p(V1),...,0(V,)) and consequently, it follows fromb) that
(p(T1), ..., o(T,)) is not a solution ofx = v over X. But, this is a contradiction. So,
u' = v’ is an identity over4, i.e., (V1,...,V,) is a solution of the equation = v
overd. O



300 E. Czeizler / Theoretical Computer Science 345 (2005) 296303

One of the referees of this paper proposed a second proof of this result using the fact
that(Vy, ..., V,) € (4%)" and for every assignment : 4 — 2*, (¢(V1), ..., (V) is
a solution overX; hence if we choose to be injective we obtain thatvy, ..., V,) is a
solution over4.

3. Main result

Hmelevskii in[8] proved that the set of solutions of any constant-free equation in three
unknowns is finitely parametrizable. However, the situation changes when the number of
unknowns increases. In the same paper, Hmelevskii also gives a concrete example of an
equation with four unknowns which is not parametrizablgez = zvx. Here, we reprove
this result. Our proof becomes shorter and easier to understand due to an efficient use of
some basic techniques on word equations and of the property of the Fibonacci word of
being 4th power free.

Theorem 3. The set of solutions of the equationz = zvx over an alphabet with at least
two distinct letters is not parametrizable

Proof. Let us begin by supposing that the equatiory = zvx is parametrizable. By
definition, this means that we have a finite number of 4-tuglgsT>, T3, T4), where all
T;'s, 1<i <4 are parametric words, from which we can obtain all the solutions, and also
any solution matches at least one of the patt€fas7», T3, T4). Thus, we also have a finite
number of word and numerical parameters in the parametric words of the parametrization.
Let (71, T>, T3, T4) be one of the parametric solutions of the equation = zvx, and let
A andA be the sets of word parameters and numerical parameters respectively, which appear
in formulasT;, 1<i <4. Let(V1, Vo, V3, V4) be the 4-tuple obtained froTy, 7o, T3, T4)
by assigning some fixed values to each numerical parameter. Now, note that for every
1<i<4,wehaveV; € 4* and we can define the length, prefix, suffix, and alphabet for such
aword like in Sectior2 and denote them as usual|yy|, pref, (V;i), suf, (V;), andAlph(V;),
respectively. Moreover, from Lemma @1, Vo, V3, V4) is a solution ofxyz = zvx over
the alphabet, i.e., V1VoV3 = V3V, V1 is an identity over the set of word parameters. In
particular we see that the wordfs and V4 have the same length, i.¢Vs| = | V4.
We also notice that, due to the (almost) symmetric form of the equation= zvx, if
(V1, Vo, V3, V) is a solution overt, then alsq V3, V4, V1, Vo) is a solution over. So, we
can suppose, without loss of generality that| > | V3.
We prove now that for suctVs, Vo, V3, V4) we must have

Vo =V4 or Alph(V1V3) C Alph(VaVy).

We discuss here three cases, depending on the length of

Casel: | V1| = |V3]. SinceV1VoV3 = V3V, V1 is an identity overd, we obtainV; = V3
andVy = V4. Thus, in this cas€Vy, Vs, V3, Va) is such that/, = Vg.

Case2: |V3| < |V1|<|V3Vy4| = |V2V3]. In this case, we can writé; = VaP andVy =
QV3, whereP e A" is a prefix of V4 andQ € A% is a suffix of V,. Thus,QV3 = V3P
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which implies, by Lemmad,, that we have
0=SW, P=WS, Vz=(GSW)S, Vi=(SW)tLs,

whereS, W are two words over the alphabétandi >0 is a nonnegative integer. Now, let
y € Alph(V1V3) C 4. But, this means thatappears in at least one of the wogisr W, so
it appears both i and inQ, i.e.,y € Alph(V2Vy).

Thus, in this casg(V1, Vo, Va3, V4) is such thaAlph(V1V3) € Alph(VaVy).

Case3: | V1| > |V3V4|. In this case, we can writé; = V3V4P andV, = QV,V3, with
P, Q e A™. Substituting these relations in the identityV> V3 = V3V4V;, we obtain that
P = Q. So, in this caséV1, Vo, V3, V) is a solution of the equatianyz = zvx over 4
if and only if

PVoV3 = V3VaP and Vi = PVoVa,

i.e., (P, V2, V3, Vy) is a solution of the equationyz = zvx over4 andVy = PV, Va. If
Vi = P,i.e., VoV = 1, then we immediately obtain th& = V3 = V4 = 1. So, in
this case the solutio(Wy, V2, V3, Vy) is such thatV, = V4. Otherwise (i.e.V1 # P), we
reduced the solutiofV1, Vo, V3, Va)to (P, Vo, V3, Va), with |P| < |V1]|,andVy = PV, V3.
Now, we can repeat this reduction step uhlil <|V3V4|, which means that we can apply
Casel or Case2 for the new solution( P, Va, V3, V4). So, for (P, V,, V3, V4) we have
Vo = V4 or Alph(PV3) C Alph(V2Vy). But, sinceVy = PV, V3, this implies that for the
solution(V1, Vo, V3, V4) we haveV, = V4 or Alph(V1V3) C Alph(V2Vy).

Thus, for any parametric solutiofVy, Vo, V3, V4) containing only word parameters,
i.e., obtained from some parametric solutidn, T, T3, T4) by fixing some values for all
numerical parameters, we must haie= V4 or Alph(V1V3) C Alph(VaVy).

Now, we claim that, for the wordsG; defined by formula 4), the 4-tuple
(G, ab, Gi_1, ba) is a solution for the equatioryz = zvx over the alphabef for any odd
indexk. To prove our claim, it is enough to verify th&.abGy_1 = Gr_1baGy, for any
odd indexk. Using formulas (3) and (4), this identity is equivalentipGy_1 = wy—1Gk.
Now, using formula (2), we obtaim;_»>G;_1 = G, and this can be proved by induction
onk using formulas (2) and (4).

Consider now an assignment and a parametric solutiotly, T», T3, T4) such that
(p(T1), o(T2), p(T3), (T4)) = (Gk, ab, Gx—1, ba) for some odd indek. We prove now
that the length ofp(Ty) is bounded by some constant.

First, since evenGy is a prefix of the Fibonacci word, which is 4-free, andrn) =
G for somek odd, we must have that every power of a factorgi(iy) is less than
4. Consequently, for every numerical parametexppearing in the parametric woff,
we must havep (1) < 4.

Second, consider the 4-tupl®y, Vo, V3, V4) over 4 obtained from the parametric solu-
tion (T, T», T3, T4) by substituting every numerical parametewith its valuep(1). Since
o(T;) = o(V;) for every 1<i <4, we obtain the following relations:

G =o(V1), Gi-1=(V3), (6)

ab = @(V2), ba = p(Vy). (7)
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Notice now that the values of formuld andV, under the assignmegt must beab and
ba, respectively, sd/> # V4. Thus, the first part of this proof implies that this 4-tuple
(V1, Va2, V3, V4) must be such thadlph(V1V3) € Alph(V2Vy). Moreover, from relations
(7) we observe thatp ()| < 2, for any word parameter € Alph(V2Vy), which implies that

| ()| <2 also for any word parametere Alph(VyV3).

So, what we obtained is that for any numerical parametevhich appears inf1,
¢(2) < 4, and for any word parameterwhich appears iff1, |¢(a)| <2. Consequently,
|o(T1)| is bounded by some positive constant, i.e., we cannot generate arbitrarily large so-
lutions (G, ab, Gr_1, ba), with k odd. But this is a contradiction since wordg can be
arbitrarily large.

Thus, the equationyz = zvx is not parametrizable.

4, Conclusions

Although the existence of solutions of a word equation is decidable due to Makanin’s
result, the general structure of solutions is difficult to find. Hmelevskii in [8], proved that
the solutions of constant-free word equations with three unknowns can be expressed using
only finitely many parameters. He also proved, in the same paper, that this result is no longer
valid for equations with four unknowns and he gave as a concrete example the equation
XyzZ = ZUX.

In this paper, we give a short elementary proof for the nonparametrizability of the equation
xyz = zvx. The “simplicity” of our solution comes from the fact that we only use some
elementary techniques on word equations and some basic properties of the Fibonacci word.
Moreover, this elementary solution gives us hope that there may exists also a simpler proof
for Hmelevskii's result on the parametrizability of constant-free word equations in three
unknowns.

It is worth noting that in the conference version of the paper, [20], we also investigated
the connection between the graph associated to an equation and the parametrizability of its
solutions and we succeeded to give a simple, necessary, (though nonsufficient) condition
for an equation to be nonparametrizable.
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