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SUMMARY

The auditory system must represent sounds with
a wide range of statistical properties. One important
property is the spectrotemporal contrast in the
acoustic environment: the variation in sound pres-
sure in each frequency band, relative to the mean
pressure. We show that neurons in ferret auditory
cortex rescale their gain to partially compensate for
the spectrotemporal contrast of recent stimulation.
When contrast is low, neurons increase their gain,
becoming more sensitive to small changes in the
stimulus, although the effectiveness of contrast
gain control is reduced at low mean levels. Gain is
primarily determined by contrast near each neuron’s
preferred frequency, but there is also a contribution
from contrast in more distant frequency bands.
Neural responses are modulated by contrast over
timescales of �100 ms. By using contrast gain
control to expand or compress the representation
of its inputs, the auditory system may be seeking
an efficient coding of natural sounds.

INTRODUCTION

The brain must be able to detect and represent both small and

large changes in sound level. Not only do we experience

a wide range of sound levels, from the quietness of a night in

the forest to the hooting drama of crossing a street, but the

important sensory information within these contexts may lie

either in small or large deviations from the average sound. For

example, detecting a subtle increase in the loudness of an ap-

proaching car’s engine in amostly constant background of traffic

noise can be just as crucial as hearing a pronounced honk. This

highlights a fundamental challenge for the auditory system: using

neurons with limited dynamic range, the system has to represent

large changes in sounds that are highly variable (high contrast),

without losing the ability to represent subtle changes in sounds

whose level is relatively constant (low contrast).

One way of managing a range of contrasts is to use separate

circuits to process stimuli with different statistics. However,

maintaining such a division-of-labor strategy across a sensory

pathway requires a potentially costly duplication of resources.

A more efficient solution is contrast gain control—where the

responsiveness of neurons is dynamically adjusted according
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to the contrast of recent stimulation. Considerable evidence

suggests that the mammalian visual system uses contrast gain

control (Shapley and Victor, 1978) so that it can operate in

both high- and low-contrast environments. This mechanism is

well described by ‘‘divisive normalization,’’ whereby the range

of visual input is adjusted according to the contrast of recent

visual stimulation (Heeger, 1992; Carandini et al., 1997; Schwartz

and Simoncelli, 2001; Bonin et al., 2005).

In the auditory system, several studies have investigated the

effects of temporal (i.e., within-band) contrast on neural

responses and have provided evidence both for gain control

and for multiple independent circuits. A simple way of controlling

temporal contrast is to vary the modulation depth of sinusoidally

amplitude-modulated tones; neurons from the auditory nerve

(Joris and Yin, 1992) to the auditory cortex (Malone et al.,

2007) can rescale their gain to partially compensate for reduced

modulation depths. Similar effects have been found in the inferior

colliculus (IC) (Kvale and Schreiner, 2004; Dean et al., 2005) and

in the songbird forebrain (Nagel and Doupe, 2006) when the

temporal contrast of more complex stimuli is altered. Such

gain changes improve the efficiency with which neurons encode

frequently presented levels (Dean et al., 2005).

Other studies have found that mean firing rates of IC neurons

can have nonmonotonic dependencies on spectrotemporal

contrast, while retaining their spectrotemporal preferences

(Escabı́ et al., 2003). Similar tuning of mean firing rate to spectral

contrast (measured across frequency, but not across time) has

been reported in auditory cortex (Barbour and Wang, 2003).

These findings suggest a division-of-labor strategy. However,

such effects are also compatible with contrast gain control, so

long as gain changes are slow (compared to spike generation)

or do not completely compensate for changes in contrast.

In this study, we ask whether the mammalian auditory cortex

adjusts neural gain according to the spectrotemporal contrast

of recent stimulation. One possibility is that neurons’ responses

are invariant to the statistics of recent stimulation, suggesting

that the problem is ignored. Alternatively, neurons may be infor-

mative only about stimuli with a particular contrast, suggesting

a division-of-labor strategy. Finally, they may undergo more

complex changes in their spectrotemporal tuning as contrast

varies, suggesting a reallocation of resources in the auditory

system. Tuning of auditory cortical neurons has been shown to

depend on stimulus context, such as tone density (Blake and

Merzenich, 2002), stimulus bandwidth (Gourévitch et al., 2009),

and the history of recent stimulation (Ahrens et al., 2008). To

distinguish between these hypotheses, we designed a set of

stimuli where the statistics of level variations could be controlled

within individual frequency bands. This allowed us to measure
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the spiking responses of neurons in the auditory cortex to

sounds with different means and contrasts, from which we

estimated spectrotemporal receptive fields (STRFs), using

both linear (deCharms et al., 1998; Schnupp et al., 2001) and

linear-nonlinear (LN) (Chichilnisky, 2001; Simoncelli et al., 2004;

Dahmen et al., 2010) models.

We also sought to quantify which combination of stimulus

statisticsmight inform cortical gain control. This requires a formal

definition of the contrast of a sound. In the visual system, the

contrast of a simple stimulus is defined as the ratio of the inten-

sity difference to the mean intensity (c=DI=I); this definition can

be generalized to complex stimuli as the ratio of the standard

deviation to themean (c= sI=mI). In principle, the same definitions

can be applied directly in the auditory system. However, it is

normal to describe sounds using sound pressure level (SPL),

L= 20 log10ðp=pREFÞ, rather than (RMS) pressure, p, itself. The

effect of this log transform is that the standard deviation of the

SPL of a sound (sL) can provide an excellent approximation of

the contrast, sP/mP, of the sound pressure:

c=
sP

mP

z a: sL +b (1)

Thus, an auditory contrast gain mechanism would adjust

neural gain according to sL, the standard deviation of the SPL

of recent stimulation.

Finally, we investigated whether gain control is a local or

a network mechanism. If a neuron’s gain depends only on the

statistics of the stimuli presented within its STRF, then gain

control could be implemented locally, e.g., by synaptic depres-

sion within individual neurons (Carandini et al., 2002). However,

synaptic depression is unlikely to account for gain effects that

result from the statistics of stimuli outside the STRF, in which

case gain control is more likely to arise from network mecha-

nisms, such as the leveraging of balanced excitation and inhibi-

tion (e.g., Mante et al., 2005). We therefore changed the stimulus

contrast both inside and outside narrow frequency bands in our

stimuli, in order to assess whether neuronal sensitivity to small

changes in a sound depends on the statistics of its spectrally

local or more global context.
RESULTS

We recorded from 1840 sites in the primary auditory cortex (A1)

and anterior auditory field (AAF) of eight anesthetized ferrets,

while diotically presenting dynamic random chord (DRC)

sequences. The chords were changed within each sequence

every 25 ms, with the levels of their constituent tones (1/6 octave

spaced) drawn from uniform distributions in SPL space. The

contrast of the sequences was manipulated by changing the

(SPL) standard deviation (sL) of these distributions. The tone level

distributions had identical mean (mL = 40 dB SPL) but different

widths: ± 5 dB (low contrast; sL z2.9 dB, c = sP/mP = 33%), ±

10 dB (medium contrast; sL z5.8 dB, c = sP/mP = 63.8%), or ±

15 dB (high contrast; sL z8.7 dB, c = sP/mP = 91.6%) (Figure 1).

The close relationship between contrast in sound pressure

(sP/mP) and sL for these distributions is shown in Figures S1A

and S1B; these, together with other stimulus statistics, are
documented in Table S1. As these distributions are primarily

defined in SPL space, and as we performed analyses on units’

stimulus-response relationships using stimulus representations

in SPL space, we present our data and models here in terms of

sL rather than sP/mP, so as not tomix together the sound pressure

and level domains.

The RMS sound level of the total stimulus ranged from 70 to

80 dB SPL. We identified 1001 units that responded reliably to

the DRCs, as measured via a maximum noise level criterion

(see Experimental Procedures).

Although the anesthetized preparation allowed for precise

control of stimulation and eliminated the possibility of attentional

modulation, to confirm that the observations made under anes-

thesia apply in awake animals, we also presented the same

stimuli through a free-field speaker to an awake, passively

listening ferret and recorded spiking activity from 62 sites in A1

and AAF. We identified 19 units that responded reliably to the

DRCs. We found no differences in the response characteristics

of neurons in the two preparations and therefore combined these

data in subsequent analyses.

Stimulus Contrast Has Little Systematic Effect
on Spectrotemporal Tuning
We first asked whether the tuning of cortical neurons is affected

by changes in stimulus contrast. If this were the case, it would

not be appropriate to describe such a response as gain control.

We characterized the tuning of each unit by estimating one STRF

for each contrast condition (e.g., Figure 2A; see Model 1 in Table

S2). Only STRFs that had predictive power (see Experimental

Procedures) were included in the further analysis; generally,

the prediction scores were worse under lower-contrast stimula-

tion (Table S3).

Changing stimulus contrast produced only small changes in

STRF shape (Figures 2C and 2D). Of 261 units with predictive

STRFs, 223 maintained the same best frequency (BF) across

conditions (within 1/6 of an octave; Figure 2C). Twenty-six units

had STRFs that were too diffuse to give clear BF estimates. Only

12 units showed evidence of changes (%1/3 octave) in BF

across conditions. Tuning bandwidths were slightly broader

under low-contrast stimulation (sign-rank test; p << 0.001);

however, this may reflect the noisier estimates of STRF coeffi-

cients at low contrast. Tuning bandwidth did not change system-

atically between medium- and high-contrast regimes (p > 0.5)

(Figure 2D). We also observed no systematic changes in the

temporal structure of STRFs, though this was limited by the

25 ms time resolution of the analysis.

To assess the importance of any unmeasured STRF shape

changes, we modeled each neuron by a single linear STRF

multiplied by a variable gain factor (Model 2 in Table S2). STRFs

from one stimulus condition predicted responses in the other

conditions as well as the within-condition STRFs (Figure 2F),

indicating that any shape changes in the STRFs were negligible.

Thus, auditory cortex neurons exhibit similar spectrotemporal

preferences regardless of contrast. This is similar to previous

observations in the IC (Escabı́ et al., 2003), but different

from the visual system, where contrast has a considerable

effect on the temporal dynamics of neural responses (Mante

et al., 2005).
Neuron 70, 1178–1191, June 23, 2011 ª2011 Elsevier Inc. 1179
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Figure 1. Stimulus Paradigm

(A–C) Dynamic random chord (DRC) sequences with different spectrotemporal contrasts. The elements of each sequence are chords of pure tones, whose levels

are randomly chosen from the distributions in (D).

(D) Tone level distributions for the DRC sequences in (A)–(C). These all have the same mean level mL, but different widths. The blue line corresponds to the low-

contrast (sL) DRC (A); the green line is the medium-contrast DRC (B); the red is the high-contrast DRC (C).

(E and F) The widths of the level distribution determine both the spectral and the temporal contrast of the individual sequences, as shown by the temporal profiles

of a pure tone at a fixed frequency for the three sequences in (E) and the spectral profiles of a chord at a fixed time for the three sequences in (F).

(G)We characterized the relationship between stimulus and neuronal response using a linear-nonlinearmodel. The sound input is treated as a spectrogram,X; the

(normalized) receptive field v acts as a linear filter on X, extracting the relevant features of the sound via the dot product X,v. The output of the linear filter is

(optionally) matched to the output spike rate through a nonlinearity that captures features such as thresholding. We parameterized these nonlinearities as

sigmoids. See also Tables S1 and S2 and Figure S1.
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Increased Response Gain Partially Compensates
for Lower Stimulus Contrast
Weobserved substantial changes in gain between conditions, as

measured by comparing the largest-magnitude coefficients of

the STRFs (Figure 2E). To characterize gain changes more accu-

rately, we extended the simple linear model to a LN one (Figures

1G and 3; Equation 5; Model 3 in Table S2). This comprised

a single linear STRF for each unit, estimated from its responses

across all conditions, followed by a sigmoidal output nonline-
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arity. Separate nonlinearities were fitted for each contrast

condition. The LN model far outperformed the linear models:

prediction scores were a median 38.5% higher than the within-

condition linear models (p << 0.001; sign-rank). We found

315 units where LN models were predictive in all three contrast

conditions. Analyses on the remaining units are presented in

Figure S3G, showing results similar to those presented below.

In an LN model, differences in gain manifest through changes

in the shape of the output nonlinearity. To quantify these
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Figure 2. Effect of Stimulus Contrast on Tuning

(A and B) Example units show the same spectrotemporal selectivity in the

receptive fields (STRFs) estimated from the three contrast conditions. Red

denotes components of the stimuli that excite the unit, blue denotes compo-

nents that inhibit. As the color scale is uniform across the plots, it is clear that

the dominant variation across the conditions lies in the magnitude of the drive

to the unit: this is stronger (the cortex appears to ‘‘listen harder’’) under low-

contrast than under high-contrast stimulus conditions.

(C–E) Best frequency (C) does not vary systematically with stimulus contrast

across units. Tuning bandwidth (D) shows a small, significant broadening at

low contrast. In almost all units, the gain of the STRF (E) increases as contrast

decreases. STRF properties under low-contrast stimulation are shown as blue

circles, under medium contrast as green crosses. Filled dark blue circles and

dark green pluses indicate data in these two same conditions from the awake

recordings.

(F) The linear STRFs fitted from DRCs with different contrasts are sufficiently

similar in tuning properties that, once adjusted for differences in STRF gain,

they predict responses across stimulus conditions on average 96.5% as well

Neuron

Contrast Gain Control in Auditory Cortex
changes, we calculated the set of linear transformations required

to map the output nonlinearity for high-contrast stimulation

(sL = 8.7 dB, c = 92%) onto those for other stimulus conditions.

In principle, this mapping could combine a scaling of the curve

along the horizontal and vertical axes and a translation of the

curve along these axes (x- and y-offset, respectively). However,

none of the units under investigation operated near their satura-

tion point, making an estimate of vertical scaling difficult. Thus,

we measured changes in the remaining three degrees of

freedom (Equation 6; Model 4 in Table S2). Horizontal scaling

corresponds to a change in gain, x-offset to a threshold shift

and y-offset to a change in minimum firing rate.

We observed a robust relationship between stimulus contrast

and gain across the population of units. An approximately 3-fold

decrease in contrast from 8.7 dB (c = 92%) to 2.9 dB (c = 33%)

increased gain by a median factor of 2.01; for an �1.5-fold

decrease in contrast from 8.7 dB (c = 92%) to 5.8 dB (c =

64%), gain increased by 1.343 (Figure 4A). The gain effect was

also strongest among units with the most robust, repeatable

spike trains (Figure S3D). Gain therefore changes in the appro-

priate direction to compensate for changes in stimulus contrast,

but this compensation is not complete.

Decreasing stimulus contrast also causednonlinearities to shift

by a small amount to the right (median x-offset of 5.5% and 1.4%

for lowandmediumcontrast; p<0.001andp<0.05, respectively,

sign-rank test; Figure 4B), but there was no corresponding

vertical translation of these curves (Figure 4C). Although the

change in x-offset is nominally indicative of a small increase in

threshold, the gain and x-offset measures were correlated with

each other across units (r2 = 0.195 in high-to-low- and 0.11 in

high-to-medium-contrast curve transformations; Figure 4D),

suggesting that the rightwards shift in curves partly acts to

compensate for gain (see Figure S3E). The lack of systematic

y-offset changes indicated that minimum firing rate did not

change across conditions. Therefore, the primary consequence

of decreasing stimulus contrast is that cortical cells increase

their gain.

By transforming output nonlinearities across conditions, we

could predict neural responses to each contrast stimulus as

successfully as by using separate nonlinearities for each condi-

tion as described above (median difference in prediction scores

of 0.7%; sign-rank, p > 0.5).

These effects are similar to the changes in coding accuracy

previously observed in the IC (Dean et al., 2005). Neuronal firing

is most sensitive to and hence most informative about stimulus

changes when the slope of the input/output function is at its

greatest. This occurs at a median position of X,v = 5.3, 10.1,

and 14.3 under low, medium, and high contrast, respectively

(Figure S2). These lie at approximately the same percentile

(�70%) of each stimulus distribution, relative to their projection

onto X,v. Neurons in auditory cortex thus adapt their sensitivity

to be most informative about stimuli within the current stimulus

distribution.
as they do within their own conditions. Thus, most of the contrast dependence

of STRFs is captured by a change in gain. Red crosses indicate data from the

awake recordings. See also Table S3.

Neuron 70, 1178–1191, June 23, 2011 ª2011 Elsevier Inc. 1181
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Figure 3. Output Nonlinearities for Two Example Units Show Gain Rescaling as a Function of Stimulus Contrast

(A) For each unit, we fitted a single linear STRF, then calculated a separate output nonlinearity for each contrast condition. The abscissa denotes the output of

the linear STRF, X,v; the ordinate is the predicted spike rate.

(B) The differences between the nonlinearities were quantified by the linear transform required to convert the high-contrast nonlinearity into each of the medium-

and low-contrast nonlinearities. Solid curves show the original sigmoids for the unit shown in (A); dashed lines show the result of the transformation of the

high-contrast (red) curve into the low-contrast (blue) andmedium-contrast (green) curves. The parameters for the high-to-low transform for this unit wereG = 2.9,

Dx = 17.6%, Dy = 8.9%; the high-to-medium transform parameters were G = 1.5, Dx = 2.0%, Dy = �0.6%.

(C and D) Nonlinearities for a second example unit; panels equivalent to (A) and (B). Parameters for these transforms were G = 1.5, Dx = �27.6%, Dy = 2.4%

(high-to-low) and G = 1.2, Dx = �3.8%, Dy = 8.5% (high-to-medium). See also Figure S2.
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To fully quantify the relationship between stimulus contrast

and gain, we presented to a subset of these cells a larger set

of DRCs with eight different sL values ranging from 1.4 dB to

11.5 dB (c = 17% to 116%). We obtained 80 units for which

the above analysis could be performed over the whole contrast

range. On average, these showed a clear, monotonic increase

in gain as the contrast of the stimulus was reduced (Figure 4E).

The relationship between relative gain and contrast was

extremely well described by a standard normalization equation

(Heeger, 1992; Carandini et al., 1997):

GðsLÞ= a

1+b sn
L

(2)

where G denotes the gain and a, b, and n are constants (see

Model 5 in Table S2). This model explained 99.9% of the vari-

ance in the population average of relative gain values.

This model also provided a good description of the relative

gain values for individual units (Figure S3H). However, in

some units, the model failed at the lowest contrasts. For these

units, gain increased as contrast was reduced down to

a threshold, below which gain either leveled off or decreased.

For 46/80 units, this threshold was sL = 2.9 dB (c = 33%); for

a further 26 units, this threshold was 4.3 dB (c = 49%); and

a further four units had a threshold of sL = 5.8 dB (c = 64%). At
1182 Neuron 70, 1178–1191, June 23, 2011 ª2011 Elsevier Inc.
these thresholds and above, gain was well fit on a cell-by-cell

basis by Equation 2 for 76/80 units. Themodel producedmargin-

ally better predictions of neural responses than fitting individual

nonlinearities to each contrast condition (Table S2). Thus, across

a wide range of contrasts, gain normalization is a robust

phenomenon for individual units.

Contrast Gain Control Is Weak at Low Mean Levels
and Saturates at High Mean Levels
In the experiments presented so far, the mean SPL of each

tone in the DRC, mL, was kept fixed. To explore the effect of

mean, we presented a further set of stimuli in which both

the mean of the level distributions (mL) and the contrast (sL)

were manipulated independently. We estimated LN models

from responses to a range of mean/contrast conditions,

together with curve transformations from each stimulus condi-

tion relative to the mL = 40 dB SPL, sL = 8.7 dB (c = 92%)

nonlinearity. Of the 1001 units above, 56 units yielded predic-

tive LN models across the whole range of conditions. Only

data from these 56 units are analyzed below, in order to main-

tain the same sample set across stimulus conditions. Never-

theless, data from all units where LN models were predictive

in only a subset of conditions (n = 217) yielded similar results

(data not shown).



A B C

D E

Figure 4. Output Gain Is Inversely Related to Stimulus Contrast

(A) Histogram of gain (relative to the reference condition) under low- (blue) and medium-contrast (green) conditions, for n = 315 units. Colored dashed lines are

population medians. Red dashed line indicates G = 1, i.e., no scaling of the nonlinearity.

(B) As in (A), for changes in x-offset. Positive values denote rightward shifts in nonlinearities.

(C) As in (A), for changes in y-offset. Positive values denote upward shifts in nonlinearities.

(D) For both the high-to-low-contrast (blue) and the high-to-medium-contrast (green) transformations, changes in gain (abscissa) and x-offset (ordinate) were

positively correlated across the population of units. Shaded regions show the (bootstrapped) 99% confidence intervals about the mean regression line (solid).

(E) The population median gain over a wide range of contrasts was well modeled by a standard gain normalization function, Equation 2. Gray bars indicate 99%

confidence intervals on the median, via bootstrapping. See also Figure S3.
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At all mean levels tested, decreasing contrast caused gain to

increase across the population of cells. However, the degree of

gain normalization depended on the mean level: at low mL,

reducing contrast did not yield as much compensatory gain

change compared with reducing contrast at high mL. While

increasing mL therefore increased the dependence of gain on

contrast, this trend saturated above mL z35 dB SPL (Figure 5A).

At higher mean levels, gain was decoupled from the mean sound

level and varied with contrast alone. Interestingly, although

changing mean level had no systematic effect on x-offset in

our data (Figure 5B), reducing the mean level typically increased

y-offset, i.e., raised the minimum firing rate (Figure 5C; examples

in Figures S4A and S4B).

Given the success of Equation 2 in modeling the relationship

between sL and gain, we extended this model to include mean

level, mL. The most explanatory model (Equation 8) was a simple

extension of the contrast-dependent model where b could vary

with mL. This allows mL to directly modulate the dependence of

gain on contrast. Fitted values for bðmLÞ are presented in Fig-

ure 5D, showing that at low mL, b is modulated by mL, whereas

b saturates with high mL. For simplicity, we modeled this with
an exponential function (Equation 8; see also Model 6 in Table

S2). This model explained 97% of the total variance in the data

set (Figure 5E). We did not estimate the parameters for individual

units, and therefore did not cross-validate this model.

All of the above results remained unchanged when gain was

expressed as a function of sP/mP rather than sL (Figure S4C).

Responses to a Fixed Sound Depend on Context
The above results suggest that the recent spectrotemporal

statistics of the stimulus modulate neural responses to a sound.

We predicted that if a particular sound was presented in a low-

contrast context, it would generate stronger responses than if

presented in high-contrast context.

To test this prediction, we embedded a fixed ‘‘test sound’’ into

DRC segments of differing contrasts. This sound was designed

to drive all units within an electrode penetration, by having

stimulus energy within the receptive fields of the units recorded

there (Figure 6A). The different contexts were provided by a DRC

sequence that alternated between high (sL = 8.7 dB, c = 92%)

and low contrast (sL = 2.9 dB, c = 33%) every 1 s. The same

test sound was presented once per 1 s block at a random time
Neuron 70, 1178–1191, June 23, 2011 ª2011 Elsevier Inc. 1183



A

D

B C

E

Figure 5. Contrast Gain Control Is Modulated by mL Only at Low Mean Levels

(A) Sigmoid nonlinearities were fitted to units’ responses to a range of DRCs with different contrast and mL statistics and compared with a reference curve.

Populationmedian gain factors are plotted against contrast, with different symbols/colors for eachmean level. Colored lines show independent fits of themodel in

Figure 4E.

(B) As in (A), for x-offset.

(C) As in (A), for y-offset.

(D) Values of b fitted to themodel given in Equation 8, as shown in (A). Thesemeasure the relative sensitivity of neural gain to the stimulus contrast, as a function of

mean level. At mean levels R35 dB SPL, bðmLÞ is relatively independent of mL, while it becomes sensitive to mL at lower mean levels. Solid line denotes an

exponential fit to bðmLÞ.
(E) Illustration of the full modelGðsL;mLÞ for gain normalization (colored surface). A contour plot of this surface is projected below. Colored dots on the contour plot

show the population median data used to constrain the model, from (A). Their position is a function of both sL and mL; their color denotes the median measured

gain in these stimulus conditions; vertical arrows denote the residual between the measured gain and that described by the model. See also Figure S4.
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relative to the onset of that block, i.e., the last switch in context.

Among 63 units that responded reliably to the test sound, all

but two responded more vigorously when this sound was pre-

sented in a low-contrast context than in a high-contrast context;

the firing rate was a median 2.6 times greater in low-contrast

context (p � 0.001, sign-rank; Figures 6B–6D). This confirmed

our prediction.

This experiment also allowed a finer-grained comparison of

the time course of responses in high and low context. Similar

to the STRF analysis, we found no systematic difference

between these (Figure S5).

The variable timing of the test sound relative to the time of

context switch allowed us to estimate the time course of the
1184 Neuron 70, 1178–1191, June 23, 2011 ª2011 Elsevier Inc.
adaptation to stimulus contrast (Figure 6E). This could, in

turn, inform a time-dependent model of gain control (e.g.,

Model 7 in Table S2), though we did not cross-validate such

a model. Reliable estimates of time constants were obtained

for both the switch from low- to high-contrast context (tL/H)

and the switch from high- to low-contrast context (tH/L) for

18 units. Adaptation to high-contrast context occurred with

a median tL/H of 86 ms, compared with a slower adaptation

to low-contrast context with a median tH/L of 157 ms. This

difference was significant (p < 0.001, sign-rank) and evident

for 14/18 of the individual units (Figure 6F). Thus, the time

courses for increases and decreases in neural gain are

asymmetric.
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Figure 6. Responses to Fixed Sounds Are Modulated by the Spectrotemporal Contrast of their Context

(A) During each electrode penetration, the STRF of a representative unit was used as a basis for a test sound. This was inserted at random times into special DRCs

inwhich stimulus contrast switched every 1 s between low (sL= 2.9 dB, c = 33%) and high contrast (sL= 8.7 dB, c = 92%). The test sound itself was identical within

each stimulus regime; only the contrast of its context differed.

(B) Mean response to the test sound for an example unit, when presented in high-contrast (top row) or low-contrast context (bottom row). Columns delineate

responses by the time since the last switch in context at which the test sounds were presented.

(C) Response to the test sound for the unit in (B), averaged within each contrast context over all postswitch delays from 150–800 ms.

(D) Peak responses to the test sound across n = 63 units, during the low- and high-contrast contexts. Red dashed line shows expected response relationship if

contrast-context was irrelevant. Green circle indicates the unit in (B) and (C). Shaded region shows the confidence intervals as in Figure 4D.

(E) Peak response for unit in (B) and (C) as a function of the time after context switch at which the test sound was presented. Solid lines show exponential fits to

these data, with time constant tL/H = 62 ms after an increase and tH/L = 85 ms after a decrease in the contrast of the context.

(F) Time constants for context adaptation, as in (E), for 18 units for which both tL/H and tH/L could be reliably estimated. Data are plotted both as a scatter plot

and as marginal histograms of tL/H (red) and tH/L (blue). Green circle denotes unit in (B), (C), and (E). See also Figure S5.
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Figure 7. Gain Is Affected by the Contrast of Stimuli Lying both Within and Outside the Tuning of a Unit
(A) During each electrode penetration, the STRF of a representative unit was mapped and the BF determined. A 0.5–1.2 octave band centered around the BFwas

designated the test and the remainder the mask. The contrast within these (stest, smask) was independently varied. The example stimuli shown here were used for

a unit with a BF of 9 kHz.

(B–E) Relative gain from varying either stest or smask, with the other kept constant. Color grids above each plot illustrate which stimulus conditions from (A) are

being compared; the red box with the white dot is the reference curve used to calculate the transform.

(F) Population median gain for 24 units with their responsive frequency range lying within the test (dots with dashed lines). Error bars denote 99% confidence

interval on the median. Contrast within the test is a stronger determinant of the gain than that in the mask. Solid lines show the fit of Equation 3 to these data.

See also Table S4.
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Contrast Gain Control in Auditory Cortex
Neuronal Gain Is Dependent on Stimulus Contrast both
Within and Outside the Tuning Curve
To explore the mechanism for gain control, we asked whether

gain is modulated by the contrast within a local region of

frequency space or whether it is a function of the global statistics

of the input. To address this, we varied the contrast of the DRC

stimuli within two separate frequency regions. One region was

denoted the ‘‘test,’’ centered around a chosen unit’s BF and

spanning 0.5, 0.67, or 1.2 octaves. The remaining frequency

bandswere denoted the ‘‘mask’’ (Figure 7A).We aimed to situate

the test stimulus over the ‘‘responsive frequency range’’ (FRF ;

see Experimental Procedures), the frequencies to which a given

neuron (linearly) responded. However, since we recorded

multiple units simultaneously (usually bilaterally), we actually

sampled a range of conditions where the test stimulus covered

the neuron’s responsive frequency range, overlapped it, or lay

entirely outside it. This enabled us to measure how contrast

gain depended on the amount of overlap between the test stim-

ulus and FRF .

We presented nine separate DRCs, where the contrasts in

the test (stest) and mask (smask) were independently chosen

from sL = 2.9 dB, 5.8 dB, or 8.7 dB (c = 33%, 64%, or 92%).

We found that the gain of each neuron was most strongly modu-

lated by contrast within the responsive frequency range. Thus,

varying stest had the strongest effect on gain when the test
1186 Neuron 70, 1178–1191, June 23, 2011 ª2011 Elsevier Inc.
stimulus completely covered FRF (Figure 7B). Similarly, varying

smask had the strongest effect when the mask completely

covered FRF (Figure 7C).

However, contrast away from the responsive frequency range

also had an impact on gain. For example, even when the test

stimulus completely covered FRF , decreasing smask still resulted

in an increase in gain (Figure 7C). There were also interactions

between contrast within and outside FRF (compare Figure 7B

with 7D and Figure 7C with 7E). This is summarized in Figure 7F

for 24 units where the test completely covered FRF .

To quantify these effects, we extended the (mL-independent)

model (Equation 2) to include contributions to gain normalization

from stimulus statistics both within and outside the responsive

frequency range (‘‘RF’’ and ‘‘global,’’ respectively):

G
�
sRF ; sglobal

�
=

a

1+bRF s
n
RF +bglobal s

n
global

(3)

Using only those units where the test covered their responsive

frequency range, we fitted the model in Equation 3 assuming

sRF = stest. This fit estimated a 2.43 stronger weighting of local

stimulus contrast over global contrast (Model 8 in Table S2;

Table S4) and captured the asymmetric interactions between

stest and smask (Figure 7F). In turn, the model was also successful

at predicting the gain exhibited by units whose FRF only partially

overlapped the test or lay completely outside it (Table S4). The
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predictive value of this model points to either the existence of

a gain control mechanism that strongly weights local over global

stimulus statistics or else to the presence of two stages of gain

control: one local and one global.

DISCUSSION

Our data show that the gain of neurons in auditory cortex is

dynamically modulated according to the spectrotemporal statis-

tics of recently heard sounds. The primary determinant of gain is

stimulus contrast, which is well approximated by the standard

deviation of the SPL (sL). Gain decreases as stimulus contrast

increases, thereby partially compensating for changes in

contrast. Mean stimulus level also influences gain: when the

mean level is low, the effectiveness of contrast gain control is

reduced.

Mechanisms for Gain Control
Our data focus on the effects of gain control, rather than on its

specific implementation. Thus, although our models refer to

stimulus contrast and level, we do not know how (or even

whether) these parameters are explicitly computed by the brain.

Nevertheless, by investigating how the gain signal depends on

the spectral and temporal integration of stimulus statistics, we

obtain insight into the mechanisms underlying gain changes.

We find that gain is mainly determined by spectrotemporal

contrast near the preferred frequency of each neuron, but there

is also a significant contribution from the contrast outside the

neuron’s STRF (Figure 7). The time course of gain changes is

asymmetric (Figure 6): time constants for increases and

decreases in gain are 157 ms and 86 ms, respectively.

The observation that gain is regulated through wide spectral

integration places some constraints on possible mechanisms.

This suggests that gain control is not mediated entirely by

a within-neuron mechanism, since single neurons do not have

access to all the information required to calculate spectrotempo-

ral contrast and adjust gain accordingly. This, along with the time

course of gain changes, potentially argues against synaptic

depression (Carandini et al., 2002), which could, in principle,

operate much faster. It may, however, be necessary to integrate

information over a number of successive stimuli before gain can

be adjusted in this fashion; this argument incidentally provides

a computational justification for the asymmetry in adaptation

times (DeWeese and Zador, 1998). The influence of distant

frequent bands is also unlikely to result from masking in the

auditory periphery: although higher spectrotemporal contrast

produces larger variation in the level of each frequency band,

the total level of the DRCs remains relatively constant both

over time and between conditions.

Alternative possibilities are that gain control is mediated by

an intracortical network (Carandini et al., 1997) or through cor-

tico-thalamic feedback, via recurrent excitation and inhibition

(e.g., Abbott and Chance, 2005). Both hypotheses are compat-

ible with the spectral and temporal integration we find here.

Nevertheless, it is likely that gain control in cortex is at least

partly inherited from earlier auditory structures. It has been

shown, for example, that responses of neurons in the mamma-

lian IC (Kvale and Schreiner, 2004; Dean et al., 2005, 2008) alter
their gain to compensate for the temporal contrast of the level of

a noise stimulus. The time constants of these effects are similar

to those we observe in cortex and show a similar asymmetry for

increases and decreases in gain. If the mechanisms in cortex

and midbrain are identical, we would expect gain modulation

in the IC to show the same spectral spread as we observe

here. Characterization of both the spectral and temporal prop-

erties of gain control is likely to be informative in either linking

or distinguishing between gain effects in cortex and more

peripheral stations, such as those observed by varying the

modulation depth of sinusoidally amplitude-modulated tones

in the auditory nerve (Joris and Yin, 1992) or by varying the

spectral contrast of complex chords in the brainstem (Reiss

et al., 2007).

Finally, there may be a number of independent gain control

stages at different levels of the auditory system. These may

have different characteristics and time constants, reflecting

different underlying mechanisms. Such a hierarchy has been

observed in the visual system, where at least both the retina

and V1 engage separate gain control mechanisms (Carandini

et al., 1997; Brown and Masland, 2001; Chander and Chi-

chilnisky, 2001; Baccus and Meister, 2002). In the extreme,

gain control may be performed at every stage along the pathway

(for review, see Kohn, 2007). If there are multiple, independent

stages of gain control, then the local (within-receptive-field)

gain effects and the global (extra-receptive-field) gain effects

may be realized by different mechanisms and at different levels

of the pathway. Further experiments will be required to distin-

guish these components by separately measuring their spectral

and temporal parameters.

If distinct local and global mechanisms are involved, perhaps

with different time courses, then synaptic depression could still

be a strong candidate mechanism for the local mechanism, as

it has been implicated in gain control across a broad range of

neural systems (Stratford et al., 1996; Carandini et al., 2002;

Chung et al., 2002). Within the auditory system itself, forward

suppression—whereby the response of neurons to a sound is

reduced when another sound precedes it—lasts for >100 ms in

A1, which corresponds to a suppression of synaptic conduc-

tances (Wehr and Zador, 2005) or activation of hyperpolarizing

currents (Abolafia et al., 2011). Synaptic depression also shows

temporal asymmetry similar to that observed here (Hosoya et al.,

2005; Dobrunz et al., 1997; Chung et al., 2002).

The Role of Contrast Gain Control
Gain control is primarily useful for adapting the limited dynamic

range of a neuron to the statistics of the stimulus. When spectro-

temporal contrast is low, firing rates are sensitive to smaller

changes within their spectral ‘‘region of interest’’ than under

higher-contrast conditions. Thus, the representation of stimulus

space is effectively expanded under low-contrast stimulation

and compressed under high-contrast stimulation. Consequently,

gain control should improve the ability of individuals to detect

small changes in low-contrast sounds. Indeed, a related

phenomenon has been demonstrated in the adaptation to

reverberation, whereby listeners are better able to discriminate

(low-contrast) reverberant words when embedded within

a reverberant context sentence than within a (high-contrast)
Neuron 70, 1178–1191, June 23, 2011 ª2011 Elsevier Inc. 1187
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anechoic context (Watkins, 2005), an effect that is also

frequency-band specific (Watkins and Makin, 2007). Perceptual

adaptation is not, however, complete, as a general increase in

the spectrotemporal contrast of speech leads to demonstrable

gains in intelligibility (Steeneken and Houtgast, 1980; van Veen

and Houtgast, 1985; Miller et al., 1999). Our data predict that

perceptual adaptation to stimulus contrast should be observable

with nonspeech stimuli as well.

Neurons in the visual system are subject to contrast gain

control, which is thought to be desirable for efficient coding of

natural images (Schwartz and Simoncelli, 2001). Since the

contrast of natural images is correlated across space and time,

normalization by stimulus contrast reduces the redundancy of

the neural code (Barlow, 1961; Vinje and Gallant, 2002). The

contrast of a complex visual stimulus can be defined as sI/mI,

which is strongly related to the two contrast measures that we

have shown to determine auditory gain control (sL, Figure 5A;

sP/mP, Figure S4C). Auditory gain control may therefore have

a similar redundancy-reducing effect. Although the ensemble

(i.e., long time scale) distributions of natural sounds have been

explored (Attias and Schreiner, 1997; Escabı́ et al., 2003; Singh

and Theunissen, 2003), a deeper understanding of the relation-

ship between contrast gain control and the statistics of natural

soundswill require a characterization of natural sound level distri-

butions at the temporal scales over which gain control operates.

We show that when stimulus level statistics are not uniform

across the spectrum, gain control is also unevenly applied to

neurons, depending on their frequency tuning. A spectrally

limited band of high contrast has the greatest compressive effect

on neurons if their tuning curves overlap this band. Conversely,

neurons tuned to other frequencies maintain sensitivity to small

changes in their input. Because natural sounds do not cover

the entire audible frequency range evenly, such an arrangement

might make it possible to match contrast adaptation to the

challenges posed by each particular acoustic environment.

Gain Control and Contrast Tuning
Although the gain change we observe is strong, it does not

completely compensate for changes in stimulus contrast: even

at high mean stimulus levels (where contrast gain control is

most effective and independent of sound level), an approxi-

mately 3-fold reduction in spectrotemporal contrast yields only

an �2-fold increase in gain. Thus, gain control does not result

in contrast invariance. Indeed, previous studies (Barbour and

Wang, 2003; Escabı́ et al., 2003) have found that some auditory

neurons are contrast tuned, firing more in response to some

contrasts than others. Such a result would be incompatible

with contrast invariance, but is compatible with the incomplete

contrast compensation observed here. Taken together, these

results suggest that auditory cortex uses both a division-of-labor

strategy and adaptive gain control. Gain control reduces the

range of stimulus values that must be separately encoded; within

the remaining narrow range, a division-of-labor strategy may be

used.

The incompleteness of gain control also suggests that there is

a preferred range of stimulus contrasts for which neural coding is

optimal; outside this range, gain control will fail to adjust gain

enough to bring the stimuli into the neurons’ dynamic range. It
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is possible that this preferred distribution is defined by the

ensemble of natural sounds (Attneave, 1954; Barlow, 1961;

Schwartz and Simoncelli, 2001; Lewicki, 2002).

It does not appear that gain normalization operates with equal

measure fromneuron to neuron. Not only does the strength of the

effect differ across neurons, but only a subset continues to

increase their gain as stimulus contrast is reduced to ever smaller

levels (Figure S3H). This implies that different cortical neurons

will be optimal encoders of different spectrotemporal level distri-

butions. Similar diversity in adaptive properties has also been

found in awake marmoset cortex, where subclasses of cells

either adapt to the mean sound level of a stimulus or maintain

a fixed preference for a particular intensity range (Watkins and

Barbour, 2008). Just as such cells retain the ability to detect

soft sounds in a loud environment, a variation in the degree of

gain normalization between neurons may help retain the ability

to detect small changes in high-contrast environments. These

are particularly important tasks in audition, where superimposed

sound sources need to be detected and dissected.

Finally, given the strength of gain normalization observed in

this study, we predict that including gain control will prove to

be a generally important factor in improving the predictive power

of STRFmodels of auditory processing. However, the implemen-

tation details may prove crucial. For instance, normalizing by

global stimulus contrast, without taking into account spectrally

local contrast, does not result in an improvement in the predic-

tive power of STRF models (David et al., 2009). This suggests

that a detailed implementation of the spectral and temporal inte-

gration that informs the gain signal, such as that initiated in this

study, will be needed before such improvements can be made.
EXPERIMENTAL PROCEDURES

Animals and Anesthesia

All animal procedures were approved by the local ethical review committee

and performed under license from the UK Home Office. Eight adult pigmented

ferrets (6 male, 2 female) were chosen for electrophysiological recordings

under ketamine-medetomidine anesthesia. Extracellular recordings were

made using silicon probe electrodes (Neuronexus Technologies, Ann Arbor,

MI) with 16 sites on a single probe, vertically spaced at 50 mm or 150 mm.

Stimuli were presented via Panasonic RPHV27 earphones (Bracknell, UK),

coupled to otoscope specula that were inserted into each ear canal, and driven

by Tucker-Davis Technologies (Alachua, FL) System III hardware (48 kHz

sample rate). Further recordings were made in an awake, passively listening

female ferret, with free field stimulation presented in an anechoic room via

an Audax TWO26M0 speaker (Audax Industries, Château du Loir, France)

�80 cm from the animal’s head. Full experimental procedures are described

in Bizley et al. (2010).

Offline spike sorting was performed using spikemonger, an in-house soft-

ware package (see Supplemental Experimental Procedures). We included

only units that showed acoustically responsive activity.
Dynamic Random Chords

The main stimulus was a DRC: a superposition of 34 pure tones, with frequen-

cies log-spaced between 500Hz and 22.6 kHz at 1/6 octave intervals. The tone

levels during each chord were independently drawn from a uniform distribu-

tion, withmean level mL (dB SPL). The distribution was uniform across (logarith-

mic) level, not (linear) RMS pressure, as this better matches the range of

sound intensities and modulations present in natural signals (Escabı́ et al.,

2003; Gill et al., 2006). The distribution width was varied, giving three stimulus

contrasts (Figure 1). For a subset of recordings, a broader range of widths was
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presented (from ±2.5 dB to ±20 dB in 2.5 dB steps). A full range of stimulus

statistics is given in Table S1.

Chords were 25 ms in duration and presented in sequences of 15 s or 30 s

duration. The overall RMS level of the stimuli was 71.0 ± 0.5 dB SPL in low

contrast, 72.4 ± 1.0 dB SPL in medium contrast, and 74.5 ± 1.5 dB SPL in

high contrast, when mL = 40. A control experiment was performed to show

that these small differences in the overall level did not account for gain control

(data not shown).

To build the sequences, we first generated random levels for each tone in

each chord. A new random seed was used for each electrode penetration

and stimulus condition. We synthesized each tone, applied envelopes based

on the random levels (with 5ms linear ramps between chords), and then super-

imposed them. This ensured there were no amplitude or phase discontinuities

in the signal. Each DRC sequence was presented 5–20 times (10 times for the

awake animal), randomly interleaved, with 15–20 s silence between each

sequence. The first 2 s of data from each presentation were discarded to

ensure that a constant adaptation state had been reached.

Signal Power and Noise Power

Since the analyses carried out here can only be applied to acoustically

driven units that produce reasonably reliable, repeatable responses, we

calculated the noise ratio (NR) for the PSTHs of each unit (Sahani and Linden,

2003b):

noise ratio =
noise power

signal power
=

total variance � explainable variance

explainable variance
(4)

An NR of 0 indicates that responses were identical for repeated stimulus

presentations. Higher NR indicates that responses are less reliable. Units

with NR > 10 in any one stimulus condition, i.e., whose explainable variance

was <9.1% of the total variance, were excluded from further analysis. NRs

were highest in the low-contrast condition (Table S3). Thus, we used data

from the high-contrast condition as the reference for comparisons.

STRF Estimation

STRFs were estimated by correlating the stimulus history with the spike peri-

stimulus time histogram (PSTH). The PSTH was binned at 25 ms; bins were

offset by between 0 and 25 ms to allow for response latency. The offset was

chosen to minimize the NR. We estimated a separable kernel, wft , such that

wft =wf5wt , where wf is the frequency kernel, wt the time kernel, and 5

the outer product, via maximum likelihood (Sahani and Linden, 2003a; Ahrens

et al., 2008). Separable STRFs gave more accurate predictions than fully

inseparable STRFs (which had more parameters). STRFs were trained on

9/10 of the available data for each unit and were used to predict a PSTH for

the remaining 1/10. The prediction score is defined as the proportional reduc-

tion in the mean squared error of the response; if this was positive, the STRF

was deemed predictive.

STRFs were estimated separately for each stimulus condition and for the

pooled data set. The separate set of STRFs was used for the linear analysis

(Figure 2); the pooled STRFs were used thereafter. In each case, units whose

STRFs or LN models (see below) were not predictive on the validation data set

were excluded from analysis.

The measurement of BF and bandwidth of each STRF is described in the

Supplemental Experimental Procedures.

Nonlinearities

We refined the linear STRF by fitting a LN model to units’ responses (Chi-

chilnisky, 2001). The STRF is a linear approximation of the relationship

between the stimulus X and response Y, via Y =X,w+ 3. To capture nonlinear-

ities in this relationship, we fitted a nonlinear function to the output of the linear

model, such that Y =F½X,v�+ 3. Here, v=w=kwk is the unit vector in the direc-

tion of the STRF, i.e., the direction of stimulus space to which the cell is (line-

arly) sensitive. F was approximated by dividing the stimulus/response pairs

into 40 bins along the X,v axis and averaging responses within each bin. A

logistic curve (sigmoid) was fitted to the data via gradient descent:

F½X,v� = b1 +
b2

1+b3 expðb4ðX,vÞÞ (5)
To check that pooling responses from different stimulus conditions in the

initial STRF estimation was valid, we built LNmodels for each cell using STRFs

estimated from only one stimulus condition. Results were similar, regardless of

which condition was used to build the STRF (Figures S3A–S3C).

Curve Transformations

Independent sigmoids were fitted to the responses from each contrast

condition. To describe the differences between the sigmoids, we chose the

nonlinearity for the sL = 8.7 dB (c = 92%) condition for every unit as a reference

and found the linear transformations required to map the reference sigmoid

onto the sigmoids obtained under the other conditions (see main text). This

amounts to solving the equation:

FsL ½X,v�=Fs0 ½g:ðX,vÞ+Dx�+Dy (6)

where s0 = 8:7 is the reference condition, g is the horizontal scale factor (gain

change), Dx is the x-offset, andDy is the y-offset. Details of this fit are provided

in the Supplemental Experimental Procedures. For a given unit, Dx is ex-

pressed as a percentage of the size of the domain of X,v in the reference

condition for that unit, while Dy is expressed as a percentage of Fs0 ½0�.

Test Sound

For a subset of electrode penetrations, the STRF of a representative unit was

estimated online, and used to create a test sound. The frequency component

of the STRF, wf , was scaled to create a single chord of 25 ms duration, XT ,

that roughly fit the statistics of a DRC segment with medium contrast (Fig-

ure 6A). A set of new DRCs was generated for that electrode penetration,

consisting of 25 alternating 1 s segments of low (sL = 2.9 dB, c = 33%)

and high contrast (sL = 8.7 dB, c = 92%). XT was inserted once into each

segment, at a random delay after each segment transition. Forty sequences,

with different random seeds and test sound timing, were presented. To

ensure that the test sound actually drove all the units in a given electrode

penetration, only those units for which XT,v > 10 dB were retained for anal-

ysis. Responses to the test sound were averaged for each combination of

context (contrast of the DRC segment) and timing (delay after transition)

conditions.

To estimate response latency, we binned the spiking response to the test

sound at 5 ms resolution, averaged over all conditions, and defined a 15 ms

window about the peak of the PSTH. Spiking within this window was defined

as the peak response, r(t). For units whose peak responses satisfied a reliability

criterion (see Supplemental Experimental Procedures), time constants for

adaptation were estimated by fitting the equation rðtÞ= a+b:expð�t=tÞ.

Test/Mask

To assess whether neuronal responses depend on stimulus contrast both

within and outside the frequency range of their STRFs, a subset of units

were probed with a set of specially constructed test/mask stimuli.

During recording, units’ STRFs and BFs were estimated. From the set of 34

tone frequencies used in the DRCs (F), tones in a ‘‘test’’ band of 7 frequencies

(Ftest ), spanning half an octave above and half an octave below the unit’s BF,

had levels drawn from a different distribution from those in the remaining

‘‘mask’’ frequency bands (Fmask ). Nine different stimuli (Figure 7A) were pre-

sented five times each, randomly interleaved. Some units’ BFs lay in the 2–3

highest-frequency bands of the DRCs; for these units, the test band was

reduced to a width of either 3/6 or 4/6 octaves. Results from these units

were similar, and so results from all three cases were pooled. For all units,

a linear STRF was calculated from the pooled data set, and individual nonlin-

earities were calculated for each stimulus condition.

The responsive frequency range of each unit (FRF ) was defined by which

components of wf were significantly nonzero, via bootstrapping (see Supple-

mental Experimental Procedures). We then defined the overlap between FRF

and test:

P
fi ˛ FRF

jwfi j
P

fi ˛ F

jwfi j
(7)

where wfi denotes the component of wf corresponding to frequency fi.
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Normalization Models

To model the effects of stimulus statistics on neural gain, we extended a well-

known class of gain normalization equations used in the visual system, which

take the general form of Equation 2. As all gain values were computed relative

to a reference curve (sref = 8:7dB), we fixed a= 1+b snref to constrain

Gðsref Þ= 1.

To model the effects of varying both sL and mL, we fitted separate values for

b (and therefore for a) for each mean level:

GðsL;mLÞ =
aðmLÞ

1+bðmLÞsn
L

(8)

where aðmLÞ= 1+bðmLÞsnref so that Gðsref ;mLÞ= 1 for all mL (as observed in the

data); n is constant with respect to mL. The fit obtained was slightly better

than if n was allowed to vary as a function of mL and b was kept constant

with respect to mL.

Following the empirical fitting of bðmLÞ values, bwas parameterized using the

form bðmLÞ=bmaxð1� e�cðmL + kÞÞ to capture the saturation of bðmLÞ at high mL.

For the test/mask analysis, we fitted Equation 3 for units where the test com-

pletely covered their responsive frequency range, assuming that sRF = stest ,

n given from fitting Equation 2, and a constrained byGðsref ; sref Þ= 1. As above,

this gave slightly better fits than fixing bRF =btest =b and using separate

exponents for sRF and sglobal . The fitted parameters were used with Equation 3

to predict the gain for units where the test only partially covered FRF or lay

outside of it. The local contrast in this region and the global contrast were

then calculated via the weighted sums:

s2
RF =

1

jFRF j
X

f ˛ FRF

s2
LðfÞ (9)

s2
global =

1

jFj
X

f ˛ F

s2
LðfÞ (10)

where sLðfÞ is the contrast in frequency band f.

Successive models used to fit the response and relative gain of neurons in

this study, together with best fit parameter values, are summarized in Table

S2. Further information on the test/mask model, including alternate fits, is

provided in Table S4.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four tables, five figures, and Supplemental

Experimental Procedures and can be found with this article online at doi:10.

1016/j.neuron.2011.04.030.
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