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SUMMARY

Nuclear magnetic resonance (NMR) structures are
represented by bundles of conformers calculated
from different randomized initial structures using
identical experimental input data. The spread among
these conformers indicates the precision of the
atomic coordinates. However, there is as yet no reli-
able measure of structural accuracy, i.e., how close
NMR conformers are to the ‘‘true’’ structure. Instead,
the precision of structure bundles is widely (mis)in-
terpreted as a measure of structural quality. At-
tempts to increase precision often overestimate
accuracy by tight bundles of high precision but
much lower accuracy. To overcome this problem,
we introduce a protocol for NMR structure determi-
nation with the software package CYANA, which
produces, like the traditional method, bundles of
conformers in agreement with a common set of
conformational restraints but with a realistic preci-
sion that is, throughout a variety of proteins and
NMR data sets, a much better estimate of structural
accuracy than the precision of conventional struc-
ture bundles.

INTRODUCTION

Nuclear magnetic resonance (NMR) spectroscopy is, besides

X-ray crystallography, the technique most widely used to deter-

mine 3D structures of macromolecules. NMR structures are

typically represented as bundles of conformers, each conformer

being the result of a minimization procedure that optimizes the

agreement between the 3D structure and the experimental

data. The structural ensemble is characterized by its precision

representing the positional uncertainty of the atomic coordinates

as well as its accuracy, which is a measure of the closeness to

the true structure (Spronk et al., 2004; Zhao and Jardetzky,

1994).

Structural precision is commonly quantified by the root-mean-

square deviation (rmsd) radius of the structure bundle, i.e., the

average rmsd value between the individual conformers and the

mean coordinates of the bundle. Structural accuracy can be

quantified by the rmsd bias, i.e., the rmsd between the mean

coordinates of the structure bundle and a reference structure

(or the mean coordinates of a reference structure bundle) that

is assumed to represent the ‘‘true structure’’ (Güntert, 1998).

Rmsd values are calculated for the atoms in the structured re-

gions of the protein, which can be identified by visual inspection

or algorithms such as CYRANGE (Kirchner and Güntert, 2011).

Experimental data are provided in the form of structural re-

straints, themost commonbeing distance restraints fromnuclear

Overhauser effect spectroscopy (NOESY) experiments aswell as

angular restraints, from, e.g., chemical shift analysis with the pro-

gram TALOS+ (Shen et al., 2009). The conversion of NOESY

peaks into distance restraints requires the assignment to atom

pairs and the calibration of peak intensities into upper distance

limits. This NOESY assignment is crucial for the outcome of a

structure calculation and errors can have severe consequences

for the quality of the resulting structure (Jee and Güntert, 2003).

It should thus be performed as objectively as possible. Several

software tools, therefore, combine automatic NOESY peak

assignment and structure calculation in an iterative way (Herr-

mann et al., 2002; Huang et al., 2006; Rieping et al., 2007).

It has been shown that even a very small number of incorrect

distance restraints can lead to a highly precise but completely

misfolded protein structure that is not always recognized as

such (Nabuurs et al., 2006). This can be attributed to the lack

of an independent and reliable measure of NMR structure qual-

ity. Instead, some NMR spectroscopists tend to compare the

precision of a structure ensemble with the X-ray resolution and

use it as a measure of the structure quality. Consequently, there

is a widespread ambition to improve the precision, i.e., to mini-

mize the rmsd radius of structure bundles in the belief that it

will increase the quality of the structure. This misconception is

the cause of a widely observed overestimation of NMR structure

accuracy (Spronk et al., 2003, 2004), which limits the reliability

of NMR structures without further validation. Currently existing

validation tools can reveal errors but do not always guarantee

a reliable result. They perform especially well when validating

completely misfolded protein structures (Nabuurs et al., 2006).

However, deviations in the range of 2–3 Å rmsd bias from the

reference structure are not likely to be recognized, although

they occur much more frequently than severely erroneous struc-

tures (Saccenti and Rosato, 2008). There have also been at-

tempts to combine various validation measures into an estimate
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of structural accuracy; e.g., the rmsd from the true structure can

be estimated by a linear combination of (suitably normalized)

validation parameters (Bagaria et al., 2012), or, similarly, an

‘‘equivalent resolution’’ can be obtained from multiple validation

scores (Bagaria et al., 2013; Laskowski et al., 1996). However,

while over a large number of different protein structures there

is a visible correlation between these accuracy estimates and

the true accuracy, the predictive power for a given, single NMR

structure determination remains limited.

The precision of a structure bundle directly relates to the

amount of meaningful long-range distance restraints, i.e., the

information content of a restraint set (Nabuurs et al., 2003).

The most severe possible problem of using distance restraints

for structure calculation is the bias resulting from erroneous

NOESY peak assignments. Potential error sources include the

sequence-specific resonance assignments, the identification of

true NMR signals, the assignment of NOESY peaks to atom

pairs, and the calibration of upper distance limits. An incorrectly

assigned nuclear Overhauser effect (NOE) can distort a struc-

ture, whereas a too tight but correctly assigned NOE will have

a much smaller impact. Although automation increases the

reproducibility and reduces the bias originating from subjective

user choices, the algorithms are still not perfect, especially in

cases of limited data quality, e.g., signal overlap, low signal-to-

noise ratios, or sparse data. Iterative combined automated

NOESY peak assignment and structure calculation with CYANA

can converge toward misfolded protein structures that are not

immediately recognized as such because of their high bundle

precision (Jee and Güntert, 2003). Similar problems can also

arise with other algorithms for automated NOE assignment

(Rosato et al., 2012). This occurs predominantly in cases where

the protein fold is poorly defined in early cycles of the calculation

and subsequent NOESY peak assignments in the following cy-

cles are based on incorrect assumptions about the protein

fold. Errors are only rarely reflected in lower precision of the final

structure calculation result, but rather in a highly precise but

inaccurate protein structure.

Since the outcome of a structure calculation in such cases

depends partly on the random initial structures, structure calcu-

lations based on the same set of experimental data but different

random starting structures converge potentially to different

structure bundles. The degree of deviation strongly depends

on the data quality. However, some extent of deviation is

observed on a regular basis even when using input data of

good quality, indicating that precision significantly exceeds ac-

curacy. Despite this fact, in general only one final structure

calculation is performed and its results are reported, although

a different solution, obtained with a different random number

generator seed, would represent the NMR data equally well.

Many structure bundles determined by NMR spectroscopy

thus have a precision that overestimates accuracy and distor-

tions can remain unrecognized when using simply the bundle

precision and the agreement between structure and experi-

mental data as a measure of quality.

Several attempts to solve this problem have been conducted.

Spronk et al. (2003) have developed a tool that maximizes

the rmsd radius while maintaining the agreement with the ex-

perimental data and the geometric quality. This approach im-

proves the sampling of structures within a given set of distance

restraints. However, structural distortions due to erroneous

distance restraints are not addressed. Since the set of distance

restraints remains unchanged, the method does not necessarily

improve the accuracy of a protein structure. Inferential structure

determination was introduced as a fundamentally different

approach to structure determination by NMR spectroscopy

(Rieping et al., 2005). The method uses Bayesian inference to

derive an objective probability distribution to evaluate the struc-

tural ensemble that is generated based on a Monte Carlo simu-

lation. It is independent of empirical parameter estimates and

increases the completeness of the sampling of conformational

space that is in agreement with the experimental data.

In this article, we introduce a protocol for combined automatic

NOESY peak assignment and structure calculation that provides

a solution to the problem of overestimated bundle precision. The

protocol aims at yielding protein structures for which the bundle

precision is a reliable measure of the structural accuracy and

where the structure bundle covers well the conformational space

that is allowed by the experimental data.

RESULTS AND DISCUSSION

A schematic overview of the algorithm implemented in the

CYANA software package (Güntert, 2009; Güntert et al., 1997)

is given in Figure 1. The method first performs 20 independent

runs of combined automated NOESY assignment and structure

calculation using the standard CYANA automatic structure

determination procedure with the same input data. Each run

starts from a different set of random structures (Figure 1A), com-

prises seven cycles and a final structure calculation, and yields a

final structure bundle as well as the corresponding set of dis-

tance restraints. Because the NOESY peaks are assigned inde-

pendently in each of the 20 runs, the sets of distance restraints

from each run in general differ from each other. From each run,

the conformer with the lowest CYANA target function value is

collected to form a new bundle of 20 conformers, to which we

refer in the following as the combined structure bundle (Fig-

ure 1B). A further crucial step is to combine the individual sets

of distance restraints in order to obtain a consensus set of dis-

tance restraints including assignments from all individual runs,

which is then used to recalculate the final protein structure

bundle, again composed of 20 conformers (Figure 1C), which

we refer to as the consensus bundle. This final structure calcula-

tion is a simple standard CYANA structure calculation without

automatic NOE assignment. In contrast to the combined bundle,

all conformers in the final consensus bundle are optimized

against a single ‘‘consensus’’ set of distance restraints. In the

following, we show that (1) the rmsd radius of the consensus

bundle provides a good measure of structural accuracy, and

(2) the conformers of the consensus bundle fulfill the consensus

set of distance restraints better than the conformers of the

initial individual runs fulfill their corresponding sets of distance

restraints.

We evaluated the method using NMR data sets of eight

different proteins provided by the Northeast Structural

Genomics Consortium (NESG) for the CASD-NMR project in

2011–2012 (Rosato et al., 2009, 2012). Two sets of unassigned

NOESY peak lists were available for each protein, one containing

manually refined NOESY peaks lists and one containing raw
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NOESY peak lists from an early stage of spectral analysis. Struc-

ture calculations were performed using the standard combined

automatic NOESY peak assignment and structure calculation

procedure from the CYANA software package and our method.

The CASD-NMR data set was especially well suited for the pre-

sent study because of the large variability of input data quality

and subsequent considerable variety among the different struc-

ture calculation results. Despite large differences in structural

accuracy, ranging from totally correct to severely erroneous

structures, all structure bundles calculated by the standard

CYANA approach exhibited a high precision. The test data set

thus represents well the aforementioned problem of overesti-

mated bundle accuracy.

In order to evaluate the reliability of a structure calculation

result, we calculated the rmsd to the mean structure of the

bundle (rmsd radius) representing the precision as well as the

rmsd to the reference structure (rmsd bias) as a measure of

the accuracy. A structure bundle is considered reliable if preci-

sion and accuracy are in good agreement and the reference

structure is thus included in the structure bundle. The structure

quality can then be estimated solely based on the bundle preci-

sion, which is useful in cases where no reference structure is

available. We compare the reliability of protein structures deter-

mined by the conventional structure calculation procedure with

the results from our method.

As an example, Figure 2 shows structures of the protein

StT322 (only the ordered parts in the reference structure) calcu-

lated from raw peak lists using the standard structure calculation

procedure (Figure 2A) as well as an overlay of four selected

structure bundles from independent structure calculations using

the same procedure (Figure 2B). The reference structure is pre-

sented in gray for comparison. Figure 2A clearly shows the

completely incorrect global fold of the protein structure when

superimposed onto the reference structure. The error is also

reflected by the high rmsd bias with respect to the reference

structure of 5.78 Å. Nonetheless, the structure bundle is very

tight and well defined (precision measured by an rmsd radius

of 0.07 Å), illustrating clearly the misconception of precision be-

ing related to structural quality. The overlay of four selected

structure bundles (Figure 2B), each being the result of the

same structure calculation using different random start struc-

tures for the minimization procedure, shows large deviations

among the structures, indicating clearly that one individual

structure calculation result is not fully representing the data

set. The average accuracy is 6.75 Å, whereas the average

precision is 0.17 Å. The result of our method is presented in

Figures 2C and 2D. Figure 2C shows the combined structure

bundle and Figure 2D the consensus structure bundle based

on the consensus distance restraints. The rmsd to the mean

structure increases to 4.73 Å and 4.61 Å, respectively, indicating

A

C

B

Figure 1. Schematic Overview of the Algorithm Implemented in the CYANA Software Package

(A) Twenty independent runs of the standard CYANA automatic NOESY assignment and structure calculation procedure using the same input data, each starting

from a different set of random structures.

(B) Overlay of structure bundles from independent runs (top) and combined structure bundle consisting of the lowest target function structure of each run

(bottom).

(C) Combination of all individual sets of distance restraints and recalculation of the protein structure using the consensus set of distance restraints yields the

consensus structure bundle.
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a complete lack of any common structural elements among the

individual structures. This result furthermore illustrates well that

the recalculated consensus structure bundle closely resembles

the combined structure bundle. The rmsd bias in both cases

remains similar to the average bias of the individual calculations

(5.43 Å and 5.87 Å). Both structure bundles represent well the

variety of individual structure calculations depicted in Figure 2B

and show that the structure calculation actually did not converge

to a unique fold. This example illustrates well that our method

yields a structure bundle in which the overestimation of accuracy

is dramatically reduced and the precision is a faithful measure of

the data quality. These results hold for both the combined struc-

ture bundle and the consensus structure bundle, but only the

latter is calculated from a single set of conformational restraints

such that all its conformers fulfill the same restraints.

The first example of Figures 2A–2D is based on experimental

input data of very low quality, and the incorrect global fold of

a single structure calculation could be identified by the majority

of validation tools (Figure S1 available online; Table S1). Figures

2E–2H show the structure calculation results for the same

protein usingmanually refined peak lists. The individual structure

calculation result depicted in Figure 2E shows an overall correct

global fold. However, the reference structure is again not

included in the structure bundle. The accuracy of the individual

structure calculation result is 1.99 Å, indicating a correct global

fold but a not very accurate local structure. Again the precision

of 0.15 Å overestimates the accuracy considerably. In contrast

to the aforementioned example, the accuracy is in a range where

currently available validation software does not produce reliable

results, as can be seen from the very limited correlation between

the rmsd bias and the validation parameters of different valida-

tion software tools (Figure S1; Table S1). The overlay of several

structure bundles (Figure 2F) shows significant deviations

among the individual structure bundles. All of these individual

results represent equally well the experimental data when evalu-

ating the final CYANA target function (data not shown). The

consensus structure bundle from our method is depicted in Fig-

ure 2H. The accuracy of 1.16 Å is in the same range as the

average accuracy of the 20 individual calculations. However,

the rmsd radius increases almost 4-fold from 0.15 Å to 0.56 Å.

Visual inspection as well as the evaluation of rmsd values clearly

shows the more complete representation of the experimental

data by the new structural ensemble where the reference struc-

ture is included in the structure bundle. The consensus structure

bundle again represents well the combined structure bundle pre-

sented in Figure 2G. The example of Figure 2 illustrates well that

Overlay of individual 
bundlesIndividual bundle Consensus bundle

RMSD bias
RMSD radius

6.75 Å
0.17 Å

5.78 Å
0.07 Å

5.87 Å
4.61 Å

1.65 Å
0.16 Å

1.99 Å
0.15 Å

1.16 Å
0.56 Å

Combined bundle

5.43 Å
4.73 Å

1.43 Å
0.86 Å

RMSD bias
RMSD radius

A B C D

E F G H

Figure 2. Structures of the Protein StT322 Calculated Using the Classic Automatic Structure Calculation Procedure and Our Method

(A and E) The structure bundle calculated using the classic CYANA automatic NOESY assignment and structure calculation protocol is shown in red.

(B and F) An overlay of four independent structure calculation results based on the same input data but different random starting structures using the classic

structure calculation protocol is depicted in red.

(C and G) The combined structure bundle consisting of the lowest target function structure of each of the 20 individual structure bundles is shown in blue.

(D and H) The consensus structure bundle based on the consensus set of distance restraints is presented in green.

In all diagrams the reference structure is shown in gray for comparison. Structures were superimposed for optimal fit of the backbone atoms of the ordered

residues 23–63. In (A–D), raw peak lists were used as input data. In (E–H), refined peak lists were used as input data.
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our structure calculation method is beneficial in situations with

input data of good and bad quality alike, since in both cases

the reliability can be increased significantly.

To evaluate the reliability of all structure calculation results

with the different proteins and experimental data sets from

CASD-NMR, we calculated the ratio between accuracy (rmsd

to the reference structure) and precision (rmsd to the mean

structure). Ideally, this accuracy-to-precision ratio should be 1

in order to be able to estimate the structure quality solely based

on the bundle precision, with values above 1 indicating that the

apparent precision overestimates the accuracy. All rmsd values

that were used to calculate the ratios between accuracy and

precision are given in Table 1. Figure 3 shows the results for

the individual structure calculations using the standard approach

(red), the combined structure bundle based on 20 individual

structure bundles (blue), and the recalculated structure bundle

based on the consensus set of distance restraints (green). The

results are presented for eight different proteins and two data

sets for each protein.

For the conventional individual structure calculations, the ac-

curacy-to-precision ratio (averaged over the 20 individual runs

with each data set) shows a very large variability in the range

between 1.6 and 39.7 among the different proteins and data

sets. One protein (HR6470A) has comparatively low ratios in

the range between 1.6 and 1.9 and thus represents an excep-

tion among these test proteins. Rather low values were also

observed for the proteins OR36 (2.2), YR313A (2.4), and

HR2876B (2.5) when using refined peak lists. All other proteins

show higher ratios, indicating a considerable overestimation of

accuracy by the bundle precision when using the conventional

structure calculation procedure. For most proteins, the ratio de-

creases when optimizing the experimental input data. However,

even when using highly correct input data in the form of manu-

ally refined peak lists, the ratios range between 1.6 and 10.3

(average 3.7).

The combined structure bundle contains the lowest energy

structure from each individual structure calculation, and thus

represents a large part of the conformational space that can

be explained by the given input data set. The ratio between ac-

curacy and precision (Figure 3, blue; values in the range between

0.9 and 1.7) decreases considerably in all cases when compared

with the individual calculations. This finding clearly shows the

beneficial effect of repeating the same structure calculation

several times, making the calculation result more reliable and

enabling the use of bundle precision as a direct measure of

the structural accuracy. One exception is again the protein

HR6470A, for which no significant difference is observed in the

ratios between the individual structure calculations and the com-

bined structure bundle. This is the only example whereby a single

structure calculation already resulted in an accurate and reliable

structure bundle, which could, however, be unrecognized if the

reference structure is unknown.

The essential part of our method is the combination of the in-

dividual restraint data sets to obtain a single consensus set of

distance restraints representing the entire conformation space

allowed by the input peak lists. The ratios for the consensus

structure bundles based on the combined set of distance re-

straints are shown in Figure 3 (green). In general, the values

Table 1. Structure Calculation Results

Protein

Data

Type

Individual Bundles (Average) Combined Bundle Consensus Bundle

Rmsd Radius

Cycle 1 (Å)

Rmsd

Radius (Å)

Rmsd

Bias (Å)

Target

Function (Å2)

Rmsd

Radius (Å)

Rmsd

Bias (Å)

Rmsd

Radius (Å)

Rmsd

Bias (Å)

Target

Function (Å2)

HR2876B raw 0.70 0.10 1.04 7.54 0.58 0.87 0.40 0.88 1.31

refined 0.60 0.25 0.62 1.24 0.43 0.53 0.49 0.75 0.52

HR5460A raw 3.16 0.32 1.82 13.9 0.98 1.54 0.80 1.21 1.94

refined 1.00 0.38 1.32 9.21 0.80 1.13 0.74 1.15 1.60

HR6430A raw 0.52 0.19 0.67 5.84 0.47 0.53 0.55 0.92 4.94

refined 0.48 0.21 0.66 5.37 0.42 0.57 0.45 0.79 4.77

HR6470A raw 0.48 0.29 0.56 0.32 0.38 0.5 0.39 0.67 0.28

refined 0.46 0.29 0.46 0.29 0.29 0.42 0.38 0.50 0.28

OR135 raw 0.58 0.19 0.91 0.28 0.50 0.77 0.42 0.90 0.00

refined 0.48 0.17 0.69 0.48 0.39 0.58 0.32 0.67 0.01

OR36 raw 0.98 0.23 1.17 4.59 0.76 0.9 0.63 0.94 0.06

refined 0.89 0.42 0.91 0.42 0.64 0.81 0.71 0.98 0.01

StT322 raw 5.52 0.17 6.75 14.94 4.73 5.43 4.29 6.28 1.16

refined 0.80 0.16 1.65 0.52 0.86 1.43 0.60 1.20 0.09

YR313A raw 3.44 0.46 2.04 1.40 1.62 1.50 1.07 1.55 0.47

refined 1.44 0.69 1.69 0.47 1.52 1.33 0.83 1.32 0.35

The rmsd radius of a structure bundle is the average rmsd value between the individual conformers and the mean coordinates of the bundle. It char-

acterizes the precision. For individual bundles, the first column reports the rmsd radius for the structure obtained in the first cycle of automated NOE

assignment and structure calculation, and the second column reports the rmsd radius for the final structure bundle. The rmsd bias is the rmsd between

the mean coordinates of the structure bundle and a reference structure (or the mean coordinates of a reference structure bundle). rmsd radius and

rmsd bias characterize the precision and accuracy of a structure bundle, respectively. rmsd values are calculated for the backbone atoms N, Ca,

C0 in the structured regions of the protein (see Experimental Procedures).
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are very similar to those of the combined structure bundle.

This shows that the consensus structure bundle and the

corresponding combined set of distance restraints are as well

suited to represent the experimental data as the combined struc-

ture bundle. Due to the significantly increased reliability, we

recommend the use of the consensus structure bundle and the

corresponding combined restraints when presenting structure

bundles determined by NMR spectroscopy. The precision of

the consensus structure bundle can be used as a strong mea-

sure of the data quality, and thus be compared with the resolu-

tion in X-ray crystallography.

Figure 3. Accuracy Overestimation by

Structure Bundle Precision

The degree of overestimation is quantified by the

accuracy-to-precision ratio, where the structural

accuracy is given by the rmsd between the mean

coordinates of a structure bundle and the NMR

reference structure from the PDB, which was

determined and refined by experienced scientists;

and the precision of a structure bundle is given by

the average rmsd of the individual conformers of

the structure bundle to its mean coordinates. Only

ordered residues (see text) were used for rmsd

calculation. The accuracy-to-precision ratio is

presented for eight proteins from the CASD-NMR

project and two different data sets for each protein

(i.e., raw peak lists and refined peak lists). Results

are given for the classic structure calculation pro-

cess as the average from 20 independent runs

(red), for the combined structure bundle consisting

of the lowest target function conformer from

each of the 20 independent runs (blue), and

the consensus structure bundle based on the

consensus set of distance restraints (green).

In order to investigate reproducibility,

we applied our method to a second test

data set comprising ten proteins including

various types of simulated data imperfec-

tions for each protein, i.e., randomly

deleted chemical shifts, randomly modi-

fied chemical shifts, deleted NOESY

peaks, etc. These modifications resulted

in a total of 4,050 restraint data sets

covering a very large range of input data

quality. A description of the data sets is

given in the Experimental Procedures,

and more details will be published else-

where. For every structure calculation,

the overestimation ratio between the

rmsd to the reference structure and the

rmsd to the mean structure was analyzed

and plotted as a histogram for the individ-

ual structure bundles (Figure 4, top), the

combined structure bundle (Figure 4, cen-

ter), and the consensus structure bundle

(Figure 4, bottom). The histograms show

clearly that the overestimation ratios are

in general significantly higher in the case

of individual structure bundles (i.e., 71%

of the structure bundles have ratios above 2.0)with amedian ratio

of 2.9, whereas the median ratio for the combined structure bun-

dles is 1.2 (5% of ratios above 2.0) and for the consensus struc-

ture bundles 1.4 (15.8% of ratios above 2.0). These results are in

very good agreement with those from the CASD-NMR data set.

Due to the largeamount of structure calculations and the largeva-

riety of input data qualities resulting in large variations among the

calculated structures, it can be concluded that the presented

method works reproducibly and can thus be applied routinely.

The CYANA target function measures the agreement between

the structure bundle and the experimental restraints and is
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defined such that it is zero if all restraints are fulfilled. High target

function values indicate problems during the structure calcula-

tion and need to be avoided by closer inspection of the experi-

mental data. In order to show that our method yields distance

restraints that are still fulfilled by the recalculated structure

bundle, Figure 5 compares the target function of the consensus

structure bundles with the average final target function of the

respective 20 individual structure calculations. The target func-

tion values of the consensus structure bundles are in almost all

cases lower than those of the individual calculations. This shows

that no inconsistencies or convergence problems result from

using the consensus set of distance restraints.

The traditional criterion for evaluating the outcome of a CYANA

structure calculation with automated NOE assignment is that an

rmsd radius of less than 3 Å in the first cycle of automated NOE

assignment and structure calculation is indicative of a final struc-

ture with low rmsd bias (Herrmann et al., 2002). Cycle 1 rmsd

radii above 3 Å indicate that the resulting final structure may

(but does not have to) be inaccurate. Therefore, the cycle 1

rmsd radius is not a direct measure of accuracy but rather pro-

vides a criterion to recognize potentially unreliable calculations.

For comparison, Table 1 includes the cycle 1 rmsd radii and Fig-

ure S4 shows the correlation between the rmsd radii of the cycle

1 structure bundles and the consensus structure bundles.

Conclusions
We present a method for combined automated NOE assignment

and structure calculation implemented using the software pack-

age CYANA. The principal advantage of our method over simply

repeating full calculations (referred to as combined structure

bundles in this article) is that all conformers of the consensus

structure bundle are calculated from the same restraint data,

i.e., the consensus restraint list, in a single CYANA structure

calculation. In the case of repeated full calculations, each calcu-

lation will lead to somewhat different NOESY peak assignments

and restraints. Hence, the resulting structures will in general not

fulfill a single set of restraints. This can be problematic if, e.g., a

combined structure bundle is submitted to the Protein Data Bank

(PDB) along with the restraints from one of its individual NOE

assignment/structure calculations, because in this case a later

evaluation of the agreement between the coordinates and the

conformational restraints in the PDB will in general show addi-

tional restraint violations that have not been reported in the orig-

inal publication. In contrast, we propose to deposit in the PDB

the consensus structure bundle together with the consensus re-

straint list from which the consensus structure bundle was

computed. NOESY peak lists containing the consensus peak as-

signments can also be produced by the program.

We have tested our method using optimized and raw input

peak lists of eight different proteins provided by the CASD-

NMR project in 2011–2012 as well as a data set based on ten

different proteins including various simulated data imperfec-

tions. We have measured the reliability of structure bundles as

the ratio between accuracy (rmsd to the reference structure)

and precision (rmsd to the mean structure) and have compared

the results from the classical structure calculation procedure

with the results from our method. The results clearly show that

our protocol for automatic structure calculation produces very

reliable structure bundles where the precision can be used as

a very good indication for the structure quality without having

any prior information about the correct protein fold. It should

be noted that the precision of the consensus structure bundles

Figure 4. Accuracy-to-Precision Ratios for 4050 NMR Data Sets
Frequency distributions of the accuracy-to-precision ratios are given for the

classic structure calculation process as the average from 20 independent runs

(red), for the combined structure bundle consisting of the lowest target func-

tion conformer from each of the 20 independent runs (blue), and the consensus

structure bundle based on the consensus set of distance restraints (green).

The test data consist of 4050 solution NMR data sets from ten different pro-

teins. It includes for each protein the original experimental data set and

modifications that simulate a large variety of data imperfections (see Experi-

mental Procedures).
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Figure 5. Target Function Values for 4050 Conventional and

Consensus Structure Bundles

Each data point correlates the average target function value for a consensus

structure bundle with the average target function value for the conformers of

the corresponding conventional structure bundles. The CYANA target function

measures the agreement between the structure bundle and the experimental

and steric conformational restraints from which it was calculated. It is defined

such that it is zero if all conformational restraints are fulfilled.
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is not strictly equal to the accuracy but proportional with a me-

dian proportionality factor of 1.4 (Figure 3). For a conservative

estimate, an upper bound on the accuracy, given by the rmsd

bias, can be approximated as twice the precision, given by the

rmsd radius, of the consensus structure bundle. The precision

of the consensus bundle gives an estimate of the input data

quality; however, additional criteria such as the assignment

completeness of the assigned consensus peak lists as well as

the average ambiguity of the latter can be used to assess exper-

imental uncertainties (e.g., a large number of discarded peaks

and high ambiguity indicate inconsistencies within the input

data).

Our method is helpful for input data optimization in the course

of NMR structure determinations, and we recommend it espe-

cially for routine use in the final structure calculation, since the

consensus bundle reflects the experimental data much better.

EXPERIMENTAL PROCEDURES

Generation of Consensus Distance Restraint Set

The algorithm performs 20 independent automated NOESY assignment and

structure calculation runs using the same input data and different random

number generation seeds, resulting in 20 individual structure bundles. The

lowest energy structure of each of these 20 structure bundles is combined

to obtain a new combined structure bundle. The precision of the combined

structure bundle is a measure of the extent to which individual calculations

differ from each other.

Each of the 20 individual structure calculations leads to a different set of dis-

tance restraints as a result of the seven cycles of NOE assignment and struc-

ture calculation. These individual final sets of distance restraints are in optimal

agreement with the respective structure bundle; however, do not represent the

aforementioned combined structure bundle. The combination of the individual

sets of distance restraints yields a consensus set of distance restraints that

represents the combined structure bundle and thus results in a structure

bundle similar to the combined structure bundle when used as input for a

further structure calculation. This final structure calculation is a simple stan-

dard CYANA structure calculation without automatic NOE assignment. It

uses the consensus NOE distance restraints (and other conformational re-

straints, if available) as input and yields the consensus structure bundle as

output.

The combination makes use of the fact that each distance restraint is

the result of a NOESY peak assignment. During the seven cycles of NOESY

peak assignment and structure calculation, peaks may have unambiguous

assignments, ambiguous assignments, or remain unassigned. In the final

structure calculation, all remaining ambiguities are resolved and nonstereo-

specifically assigned methyl- or methylene-protons are treated by symmetri-

zation and pseudo-atom correction (Güntert et al., 1991). During the combina-

tion process, every distance restraint assignment originating from the same

peak in all individual restraint sets is combined to obtain one ambiguous (or

unambiguous) restraint.

Individual peaks may be assigned to different atom pairs in different struc-

ture calculation runs or may remain unassigned in individual calculations. To

form a consensus distance restraint data set that is suitable for recalculating

the consensus structure bundle, it is necessary to choose only those restraints

that represent the combined structure bundle in a sufficient manner. Conse-

quently, restraints are only chosen if the corresponding peak could be as-

signed (with any assignment[s]) in a specified minimal number of individual

structure calculations, otherwise the complete peak will be discarded. If a re-

straint is chosen, then all atom pairs appearing in any of the respective peak

assignments of the individual structure calculations are combined to obtain

one ambiguous or unambiguous distance restraint. The threshold on the min-

imal number of individual structure calculations in which a peak must be as-

signed in order to be chosen for consensus restraint generation can be chosen

by the user; however, after having tested the complete range of cutoff values,

we recommend a threshold of 60% of the individual structure calculations in

which a peak needs to be assigned to any atom pair in order to be selected.

Higher threshold values lead in a few cases to an unacceptably large loss of

information by a very large number of discarded peaks, resulting in a severe

underestimation of the achievable accuracy. Low threshold values, on the

other hand, again increase the apparent precision, due to a large number of re-

straints that are selected, even though they represent only a small fraction of

the conformers in the combined bundle.

Our choice of 60% for the peak selection cutoff percentage can be rational-

ized from Figure S2, Table S2, and Figure S3. Overall, the results depend only

weakly on the choice of the cutoff percentage. On the one hand, increasing the

cutoff value slightly decreases the accuracy-to-precision ratio toward the ideal

value of 1 (Figure S2, left panels). On the other hand, lowering the cutoff in-

creases the occurrence of structures with high accuracy (low rmsd to refer-

ence; Figure S2, right panels). The median accuracy-to-precision ratios and

accuracy values at different cutoff values are summarized in Table S2, which

shows that a cutoff of 0.6 provides a good compromise between the two oppo-

site trends. Figure S3 shows the precision and accuracy as a function of the

cutoff value for two examples from the CASD-NMR data set. In the first

example, the results are almost independent from the cutoff, whereas in the

second example there is a loss of accuracy with increasing cutoff.

Combined structure bundles with low precision generally show large differ-

ences among the NOESY peak assignments from the individual runs. This in

turn results in an increased ambiguity of the restraints as well as a larger num-

ber of discarded peaks in the combined data set. Altogether this reduces the

information content of the combined restraint set, which in turn decreases the

precision of the consensus structure bundle. Combined structure bundles with

high precision, on the other hand, have very similar individual distance restraint

sets, which leads to the fact that most of the restraints are selected and have

low ambiguity in the consensus restraint set. The combined restraint list has

thus more information content and, consequently, the consensus structure

bundle will have high precision.

Themethod generates a consensus set of distance restraints that essentially

reproduces the combined structure bundle when used in a conventional struc-

ture calculation based on distance restraints. This is achieved because the

precision of a structure bundle depends on the information content of the

data set, which in turn is determined by the amount of meaningful long-range

restraints as well as their ambiguity.

Individual Structure Calculations

Individual structure calculations are performed using the standard structure

calculation procedure of the CYANA software (Güntert, 2009; Güntert et al.,

1997; Herrmann et al., 2002). The protein sequence as well as chemical shifts

and unassigned peak lists fromNOESY spectra are used as input for the struc-

ture calculations. Chemical shift assignments were taken from the Biological

Magnetic Resonance Bank (BMRB), whereas torsion angle restraints were

taken from the PDB. The chemical shift tolerance for NOESY peak assign-

ments was set to 0.03 ppm for 1H, and 0.3 ppm for 15N and 13C. The standard

CYANA protocol was applied using 200 random starting structures and 15,000

annealing steps during torsion angle dynamics. The 20 structures with the

lowest target function values were used as the final structure bundle. Details

are described in Schmidt and Güntert (2013).

Data Sets from CASD-NMR

In order to evaluate the advantages of consensus set distance restraints and

consensus structure bundles for the reliability of protein structure calculations,

we used input data of eight different proteins that were provided as test data

sets for the CASD-NMR project in 2011–2012 (Rosato et al., 2009, 2012). The

same data set had already been used for the analysis of automatic chemical

shift assignment based solely on NOESY spectra using the FLYA automated

resonance assignment algorithm and subsequent structure calculations

(Schmidt and Güntert, 2013). The present data set was of particular interest

for our study since the structure calculation results presented by Schmidt

and Güntert (2013) revealed a wide range of structural qualities. The most

problematic cases are those that yield a structure with high precision but

low accuracy, where problems generally remain hidden when performing

just a single NOESY assignment and structure calculation run.

The eight proteins are the human NFU1 iron-sulfur cluster scaffold homo-

logue, Northeast Structural Genomics Consortium (NESG) target HR2876B
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(PDB accession code 2LTM, 107 amino acid [aa] residues, ordered residues

13–104); the human mitotic checkpoint serine/threonine-protein kinase

BUB1 N-terminal domain, HR5460A (2LAH, 160 aa, 12–160); the RRM domain

of RNA-binding protein FUS, HR6430A (2LA6, 99 aa, 12–99); the homeobox

domain of the human homeobox protein Nkx-3.1, HR6470A (2L9R, 69 aa,

12–55); a de novo designed protein with IF3-like fold, OR135 (2LN3, 83 aa,

5–75) (Koga et al., 2012); a de novo designed protein with P-loop NRPase

fold, OR36 (2LCI, 134 aa, 3–125); TSTM1273 from Salmonella typhimurium

LT2, StT322 (2LOJ, 63 aa, 23–63); and the NifI-like protein from Saccharo-

myces cerevisiae YR313A (2LTL, 119 aa, 16–116). The corresponding NMR

structures deposited in PDB were used as reference structures in this study.

In principle, X-ray structures could also be used as independently determined

reference structures (but were not available for these proteins).

The NMR data provided for this project were prepared according to

standard NESG procedures (http://www.nesg.org). Two data sets were avail-

able for each protein, one containing ‘‘refined’’ NOESY peak lists that were

used for the final structure calculations of the reference structures and

one containing the ‘‘raw’’ NOESY peak lists from an early stage of spectral

analysis. Peak lists were generated from 15N-resolved NOESY spectra as

well as 13C-resolved NOESY spectra. Chemical shift assignments were per-

formedmanually by experienced scientists and have been provided in addition

to the NOESY peak lists.

Second Test Data Set

The second test data set is composed of solution NMR data sets from ten

different proteins. It includes for each protein the original experimental data

set andmodifications thereof that simulate a large variety of data imperfections.

The ten proteins are copper chaperone of Enterococcus hirae (PDB acces-

sion code 1CPZ, BMRB accession code 4344, 68 aa residues) (Wimmer et al.,

1999); chicken prion protein fragment 128–242 (PDB 1U3M, BMRB 6269, 117

aa) (Calzolai et al., 2005); Arabidopsis thaliana ENTH-VHS domain At3g16270

(PDB 1VDY, BMRB 5928, 140 aa) (López-Méndez and Güntert, 2006; López-

Méndez et al., 2004); Src homology 2 domain from the human feline sarcoma

oncogene Fes (PDB 1WQU, BMRB 6331, 114 aa) (Scott et al., 2004, 2005);

F-spondin TSR domain 4 (PDB 1VEX, BMRB 10002, 56 aa) (Pääkkönen

et al., 2006); Bombyx mori pheromone binding protein (PDB 1GM0, BMRB

4849, 142 aa) (Horst et al., 2001); Arabidopsis thaliana rhodanese domain

At4g01050 (PDB 1VEE, BMRB 5929, 134 aa) (Pantoja-Uceda et al., 2004,

2005); Williopsis mrakii killer toxin (PDB 1WKT, BMRB 5255, 88 aa) (Antuch

et al., 1996); stereo-array isotope labeled (SAIL) calmodulin (PDB 1X02,

BMRB 6541, 293 aa) (Kainosho et al., 2006); and second WW domain from

mouse Salvador homolog 1 protein (mWW45) (PDB 2DWV, BMRB 10028, 98

aa) (Ohnishi et al., 2007).

Each data set contains chemical shift lists, peak lists from 2D and/or 3D
15N-resolved and 13C-resolved NOESY spectra, and TALOS-generated angle

restraints. Modifications include, among others, various percentages of

randomly deleted chemical shifts, randomly permuted chemical shifts, or

randomly deleted NOESY peaks. A detailed description of the proteins as

well as the 81 types of data set modifications will be given elsewhere. Every

type of modification was performed five times using a different seed for

random number generation, resulting in a total of 10 3 81 3 5 = 4,050 data

sets that were used to evaluate our structure calculation protocol. Parameter

values identical to the CASD data set were chosen for computing the

consensus structure bundles.

Analysis of Structure Calculation Results

Evaluation of structure calculation results was mainly based on rmsd values

that were calculated with respect to the reference structure (accuracy) and

to the mean coordinates of the bundle (precision). Rmsd values were calcu-

lated for the 20 individual structure bundles, for the combined structure bundle

consisting of the lowest target function structure from the 20 individual calcu-

lations, and for the consensus structure bundle based on the consensus set of

distance restraints. Only backbone atoms N, Ca, C0 in the structured regions of

each protein were considered for rmsd calculations.

Structure Validation

One of the 20 individual structure calculation results of each of the CASD data

sets was validated using the ‘‘validate’’ script of the CYANA software package

that calls various validation software tools and summarizes their respective re-

sults into one file. Structure validation parameters were computed for 1 of the

20 individual structure calculation results and the following parameters were

chosen: (1) zp-comb-score from the software ProSa2003 (Sippl, 1993); (2)

the Verify3D score (Bowie et al., 1991; Lüthy et al., 1992); (3) the clashscore

calculated by MolProbity, and the MolProbity score, which considers steric

clashes, and Ramachandran plot and staggered rotamer outliers (Chen

et al., 2010; Davis et al., 2004, 2007); (4) the packing, the Ramachandran

plot appearance, the c1/c2 rotamer normality, and the backbone conformation

quality scores calculated by the WHAT_CHECK program (Hooft et al., 1996);

(5) the percentage of residues in the most favored region of the Ramachandran

plot (Rama G-factor), and the c1 rotamer normality (Chi-1 G-factor), as

defined by the program PROCHECK-NMR (Laskowski et al., 1996; Morris

et al., 1992).
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Lüthy, R., Bowie, J.U., and Eisenberg, D. (1992). Assessment of protein

models with 3-dimensional profiles. Nature 356, 83–85.

Morris, A.L., Macarthur, M.W., Hutchinson, E.G., and Thornton, J.M. (1992).

Stereochemical quality of protein structure coordinates. Proteins 12, 345–364.

Nabuurs, S.B., Spronk, C., Krieger, E., Maassen, H., Vriend, G., and Vuister,

G.W. (2003). Quantitative evaluation of experimental NMR restraints. J. Am.

Chem. Soc. 125, 12026–12034.

Nabuurs, S.B., Spronk, C.A.E.M., Vuister, G.W., and Vriend, G. (2006).

Traditional biomolecular structure determination by NMR spectroscopy allows

for major errors. PLoS Comp. Biol. 2, 71–79.

Ohnishi, S., Güntert, P., Koshiba, S., Tomizawa, T., Akasaka, R., Tochio, N.,

Sato, M., Inoue, M., Harada, T., Watanabe, S., et al. (2007). Solution structure

of an atypical WW domain in a novel beta-clam-like dimeric form. FEBS Lett.

581, 462–468.
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