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Abstract

We study critical branching random walks (BRWs) U (n) on Z+ where the displacement of an offspring
from its parent has drift 2β/

√
n towards the origin and reflection at the origin. We prove that for any α > 1,

conditional on survival to generation [nα], the maximal displacement is ∼ (α − 1)/(4β)
√

n log n. We
further show that for a sequence of critical BRWs with such displacement distributions, if the number of
initial particles grows like ynα for some y > 0, α > 1, and the particles are concentrated in [0, O(

√
n)],

then the measure-valued processes associated with the BRWs converge to a measure-valued process, which,
at any time t > 0, distributes its mass over R+ like an exponential distribution.
c© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Durrett et al. [4] and Kesten [10] studied the maximal displacement of critical branching
random walks (BRWs) on the real line conditioned to survive for a large number of generations.
When the spatial displacement distribution has drift µ > 0, the results in [4] imply that
conditional on the event that the BRW survives for n generations, the maximal displacement of
a particle from the position of the initial particle will be of order OP (n). The main result in [10]
asserts that if the spatial displacement distribution has mean 0 and finite (4+ δ)th moment, then
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conditional on the event that the BRW survives for n generations, the maximal displacement will
be of order OP (

√
n). The sharp difference between these two results gives rise to the following

natural question: What happens if the spatial motions have “small drift”?
In this paper we supplement these results by showing what happens for BRWs on the

nonnegative integers Z+ with small negative drift and reflection at 0. Assume that U (n) is a
sequence of critical BRWs on the half line Z+ = {x ∈ Z : x ≥ 0}, each started by one particle
at the origin, that evolve as follows: (A) At each time t = 1, 2, . . . , particles produce offspring
particles as in a standard Galton–Watson process with a mean 1, finite variance σ 2 offspring
distribution Q. (B) Each offspring particle then moves from the location of its parent according
to the transition probabilities P = P(β,n), where β ≥ 0,

P(x, x + 1) =
1
2
−

β
√

n
for x ≥ 1; (1)

P(x, x − 1) =
1
2
+

β
√

n
for x ≥ 1;

P(0, 1) = 1.

The spatial motion is hence slightly biased towards the origin, which serves as a reflecting barrier.
Such a BRW can be used to model, for example, a branching process occurring in a V-shaped
valley, where the particles, due to gravity, have a slight tendency to move towards the bottom.
In [9] the aforementioned slightly biased random walk is used to model the motion of “heavy
Brownian particles” in a container with its bottom as a reflecting barrier. [9] also states about the
reflecting barrier that “the elucidation of its influence on the Brownian motion is of considerable
theoretical interest”. In this article we will study the influence of the barrier on the BRW.

Denote by U (n)
t (x) the number of particles in the nth BRW U (n) at location x at time t , and

by R(n)t the location of the rightmost particle at time t . Our main interest is in the conditional
distribution of R(n)

[nα] given that the process U (n) survives for [nα] generations. For α < 1, the
effect of the drift−2β/

√
n will be negligible compared to diffusion effects over this time interval,

and for α = 1 it is just large enough to match the diffusion effects. Thus, we will focus on the
case when α > 1.

Theorem 1. When β > 0, for each α > 1 and ε > 0, the range R(n)
[nα] at time [nα] satisfies

lim
n→∞

P

(∣∣∣∣∣ R(n)
[nα]

√
n log n

−
α − 1

4β

∣∣∣∣∣ ≥ ε | G(n)
[nα]

)
= 0, (2)

where for any k ∈ Z+,

G(n)
k = {U

(n) survives to generation k}. (3)

It is natural to consider in connection with the behavior of the maximal displacement the
process-level scaling behavior of the BRWs. To this end, consider a series of BRWs {X (n)} on
the set Z+ of nonnegative integers that evolve by the rules described above, but with arbitrary
initial states X (n)0 . (In Theorem 1 the initial state consisted of a single particle located at the origin
0.) For integers x, k ≥ 0, set

X (n)k (x) = # particles at x at time k. (4)
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For any subset I ⊆ R+, let

X (n)k (I) =
∑
x∈I

X (n)k (x).

Finally, let

Z (n)k = X (n)k (Z+) =
∑

x
X (n)k (x).

Recall that by Kolmogorov’s estimate for critical Galton–Watson processes (see relation (21)
below), if the nth BRW X (n) is initiated by O(nα) particles, then the total lifetime of the process
will be on the order of OP (nα) generations. If α < 1, then the effect of the drift over a time
interval [0, O(nα)] is too small to be felt. If α = 1 then the drift will be just large enough to
be felt, and so for large n the BRW X (n), suitably rescaled, will look like a Dawson–Watanabe
process on the half line [0,∞)with drift−2β and reflection at 0 (for the convergence of ordinary
BRWs to Dawson–Watanabe processes; see [15], or [5,13]). The case we will focus on is again
when α > 1, as in this case the effect of the reflecting barrier at 0 dominates the diffusion effects
over the lifetime of the branching process, and the result is an entirely different scaling behavior:

Theorem 2. When β > 0, assume that for some α > 1,

Z (n)0

nα
→ y > 0, as n→∞, (5)

and {X (n)0 (
√

n·)/nα}n≥1 is tight, i.e., for any ε > 0 there exists C > 0 such that for all n,

X (n)0 ([C
√

n,∞))

nα
≤ ε. (6)

Then the measure-valued processes
(

X (n)
[nα t](
√

n·)/nα : t > 0
)

converge, in the sense of

convergence of finite-dimensional distributions, to a process (X t : t > 0), where (X t )t≥0 is
such that for all t ≥ 0 and 0 ≤ a < b,

X t ((a, b)) = Yt · (exp(−4βa)− exp(−4βb)) := Yt · π((a, b)). (7)

Here Yt is the Feller diffusion:

dYt = σ
√

Yt dWt , Y0 = y. (8)

Observe that we do not require the initial measures X (n)0 (
√

n·)/nα to converge; what we only
require are (i) the total mass converges, and (ii) the particles are not too spread out. In particular,
we cannot guarantee that X (n)0 (

√
n·)/nα H⇒ X0. Theorem 2 says that one has finite-dimensional

convergence on (0,∞).
The Feller diffusion (Yt ) defined by (8) is the limit of (Z (n)

[nα t]/nα):(
Z (n)
[nα t]

nα

)
⇒ (Yt ) on D([0,∞);R), (9)

(see [6,7]). See Chapter XI of [14] for some basic properties of the Feller diffusion. The limiting
process X t hence can be described in this way: its total mass evolves like the Feller diffusion Yt ,
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but the distribution of the mass Yt at any time t > 0 is always the exponential distribution π . As
is proved in [9], the exponential distribution π is the stationary distribution of a diffusion process
obtained by suitably normalizing the RWs defined by (1) and taking limit as n→∞.

The following elementary relation between the expected number of particles at a site y in
generation m for a critical BRW and the m-step transition probability P(Sm = y) of the random
walk will be frequently used: if the critical BRW is started by one particle at site x , and Um(y)
stands for the number of particles at site y in generation m, then

EUm(y) = P(Sm = y | S0 = x). (10)

This is easily proved by induction on m, by conditioning on the first generation and using the
fact the offspring distribution has mean 1.

The structure of this article is as follows: in Section 2 we prove some properties of the random
walks on the half line, in Section 3 we prove Theorem 1; Theorem 2 is proved in Section 4.

Notation. We follow the custom of writing f ∼ g to mean that the ratio f/g converges to 1. For
any a, b ∈ R, a∧b := min(a, b) and a∨b := max(a, b). Throughout the paper, c,C etc. denote
generic constants whose values may change from line to line. For any x ≥ 0, [x] denotes its
integer part, i.e., the greatest integer no greater than x . The notation Yn = oP ( f (n)) means that
Yn/ f (n)→ 0 in probability; and Yn = OP ( f (n)) means that the sequence |Yn|/ f (n) is tight.

2. Random walks

Throughout this article we use the notation {Sm}m≥0 = {S
(β,n)
m } to denote a random walk

with transition probabilities P = P(β,n) defined by Eq. (1); use {S̃m}m≥0 to denote the simple
random walk on Z+ with reflection at 0; and use {Ŝm}m≥0 to denote the simple random walk
on Z. Furthermore, for any such random walks, e.g., {Sm}, for any x, y ∈ Z+ and m ∈ N,
P x (Sm = y) = P(Sm = y | S0 = x) is the probability that Sm started at x finds its way to site y
in m steps.

The following lemma says that the random walk Sm which has drift towards the origin is
stochastically dominated by the reflected simple random walk S̃m .

Lemma 3. For any β > 0, n ∈ N and x ∈ Z+, we can build random walks {Sm}m≥0 ∼ P(β,n)
and {S̃m}m≥0 ∼ P̃ on a common probability space so that

S0 = S̃0 = x, and Sm ≤ S̃m, for all m.

Proof. It suffices to prove the result for the case x > 0; the case x = 0 then follows since
S1 = S̃1 = 1.

Let S0 = S̃0 = x . At time 1 sample a U1 ∼ Unif (0, 1). If U1 ≤ 1/2 + β/
√

n, then let
S1 = x − 1, otherwise let S1 = x + 1. In the meanwhile, if U1 ≤ 1/2, then let S̃1 = x − 1,
otherwise let S̃1 = x+1. Clearly {S0, S1} and {S̃0, S̃1} follow their laws respectively and S1 ≤ S̃1.
Now suppose that we have built {Sm} and {S̃m} up to time m, and we have Sm ≤ S̃m . If Sm < S̃m ,
we must have Sm ≤ S̃m − 2 since at each step the difference between the jumps is either 0 or 2;
now because at each step the random walks can at most jump 1, at time m+1, we must still have
Sm+1 ≤ S̃m+1. In the other case when Sm = S̃m , if Sm > 0 then we can build Sm+1 ≤ S̃m+1 just
as at time 0; otherwise Sm = 0, then necessarily Sm+1 = S̃m+1 = 1. Thus, we have proved that
we can build {Sm} and {S̃m} up to time m + 1. By induction, the conclusion holds. �
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Lemma 4. For any k ∈ N, any x ≥ k, and any m ≥ 0,

P x (S̃m ≥ x + k) ≤ P0
(

max
i≤m
|Ŝi | ≥ k

)
. (11)

Moreover, there exist C > 0 and b > 0 such that

P0
(

max
i≤m
|Ŝi | ≥ k

)
≤ C exp

(
−

bk2

m

)
, for all m. (12)

Proof. Inequality (11) holds because in order that S̃m ≥ x + k, either the random walk {S̃i }i≤m
has never visited 0, in which case it just evolves like a simple random walk whose maximal
deviation from x is no less than S̃m − S̃0 ≥ k, or the random walk {S̃i }i≤m has visited 0 in which
case it evolves like a simple random walk before hitting 0, and the maximal deviation from x
before time m is no less than x ≥ k.

Now let us prove (12). First recall the fact that for the simple random walk {Ŝm | Ŝ0 = 0},
there exists b > 0 such that

sup
m

E exp

(
b
|Ŝm |

2

m

)
:= C <∞, (13)

(see, e.g., Exercise 2.6 in [12]). Now by the submartingale maximal inequality, we get

P0
(

max
i≤m
|Ŝi | ≥ k

)
= P0

(
max
i≤m

exp(θ |Ŝi |
2) ≥ exp(θk2)

)
≤

E exp(θ |Ŝm |
2)

exp(θk2)
.

Inequality (12) follows by taking θ to be b/m and using (13). �

Next lemma indicates that if two random walks S1
m and S2

m have the same drift 2β/
√

n towards
the origin, and are such that S2

0−S1
0 is a positive even number, then S1

m is stochastically dominated
by S2

m .

Lemma 5. For any fixed β > 0, n ∈ N, 0 ≤ i1 6= i2, and a random walk {S1
m}m≥0 ∼ P(β,n) with

S1
0 = 2i1, we can build a coupling random walk {S2

m}m≥0 ∼ P(β,n) with S2
0 = 2i2 on a possibly

extended probability space such that{
S1

m ≤ S2
m, for all m, if i1 < i2

S1
m ≥ S2

m, for all m, if i1 > i2.
(14)

Similar conclusion holds if we change the initial positions of {S1
m} and {S2

m} to S1
0 = 2i1+1, S2

0 =

2i2 + 1.

Proof. We shall only prove for the case where S1
0 = 2i1, S2

0 = 2i2 and i1 < i2. We will build
{S2

m} step by step: if S1
m > 0, then S2

m+1 moves in the same direction away from S2
m as S1

m+1
does, i.e.,

S2
m+1 = S2

m + (S
1
m+1 − S1

m);

otherwise if S1
m = 0, then choose S2

m+1 according to distribution (1). Since S2
0 − S1

0 = 2(i2− i1)

is even and at each step the difference between the jumps is either 0 or 2, the two random walks
cannot cross each other and will either never meet, or merge after they meet. The dominance (14)
follows. �
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We now look more closely at the random walks {Sm} ∼ P = P(β,n). Based on the results
in [9] we show the following.

Proposition 6. For any fixed β > 0, a ≥ 0, and any nonnegative integer sequences {sn}, {mn}

with sn = O(
√

n) and lim infn mn/(n(log n)2) > 0, the random walks {S(n)m | S(n)0 = sn } ∼

P(β,n) satisfy

lim
n→∞

P
(

S(n)mn
≥ a
√

n | S(n)0 = sn

)
= exp(−4βa), (15)

and

lim
n→∞

P
(

S(n)mn ≥ a
√

n log n | S(n)0 = sn

)
n−4βa

= 1. (16)

Proof. When a = 0, (15) and (16) clearly hold. So below we assume that a > 0.
Let

q = q(n) =
1
2
−

β
√

n
, and p = p(n) =

1
2
+

β
√

n
.

By (41) in [9], for any k > 0,

P(S(n)mn
= k | S(n)0 = sn) =

p − q

2pq

(
q

p

)k (
1+ (−1)sn+k+mn

)
+

2
π

(
p

q

)sn/2 ( q

p

)k/2 (
2
√

pq
)mn

∫ π

0
cosmn θ

tan2 θ

(p − q)2 + tan2 θ
fsn (θ) fk(θ) dθ

:= p∗mn
(k)+ Rmn (k), (17)

where for any i ≥ 1,

fi (θ) = cos iθ − 2
β
√

n

sin iθ

sin θ
, θ ∈ [0, π].

We first estimate the main term p∗mn
(k). Depending on whether sn +mn is even or odd, S(n)mn only

takes even or odd values. We shall only deal with the case when sn + mn is even. In this case,∑
k≥a
√

n

p∗mn
(k) = 2

p − q

2pq

∑
k≥a
√

n, k even

(
q

p

)k

.

Using the sum formula for geometric series and noting that

q

p
=

1
2 −

β
√

n
1
2 +

β
√

n

∼ 1−
4β
√

n
,

one can easily show that

lim
n→∞

∑
k≥a
√

n

p∗mn
(k) = exp(−4βa). (18)
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Similarly,

lim
n→∞

∑
k≥a
√

n log n
p∗mn

(k)

n−4βa
= 1. (19)

It remains to show that the remainder terms Rmn (k) decay rapidly as n → ∞. In fact, by the
simple bound

| sin iθ | ≤ i sin θ, for all θ ∈ [0, π],

we get

| fi (θ)| ≤ 1+
2β
√

n
i.

Hence, since sn = O(
√

n),

|Rmn (k)| ≤ C
(
2
√

pq
)mn
·

(
q

p

)k/2

(1+ 2kβ)

≤ C exp(−2β2mn/n) · exp(−kβ/
√

n)(1+ 2kβ).

As
∞∑

k=1

exp(−kβ/
√

n)(1+ 2kβ) = O(
√

n),

and lim infn mn/(n(log n)2) > 0, (15) and (16) follow from (18) and (19). �

3. Proof of Theorem 1

We first recall some well known facts about critical Galton–Watson processes. Let σ 2 < ∞

be the variance of the offspring distribution Q. Then, if Zm is the number of particles at time m
with Z0 = 1, and Gm = {Zm > 0} is the event that the Galton–Watson process survives to
generation m, then

Var(Zm) = mσ 2, (20)

ρm := P(Gm) ∼
2

mσ 2 , (21)

E(Zm | Gm) =
1
ρm
∼
σ 2m

2
, and (22)

L
(

Zm

m

∣∣∣∣Gm

)
H⇒ Exp(σ 2/2), as m →∞, (23)

(see, e.g., Sections I.2 and I.9 of [2]). Relation (21) is known as Kolmogorov’s estimate; (23) is
Yaglom’s theorem.

We will decompose the proof of Theorem 1 into two steps. In Proposition 9 we show that for
any ε > 0, (α−1−ε)

√
n log n/(4β) is an asymptotic lower bound for R(n)

[nα]. Proposition 10 says
that (α − 1+ ε)

√
n log n/(4β) is an asymptotic upper bound. Theorem 1 follows by combining

these two propositions.
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To prove Theorem 1, we will follow the strategy used to prove Theorems 4 and 5 in [11],
namely, changing the conditional event Gk to some event defined with respect to a generation
m(k) ≤ k.

The following two lemmas are Lemmas 17 and 18 in [11].

Lemma 7. Suppose that on some probability space (Ω ,F , P) there are two events E1, E2 with
P(E1)P(E2) > 0 such that

P(E1∆E2)

P(E1)
≤ ε, (24)

where E1∆E2 is the symmetric difference of E1 and E2. Then

‖P(·|E1)− P(·|E2)‖T V ≤ 2ε, (25)

where P(·|Ei ) denotes the conditional probability measure given the event Ei , and ‖ · ‖T V
denotes the total variation distance.

Lemma 8. Let m(k) ≤ k be integers and εk > 0 be real numbers such that m(k)/k → 1 and
εk → 0 as k →∞. Then

lim
k→∞

P(Gk∆Hk)

P(Gk)
= 0, (26)

where

G(k) = {Zk > 0} and H(k) = {Zm(k) ≥ kεk}.

By Lemmas 7 and 8, we can change the conditioning event Gk = {Zk > 0} to Hk = {Zm(k) ≥

kεk}, and it suffices to prove the convergence in Theorem 1 when the conditioning event is Hk
rather than Gk . The advantage of this is that, conditional on the state of the BRW at time m(k),
the next k−m(k) generations are gotten by running independent BRWs for time k−m(k) starting
from the locations of the particles in generation m(k).

We now show that (α − 1− ε)
√

n log n/(4β) is an asymptotic lower bound for R(n)
[nα].

Proposition 9. For any ε > 0,

lim
n→∞

P

(
R(n)
[nα] ≥

α − 1− ε
4β

·
√

n log n

∣∣∣∣ G(n)
[nα]

)
= 1.

Proof. By Lemmas 7 and 8, we can change the conditioning event from G(n)
[nα] to {Z (n)

[nα]−nL(n) >

[nα/L(n)]} for L(n) := [(log n)2], where for any k ≥ 0, Z (n)k is the number of particles at

generation k for the nth BRW U (n). Conditioning on {Z (n)
[nα]−nL(n) > [n

α/L(n)]}, there will be
at least X ∼ Bin([nα/L(n)], ρnL(n)) number of particles at time [nα] − nL(n) whose families
will survive to time [nα]. For any such particle, among its descendants at time [nα] we uniformly
pick one, then the trajectory of the chosen particle from time [nα] − nL(n) to [nα] will be a
random walk following the law Pβ,n , starting at the location of its ancestor at time [nα]− nL(n).
In this way we get at least Bin([nα/L(n)], ρnL(n)) number of independent random walks. We
would like to show the probability that the maximum of the end positions of these random walks
is bigger than (α− 1− ε)

√
n log n/(4β) is asymptotically 1. By Lemma 5, this probability is not

increased if we assume that all these random walks are started at 0 or 1, depending on whether
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[nα] − nL(n) is even or odd. But since the random walks have nL(n) steps to go, by relation
(16), no matter whether the starting point is 0 or 1, for large n, the probability that each random
walk is to the right of (α−1−ε)/(4β) ·

√
n log n is asymptotically n−(α−1−ε). However we have

at least X ∼ Bin([nα/L(n)], ρnL(n)) number of i.i.d. trials, and by relation (21) and Chernoff
bound ([3] or [1]), for all n sufficiently large,

P

(
X ≤

1
2
·

nα

L(n)

2

nL(n)σ 2

)
≤ exp

(
−

nα

L(n)

2

nL(n)σ 2 ·
1
9

)
→ 0. (27)

It follows that the probability for the maximum of the end positions of these random walks to be
bigger than (α − 1− ε)/(4β) ·

√
n log n is asymptotically 1. �

Proposition 9 gives the desired lower bound. We now prove the upper bound.

Proposition 10. For any ε > 0,

lim
n→∞

P

(
R(n)
[nα] ≤

α − 1+ ε
4β

·
√

n log n

∣∣∣∣G(n)
[nα]

)
= 1.

Proof. For any εn → 0, define H (n)
[nα] = {Z

(n)
[nα]−n ≥ ([nα] − n) · εn}. Applying Lemmas 7

and 8 once we see that we can change the conditioning event from G(n)
[nα] to H (n)

[nα]; applying

these lemmas again we see that we can change the conditioning event to G(n)
[nα]−n . Since α > 1,

by relation (16), the probability that the random walk {Sm}m = {S
(β,n)
m }m is to the right of

(α − 1 + ε/2)/(4β) ·
√

n log n at time [nα] − n is asymptotically n−(α−1+ε/2). Thus, using
relations (10) and (22), the conditional expectation of the number of particles to the right of
(α − 1+ ε/2)

√
n log n/(4β) in generation [nα] − n is

E
(

Z (n)
[nα]−n | G

(n)
[nα]−n

)
· P

(
S[nα]−n ≥ (α − 1+ ε/2)/(4β) ·

√
n log n

)
∼
σ 2([nα] − n)

2
· n−(α−1+ε/2)

∼
n1−ε/2 σ 2

2
.

However, by relation (21), the probability that a Galton–Watson process survives to time n is
∼2/(nσ 2), hence the number of particles to the right of (α−1+ε/2)/(4β)·

√
n log n in generation

[nα]− n whose families survive to time [nα] has expectation asymptotically equivalent to n−ε/2,
which goes to 0. Therefore if we denote by

R′(n)
[nα] = the rightmost location in generation [nα] of the descendants of the particles

which are to the left of (α − 1+ ε/2)/(4β) ·
√

n log n in generation [nα] − n,

then it suffices to show further that

P
(

R′(n)
[nα] ≥ (α − 1+ ε)/(4β) ·

√
n log n

∣∣∣ G(n)
[nα]−n

)
→ 0. (28)

By Lemma 5, this probability is not decreased if we assume all the particles to the left of
(α − 1+ ε/2)/(4β) ·

√
n log n at time [nα] − n are located at Mn , where

Mn :=


the biggest even number ≤ (α − 1+ ε/2)/(4β) ·

√
n log n,

if [nα] − n is even;
the biggest odd number ≤ (α − 1+ ε/2)/(4β) ·

√
n log n,

if [nα] − n is odd.



1830 X. Zheng / Stochastic Processes and their Applications 120 (2010) 1821–1836

In either case, in order that R′(n)
[nα] ≥ (α − 1 + ε)/(4β) ·

√
n log n, since the ancestors are to the

left of (α − 1 + ε/2)/(4β) ·
√

n log n, at least one descendant will have to travel to the right at
least ε/(8β) ·

√
n log n distance. Hence, since the BRW is critical, we get

P
(

R′(n)
[nα] ≥ (α − 1+ ε)/(4β) ·

√
n log n | G(n)

[nα]−n

)
≤ E(Z (n)

[nα]−n | G
(n)
[nα]−n) · P Mn (Sn ≥ Mn + ε/(8β) ·

√
n log n). (29)

By Lemma 3,

P Mn
(
Sn ≥ Mn + ε/(8β) ·

√
n log n

)
≤ P Mn

(
S̃n ≥ Mn + ε/(8β) ·

√
n log n

)
. (30)

When n is sufficiently large, Mn will be bigger than ε/(8β) ·
√

n log n, so by Lemma 4 we get
that the probability on the right side of (30) is bounded by C exp

(
−bε2/(64β2) · (log n)2

)
. Using

(29), noting that E(Z (n)
[nα]−n|G

(n)
[nα]−n) = O(nα) only grows polynomially in n, we get (28). �

4. Proof of Theorem 2

We start with a simple observation. The following lemma about the probabilities of survival
is a supplement to the convergence in (9).

Lemma 11. For the total mass processes (Z (n)
[nα t])t≥0 and the Feller diffusion (Yt )t≥0, the

following convergence holds:

P
(

Z (n)
[nα t] > δnα

)
→ P (Yt > δ) , for all δ ≥ 0 and for all t > 0. (31)

Proof. For any t > 0, the convergence in (31) when δ > 0 follows from the marginal
convergence Z (n)

[nα t]/nα H⇒ Yt and that P(Yt = δ) = 0 (for any fixed t > 0, by (21) and
(23) it is easy to show that the marginal distribution of Yt can be described as a Poisson sum of
exponentials, see, e.g., page 136 in [13], hence is continuous on (0,∞); see also page 441 in [14]
for an explicit density formula). It remains to show

P
(

Z (n)
[nα t] > 0

)
→ P(Yt > 0).

In fact, by the independence between the BRWs engendered by different initial particles,

P
(

Z (n)
[nα t] = 0

)
= (1− ρ[nα t])

Z (n)0 ,

where ρm , as defined in (21), is the probability that a Galton–Watson process started by a single
particle survives to generation m. By (5) and (21),

(1− ρ[nα t])
Z (n)0 ∼ exp

(
−

2

nαtσ 2 · Z
(n)
0

)
→ exp

(
−

2y

tσ 2

)
.

The right side equals P(Yt = 0); see, e.g., Equation (II.5.12) in [13]. �

Proof of Theorem 2. A. Convergence of Marginal distributions. We will show that for any
fixed t > 0, on the Skorokhod space D([0,∞);R),(

X (n)
[nα t]([0,

√
na])

nα

)
a≥0

H⇒ (X t ([0, a]) = Yt · π([0, a]))a≥0 . (32)
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Let L(n) := [(log n)2], and write

X (n)
[nα t]([0,

√
na])

nα
=

Z (n)
[nα t]−nL(n)

nα
·

X (n)
[nα t]([0,

√
na])

Z (n)
[nα t]−nL(n)

· 1
{Z (n)
[nα t]−nL(n)>0}.

For any a ≥ 0 and δ > 0, we will show the following law of large numbers:(
X (n)
[nα t]([0,

√
na])

Z (n)
[nα t]−nL(n)

− π([0, a])

)
· 1
{Z (n)
[nα t]−nL(n)>δn

α}
→ 0. (33)

Claim: If this holds, then we have the finite-dimensional convergence below: for any k ∈ N and
any 0 ≤ a1 ≤ · · · ≤ ak <∞,(

X (n)
[nα t]([0,

√
nai ])

nα

)
a1,...,ak

H⇒ (Yt · π([0, ai ]))a1,...,ak
. (34)

Note that the LHS and RHS of (32) are both increasing processes and the RHS is continuous, by
Theorem VI.3.37 in [8], the above finite-dimensional convergence implies the convergence (32)
as processes on [0,∞).

We now prove the claim, which is a direct consequence of Lemma 11, (9), Slutsky’s theorem
and (33). We shall only prove the convergence for any single a ≥ 0; the joint convergence can
be proved similarly. Let f : R→ R be any bounded Lipschitz continuous function. We want to
show that

E f

(
X (n)
[nα t]([0,

√
na])

nα

)
→ E f (Yt · π [0, a]). (35)

In fact, for any ε > 0, there exists δ > 0 such that

P(0 < Yt ≤ δ) ≤ ε.

By Lemma 11, for all n sufficiently large,

P(0 < Z (n)
[nα t]−nL(n) ≤ δn

α) ≤ 2ε.

Hence, denote by M = maxx | f (x)|,∣∣∣E f
(

X (n)
[nα t]([0,

√
na])/nα

)
− E f (Yt · π [0, a])

∣∣∣
≤

∣∣∣ f (0) · P
(

Z (n)
[nα t]−nL(n) = 0

)
− f (0) · P(Yt = 0)

∣∣∣+ 3Mε

+

∣∣∣∣∣E
(

f

(
Z (n)
[nα t]−nL(n)

nα
·

X (n)
[nα t][0,

√
na]

Z (n)
[nα t]−nL(n)

)
1
{Z (n)
[nα t]−nL(n)>δn

α}

)

− E

(
f

(
Z (n)
[nα t]−nL(n)

nα
· π [0, a]

)
1
{Z (n)
[nα t]−nL(n)>δn

α}

)∣∣∣∣∣
+

∣∣∣∣∣E
(

f

(
Z (n)
[nα t]−nL(n)

nα
· π [0, a]

)
1
{Z (n)
[nα t]−nL(n)>δn

α}

)



1832 X. Zheng / Stochastic Processes and their Applications 120 (2010) 1821–1836

− E
(

f (Yt · π [0, a]) · 1{Yt>δ}

) ∣∣∣∣∣
:= I+ 3Mε + II+ III.

By Lemma 11, I→ 0. By (9) and Slutsky’s theorem, III→ 0. Finally, II→ 0 by the Lipschitz
continuity of f , (9), (33) and the dominated convergence theorem.

We now prove the law of large numbers (33), by using a mean-variance calculation. Let
F (n)
[nα t]−nL(n) be the configuration of the BRW at time [nαt] − nL(n), Z(n)

[nα t]−nL(n) be the set

of particles at time [nαt] − nL(n), and for each particle ui = u(n)i ∈ Z(n)
[nα t]−nL(n), let xi = x (n)i

be its location (at time [nαt] − nL(n)), U ui
k (x) be its number of descendants at site x at time

k + [nαt] − nL(n), and Zui
k be its total number of descendants at time k + [nαt] − nL(n).

We start with the mean calculation.

E

(
X (n)
[nα t][0,

√
na]

Z (n)
[nα t]−nL(n)

· 1
{Z (n)
[nα t]−nL(n)>δn

α}

)

= E

 E
(

X (n)
[nα t][0,

√
na] | F (n)

[nα t]−nL(n)

)
Z (n)
[nα t]−nL(n)

· 1
{Z (n)
[nα t]−nL(n)>δn

α}


By relation (10),

E
(

X (n)
[nα t][0,

√
na] | F (n)

[nα t−nL(n)]

)
=

Z (n)
[nα t]−nL(n)∑

i=1

P(SnL(n) ∈ [0,
√

na] | S0 = xi ).

By Lemma 5, if we let{
p0

nL(n) := P(SnL(n) ∈ [0,
√

na] | S0 = 0)
p1

nL(n) := P(SnL(n) ∈ [0,
√

na] | S0 = 1),

then

P(SnL(n) ∈ [0,
√

na] | S0 = xi ) ≤

{
p0

nL(n), if xi is even
p1

nL(n), if xi is odd.
(36)

Therefore, by Proposition 6 and Lemma 11,

E

 E
(

X (n)
[nα t][0,

√
na] | F (n)

[nα t]−nL(n)

)
Z (n)
[nα t]−nL(n)

· 1
{Z (n)
[nα t]−nL(n)>δn

α}


≤ E

(
p0

nL(n) ∨ p1
nL(n) · 1{Z (n)

[nα t]−nL(n)>δn
α}

)
→ π [0, a] · P(Yt > δ). (37)

On the other hand, by relation (10) again, for any C > 0,

E

(
1

nα
X (n)
[nα t]−nL(n)([C

√
n,∞))

)
=

1
nα

Z (n)0∑
i=1

P
(

S[nα t]−nL(n) ≥ C
√

n | S0 = x (n)0;i

)
,



X. Zheng / Stochastic Processes and their Applications 120 (2010) 1821–1836 1833

where Z (n)0 is the total number of particles at time 0, and x (n)0;i is the location of the i th initial

particle. By the tightness of {X (n)0 (
√

n·)/nα} (6) and (15) we see for any ε > 0, there exists
C > 0 such that for all n sufficiently large,

E

(
1

nα
X (n)
[nα t]−nL(n)([C

√
n,∞))

)
≤ ε. (38)

Therefore by Markov’s inequality,

P

(
1

nα
X (n)
[nα t]−nL(n)([C

√
n,∞)) ≥

√
ε

)
≤
√
ε. (39)

Now by Lemma 5 again, for those particles ui at time [nαt] − nL(n) which are to the left of
C
√

n, if we let{
Mn;even = the biggest even number ≤ C

√
n;

Mn;odd = the biggest odd number ≤ C
√

n,

and {
peven

nL(n) := P(SnL(n) ∈ [0,
√

na] | S0 = Mn;even)

podd
nL(n) := P(SnL(n) ∈ [0,

√
na] | S0 = Mn;odd),

then

P(SnL(n) ∈ [0,
√

na] | S0 = xi ) ≥

{
peven

nL(n), if xi is even

podd
nL(n), if xi is odd.

(40)

Hence, by Proposition 6, Lemma 11 and (39),

lim inf
n

E

 E
(

X (n)
[nα t][0,

√
na] | F (n)

[nα t]−nL(n)

)
Z (n)
[nα t]−nL(n)

· 1
{Z (n)
[nα t]−nL(n)>δn

α}


≥ lim inf

n
E

(
E
(

X (n)
[nα t][0,

√
na] | F (n)

[nα t]−nL(n)

)
Z (n)
[nα t]−nL(n)

× 1
{Z (n)
[nα t]−nL(n)>δn

α; X (n)
[nα t]−nL(n)([C

√
n,∞))≤nα

√
ε}

)

≥ lim inf
n

E

(
Z (n)
[nα t]−nL(n) − nα

√
ε

Z (n)
[nα t]−nL(n)

peven
nL(n) ∧ podd

nL(n)

× 1
{Z (n)
[nα t]−nL(n)>δn

α; X (n)
[nα t]−nL(n)([C

√
n,∞))≤nα

√
ε}

)

≥

(
1−

√
ε

δ

)
· π [0, a] ·

(
P(Yt > δ)−

√
ε
)
. (41)
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By the arbitrariness of ε, we get the desired lower bound

lim inf
n

E

 E
(

X (n)
[nα t]([0,

√
na]) | F (n)

[nα t]−nL(n)

)
Z (n)
[nα t]−nL(n)

· 1
{Z (n)
[nα t]−nL(n)>δn

α}


≥ π [0, a] · P(Yt > δ).

So, combining it with (37), we get the convergence of expectation

lim
n

E

((
X (n)
[nα t][0,

√
na]

Z (n)
[nα t]−nL(n)

− π [0, a]

)
· 1
{Z (n)
[nα t]−nL(n)>δn

α}

)
= 0.

It remains to show that

lim
n

Var

((
X (n)
[nα t][0,

√
na]

Z (n)
[nα t]−nL(n)

− π [0, a]

)
· 1
{Z (n)
[nα t]−nL(n)>δn

α}

)
= 0. (42)

By conditioning on F (n)
[nα t]−nL(n), we get

Var

((
X (n)
[nα t][0,

√
na]

Z (n)
[nα t]−nL(n)

− π [0, a]

)
· 1
{Z (n)
[nα t]−nL(n)>δn

α}

)

= E


Var

(
X (n)
[nα t][0,

√
na] | F (n)

[nα t]−nL(n)

)
(

Z (n)
[nα t]−nL(n)

)2

 · 1
{Z (n)
[nα t]−nL(n)>δn

α}


+ Var

 E
(

X (n)
[nα t][0,

√
na] | F (n)

[nα t]−nL(n)

)
Z (n)
[nα t]−nL(n)

− π [0, a]

 · 1
{Z (n)
[nα t]−nL(n)>δn

α}


:= I+ II.

We will show that both terms converge to 0.
We start with term I. Recall that for each particle ui ∈ Z(n)

[nα t]−nL(n), U ui
k (x) denotes its number

of descendants at site x at time k + [nαt] − nL(n), and Zui
k is its total number of descendants at

time k + [nαt] − nL(n). By the independence between the BRWs U ui and (20),

Var
(

X (n)
[nα t][0,

√
na] | F (n)

[nα t]−nL(n)

)
=

∑
ui∈Z(n)

[nα t]−nL(n)

Var

 ∑
x∈[0,

√
na]

U ui
nL(n)(x)


≤

∑
ui∈Z(n)

[nα t]−nL(n)

E
(

Zui
nL(n)

)2

= Z (n)
[nα t]−nL(n)(1+ nL(n)σ 2).

Hence

I ≤ E

(
1+ nL(n)σ 2

Z (n)
[nα t]−nL(n)

· 1
{Z (n)
[nα t]−nL(n)>δn

α}

)
→ 0.
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As to term II, by (36),

E
(

X (n)
[nα t]([0,

√
na]) | F (n)

[nα t]−nL(n)

)
≤ Z (n)

[nα t]−nL(n) · p0
nL(n) ∨ p1

nL(n)

furthermore, on the event {X (n)
[nα t]−nL(n)([C

√
n,∞)) ≤ nα

√
ε}, by (40),

E
(

X (n)
[nα t]([0,

√
na]) | F (n)

[nα t]−nL(n)

)
≥

(
Z (n)
[nα t]−nL(n) − nα

√
ε
)
· peven

nL(n) ∧ podd
nL(n).

Hence,

II ≤ E

( E(X (n)
[nα t]([0,

√
na]) | F (n)

[nα t]−nL(n))

Z (n)
[nα t]−nL(n)

− π [0, a]

)2

· 1
{Z (n)
[nα t]−nL(n)>δn

α}


≤
√
ε + E

(
max

((
p0

nL(n) ∨ p1
nL(n) − π [0, a]

)2
,

((1−
√
ε/δ) peven

nL(n) ∧ podd
nL(n) − π [0, a])2

)

× 1
{Z (n)
[nα t]−nL(n)>δn

α; X (n)
[nα t]−nL(n)([C

√
n,∞))≤nα

√
ε}

)
= O(

√
ε),

where the term
√
ε in the second inequality comes from (39), and in the last equation we used

Proposition 6. By the arbitrariness of ε, II→ 0 and hence (42) holds.

B. Convergence of finite-dimensional distributions. This follows from the Markov property
and similar calculations as in Part A. �
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