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The group Gn of automorphisms of the algebra In := K 〈x1, . . . , xn,
∂

∂x1
, . . . , ∂

∂xn
,
∫

1, . . . ,
∫

n〉 of polynomial integro-differential operators
is found:

Gn = Sn � Tn � Inn(In) ⊇ Sn � Tn � GL∞(K ) � · · · � GL∞(K )︸ ︷︷ ︸
2n−1 times

,

G1 � T1 � GL∞(K ),

where Sn is the symmetric group, T
n is the n-dimensional

algebraic torus, Inn(In) is the group of inner automorphisms of In

(which is huge). It is proved that each automorphism σ ∈ Gn is
uniquely determined by the elements σ(xi)’s or σ( ∂

∂xi
)’s or σ(

∫
i)’s.

The stabilizers in Gn of all the ideals of In are found, they are
subgroups of finite index in Gn . It is shown that the group Gn has
trivial centre, I

Gn
n = K and I

Inn(In)
n = K , the (unique) maximal ideal

of In is the only nonzero prime Gn-invariant ideal of In , and there
are precisely n+2 Gn-invariant ideals of In . For each automorphism
σ ∈ Gn , an explicit inversion formula is given via the elements σ( ∂

∂xi
)

and σ(
∫

i).
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1. Introduction

Throughout, ring means an associative ring with 1; module means a left module; N := {0,1, . . .}
is the set of natural numbers; K is a field of characteristic zero and K ∗ is its group of units; Pn :=
K [x1, . . . , xn] is a polynomial algebra over K ; ∂1 := ∂

∂x1
, . . . , ∂n := ∂

∂xn
are the partial derivatives (K -

linear derivations) of Pn; EndK (Pn) is the algebra of all K -linear maps from Pn to Pn and AutK (Pn)

is its group of units (i.e. the group of all the invertible linear maps from Pn to Pn); the subalgebra
An := K 〈x1, . . . , xn, ∂1, . . . , ∂n〉 of EndK (Pn) is called the nth Weyl algebra.

Definition. (See [2].) The Jacobian algebra An is the subalgebra of EndK (Pn) generated by the Weyl
algebra An and the elements H−1

1 , . . . , H−1
n ∈ EndK (Pn) where

H1 := ∂1x1, . . . , Hn := ∂nxn.

Clearly, An = ⊗n
i=1 A1(i) � A⊗n

1 where

A1(i) := K
〈
xi, ∂i, H−1

i

〉 � K
〈
xi, H±1

i , yi := H−1
i ∂i

〉 � A1.

The algebra An contains all the integrations
∫

i : Pn → Pn , p �→ ∫
p dxi , since

∫
i
= xi H−1

i : xα �→ (αi + 1)−1xi x
α.

In particular, the algebra An contains the algebra In := K 〈x1, . . . , xn , ∂1, . . . , ∂n,
∫

1, . . . ,
∫

n〉 of poly-
nomial integro-differential operators. Note that In = ⊗n

i=1 I1(i) � I⊗n
1 where I1(i) := K 〈xi, ∂i,

∫
i〉. Let

Gn := AutK -alg(In) and Gn := AutK -alg(An).
The Jacobian algebra An is a (two-sided) localization An = S−1In of the algebra In at a count-

ably generated commutative monoid S � N(N) , each element of S is a regular element of the alge-
bra In [10]. In general, there is no connection between the groups of automorphisms of an algebra and
its localization. As a rule, the latter is smaller than the former, and an automorphism of the algebra
cannot be extended to an automorphism of its localization (e.g., the group AutK -alg(Pn) is huge but
AutK -alg(K [x±1

1 , . . . , x±1
n ]) is a tiny group). Completely the opposite is true for the pair In , An = S−1In:

each automorphism of the algebra In can be extended to an automorphism of the algebra An (this is
not straightforward since Gn S � S). Moreover, the group Gn can be seen as a subgroup of Gn (Theo-
rem 5.4), and the group Gn is bigger than Gn . This fact, i.e. Gn ⊆ Gn , is one of the key moments in
finding the group Gn as the group Gn was already found in [9].

The algebras P2n = P⊗n
2 , An = A⊗n

1 , Sn = S⊗n
1 , In = I⊗n

1 and An = A⊗n
1 have similar defining rela-

tions:

P2 = K 〈x, y〉: yx − xy = 0;
A1 = K 〈x, ∂〉: ∂x − x∂ = 1;
S1 = K 〈x, y〉: yx = 1;
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I1 = K

〈
∂, H,

∫ 〉
: ∂

∫
= 1,

[
H,

∫ ]
=

∫
, [H, ∂] = −∂,

H

(
1 −

∫
∂

)
=

(
1 −

∫
∂

)
H = 1 −

∫
∂;

A1 = K
〈
x, H±1, y

〉
: yx = 1, [H, x] = x, [H, y] = −y, H(1 − xy) = (1 − xy)H = 1 − xy;

where [a,b] := ab − ba is the commutator of elements a and b. It is reasonable to believe that they
should have similar groups of automorphisms. This is exactly the case when n = 1: the groups of
automorphisms of the algebras P2, A1, S1, I1 and A1 have almost identical structure (when properly
interpreted). Namely, each of the groups is a ‘product’ (in the last three cases it is even the semi-direct
product) of an obvious subgroup of affine automorphisms and a non-obvious subgroup generated by
‘transvections.’

The group AutK -alg(P2) was found by Jung [15] in 1942 and van der Kulk [17] in 1953. In 1968,
Dixmier [12] found the group of automorphisms of the first Weyl algebra A1 (in prime characteristic
the group of automorphism of the first Weyl algebra A1 was found by Makar-Limanov [18] in 1984,
see also [4] for a different approach and for further developments). In 2000, Gerritzen [13] found
generators for the group AutK -alg(S1). For the higher Weyl algebras An , n � 2, and the polynomial
algebras Pn , n � 3, to find their groups of automorphisms and generators are old open problems,
and solutions to the Jacobian Conjecture and the Problem/Conjecture of Dixmier would be an im-
portant (easier) part in finding the groups. (Positive solutions to these two problems would define
the groups as infinite dimensional varieties, i.e. they would give defining equations of the varieties
but not generators. To find generators one would have to find the solutions of the equations. A finite
dimensional analogue of this situation is the group SLn: the defining equation det = 1 tells nothing
about generators of the group.)

The Jacobian algebras An arose in my study of the group of polynomial automorphisms and the
Jacobian Conjecture, which is a conjecture that makes sense only for polynomial algebras in the class
of all commutative algebras [1]. In order to solve the Jacobian Conjecture, it is reasonable to believe
that one should create a technique which makes sense only for polynomials; the Jacobian algebras are
a step in this direction (they exist for polynomials but make no sense even for Laurent polynomials).

The Jacobian algebras An were invented to deal with polynomial automorphisms. A study of these
algebras led to study of ‘simpler’ algebras Sn [5], the so-called algebras of one-sided inverses of polyno-
mial algebras. This ended up in finding their groups of automorphisms AutK -alg(Sn), n � 1, and their
explicit generators in the series of three papers [6–8]. Recently, the groups AutK -alg(An), n � 1, are
found in [9]. Finally, in the present paper the groups Gn := AutK -alg(In), n � 1, are found.

• (Theorem 5.5.(1)) Gn = Sn � Tn � Inn(In) where Sn is the symmetric group, Tn is the n-dimensional
algebraic torus and Inn(In) is the group of inner automorphisms of the algebra In .

• (Theorem 3.1.(2)) The map (1 + an)∗ → Inn(In), u �→ ωu , is a group isomorphism where ωu(a) :=
uau−1 , (1 + an)∗ := I∗n ∩ (1 + an), I∗n is the group of units of the algebra In, and an is the only maximal
ideal of the algebra In.

The paper proceeds as follows. In Section 2, some known results about the algebras In and An are
collected that are used freely in the paper.

One of the key ideas in finding the group Gn is the fact that the polynomial algebra Pn is the only
(up to isomorphism) faithful simple In-module [10, Proposition 3.8]. This enables us to visualize the
group Gn as a subgroup of AutK (Pn) (Corollary 3.3.(2)):

Gn = {
σϕ

∣∣ ϕ ∈ AutK (Pn), ϕInϕ
−1 = In

}
where σϕ(a) := ϕaϕ−1, a ∈ In.

In Section 3, two ‘rigidity theorems’ are proved for the group Gn: Corollary 3.7 and
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• (Theorem 3.6) (Rigidity of the group Gn) Let σ ,τ ∈ Gn. Then the following statements are equivalent.
1. σ = τ .
2. σ(

∫
1) = τ (

∫
1), . . . , σ (

∫
n) = τ (

∫
n).

3. σ(∂1) = τ (∂1), . . . , σ (∂n) = τ (∂n).
4. σ(x1) = τ (x1), . . . , σ (xn) = τ (xn).

In Section 4, the group G1 and its explicit generators are found (Theorem 4.3). The key ingredi-
ents of the proof of Theorem 4.3 are the Fredholm operators, their indices and the Rigidity of the
group G1 (Theorem 3.6). It is proved that each algebra endomorphism of the algebra I1 is a monomor-
phism (Theorem 4.5), and no proper prime factor algebra of the algebra In can be embedded into the
algebra In (Theorem 5.19). These two results have bearing of the Jacobian Conjecture and the Prob-
lem/Conjecture of Dixmier (each algebra endomorphism of the Weyl algebra is an isomorphism).

Section 5 contains the main results of the paper, a proof that Gn = Sn �Tn � Inn(In) (Theorem 5.5)
is given.

• (Theorem 5.4)
1. Gn = {σ ∈ Gn | σ(In) = In} and Gn is a subgroup of Gn .
2. Each automorphism of the algebra In has a unique extension to an automorphism of the algebra An .

• (Theorem 5.15) The centre of the group Gn is {e}.
• (Theorem 5.17) IGn

n = K and IInn(In)
n = K , the algebras of invariants.

Each automorphism σ ∈ Gn = Sn � Tn � Inn(In) is a unique product σ = stλωϕ which is called the
canonical form of σ where s ∈ Sn , tλ ∈ Tn , ωϕ ∈ Inn(In) and ϕ ∈ (1 + an)∗ (ϕ is unique).

• (Corollary 5.10) Let σ ∈ Gn and σ = stλωϕ be its canonical form. Then the automorphisms s, tλ , and ωϕ

can be effectively (in finitely many steps) found from the action of the automorphism σ on the elements
{Hi, ∂i,

∫
i | i = 1, . . . ,n}:

σ(Hi) ≡ Hs(i) mod an, σ (∂i) ≡ λ−1
i ∂s(i) mod an, σ

(∫
i

)
≡ λi

∫
s(i)

mod an,

and the elements ϕ and ϕ−1 are given by the formulae (26) and (27) respectively for the automorphism
(stλ)−1σ ∈ Inn(In).

The explicit formulae (27) and (26) are too complicated to reproduce them in the Introduction.

• (Corollary 5.11) (A criterion of being inner automorphism) Let σ ∈ Gn. The following statements are
equivalent.
1. σ ∈ Inn(In).
2. σ(∂i) ≡ ∂i mod an for i = 1, . . . ,n.
3. σ(

∫
i) ≡ ∫

i mod an for i = 1, . . . ,n.

1.1. An inversion formula for σ ∈ Gn

The next theorem gives an inversion formula for σ ∈ Gn via the elements {σ(∂i),σ (
∫

i) | i =
1, . . . ,n}.

• (Theorem 5.14) Let σ ∈ Gn and σ = stλωϕ be its canonical form where s ∈ Sn, tλ ∈ Tn and ωϕ ∈ Inn(In)

for a unique element ϕ ∈ (1 + an)∗ . Then σ−1 = s−1ts(λ−1)ωstλ(ϕ−1) is the canonical form of the auto-

morphism σ−1 where the elements ϕ−1 and ϕ are given by the formulae (27) and (26) respectively for
the automorphism (stλ)−1σ ∈ Inn(In).



V.V. Bavula / Journal of Algebra 348 (2011) 233–263 237
In Section 6, the stabilizers in the group Gn of all the ideals of the algebra In are computed
(Theorem 6.2). In particular, the stabilizers of all the prime ideals of In are found (Corollary 6.4.(2)).

• (Corollary 6.4.(3)) The ideal an is the only nonzero, prime, Gn-invariant ideal of the algebra In.
• (Corollary 6.4) Let p be a prime ideal of In. Then its stabilizer StIn (p) is a maximal subgroup of the group

Gn iff n > 1 and p is of height 1, and, in this case, [Gn : StGn (p)] = n.
• (Corollary 6.3) Let a be a proper ideal of In. Then its stabilizer StGn (a) has finite index in the group Gn.
• (Corollary 6.5) If a is a generic ideal of In then its stabilizer can be written via the wreath products of the

symmetric groups:

StGn (a) =
(

Sm ×
t∏

i=1

(Shi � Sni )

)
� Tn � Inn(In),

where � stands for the wreath product of groups.

Corollary 6.6 classifies all the proper Gn-invariant ideals of the algebra In , there are exactly n of them.

2. The algebras IIIn and AAAn

In this section, for the reader’s convenience we collect some known results about the algebras In

and An from the papers [2,9,10] that are used later in the paper.
The algebra In is a prime, central, catenary, non-Noetherian algebra of classical Krull dimension n

and of Gelfand–Kirillov dimension 2n [10]. Since xi = ∫
i Hi , the algebra In is generated by the ele-

ments {∂i, Hi,
∫

i | i = 1, . . . ,n}, and In = ⊗n
i=1 I1(i) where

I1(i) := K

〈
∂i, Hi,

∫
i

〉
= K

〈
∂i, xi,

∫
i

〉
� I1.

When n = 1 we usually drop the subscript ‘1’ in ∂1,
∫

1, H1, and x1. The following elements of the
algebra I1 = K 〈∂, H,

∫ 〉,

eij :=
∫ i

∂ j −
∫ i+1

∂ j+1, i, j ∈ N, (1)

satisfy the relations: ei jekl = δ jkeil where δi j is the Kronecker delta. The matrices of the linear maps

ei j ∈ EndK (K [x]) with respect to the basis {x[s] := xs

s! }s∈N of the polynomial algebra K [x] are the ele-
mentary matrices, i.e.

eij ∗ x[s] =
{

x[i] if j = s,

0 if j �= s.

The direct sum F := ⊕
i, j∈N

K eij is the only proper (hence maximal) ideal of the algebra I1. As an
algebra without 1 it is isomorphic to the algebra without 1 of infinite dimensional matrices M∞(K ) :=
lim−→ Md(K ) = ⊕

i, j∈N
K Eij via ei j �→ Eij where Eij are the matrix units. For all i, j ∈ N,

∫
eij = ei+1, j, eij

∫
= ei, j−1, ∂eij = ei−1, j, eij∂ = ei, j+1, (2)
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where e−1, j := 0 and ei,−1 := 0. The algebra In = ⊗n
i=1 I1(i) contains the ideal Fn := F ⊗n =⊗n

i=1 F (i) = ⊕
α,β∈Nn K eαβ where eαβ := ∏n

i=1 eαiβi (i), eαiβi (i) := ∫ αi
i ∂

βi
i − ∫ αi+1

i ∂
βi+1
i and F (i) =⊕

s,t∈N
K est(i).

Proposition 2.1. (See [10, Proposition 2.2].)

1. The algebra In is generated by the elements {∂i,
∫

i, Hi | i = 1, . . . ,n} that satisfy the following defining
relations:

∀i: ∂i

∫
i
= 1,

[
Hi,

∫
i

]
=

∫
i
, [Hi, ∂i] = −∂i,

Hi

(
1 −

∫
i
∂i

)
=

(
1 −

∫
i
∂i

)
Hi = 1 −

∫
i
∂i,

∀i �= j: aia j = a jai where ak ∈
{
∂k,

∫
k
, Hk

}
.

2. The algebra In = ⊗n
i=1 D1(i)(σi,1) = Dn((σ1, . . . , σn), (1, . . . ,1)) is a generalized Weyl algebra

(
∫

i ↔ xi , ∂i ↔ yi , Hi ↔ Hi ) where Dn := ⊗n
i=1 D1(i), D1(i) := K [Hi] ⊕ ⊕

j�0 K e jj(i), Hie j j(i) =
e jj(i)Hi = ( j + 1)e jj(i), and the K -algebra endomorphisms σi are given by the rule σi(a) := ∫

i a∂i

(σi(Hi) = Hi − 1, σi(e jj(i)) = e j+1, j+1(i)). Moreover, the algebra In = ⊕
α∈Zn In,α is Zn-graded where

In,α = Dn vα = vα Dn for all α ∈ Zn where vα := ∏n
i=1 vαi (i) and v j(i) :=

⎧⎨⎩
∫ j

i if j > 0,

1 if j = 0,

∂
− j
i if j < 0.

Remark. Note that σi(1) = ∫
i ∂i = 1 − e00(i) �= 1 for all i = 1, . . . ,n.

Definition. Let A and B be algebras, let J (A) and J (B) be their lattices of ideals. We say that a
bijection f : J (A) → J (B) is an isomorphism if f (a ∗ b) = f (a) ∗ f (b) for ∗ ∈ {+, ·,∩}, and in this
case we say that the algebras A and B are ideal equivalent.

The ideal equivalence is an equivalence relation on the class of algebras (introduced in [10]). The
next theorem shows that the Jacobian algebra An and the algebra In are ideal equivalent.

Theorem 2.2. (See [10, Theorem 3.1].) The restriction map J (An) → J (In), a �→ ar := a ∩ In, is an isomor-
phism (i.e. (a1 ∗ a2)

r = ar
1 ∗ ar

2 for ∗ ∈ {+, ·,∩}) and its inverse is the extension map b �→ be := AnbAn.

The next corollary shows that the ideal theory of In is ‘very arithmetic.’ In some sense, it is the
best and the simplest possible ideal theory one can imagine. Let Bn be the set of all functions
f : {1,2, . . . ,n} → {0,1}. For each function f ∈ Bn , I f := I f (1) ⊗ · · · ⊗ I f (n) is the ideal of In where
I0 := F and I1 := I1. Let Cn be the set of all subsets of Bn all distinct elements of which are incom-
parable (two distinct elements f and g of Bn are incomparable if neither f (i) � g(i) nor f (i) � g(i)
for all i). For each C ∈ Cn , let IC := ∑

f ∈C I f be the ideal of In . The number dn of elements in the
set Cn is called the Dedekind number. It appeared in the paper of Dedekind [11]. An asymptotic of the
Dedekind numbers was found by Korshunov [16].

Recall that a submodule of a module that intersects non-trivially each nonzero submodule of the
module is called an essential submodule.
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Corollary 2.3. (See [10, Corollary 3.3].)

1. The set of height one prime ideals of the algebra In is {p1 := F ⊗ In−1,p1 := I1 ⊗ F ⊗ In−2, . . . ,pn :=
In−1 ⊗ F }.

2. Each ideal of the algebra In is an idempotent ideal (a2 = a).
3. The ideals of the algebra In commute (ab = ba).
4. The lattice J (In) of ideals of the algebra In is distributive.
5. [10, Lemma 5.2.(1)] Each nonzero ideal of the algebra In is an essential left and right submodule of In.
6. ab = a ∩ b for all ideals a and b of the algebra In.
7. The ideal an := p1 + · · · + pn is the largest (hence, the only maximal) ideal of In distinct from In, and

Fn = F ⊗n = ⋂n
i=1 pi is the smallest nonzero ideal of In.

8. (A classification of ideals of In) The map Cn → J (In), C �→ IC := ∑
f ∈C I f is a bijection where I∅ := 0.

The number of ideals of In is equal to the Dedekind number dn. For n = 1, F is the unique proper ideal of
the algebra I1 .

9. (A classification of prime ideals of In) Let Subn be the set of all subsets of {1, . . . ,n}. The map Subn →
Spec(In), I �→ pI := ∑

i∈I pi , ∅ �→ 0, is a bijection, i.e. any nonzero prime ideal of In is a unique sum of
primes of height 1; |Spec(In)| = 2n; the height of pI is |I|; and

10. pI ⊂ p J iff I ⊂ J .

2.1. The involution ∗ on the algebra In

Using the defining relations in Proposition 2.1.(1), we see that the algebra In admits the involution:

∗ : In → In, ∂i �→
∫

i
,

∫
i
�→ ∂i, Hi �→ Hi, i = 1, . . . ,n, (3)

i.e. it is a K -algebra anti-isomorphism ((ab)∗ = b∗a∗) such that ∗ ◦ ∗ = idIn . Therefore, the algebra In is
self-dual, i.e. is isomorphic to its opposite algebra Iop

n . As a result, the left and the right properties of
the algebra In are the same. For all elements α,β ∈ Nn ,

e∗
αβ = eβα. (4)

The involution ∗ can be extended to an involution of the algebra An by setting

x∗
i = Hi∂i, ∂∗

i =
∫

i
,

(
H±1

i

)∗ = H±1
i , i = 1, . . . ,n.

Note that y∗
i = (H−1

i ∂i)
∗ = ∫

i H−1
i = xi H−2

i , A∗
n � An , but I ∗

n = In where

In := K

〈
∂1, . . . , ∂n

∫
1
, . . . ,

∫
n

〉
is the algebra of integro-differential operators with constant coefficients.

For a subset S of a ring R , the sets l.annR(S) := {r ∈ R | r S = 0} and r.annR(S) := {r ∈ R | Sr = 0}
are called the left and the right annihilators of the set S in R . Using the fact that the algebra In is a
GWA and its Zn-grading, we see that

l.annIn

(∫
i

)
=

⊕
k∈N

K ek0(i) ⊗
⊗
i �= j

I1( j), r.annIn

(∫
i

)
= 0. (5)

r.annIn(∂i) =
⊕
k∈N

K e0k(i) ⊗
⊗
i �= j

I1( j), l.annIn (∂i) = 0. (6)
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Let a be an ideal of the algebra In . The factor algebra In/a is a Noetherian algebra iff a = an [10,
Proposition 4.1]. The factor algebra Bn := In/an is isomorphic to the skew Laurent polynomial algebra

n⊗
i=1

K [Hi]
[
∂i, ∂

−1
i ;τi

] = Pn
[
∂±1

1 , . . . , ∂±1
n ;τ1, . . . , τn

]
,

via ∂i �→ ∂i ,
∫

i �→ ∂−1
i , H1 �→ Hi (and xi �→ ∂−1

i Hi ) where Pn := K [H1, . . . , Hn] and τi(Hi) = Hi + 1.
We identify these two algebras via this isomorphism. It is obvious that

Bn =
n⊗

i=1

K [Hi]
[
zi, z−1

i ;σi
] = Pn

[
z±1

1 , . . . , z±1
n ;σ1, . . . , σn

]
,

where zi := ∂−1
i and σi = τ−1

i : Hi �→ Hi − 1. We use this alternative presentation of the algebra Bn

in order to avoid awkward expressions like ∂
∂∂i

later. By Theorem 2.2, ae
n is the only maximal ideal of

the Jacobian algebra An . The factor algebra An := An/ae
n is the skew Laurent polynomial algebra

An = Ln
[
∂±1

1 , . . . , ∂±1
n ;τ1, . . . , τn

] = Ln
[
x±1

1 , . . . , x±1
n ;σ1, . . . , σn

] = Ln
[
z±1

1 , . . . , z±1
n ;σ1, . . . , σn

]
where Ln := K [H±1

1 , (H1 ± 1)−1, (H1 ± 2)−1, . . . , H±1
n , (Hn ± 1)−1, (Hn ± 2)−1, . . .], τi(H j) = H j + δi j

where δi j is the Kronecker delta and σi = τ−1
i . By Theorem 2.2, aer

n = an , hence the algebra Bn is a
subalgebra of An . Moreover, the algebra An is the localization of the algebra Bn at the multiplica-
tively closed set {(H1 + α1)

m1 · · · (Hn + αn)mn | (αi) ∈ Zn, (mi) ∈ Nn}. The algebra Bn is also the left
(but not right) localization of the algebra In at the multiplicatively closed set S∂1,...,∂n := {∂α1

1 · · · ∂αn
n |

(αi) ∈ Nn}, Bn � S−1
∂1,...,∂n

In .

3. A description of the group Gn and two criteria

In this section, the key ingredients of the group Gn are introduced, namely, the groups Sn , Tn

and Inn(In). The subgroup of Gn they generate is their semi-direct product Sn � Tn � Inn(In). An im-
portant description of the group Gn is given (Corollary 3.3.(2)), and two criteria of equality of two
automorphisms of the algebra In are obtained (Theorem 3.6 and Corollary 3.7).

3.1. The group of inner automorphisms Inn(In) of the algebra In

For a group G , let Z(G) denote its centre. Since an is an ideal of the algebra In , the intersection
(1 + an)∗ := I∗n ∩ (1 + an) is a subgroup of the group I∗n of units of the algebra In .

Theorem 3.1.

1. [10, Theorem 5.6] I∗n = K ∗ × (1 + an)∗ and Z(I∗n) = K ∗ .
2. The map (1 + an)∗ → Inn(In), u �→ ωu , is a group isomorphism where ωu(a) := uau−1 , i.e. Inn(In) =

{ωu | u ∈ (1 + an)∗}.
3. I∗1 = K ∗ × (1 + F )∗ � K ∗ × GL∞(K ).

Proof. Statement 2 follows from statement 1. Statement 3 follows from statement 1 and the fact that
(1 + F )∗ � GL∞(K ). �
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3.2. The algebraic torus Tn

The n-dimensional algebraic torus Tn := {tλ | λ = (λ1, . . . , λn) ∈ K ∗n} � K ∗n is a subgroup of the
group Gn where

tλ

(∫
i

)
= λi

∫
i
, tλ(∂i) = λ−1

i ∂i, tλ(Hi) = Hi, i = 1, . . . ,n.

Note that tλ(xi) = λi xi since xi = ∫
i Hi . Tn = ∏n

i=1 T1(i) where T1(i) := {tλ(i) := t(1,...,1,λ,1,...,1) | λ ∈
K ∗} � K ∗ and the scalar λ is on ith place.

3.3. The symmetric group Sn

The symmetric group Sn is a subgroup of the group Gn where, for τ ∈ Sn ,

τ

(∫
i

)
=

∫
τ (i)

, τ (∂i) = ∂τ(i), τ (Hi) = Hτ (i), i = 1, . . . ,n.

The subgroup of Gn generated by Sn and Tn is the semi-direct product Sn � Tn since Sn ∩ Tn = {e}
and

τ tλτ
−1 = tτ (λ) where τ (λ) := (λτ−1(1), . . . , λτ−1(n)), (7)

for all τ ∈ Sn and tλ ∈ Tn .
Since an is the only maximal ideal of the algebra In , σ(an) = an for all σ ∈ Gn . There is the group

homomorphism (recall that Bn = In/an):

ξ : Gn → AutK -alg(Bn), σ �→ (
σ : a + an �→ σ(a) + an

)
. (8)

The subgroup Sn �Tn of Gn maps isomorphically to its image and ξ(Inn(In)) = {e}, by Theorem 3.1.(2).
Therefore, the subgroup G′

n of Gn generated by the subgroups Sn , Tn , and Inn(In) is equal to their
semi-direct product,

G′
n = Sn � Tn � Inn(In). (9)

The goal of the paper is to prove that Gn = G′
n (Theorem 5.5).

3.4. A description of the group Gn

Let A be an algebra and σ be its automorphism. For an A-module M , the twisted A-module σ M ,
as a vector space, coincides with the module M but the action of the algebra A is given by the
rule: a · m := σ(a)m where a ∈ A and m ∈ M . The next lemma is useful in finding the group of
automorphisms of algebras that have a unique faithful module satisfying some isomorphism-invariant
properties.

Lemma 3.2. Suppose that an algebra A has a unique (up to isomorphism) faithful A-module M that satisfies
an isomorphism-invariant property, say P . Then

AutK -alg(A) = {
σϕ

∣∣ ϕ ∈ AutK (M), ϕ Aϕ−1 = A
}
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where σϕ(a) := ϕaϕ−1 for a ∈ A, and the algebra A is identified with its isomorphic copy in EndK (M) via the
algebra monomorphism a �→ (m �→ am).

Proof. Let σ ∈ AutK -alg(A). The twisted A-module σ M is faithful and satisfies the property P . By the
uniqueness of M , the A-modules M and σ M are isomorphic. So, there exists an element ϕ ∈ AutK (M)

such that ϕa = σ(a)ϕ for all a ∈ A, and so σ(a) = ϕaϕ−1, as required. �
Example. The matrix algebra Md(K ) has a unique (up to isomorphism) simple module which is K n .
Then, by Lemma 3.2, every automorphism of Md(K ) is inner.

Recall that the polynomial algebra Pn is a unique (up to isomorphism) faithful, simple module for
the algebra In (Proposition 3.4.(1)) and the algebra An [2, Corollary 2.7.(10)].

Corollary 3.3.

1. [9, Corollary 4.8.(1)] Gn = {σϕ | ϕ ∈ AutK (Pn), ϕAnϕ
−1 = An} where σϕ(a) := ϕaϕ−1 , a ∈ An.

2. Gn = {σϕ | ϕ ∈ AutK (Pn), ϕInϕ
−1 = In} where σϕ(a) := ϕaϕ−1 , a ∈ In.

In [9], Corollary 3.3.(1) was used in finding the group Gn .

3.5. The automorphism ∗̂ ∈ Aut(Gn)

The involution ∗ of the algebra In induces the automorphism ∗̂ of the group Gn by the rule

∗̂ : Gn → Gn, σ �→ ∗ ◦ σ ◦ ∗−1. (10)

3.6. The In-module Pn

By the very definition of the algebra In as a subalgebra of EndK (Pn), the In-module Pn is faithful.
For the Weyl algebra An , the An-module An/

∑n
i=1 An∂i is isomorphic to Pn via 1 + ∑n

i=1 An∂i �→ 1.
The same statement is true for the algebra In (Proposition 3.4.(3)).

Proposition 3.4. (See [10, Proposition 3.8 and Proposition 6.1].)

1. The polynomial algebra Pn is the only (up to isomorphism) faithful, simple In-module.
2. I1 = I1∂ ⊕ I1e00 and I1 = ∫

I1 ⊕ e00I1 .
3. In Pn � In/

∑n
i=1 In∂i .

The In-module Pn is a very special module for the algebra In . Its properties, especially the unique-
ness, are used often in this paper. The polynomial algebra Pn = ⊕

α∈Nn K xα is a naturally Nn-graded
algebra. This grading is compatible with the Zn-grading of the algebra In , i.e. the polynomial alge-
bra Pn is a Zn-graded In-module. Each element ∂i ∈ In ⊆ EndK (Pn) is a locally nilpotent map, that is
Pn = ⋃

j�1 kerPn (∂
j

i ). Moreover,

n⋂
i=1

kerPn (∂i) = K .

Each element
∫

i ∈ In ⊆ EndK (Pn) is an injective (but not a surjective) map. Each element Hi ∈ In ⊆
EndK (Pn) is a semi-simple map (that is Pn = ⊕

λ∈K kerPn (Hi − λ)) with the set of eigenvalues Z+ :=
{1,2, . . .} since Hi ∗ xα = (αi + 1)xα for all α ∈ Nn . Moreover,
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n⋂
i=1

kerPn

(
Hi − (αi + 1)

) = K xα, α ∈ Nn. (11)

In particular, the K [H1, . . . , Hn]-module Pn = ⊕
α∈Nn K xα is the sum of simple, non-isomorphic, one-

dimensional submodules K xα , and so Pn is a semi-simple K [H1, . . . , Hn]-module.

Corollary 3.5.

1. Let M be an In-module. Then HomIn (Pn, M) � ⋂n
i=1 ker(∂i,M), f �→ f (1), where ∂i,M : M → M, m �→

∂im. In particular, EndIn (Pn) � K .
2. By Proposition 3.4.(1), (3), for each automorphism σ ∈ Gn, the In-modules Pn and σ Pn are isomorphic,

and each isomorphism f : Pn → σ Pn is given by the rule: f (p) = σ(p) ∗ v, where v = f (1) is any
nonzero element of the 1-dimensional vector space

⋂n
i=1 ker(σ (∂i)Pn ).

As an application of these results to the In-module Pn , we have two useful criteria of equality of
two elements in the group Gn . They are used in many proofs in this paper.

For an algebra A and a subset S ⊆ A, CenA(S) := {a ∈ A | as = sa for all s ∈ S} is the centralizer of
the set S in A. It is a subalgebra of A. It follows from the presentation of the algebra In as a GWA
that

CenIn (x1, . . . , xn) = Pn, CenIn(∂1, . . . , ∂n) = K [∂1, . . . , ∂n],

CenIn

(∫
1
, . . . ,

∫
n

)
= K

[∫
1
, . . . ,

∫
n

]
. (12)

In more detail, since In = ⊗n
i=1 I1(i) it suffices to prove the equalities for n = 1, but in this case the

equalities are obvious.
Let En := EndK -alg(In) be the monoid of all the K -algebra endomorphisms of In . The group of

units of this monoid is Gn . The automorphism ∗̂ ∈ Aut(Gn) can be extended to an automorphism
∗̂ ∈ Aut(En) of the monoid En:

∗̂ : En → En, σ �→ ∗ ◦ σ ◦ ∗−1. (13)

For each element α ∈ Nn , let x[α] := ∫ α ∗1. Then x[α] := xα

α! := ∏n
i=1

x
αi
i

αi ! and the set {x[α] | α ∈ Nn}
is a K -basis for the polynomial algebra Pn . The next result is instrumental in finding the group of
automorphisms of the algebra In .

Theorem 3.6 (Rigidity of the group Gn). Let σ ,τ ∈ Gn. Then the following statements are equivalent.

1. σ = τ .
2. σ(

∫
1) = τ (

∫
1), . . . , σ (

∫
n) = τ (

∫
n).

3. σ(∂1) = τ (∂1), . . . , σ (∂n) = τ (∂n).
4. σ(x1) = τ (x1), . . . , σ (xn) = τ (xn).

Remark. It is not true that σ(Hi) = τ (Hi) for all i = 1, . . . ,n implies σ = τ (Corollary 5.9.(2)).

Proof of Theorem 3.6. Without loss of generality we may assume that τ = e, the identity auto-
morphism. The proof consists of two parts: (1 ⇔ 2 ⇔ 3) and (4 ⇒ 1). Consider the following two
subgroups of Gn , the stabilizers of the sets {∫1, . . . ,

∫
n} and {∂1, . . . , ∂n}:
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StGn

(∫
1
, . . . ,

∫
n

)
:=

{
g ∈ Gn

∣∣∣ g

(∫
1

)
=

∫
1
, . . . , g

(∫
n

)
=

∫
n

}
,

StGn (∂1, . . . , ∂n) := {
g ∈ Gn

∣∣ g(∂1) = ∂1, . . . , g(∂n) = ∂n
}
.

Then

∗̂
(

StGn

(∫
1
, . . . ,

∫
n

))
= StGn(∂1, . . . , ∂n), ∗̂(StGn (∂1, . . . , ∂n)

) = StGn

(∫
1
, . . . ,

∫
n

)
.

Therefore, to prove that (1 ⇔ 2 ⇔ 3) (where τ = e) is equivalent to show that StGn (
∫

1, . . . ,
∫

n) = {e}.
So, let σ ∈ StGn (

∫
1, . . . ,

∫
n). We have to show that σ = e, i.e. σ(∂i) = ∂i and σ(Hi) = Hi for all i. For

each i = 1, . . . ,n, 1 = σ(∂i
∫

i) = σ(∂i)
∫

i and 1 = ∂i
∫

i . By taking the difference of these equalities we
see that ai := σ(∂i) − ∂i ∈ l.annIn (

∫
i). By (5), ai = ∑

j�0 λi je j0(i) for some elements λi j ∈ ⊗
k �=i I1(k),

and so

σ(∂i) = ∂i +
∑
j�0

λi je j0(i).

The element σ(∂i) commutes with the elements σ(
∫

k) = ∫
k , k �= i, hence all λi j ∈ K [∫1, . . . ,

∫̂
i, . . . ,

∫
n],

by (12). Since e j0(i) = ∫ j
i e00(i), we can write

σ(∂i) = ∂i + pie00(i) for some pi ∈ K

[∫
1
, . . . ,

∫
n

]
.

We have to show that all pi = 0. Suppose that this is not the case. Then pi �= 0 for some i. We
seek a contradiction. Note that σ−1 ∈ StGn (

∫
1, . . . ,

∫
n), and so σ−1(∂i) = ∂i + qie00(i) for some qi ∈

K [∫1, . . . ,
∫

n]. Recall that e00(i) = 1 − ∫
i ∂i . Then σ−1(e00(i)) = 1 − ∫

i(∂i + qie00(i)) = (1 − ∫
i qi)e00(i),

and

∂i = σ−1σ(∂i) = σ−1(∂i + pie00(i)
) = ∂i +

(
qi + pi

(
1 −

∫
i
qi

))
e00(i),

and so qi + pi = ∫
i piqi since the map K [∫1, . . . ,

∫
n] → K [∫1, . . . ,

∫
n]e00, p �→ pe00, is a bijection, by (2).

This is impossible by comparing the total degrees (with respect to the integrations) of the elements
on both sides of the equality. Therefore, σ(∂i) = ∂i for all i.

By Corollary 3.5.(2), there is an In-module isomorphism ϕ : Pn → σ Pn , p �→ σ(p) ∗ v , where

v := ϕ(1) ∈
n⋂

i=1

kerσ Pn

(
σ(∂i)

) =
n⋂

i=1

kerPn (∂i) = K 1.

Without loss of generality we may assume that v = 1. Then 1 = ϕ(1) = ϕ(Hi ∗ 1) = σ(Hi) ∗ 1 for all i.
For i = 1, . . . ,n,

σ(Hi) ∗ x[α] = σ(Hi)

∫ α

∗1 = σ(Hi)σ

(∫ α)
∗ 1 = σ

(
Hi

∫ α)
∗ 1 = σ

(∫ α

(Hi + αi)

)
∗ 1

= σ

(∫ α)(
σ(Hi) + αi

) ∗ 1 =
∫ α

(αi + 1) ∗ 1 = (αi + 1)x[α].
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This means that the linear maps σ(Hi), Hi ∈ EndK (Pn) coincide. Therefore, σ(Hi) = Hi for all i since
the In-module Pn is faithful. This proves that σ = e.

(4 ⇒ 1) Suppose that σ(xi) = xi for all i. Then σ(p) = p for all polynomials p ∈ Pn . We have to
show that σ = e. By Corollary 3.5.(2), there exists the In-module isomorphism f : Pn → σ Pn , p �→
σ(p)∗ v = pv . The map f is a bijection hence v ∈ K ∗ . Without loss of generality we may assume that
v = 1, then f = idPn . Let a ∈ {∂i, Hi,

∫
i} and b ∈ Pn . Then

a ∗ b = f (a ∗ b) = σ(a) ∗ f (b) = σ(a) ∗ b,

and so σ(a) = a since the In-module Pn is faithful. This means that σ = e. The proof of the theorem
is complete. �

Theorem 3.6 means that StGn (
∫

1, . . . ,
∫

n) = StGn (∂1, . . . , ∂n) = StGn (x1, . . . , xn) = {e}.
In zero characteristic, the Weyl algebra An is the ring D(Pn) of differential operators on the poly-

nomial algebra Pn . In prime characteristic, the Weyl algebra An and the algebra D(Pn) are distinct,
and the algebra D(Pn) is much more complicated object than the Weyl algebra An . An analogue
of Theorem 3.6 does not hold for the algebra D(Pn) in characteristic zero, but does hold in prime
characteristic [3, Theorem 1.1]. Also, the Rigidity Theorem is true for the Jacobian algebra An [9, The-
orem 4.12] and for the algebra Sn of one-sided inverses of the polynomial algebra Pn [6, Theorem 3.7]
but the Rigidity Theorem fails for the polynomial algebra Pn .

The ideal Fn is the smallest nonzero ideal of the algebra In . Therefore, σ(Fn) = Fn for all σ ∈ Gn .
The next corollary shows that the action of the group Gn on the ideal Fn is faithful. This result is used
in the proof of the fact that the group Gn has trivial centre (Theorem 5.15).

Corollary 3.7. Let σ ,τ ∈ Gn. Then σ = τ iff σ(eα0) = τ (eα0) for all α ∈ Nn iff σ(e0α) = τ (e0α) for all
α ∈ Nn iff σ(eαβ) = τ (eαβ) for all α,β ∈ Nn.

Proof. The last ‘iff’ follows from the previous two. The second ‘iff’ follows from the first one by using
the automorphism ∗̂ of the group Gn: σ = τ iff ∗̂(σ ) = ∗̂(τ ) iff ∗̂(σ )(eα0) = ∗̂(τ )(eα0) for all α ∈ Nn

(by the first ‘iff’) iff σ(e0α)∗ = τ (e0α)∗ for all α ∈ Nn (since e∗
α0 = e0α) iff σ(e0α) = τ (e0α) for all

α ∈ Nn .
So, it remains to prove that if σ(eα0) = τ (eα0) for all α ∈ Nn then σ = τ . Without loss of generality

we may assume that τ = e, the identity of the group Gn . So, we have to prove that if σ(eα0) = eα0
for all α ∈ Nn then σ = e. For each number i = 1, . . . ,n,

0 = (
1 − e00(i)

) ∗ 1 = σ
(
1 − e00(i)

) ∗ 1 = σ

(∫
i
∂i

)
∗ 1 = σ

(∫
i

)
σ(∂i) ∗ 1,

and so 0 = σ(∂i)σ (
∫

i)σ (∂i) ∗ 1 = σ(∂i
∫

i)σ (∂i) ∗ 1 = σ(∂i) ∗ 1, i.e.
⋂n

i=1 ker(σ (∂i)Pn ) = K , by Corol-
lary 3.5.(2). By Corollary 3.5.(2), the map f : Pn → σ Pn , p �→ σ(p) ∗ 1, is an In-module isomorphism.
Now, f (xα) = f (α!eα0 ∗ 1) = σ(α!eα0) ∗ 1 = α!eα0 ∗ 1 = xα for all α ∈ Nn where α! := α1! · · ·αn!. This
means that f is the identity map. For all a ∈ In and p ∈ Pn , a ∗ p = f (a ∗ p) = σ(a) ∗ f (p) = σ(a) ∗ p,
and so σ(a) = a since the In-module Pn is faithful. That is σ = e, as required. �
Corollary 3.8.

1. Let a be a nonzero ideal of the algebra In and σ ,τ ∈ Gn. Then σ = τ iff σ(a) = τ (a) for all a ∈ a.
2. Let a be a nonzero ideal of the algebra An and σ ,τ ∈ Gn. Then σ = τ iff σ(a) = τ (a) for all a ∈ a.

Proof. 1. Since F = ⊕
α,β∈Nn K eαβ ⊆ a, statement 1 follows from Corollary 3.7.

2. Similarly, since F = ⊕
α,β∈Nn K eαβ ⊆ a, statement 2 follows from [9, Corollary 4.6]. �
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4. The group AutK -alg(III1)

In this section, the group G1 and its explicit generators are found (Theorem 4.3). The key idea
in finding the group G1 of automorphisms of the algebra I1 is to use Theorem 3.6, some of the
properties of the index of linear maps in the vector space P1 = K [x], and the explicit structure of the
group AutK -alg(I1/F ) (Theorem 4.1). It is proved that any algebra endomorphism of the algebra I1 is
a monomorphism (Theorem 4.5); note that the algebra I1 is not a simple algebra.

4.1. The group G1 := AutK -alg(B1)

Recall that B1 = K [H][x, x−1;σ ] and σ(H) = H − 1. Consider the following automorphisms of the
algebra B1:

tλ : x �→ λx, H �→ H
(
λ ∈ K ∗),

sp : x �→ x, H �→ H + p
(

p ∈ K
[
x, x−1]),

ζ : x �→ x−1, H �→ −H,

and the subgroups they generate in the group G1:

T1 := {
tλ

∣∣ λ ∈ K ∗} � K ∗, Sh1 := {
sp

∣∣ p ∈ K
[
x, x−1]} � K

[
x, x−1], 〈ζ 〉 � Z2 := Z/2Z.

We can easily check that

ζ tλζ
−1 = t−1

λ , ζ spζ−1 = s−ζ(p), tλspt−1
λ = stλ(p). (14)

It follows that the subgroup of G1 generated by the three subgroups above is, in fact, their semidirect
product,

〈ζ 〉 � T1 � Sh1 � Z2 � K ∗ � K
[
x, x−1],

since, for ε = 0,1; λ ∈ K ∗; and p ∈ K [x, x−1]:

ζ εtλsp : x �→ λx1−2ε, H �→ (−1)ε H + ζ εtλ(p), (15)

and ζ εtλsp = e iff ε = 0, λ = 1, and p = 0. Theorem 4.1 shows that this is the whole group of auto-
morphisms of the algebra B1.

For a group G , [G, G] denotes its commutant, i.e. the subgroup of G generated by all the group com-
mutators [a,b] := aba−1b−1 of the elements a,b ∈ G . The centre of a group G is denoted by Z(G). For
subgroups A and B of the group G , let [A, B] be the subgroup of G generated by all the commutators
[a,b] where a ∈ A and b ∈ B . Given a semi-direct product A �

∏m
i=1 Bi of groups such that aBia−1 ⊆ Bi

for all a ∈ A and i = 1, . . . ,m; then its commutant is equal to [A, A] �
∏m

i=1([A, Bi] · [Bi, Bi]) [9,
Lemma 5.4.(2)]. This fact is used in the proof of the following theorem.

Theorem 4.1.

1. G1 = 〈ζ 〉 � T1 � Sh1 .
2. Z(G1) = {e}.
3. [G1,G1] = {tλ2 | λ ∈ K ∗} � Sh1 and G1/[G1,G1] � Z2 × K ∗/K ∗2 .
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Proof. 1. Let σ ∈ G1 and G′
1 be the semi-direct product. It suffices to show that σ ∈ G′

1 since G′
1 ⊆

G1. The automorphism σ of the algebra B1 induces an automorphism of its group of units B∗
1 =⋃

i∈Z
K ∗xi . Then σ(x) = λx±1 for a nonzero scalar λ ∈ K ∗ . Multiplying σ on the left by a suitable

element of the group 〈ζ 〉 � T1 we may assume that σ(x) = x. Then

[
σ(H) − H, x

] = σ
([H, x]) − [H, x] = σ(x) − x = 0.

Therefore, p := σ(H) − H ∈ CenB1 (x) = K [x, x−1], and so σ = hp ∈ G′
1. This proves that G1 = G′

1.
2. Let z ∈ Z(G1). By statement 1, z = ζ εtλsp for some elements ε = 0,1; λ ∈ K ∗; and p ∈ K [x, x−1].

By (14),

ζ εtλμst
μ−1 (p) = ztμ = tμz = ζ εtλμ1−2ε sp,

hence ε = 0 and p ∈ K . Next, ζ tλsp = ζ z = zζ = ζ tλ−1 s−p , hence λ = ±1 and p = 0, i.e. z = t±1. Since
sxt−1 �= t−1sx , z = t1 = e. Therefore, Z(G1) = {e}.

3. It suffices to prove only that the equality holds since then the isomorphism is obvious, by
statement 1. Let R be the RHS of the equality. Then R ⊆ [G1,G1] since

tλ2 = [ζ, tλ−1 ], sμx j = [t2, s μx j

2 j−1

], sμ = [ζ, s− μ
2
],

where 0 �= j ∈ Z, λ ∈ K ∗ , and μ ∈ K . It suffices to show that [G1/Sh1,G1/Sh1] ⊆ R ′ where R ′ :=
{tλ2 | λ ∈ K ∗} is treated as a subgroup of the factor group G1/Sh1 � 〈ζ 〉 � T1. By Lemma 5.4 of [9],
[〈ζ 〉 � T1, 〈ζ 〉 � T1] = [〈ζ 〉,T1] = R ′ . �
4.2. The index ind of linear maps and the Fredholm operators

Let C = C(K ) be the family of all K -linear maps with finite dimensional kernel and cokernel
(such maps are called the Fredholm linear maps/operators). So, C is the family of Fredholm linear
maps/operators. For vector spaces V and U , let C(V , U ) be the set of all the linear maps from V
to U with finite dimensional kernel and cokernel. So, C = ⋃

V ,U C(V , U ) is the disjoint union.

Definition. For a linear map ϕ ∈ C , the integer

ind(ϕ) := dim ker(ϕ) − dim coker(ϕ)

is called the index of the map ϕ .

Example. Note that ∂,
∫ ∈ I1 ⊂ EndK (P1). Then

ind
(
∂ i) = i and ind

(∫ i)
= −i, i � 1. (16)

Each nonzero element u of the skew Laurent polynomial algebra A1 = L1[x, x−1;σ1] (where
σ1(H) = H − 1) is a unique sum u = λsxs + λs+1xs+1 + · · · + λdxd where all λi ∈ L1, λd �= 0, and λdxd

is the leading term of the element u. Recall that L1 := K [H±1, (H ± 1)−1, (H ± 2)−1, . . .], B1 ⊂ A1,
and I1 ⊂ A1. The integer degx(u) = d is called the degree of the element u, degx(0) := −∞. For all
u, v ∈ A1, degx(uv) = degx(u) + degx(v) and degx(u + v) � max{degx(u),degx(v)}. The next lemma
explains how to compute the index of the elements A1\F (resp. I1\F ) via the degree function degx
and proves that the index is a G1-invariant (resp. a G1-invariant) concept. Note that F ∩ C = ∅.
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Lemma 4.2.

1. [9, Lemma 5.3.(1)] C ∩ A1 = A1\F (recall that A1 ⊂ EndK (P1)) and, for each element a ∈ A1\F ,
ind(a) = −degx(a) where a = a + F ∈ A1/F = A1 .

2. [9, Lemma 5.3.(2)] ind(σ (a)) = ind(a) for all σ ∈ G1 and a ∈ A1\F .
3. C ∩ I1 = I1\F ; for each element a ∈ I1\F , ind(a) = −degx(a) where a = a + F ∈ B1; and ind(σ (a)) =

ind(a) for all σ ∈ G1 and a ∈ I1\F .

Proof. Since In ⊆ An , statement 3 follows from statements 1, 2 and Corollary 3.3.(2). �
The next theorem presents the group G1 and its explicit generators.

Theorem 4.3.

1. G1 = T1 � Inn(I1).
2. G1 � K ∗ � GL∞(K ).
3. [G1,G1] = {ωu | u ∈ SL∞(K )} and G1/[G1,G1] � T1 × T1 .
4. The group G1 is generated by the elements tλ , ω1+λei j where i �= j and λ ∈ K ∗ , and ω1+μe11 where

μ ∈ K\{−1}.

Proof. 1. Let σ ∈ G1. By (9), G′
1 = T1 � Inn(I1) ⊆ G1. It remains to show that the reverse inclusion

holds, that is σ ∈ G′
1. The ideal F of the algebra I1 is the only maximal ideal. Therefore, σ(F ) = F and

σ := ξ(σ ) ∈ G1, see (8). By Theorem 4.1.(1) and (15), either σ (∂) = λx−1 or, otherwise, σ(∂) = λx for
some element λ ∈ K ∗ . Equivalently, either σ(∂) = λ∂ + f or σ(∂) = λ

∫ + f for some element f ∈ F .
Recall that I1 ⊂ A1. By Lemma 4.2.(3) and Corollary 3.3.(2), the second case is impossible as we have
the contradiction:

1 = ind(∂) = ind
(
σ(∂)

) = ind

(
λ

∫
+ f

)
= ind

(
λxH−1 + f

) = −degx

(
λxH−1) = −1.

Therefore, σ(∂) = λ∂ + f . Replacing σ by tλσ we may assume that σ(∂) = ∂ + g where g := tλ( f ) ∈ F
(as F is the only maximal ideal of the algebra I1, hence τ (F ) = F for all τ ∈ G1). Fix a natural number
m such that g ∈ ∑m

i, j=0 K eij . Then the finite dimensional vector spaces

V :=
m⊕

i=0

K x[i] ⊂ V ′ :=
m+1⊕
i=0

K x[i]

are ∂ ′-invariant where ∂ ′ := σ(∂) = ∂ + g , x[i] := xi

i! , and x[0] := 1. Note that ∂ ′ ∗ x[m+1] = ∂ ∗ x[m+1] =
x[m] since g ∗ x[m+1] = 0. Note that P1 = ⋃

i�1 ker(∂ i) and dim kerP1 (∂) = 1. Since the I1-modules

P1 and σ P1 are isomorphic (Corollary 3.5.(2)), P1 = ⋃
i�1 ker(∂ ′ i) and dim kerP1 (∂

′) = 1. This implies

that the elements x′ [0], x′ [1], . . . , x′ [m], x[m+1] are a K -basis for the vector space V ′ where

x′ [i] := ∂ ′m+1−i ∗ x[m+1], i = 0,1, . . . ,m;

and the elements x′ [0], x′ [1], . . . , x′ [m] are a K -basis for the vector space V . Then the elements

x′ [0], x′ [1], . . . , x′ [m], x[m+1], x[m+2], . . .

are a K -basis for the vector space P1. The K -linear map
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ϕ : P1 → P1, x[i] �→ x′ [i] (i = 0,1, . . . ,m), x[ j] �→ x[ j] ( j > m), (17)

belongs to the group (1+ F )∗ = GL∞(K ) � Inn(I1) (by Theorem 3.1.(2)) and satisfies the property that
∂ ′ϕ = ϕ∂ , the equality is in EndK (P1). This equality can be rewritten as follows:

ωϕ−1σ(∂) = ∂ where ωϕ−1 ∈ Inn(I1).

By Theorem 3.6, ωϕ−1σ = e, hence σ ∈ G′
1.

2. Statement 2 follows from statement 1 and the fact that Inn(I1) � (1 + F )∗ � GL∞(K ) (by Theo-
rem 3.1.(2)).

3. [G1,G1] = [T1 � GL∞(K ),T1 � GL∞(K )] = [T1,GL∞(K )][GL∞(K ),GL∞(K )] = SL∞(K ) since
[T1,GL∞(K )] ⊆ SL∞(K ) and SL∞(K ) = [GL∞(K ),GL∞(K )]. Now, G1/[G1,G1] � T1 × GL∞(K )/

SL∞(K ) � T1 × T1.
4. Statement 4 follows from statements 1 and 2 and the fact that the group GL∞(K ) is generated

by the elements 1 + λei j and 1 + μe11 where i �= j, λ ∈ K ∗ and μ ∈ K\{−1}. �
Corollary 4.4. ξ(G1) = T1 and ker(ξ) = Inn(I1).

Proof. The homomorphism ξ maps isomorphically the torus T1 onto its image T1, and
ξ(Inn(I1)) = {e} (by Theorem 3.1.(2)). Therefore, ξ(G1) = T1 and ker(ξ) = Inn(I1) since G1 = T1 �
Inn(I1). �

Every algebra endomorphism of a simple algebra is a monomorphism. The algebra I1 is not simple
but the same result holds.

Theorem 4.5. Every algebra endomorphism of the algebra I1 is a monomorphism.

Proof. Recall that F is the only proper ideal of the algebra I1, and I1/F = B1 := K [H][x, x−1;σ1] is
a simple algebra where σ1(H) = H − 1. Suppose that γ is an algebra endomorphism of I1 which
is not a monomorphism, then necessarily γ (F ) = 0, and the endomorphism γ induces the algebra
monomorphism γ : B1 → I1, a + F �→ γ (a). We seek a contradiction. Since ∂

∫ = 1 and
∫

∂ = 1 − e00,
we have the equalities γ (∂)γ (

∫
) = 1 and γ (

∫
)γ (∂) = 1, i.e. the elements γ (∂) and γ (

∫
) are units

of the algebra I1. Therefore, the images of the elements γ (∂) and γ (
∫
) in the algebra B1 under

the epimorphism π : I1 → B1 belong to the group of units of the algebra B1 which is K ∗ , hence
π(im(γ )) ⊆ K 〈πγ (H)〉, a commutative algebra. This is impossible since the algebra im(γ ) � B1 is a
simple non-commutative algebra. This contradiction proves the theorem. �
Question. Is an algebra endomorphism of the algebra I1 an isomorphism? The same question we can
ask for In , see Theorem 5.19.

This question has flavour of the Question/Conjecture of Dixmier [12]: is an algebra endomorphism of
the Weyl algebra an isomorphism?

5. The group of automorphisms of the algebra IIIn

In this section, it is proved that Gn = Sn �Tn � Inn(In) (Theorem 5.5), the groups Inn(ξ) and ker(ξ)

are found (Theorem 5.5.(3), (4)). The group Gn has trivial centre (Theorem 5.15). For each automor-
phism σ of the algebra In , an explicit inversion formula is given via the elements {σ(∂i),σ (

∫
i) | i =

1, . . . ,n} (Theorem 5.14). It is proved that no proper prime factor algebra of the algebra In can be
embedded into In (Theorem 5.19). It is shown that each automorphism of the algebra In of scalar
integro-differential operators can be uniquely extended to an automorphism of the algebra In (Theo-
rem 5.21).
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5.1. The group Gn := AutK -alg(Bn)

Recall that Bn = K [H1, . . . , Hn][z±1
1 , . . . , z±1

n ;σ1, . . . , σn], σi(H j) = H j −δi j . The algebra Bn contains

the Laurent polynomial algebra Ln := K [z±1
1 , . . . , z±1

n ]. The set L′
n := {(pi) ∈ Ln

n | zi
∂ p j
∂zi

= z j
∂ pi
∂z j

, ∀i �= j}
is a K -subspace of Ln

n . Clearly, K n ⊆ L′
n and L′

n ⊇ ⊕n
i=1 K [zi, z−1

i ] = {(pi) | pi ∈ K [zi, z−1
i ]}. The elements

H1 + p1, . . . , Hn + pn (where pi ∈ Ln) of the algebra Bn commute iff (pi) ∈ L′
n .

Consider the following automorphisms of the algebra Bn: for i = 1, . . . ,n,

a : zi �→
n∏

j=1

z
aij

j , Hi �→
n∑

j=1

H jb ji
(
a = (aij) ∈ GLn(Z), (bij) = a−1),

tλ : zi �→ λi zi, Hi �→ Hi
(
λ = (λi) ∈ K ∗n),

sp : zi �→ zi, Hi �→ Hi + pi
(

p = (pi) ∈ L′
n

)
,

and the subgroups they generate in the group Gn:

Ωn := {
a
∣∣ a ∈ GLn(Z)

} � GLn(Z)op, Tn := {
tλ

∣∣ λ ∈ K ∗n} � K ∗n, Shn := {
sp

∣∣ p ∈ L′
n

} � L′
n.

The group Ωn is isomorphic to the opposite group GLn(Z)op of the general linear group GLn(Z) via
a �→ a. Recall that as a set GLn(Z)op = GLn(Z) but the group structure on GLn(Z)op is given by the
rule a ◦ b = ba, the matrix multiplication. The group GLn(Z)op is isomorphic to the group GLn(Z) via
a �→ a−1.

For each nonzero element α ∈ Zn , the set Supp(α) := {i | αi �= 0} is called the support of α, and
min(α) denotes the minimal number in the support of α. The following lemma gives a K -basis for
the vector space L′

n . Recall that K n ⊆ L′
n .

Lemma 5.1. L′
n = K n ⊕ ⊕

0�=α∈Zn Kbα where bα = (λi zα), λi =
⎧⎨⎩

0 if i /∈ Supp(α),

1 if i = min(α),
αi

αmin(α)
if i ∈ Supp(α).

Proof. It is obvious that L′
n ⊇ R where R is the RHS of the equality. Each direct summand K zα of

the Laurent polynomial algebra K [z±1
1 , . . . , z±1

n ] = ⊕
α∈Zn K zα is invariant under the actions of the

K -derivations z1
∂

∂z1
, . . . , zn

∂
∂zn

since zi
∂(zα)
∂zi

= αi zα . Therefore, a K -basis for the vector space L′
n can

be chosen in such a way that every element of the basis is of the type (λi zα) where 0 �= (λi) ∈ K n ,
α ∈ Zn and

αiλ j = α jλi for all i �= j. (18)

If α = 0 then there is no restriction on the scalars λ j and we get the vector space K n .
If α �= 0 then either λmin(α) �= 0 or λmin(α) = 0. In the first case, the space of solutions to the

system of linear equations (18) is K (λi) where the vector (λi) ∈ K n is as in the lemma. If λmin(α) = 0
then λi = 0 for all i = 1, . . . ,n. Now, the lemma is obvious. �

We can easily verify that

atλa−1 = t a−1 , aspa−1 = sa(p)a, tλspt−1
λ = stλ(p), (19)
λ
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where λa−1 = (λ′
i), λ′

i := ∏n
j=1 λ

bij

j , (bij) = a−1; a(p)a = (p′
i), p′

i = ∑n
j=1 a(p j)a ji ; tλ(p) = (tλ(pi)). It

follows that the subgroup of the group Gn generated by the three subgroups above is, in fact, the
semi-direct product Ωn � Tn � Shn since

atλsp : zi �→ λi

n∏
j=1

z
aij

j , Hi �→
n∑

j=1

H jb ji + atλ(pi), (20)

and so atλsp = e iff a = e, all λi = 1, and p = 0. Theorem 5.2.(1) shows that this is the whole group
of automorphisms of the algebra Bn .

Theorem 5.2.

1. Gn = Ωn � Tn � Shn � GLn(Z)op � K ∗n � L′
n.

2. Z(Gn) = {e}.
3. Let n � 2. Then [Gn,Gn] = [Ωn,Ωn] � Tn � Shn and Gn/[Gn,Gn] � Z2 .

Proof. 1. Let σ ∈ Gn and G′
n be the semi-direct product Ωn � Tn � Shn . Recall that G′

n ⊆ Gn . It re-
mains to show that the reverse inclusion holds. The automorphism σ of the algebra Bn induces an
automorphism of its group of units B∗

n = ⋃
α∈Zn K ∗zα . Then

σ(zi) = λi

n∏
j=1

z
aij

j , i = 1, . . . ,n,

where λi ∈ K ∗ and a = (aij) ∈ GLn(Z). Replacing the automorphism σ with tμa−1σ for some μ ∈ K ∗n

we may assume that σ(zi) = zi for all i = 1, . . . ,n. Then, for all indices i, j = 1, . . . ,n,[
σ(Hi) − Hi, z j

] = σ
([Hi, z j]

) − [Hi, z j] = σ(δi j z j) − δi j z j = δi j z j − δi j z j = 0.

Therefore, pi := σ(Hi) − Hi ∈ CenBn (z1, . . . , zn) = Ln . The elements σ(H1), . . . , σ (Hn) commute

0 = [
σ(Hi),σ (H j)

] = [Hi + pi, H j + p j] = [Hi, p j] − [H j, pi] = zi
∂ p j

∂zi
− z j

∂ pi

∂z j
.

Therefore, (pi) ∈ L′
n , i.e. σ = sp ∈ G′

n , and so Gn ⊆ G′
n .

2. By Theorem 4.1.(2), we may assume that n � 2. Let z ∈ Z(Gn). By statement 1, z = atλsp . By (19),
for all elements b ∈ Ωn ,

batλsp = bz = zb = abtλb sb−1(p)b−1 .

Then λ = (1, . . . ,1) and b ∈ Z(Ωn) = {±e} where −e : zi �→ z−1
i , Hi �→ −Hi , for all i = 1, . . . ,n. Since

(−e)sp s(z1,...,zn) �= s(z1,...,zn)(−e)sp , we have z = sp . The equalities stλ(p) = tλspt−1
λ = sp for all tλ ∈ Tn

imply that p ∈ K n . The equalities

spa = sa(p)a = aspa−1 = sp

for all elements a ∈ Ωn imply that p = 0, and so z = e. Therefore, Z(Ωn) = {e}.
3. Let R be the RHS of the first equality in statement 3. Then R ⊆ [Gn,Gn] since, for all i �= j,[

E − Eij, tλ( j)
] = tλ(i)
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where tλ(i) ∈ T1(i), E ∈ Mn(K ) is the identity matrix, Eij ∈ Mn(K ) are the matrix units, and

[
t2(i), s bα

2αi −1

] = sbα ,
[
(−e), s− μ

2 e j

] = sμe j ,

where α ∈ Zn with αi �= 0, the elements bα are as in Lemma 5.1, and the set {e1, . . . , en} is the
standard K -basis for the vector space K n . The reverse inclusion R ⊇ [Gn,Gn] is obvious since the
factor group

Gn/R � Ωn/[Ωn,Ωn] � GLn(Z)/
[
GLn(Z),GLn(Z)

] � Z2

is abelian. Now, it is obvious that Gn/[Gn,Gn] � Z2. �
5.2. A characterization of the elements of the group Gn

For each automorphism σ of the algebra In , the next lemma gives explicitly the map ϕ ∈ AutK (Pn)

such that σ = σϕ (see Corollary 3.3.(2)). Lemma 5.3 is used at the final stage of the proof of Theo-
rem 5.5.

Lemma 5.3. For each automorphism σ of the algebra In, there exists a K -basis {x′ [α]}α∈Nn of the polynomial
algebra Pn such that σ(Hi) ∗ x′ [α] = (αi + 1)x′ [α] and σ(∂i) ∗ x′ [α] = x′ [α−ei ] for all i = 1, . . . ,n (where
x′ [β] := 0 if β ∈ Zn\Nn). Moreover,

1. σ = σϕ where the map ϕ ∈ AutK (Pn): x[α] �→ x′ [α] is the change-of-the-basis map,
2. σ(

∫
i) ∗ x′ [α] = x′ [α+ei ] for all i = 1, . . . ,n, and

3. the basis {x′ [α]}α∈Nn is unique up to a simultaneous multiplication of each element of the basis by the
same nonzero scalar.

Proof. Recall that the polynomial algebra Pn = ⊕
α∈Nn K x[α] (where x[α] := ∏n

i=1
x
αi
i
i! ) is the di-

rect sum of non-isomorphic, one-dimensional, simple K [H1, . . . , Hn]-modules (see (11)) such that
∂i ∗ x[α] = x[α−ei ] for all α ∈ Nn and i = 1, . . . ,n (where x[β] := 0 if β ∈ Zn\Nn). Recall that σ = σϕ for
some linear map ϕ ∈ AutK (Pn), the linear map ϕ : Pn → σ Pn is an In-module isomorphism (Corol-
lary 3.3.(2)), and the map ϕ is unique up to a multiplication by a nonzero scalar since EndIn (Pn) � K
(Corollary 3.5.(1)). Let

x′ [α] := ϕ
(
x[α]), α ∈ Nn.

Then the fact that the map ϕ is an In-module homomorphism is equivalent to the fact that the
following equations hold:

σ(Hi) ∗ x′ [α] = ϕHiϕ
−1ϕ ∗ x[α] = (αi + 1)ϕ ∗ x[α] = (αi + 1)x′ [α],

σ (∂i) ∗ x′ [α] = ϕ∂iϕ
−1ϕ ∗ x[α] = ϕ ∗ x[α−ei ] = x′ [αi−ei ] (

x′ [β] := 0, β ∈ Zn\Nn),
σ

(∫
i

)
∗ x′ [α] = ϕ

∫
i
ϕ−1ϕ ∗ x[α] = ϕ ∗ x[α+ei ] = x′ [αi+ei ].

Note that the last equality follows from the previous two: by the first equality, the polyno-
mial algebra Pn = ⊕

α∈Nn K x′ [α] is the direct sum of non-isomorphic, one-dimensional, simple
K [σ(H1), . . . , σ (Hn)]-modules. Since σ(Hi)σ (

∫
i) ∗ x′ [α] = σ(Hi

∫
i) ∗ x′ [α] = σ(

∫
i(Hi + 1)) ∗ x′ [α] =

σ(
∫

i)(σ (Hi) + 1) ∗ x′ [α] = (αi + 2)σ (
∫

i) ∗ x′ [α] for all i, we have σ(
∫

i) ∗ x′ [α] = λi,αx′ [α+ei ] for a scalar
λi,α which is necessarily equal to 1 since
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x′ [α] = σ(∂i)σ

(∫
i

)
∗ x′ [α] = λi,ασ (∂i) ∗ x′ [α+ei ] = λi,αx′ [α].

Since the isomorphism ϕ is unique up to a multiplication by a nonzero scalar, the basis {x′ [α]} is
unique up to a simultaneous multiplication of each element of it by the same nonzero scalar. The
proof of the lemma is complete. �
5.3. The group Gn is a subgroup of Gn

In [10], it is proved that the Jacobian algebra An = S−1In is the two-sided localization of the
algebra In at the multiplicatively closed subset

S :=
{

n∏
i=1

(Hi + αi)
ni∗

∣∣∣ (αi) ∈ Zn, (ni) ∈ Nn

}

of In where (Hi + αi)∗ :=
{

Hi + αi if αi � 0,

(Hi + αi)1 if αi < 0,
and (Hi − j)1 := Hi − j + e j−1, j−1(i) for j � 1. The

elements of the set S ⊆ EndK (Pn) are invertible linear maps in Pn , i.e. S ⊆ AutK (Pn), and therefore
are regular elements of the algebra In since In ⊆ EndK (Pn).

Theorem 5.4.

1. Gn = {σ ∈ Gn | σ(In) = In} and Gn is a subgroup of Gn.
2. Each automorphism of the algebra In has a unique extension to an automorphism of the algebra An.

Proof. 1. Statement 1 follows from statement 2: the set {σ ∈ Gn | σ(In) = In} is a subgroup of the
group Gn that is mapped isomorphically onto the group Gn via σ �→ σ |In , by statement 2.

2. It suffices to prove that each automorphism σ of the algebra In can be extended to an auto-
morphism of the algebra An , since then its uniqueness is obvious as An = S−1In . By Corollary 3.5.(2)
and Lemma 5.3, there exists an In-module isomorphism ϕ : Pn → σ Pn which is unique up to K ∗ ,
and σ(a) = ϕaϕ−1 for all a ∈ In . Using the K -basis {x′ [α]}α∈Nn of Lemma 5.3 we see that all the
elements {σ(s) | s ∈ S} are invertible in EndK (σ Pn) = EndK (Pn). By the universal property of local-
ization, the algebra monomorphism In → EndK (σ Pn), a �→ (p �→ σ(a)p), can be extended uniquely to
the algebra homomorphism An → EndK (σ Pn), s−1a �→ (p �→ σ(s)−1σ(a)p) where s ∈ S and a ∈ In . It
is obvious that the extension is an algebra monomorphism since σ(S) ⊆ AutK (σ Pn). Therefore, the
An-module σ Pn is simple and faithful (since the In-module σ Pn is simple and In ⊆ An). The An-
module Pn is the only (up to isomorphism) simple and faithful An-module [2, Corollary 2.7.(10)], and
EndAn (Pn) � K . Therefore, there exists a unique (up to K ∗) An-module isomorphism ψ : Pn → σ Pn

such that σ(a) = ψaψ−1 for all elements a ∈ An . In particular, the map ψ is an In-module isomor-
phism. Therefore, K ∗ψ = K ∗ϕ since EndIn (Pn) � K . Without loss of generality we may assume that
ψ = ϕ . Therefore, the automorphism σ ∈ Gn can be uniquely extended to an automorphism of the
algebra An . �

For each natural number d � 1, there is the decomposition K [xi] = (
⊕d−1

j=0 K x j
i )⊕ (

⊕
k�d K xk

i ). The

idempotents of the algebra In , p(i,d) := ∑d−1
j=0 e jj(i) and q(i,d) := 1 − p(i,d), are the projections onto

the first and the second summand correspondingly. For a subset I of the set {1, . . . ,n}, C I denotes its
complement. Since Pn = ⊗n

i=1 K [xi], the identity map 1 = idPn on the vector space Pn is the sum

1 =
n⊗

i=1

(
p(i,d) + q(i,d)

) =
∑

I⊆{1,...,n}
p(I,d)q(C I,d) (21)
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of orthogonal idempotents where p(I,d) := ∏
i∈I p(i,d), q(C I,d) := ∏

i∈C I q(i,d), p(∅,d) := 1, and
q(∅,d) := 1. Each idempotent p(I,d)q(C I,d) ∈ In ⊂ EndK (Pn) is the projection onto the summand
Pn(I,d) in the following decomposition of the vector space Pn ,

Pn =
⊕

I⊆{1,...,n}
Pn(I,d), Pn(I,d) :=

⊕{
K x[α] ∣∣ αi < d, if i ∈ I; α j � d, if j ∈ C I

}
. (22)

In particular, the idempotent q({1, . . . ,n},d) is the projection onto the subspace Pn({1, . . . ,n},d) =⊕{K x[α] | all αi � d}.

5.4. The group Gn and a formula for the map ϕ such that σ = σϕ

By Theorem 3.6, each element σ = σϕ ∈ Gn (Corollary 3.3.(2)) is uniquely determined by the ele-
ments σ(∂1), . . . , σ (∂n). In the proof of Theorem 5.5, an explicit formula for the map ϕ is given, (26),
via the elements σ(∂1), . . . , σ (∂n).

By the very definition, the group ker(ξ) (see (8)) contains precisely all the automorphisms σ ∈ Gn

such that

σ

(∫
i

)
≡

∫
i

mod an, σ (∂i) ≡ ∂i mod an, σ (Hi) ≡ Hi mod an, i = 1, . . . ,n. (23)

Theorem 5.5.

1. Gn = Sn � Tn � Inn(In).
2. Gn = Sn � Tn � ker(ξ).
3. im(ξ) = Sn � Tn.
4. ker(ξ) = Inn(In).

Proof. 1. Statement 1 follows from statements 2 and 4.
2. Statement 2 follows from statement 3: suppose that im(ξ) = Sn � Tn , then the homomorphism

ξ maps isomorphically the subgroup Sn �Tn of Gn onto its image Sn �Tn , and so statement 2 follows
from the short exact sequence of groups: 1 → ker(ξ) → Gn → im(ξ) → 1 which is obviously a split
one.

3. Let σ ∈ Gn . We have to show that there exists an element σ ′ ∈ Sn � Tn such that the automor-
phism σ ′σ satisfies the conditions (23). By Theorem 5.4, σ ∈ Gn . By [9, Corollary 7.5],

σ(Hi) ≡ Hτ (i) mod ae
n for all i = 1, . . . ,n

and for some element τ ∈ Sn where ae
n is the only maximal ideal of the algebra An (Theorem 2.2).

Then τ−1σ(Hi) ≡ Hi mod ae
n for all i = 1, . . . ,n, and so τ−1σ(Hi) − Hi ∈ In ∩ ae

n = aer
n = an (Theo-

rem 2.2). For the automorphism ξ(τ−1σ) ∈ Gn , we have the action (20),

ξ
(
τ−1σ

) : zi �→ λi zi, Hi �→ Hi, i = 1, . . . ,n,

for some element (λi) ∈ K ∗n . Then t−1
λ τ−1σ ∈ ker(ξ) where λ = (λi). Therefore, im(ξ) = Sn � Tn .

4. By Theorem 3.1.(2), ker(ξ) ⊇ Inn(In). Let σ ∈ ker(ξ). It remains to show that σ ∈ Inn(In). Fix a
natural number d such that

σ(Hi) − Hi,σ (∂i) − ∂i,σ

(∫
i

)
−

∫
i
∈

n∑
In−1,k ⊗

(
d−1∑

s,t=0

K est(k)

)
(24)
k=1
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for all i = 1, . . . ,n where In−1,k := ⊗
j �=k I1( j). By Lemma 5.3, σ = σϕ : a �→ ϕaϕ−1 where ϕ ∈

AutK (Pn) : x[α] �→ x′ [α] is the change-of-the-basis map (see Lemma 5.3). By the choice of the number
d above, for each element x[α] ∈ P ({1, . . . ,n},d),

σ(Hi) ∗ x[α] = Hi ∗ x[α] = (αi + 1)x[α] and σ(∂i) ∗ x[α] = ∂i ∗ x[α] = x[α−ei ] for all i = 1, . . . ,n.

By multiplying the map ϕ by a nonzero scalar, by Lemma 5.3, we may assume that

x′ [α] = x[α] for all α = (αi) ∈ Nn such that α1 � d, . . . ,αn � d. (25)

It suffices to show that ϕ ∈ In (since then ϕ−1 ∈ In as σ−1 = σϕ−1 ). This is obvious since

ϕ = q
({1, . . . ,n},d

) +
∑

∅�=I⊆{1,...,n}

( ∑
α∈Cd(I)

∏
j∈I

σ
(
∂

d−α j

j

) ·
∏
i∈I

∫ d−αi

i
·eαα(I)

)
p(I,d)q(C I,d) (26)

where Cd(I) := {(αi)i∈I ∈ NI | all αi < d}, eαα(I) := ∏
i∈I eαiαi (i), and d is as in (24). To prove that this

formula holds for the map ϕ we have to show that ϕ ∗ x[α] = x′ [α] for all α ∈ Nn . For each α, let
I := {i | αi < d}. Then x[α] = ∏

i∈I x[αi ]
i · ∏k∈C I x[αk]

k . If I �= ∅ then

ϕ ∗ x[α] =
∏
j∈I

σ
(
∂

d−α j

j

) ·
∏
i∈I

∫ d−αi

i
∗
∏
i∈I

x[αi ]
i ·

∏
k∈C I

x[αk]
k =

∏
j∈I

σ
(
∂

d−α j

j

) ∗
∏
i∈I

x[d]
i ·

∏
k∈C I

x[αk]
k

=
∏
j∈I

σ
(
∂

d−α j

j

) ∗ x′ [∑i∈I dei+
∑

k∈C I αkek] = x′ [∑i∈I αi ei+
∑

k∈C I αkek] = x′ [α].

If I = ∅ then ϕ ∗ x[α] = q({1, . . . ,n},d) ∗ x[α] = x[α] = x′ [α] . The proof of the theorem is complete. �
Corollary 5.6. Let σ ∈ Inn(In). Then there is a unique element ϕ ∈ (1 + an)∗ such that σ(a) = ϕaϕ−1 for all
elements a ∈ In, and the element ϕ is given by the formula (26).

Proof. The element ϕ ∈ (1 + an)∗ such that σ(a) = ϕaϕ−1 for all a ∈ In is unique by Theorem 3.1.(2).
By the very definition, the element ϕ ∈ I∗n from (26) satisfies ϕ ≡ 1 mod an and σ(a) = ϕaϕ−1 for all
a ∈ In . Therefore, both ϕ ’s coincide. �
Corollary 5.7. Out(In) � Sn � Tn.

Proof. Out(In) = Gn/ Inn(In) = Sn � Tn � Inn(In)/ Inn(In) � Sn � Tn . �
Recall that H1 := {p1, . . . ,pn} is the set of height one prime ideals of the algebra In . The next

corollary describes its stabilizer StGn (H1) := {σ ∈ Gn | σ(p1) = p1, . . . , σ (pn) = pn}.

Corollary 5.8. StGn (H1) = Tn � Inn(In).

Proof. It is obvious that StGn (H1) ⊇ R := Tn � Inn(In) and Sn ∩ StGn (H1) = {e}. Now,

StGn (H1) = Gn ∩ StGn (H1) = (Sn � R) ∩ StGn (H1) = (
Sn ∩ StGn (H1)

)
� R = R. �
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The algebra In = ⊕
α∈Zn In,α is a Zn-graded subalgebra of the Jacobian algebra An = ⊕

α∈Zn An,α ,
see [10]. The group

AutZn-gr(An) := {
σ ∈ Gn

∣∣ σ(An,α) = An,α for all α ∈ Zn}
of Zn-grading preserving automorphisms of the algebra An is equal to

StGn (H1, . . . , Hn) := {
σ ∈ Gn

∣∣ σ(H1) = H1, . . . , σ (Hn) = Hn
}

and StGn (H1, . . . , Hn) = Tn ×Un [9, Corollary 7.10] where the subgroup Un of Gn is defined as follows.
Recall that An = S−1In . Let Hn be the subgroup of A∗

n generated by the commutative monoid S ⊆ A∗
n .

Then the group Hn = ∏n
i=1 H1(i) is the direct product of its subgroups

H1(i) :=
{∏

j�0

(Hi + j)n j ·
∏
j�1

(Hi − j)
n− j

1

∣∣∣ (nk)k∈Z ∈ Z(Z)

}
� Z(Z),

and so Hn � (Zn)(Z) . Each element u = u1 · · · un ∈ Hn , where ui ∈ H1(i), determines the automor-
phism μu of the algebra An (see (35) in [9] for details),

μu : xi �→ xiui, yi �→ u−1
i yi, H±1

i �→ H±1
i , i = 1, . . . ,n.

Then Un := {μu | u ∈ Hn} � (Zn)(Z) . Let StGn (H1, . . . , Hn) := {σ ∈ Gn | σ(H1) = H1, . . . , σ (Hn) = Hn}.

Corollary 5.9.

1. StGn (H1, . . . , Hn) = Tn.
2. Let σ ,τ ∈ Gn. Then σ(H1) = τ (H1), . . . , σ (Hn) = τ (Hn) iff σ = τ tλ for some element tλ ∈ Tn.
3. AutZn-gr(In) = StGn (H1, . . . , Hn) ⊂ AutZn-gr(An).

Proof. 1. Since Gn ⊆ Gn (Theorem 5.4),

StGn (H1, . . . , Hn) = Gn ∩ StGn (H1, . . . , Hn) = Gn ∩ Tn × Un = Tn × (Gn ∩ Un) = Tn

since Gn ∩ Un = {e}, by the very definition of the group Un (see (20)).
2. Statement 2 follows from statement 1.
3. Since An = S−1In , S ⊆ In,0 and Gn ⊆ Gn , we have the inclusion AutZn-gr(In) ⊆ AutZn-gr(An). Now,

AutZn-gr(In) = Gn ∩ AutZn-gr(An) = Gn ∩ Tn × Un = Tn = StGn (H1, . . . , Hn),

by statement 1. By statement 1, the inclusion AutZn-gr(In) ⊆ AutZn-gr(An) is a strict inclusion since
AutZn-gr(An) = Tn × Un [9, Corollary 7.10]. �
5.5. The canonical form of σ ∈ Gn

By Theorem 5.5, each automorphism σ of the algebra In is a unique product stλωϕ where s ∈ Sn ,
tλ ∈ Tn , and ωϕ is an inner automorphism of the algebra In with ϕ ∈ (1 + an)∗ , and the element ϕ is
unique (Corollary 5.6).

Definition. The unique product σ = stλωϕ is called the canonical form of the automorphism σ of the
algebra In .
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Corollary 5.10. Let σ ∈ Gn and σ = stλωϕ be its canonical form. Then the automorphisms s, tλ and ωϕ can be
effectively (in finitely many steps) found from the action of the automorphism σ on the elements {Hi, ∂i,

∫
i |

i = 1, . . . ,n}:

σ(Hi) ≡ Hs(i) mod an, σ (∂i) ≡ λ−1
i ∂s(i) mod an, σ

(∫
i

)
≡ λi

∫
s(i)

mod an,

and the elements ϕ and ϕ−1 are given by the formulae (26) and (27) respectively for the automorphism
(stλ)−1σ ∈ Inn(In) = ker(ξ).

The next corollary is a criterion for an automorphism of the algebra In to be an inner automor-
phism.

Corollary 5.11. Let σ ∈ Gn. The following statements are equivalent.

1. σ ∈ Inn(In).
2. σ(∂i) ≡ ∂i mod an for i = 1, . . . ,n.
3. σ(

∫
i) ≡ ∫

i mod an for i = 1, . . . ,n.

Proof. The result follows from Theorem 5.5.(4) and Corollary 5.10. �
Corollary 5.12. Let σ ∈ Gn. Then σ ∈ Tn � Inn(In) iff σ(Hi) ≡ Hi mod an for i = 1, . . . ,n.

Proof. This follows from Theorem 5.5.(4) and Corollary 5.10. �
5.6. A formula for the inverse ϕ−1 where σ = σϕ ∈ Inn(In) via σ(∂i) and σ(

∫
j)

By Corollary 5.6, for each inner automorphism σ ∈ Inn(In) there exists a unique element ϕ ∈
(1 + an)∗ such that σ = σϕ : a �→ ϕaϕ−1 for all a ∈ In . The next theorem presents a formula for the
inverse ϕ−1 via the elements {σ(∂i),σ (

∫
i) | i = 1, . . . ,n}.

Theorem 5.13. Let σ = σϕ ∈ Inn(In) where ϕ ∈ (1 + an)∗ (σϕ(a) = ϕaϕ−1 for all a ∈ In, see Corollary 5.6).
Then σ−1

ϕ = σϕ−1 and

ϕ−1 = q′({1, . . . ,n},d
)

+
∑

∅�=I⊆{1,...,n}

( ∑
α∈Cd(I)

∏
j∈I

∂
d−α j

j ·
∏
i∈I

σ

(∫
i

)d−αi

· e′
αα(I)

)
p′(I,d)q′(C I,d) (27)

where d is as in (24) for σ = σϕ , e′
αα(I) := ∏

i∈I e′
αiαi

(i) and e′
j j(i) := σ(e jj(i)) = σ(

∫
i)

jσ(∂i)
j −

σ(
∫

i)
j+1σ(∂i)

j+1; p′(I,d) := ∏
i∈I p′(i,d) and p′(i,d) := σ(p(i,d)) = ∑d−1

j=0 e′
j j(i); q′(C I,d) :=

σ(q(C I,d)) = ∏
i∈C I (1 − p′(d, i)).

Proof. We keep the notation of the proof of statement 4 of Theorem 5.5. In particular,

ϕ : Pn =
⊕

n

K x[α] → Pn =
⊕

n

K x′ [α], x[α] �→ x′ [α].

α∈N α∈N
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For each α ∈ Nn , the projection onto the summand K x′ [α] of the polynomial algebra Pn is equal to
ϕeααϕ−1 = σ(eαα). For each subset I of the set {1, . . . ,n}, let

P ′
n(I,d) := ϕ

(
Pn(I,d)

) =
⊕{

K x′ [α] ∣∣ αi < d if i ∈ I; α j � d if j ∈ C I
}
,

see (22). Since ϕ : Pn = ⊕
I⊆{1,...,n} Pn(I,d) � Pn = ⊕

I⊆{1,...,n} P ′
n(I,d), the projections onto the sum-

mand P ′
n(I,d) of Pn is equal to

ϕp(I,d)q(I,d)ϕ−1 = σ
(

p(I,d)q(I,d)
) = σ

(
p(I,d)

)
σ
(
q(I,d)

) = p′(I,d)q′(I,d)

where p′(I,d) = σ(p(I,d)) and q′(I,d) = σ(q(I,d)). Then the inverse map ϕ−1 of the map ϕ in (26)
is given by (27). To prove this let ψ be the RHS of (27). We have to show that ψ : x′ [α] �→ x[α]
for all α ∈ Nn . Fix α, and let I := {i | αi < d}. Then x′ [α] = ∏

i∈I x′ [αi ]
i · ∏k∈C I x′ [αk]

k . If I �= ∅ then, by
Lemma 5.3,

ψ ∗ x′ [α] =
∏
j∈I

∂
d−α j

j ·
∏
i∈I

σ

(∫
i

)d−αi

∗
∏
i∈I

x′ [αi ]
i ·

∏
k∈C I

x′ [αk]
k =

∏
j∈I

∂
d−α j

j ∗
∏
i∈I

x′ [d]
i ·

∏
k∈C I

x′ [αk]
k

=
∏
j∈I

∂
d−α j

j ∗
∏
i∈I

x[d]
i ·

∏
k∈C I

x[αk]
k

(
by (25)

)
= x[α].

If I �= ∅ then ψ ∗ x′ [α] = q′({1, . . . ,n},d) ∗ x′ [α] = x′ [α] = x[α] , by (25). This finishes the proof of the
theorem. �
5.7. An inversion formula for σ ∈ Gn

The next theorem gives an inversion formula for σ via the elements {σ(∂i),σ (
∫

i) | i = 1, . . . ,n}.

Theorem 5.14. Let σ ∈ Gn and σ = stλωϕ be its canonical form where s ∈ Sn, tλ ∈ Tn and ωϕ ∈ Inn(In) for
a unique element ϕ ∈ (1 + an)∗ . Then

σ−1 = s−1ts(λ−1)ωstλ(ϕ−1) (28)

is the canonical form of the automorphism σ−1 where the elements ϕ−1 and ϕ are given by the formulae (27)
and (26) respectively for the automorphism (stλ)−1σ ∈ Inn(In).

Proof. σ−1 = s−1 · st−1
λ s−1 · stλω−1

ϕ (stλ)−1 = s−1ts(λ−1)ωstλ(ϕ−1) . �
Theorem 5.15. The centre of the group Gn is {e}.

Proof. Let σ be an element of the centre of the group Gn . For all elements α,β ∈ Nn , 1 + eαβ ∈ (1 +
an)∗ , and so ω1+eαβ ∈ Inn(In). Then ω1+eαβ = σω1+eαβ σ

−1 = ω1+σ(eαβ ) , and so 1 + eαβ = 1 + σ(eαβ)

(Theorem 3.1.(2)), i.e. eαβ = σ(eαβ). By Corollary 3.7, σ = e. �
Let H be a subgroup of a group G . The centralizer CenG(H) := {g ∈ G | gh = hg for all h ∈ H} of H

in G is a subgroup of G . In the proof of Theorem 5.15, we have used only inner derivations of the
algebra An . So, in fact, we have proved there the next corollary.
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Corollary 5.16. CenGn (Inn(In)) = {e}.

For an algebra A and a subgroup G of its group of algebra automorphisms, the set AG := {a ∈ A |
σ(a) = a for all σ ∈ G} is called the fixed algebra or the algebra of invariants for the group G .

Theorem 5.17. IGn
n = IInn(In)

n = K .

Proof. Since K ⊆ IGn
n ⊆ IInn(In)

n , it suffices to show that IInn(In)
n = K . For all α,β ∈ Nn , 1 + eαβ ∈ (1 +

an)∗ . Then ω1+eαβ ∈ Inn(In). If a ∈ IInn(In)
n then a = ω1+eαβ (a), and so aeαβ = eαβa. By Lemma 5.18.(1),

a ∈ K . Therefore, IInn(In)
n = K . �

Lemma 5.18.

1. CenIn ({eαβ | α,β ∈ Nn}) = K .
2. CenIn (a) = K for all nonzero ideals a of the algebra In.

Proof. 1. Recall that In � Iop
n and Fn = ⊕

α,β∈Nn K eαβ is the least nonzero ideal of the algebra In .
Hence, Fn is a simple In-bimodule. Since

In FnIn �
In⊗I

op
n

Fn � In⊗In Fn � I2n Fn � I2n P2n,

we have K � EndI2n (P2n) � CenIn (Fn) = CenIn ({eαβ | α,β ∈ Nn}).
2. Since Fn ⊆ a, we have K ⊆ CenIn (a) ⊆ CenIn (Fn) = K , by statement 1. Therefore, CenIn (a) = K . �

Theorem 5.19. No proper prime factor algebra of In can be embedded into In (that is, for each nonzero prime
ideal p of the algebra In, there is no algebra monomorphism from In/p into In).

Proof. By Corollary 2.3.(7), p = pi1 + · · · + pis . Without loss of generality, we may assume that p =
p1 + · · · + ps . Suppose that there is a monomorphism f : In/p → In , we seek a contradiction. For each
element a ∈ In , let a := a + p. Notice that, for i = 1, . . . , s, ∂ i

∫
i = 1 and

∫
i∂ i = 1 − e00(i) = 1 since

e00(i) ∈ pi ⊆ p. The elements {∂ i,
∫

i | i = 1, . . . , s} are units of the algebra In/p, hence their images
under the map f are units of the algebra In , i.e. f (

∫
i), f (∂i) ∈ I∗n = K ∗ × (1 + an)∗ (Theorem 3.1.(1)).

We see that the image of the simple non-commutative algebra Bs := Is/as under the compositions of

homomorphisms Bs := Is/as → In/p
f→ In → Bn = In/an is the subalgebra of Bn generated by the

images of the commutative elements H1, . . . , Hn , a contradiction. �
The next lemma shows that in the algebra In there are non-invertible elements that are invertible

as elements of the algebra EndK (Pn).

Lemma 5.20. I∗n � In ∩ AutK (Pn).

Proof. The element 1 − ∂i ∈ EndK (K [xi]) is an invertible linear map since ∂i is a locally nilpotent
derivation of the polynomial algebra K [xi], hence u := ∏n

i=1(1 − ∂i) ∈ In ∩ AutK (Pn). But u /∈ I∗n since
the element u + an is not a unit of the factor algebra Bn = In/an as B∗

n = ⋃
α∈Zn K ∗∂α . Therefore,

I∗n � In ∩ AutK (Pn). �
5.8. The group Gn := AutK -alg(In)

Definition. (See [5].) The algebra Sn of one-sided inverses of Pn is an algebra generated over a field K
of arbitrary characteristic by 2n elements x1, . . . , xn, yn, . . . , yn that satisfy the defining relations:
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y1x1 = · · · = ynxn = 1, [xi, y j] = [xi, x j] = [yi, y j] = 0 for all i �= j,

where [a,b] := ab − ba is the algebra commutator of elements a and b. Let Gn := AutK -alg(Sn).

By the very definition, the algebra Sn � S⊗n
1 is obtained from the polynomial algebra Pn by adding

commuting, left (but not two-sided) inverses of its canonical generators. The algebra S1 is a well-
known primitive algebra [14, Example 2, p. 35]. Over the field C of complex numbers, the completion
of the algebra S1 is the Toeplitz algebra which is the C∗-algebra generated by a unilateral shift on the
Hilbert space l2(N) (note that y1 = x∗

1). The Toeplitz algebra is the universal C∗-algebra generated by
a proper isometry.

The algebra In := K 〈∂1, . . . , ∂n,
∫

1, . . . ,
∫

n〉 of scalar integro-differential operators is isomorphic to
the algebra Sn:

Sn → In, xi �→
∫

i
, yi �→ ∂i, i = 1, . . . ,n. (29)

Since In = ⊗n
i=1 I1(i) where I1(i) := K 〈∂i,

∫
i〉 and Sn = ⊗n

i=1 S1(i) where S1(i) := K 〈xi, yi〉, it suf-
fices to prove the statement for n = 1. For n = 1, the algebra epimorphism S1 → I1 is an isomorphism
since any proper epimorphic image of the algebra S1 is commutative (see [5]) but the algebra I1 is
non-commutative. The algebra Sn was studied in detail in [5], its group of automorphism and explicit
generators were found in the papers [6–8].

Theorem 5.21.

1. Gn = Sn � Tn � Inn(In) and Inn(In) = {ωu | u ∈ (1 + a′
n)∗} � (1 + a′

n)∗ , ωu �→ u, where a′
n :=∑n

i=1 In F (i) is the only maximal ideal of the algebra In.
2. Gn = {σ ∈ Gn | σ(In) = In} = {σ ∈ Gn | σ(In) = In} and Gn is a subgroup of the groups Gn and Gn.
3. Each automorphism of the algebra In has a unique extension to an automorphism of the algebra In and An.
4. Gn ⊇ Gn ⊇ Sn � Tn � GL∞(K ) � · · · � GL∞(K )︸ ︷︷ ︸

2n−1 times

.

Proof. 1. In � Sn , Gn = Sn � Tn � Inn(Sn) and Inn(Sn) = {ωu | u ∈ (1 + a′′
n)∗} � (1 + a′′

n)∗ , ωu �→ u,
where a′′

n is the only maximal ideal of the algebra Sn [6].
2. Statement 2 follows from statement 1, Theorem 5.5, Theorem 5.4 and Corollary 3.3.
3. Statement 3 follows from Theorem 3.6.
4. Gn ⊇ Sn � Tn � GL∞(K ) � · · · � GL∞(K )︸ ︷︷ ︸

2n−1 times

[6]. �

6. Stabilizers of the ideals of IIIn in Gn

In this section, for each nonzero ideal a of the algebra In its stabilizer StGn (a) := {σ ∈ Gn | σ(a) = a}
is found (Theorem 6.2) and it is shown that the stabilizer StGn (a) has finite index in the group Gn

(Corollary 6.3). When the ideal a is either prime or generic, this result can be refined even further
(Corollary 6.4, Corollary 6.5). In particular, when n > 1 the stabilizer of each height 1 prime of In

is a maximal subgroup of Gn of index n (Corollary 6.4.(1)). It is shown that the ideal an is the only
nonzero, prime, Gn-invariant ideal of the algebra In (Corollary 6.4.(3)).

An ideal a of In is called a proper ideal if a �= 0, In . For an ideal a of the algebra In , Min(a) denotes
the set of all the minimal primes over a. Two ideals a and b are called incomparable if neither a ⊆ b

nor b ⊆ a. The ideals of the algebra In are classified in [10]. The next theorem shows that each ideal
of the algebra In is completely determined by its minimal primes. We use this theorem in the proof
of Theorem 6.2.
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Theorem 6.1. (See [10, Corollary 3.4].) Let a be a proper ideal of the algebra In. Then Min(a) is a finite non-
empty set, and the ideal a is a unique product and a unique intersection of incomparable prime ideals of In

(uniqueness is up to permutation). Moreover,

a =
∏

p∈Min(a)

p =
⋂

p∈Min(a)

p.

Let Subn be the set of all the subsets of the set {1, . . . ,n}. Subn is a partially ordered set with
respect to ‘⊆’. Let SSubn be the set of all the subsets of Subn . An element {X1, . . . , Xs} of SSubn is
called an antichain if for all i �= j such that 1 � i, j � s neither Xi ⊆ X j nor Xi ⊇ X j . An empty set
and one element set are antichains by definition. Let Incn be the subset of SSubn that contains all the
antichains of SSubn . The number dn := |Incn| is called the Dedekind number. The symmetric group Sn

acts in the obvious way on the sets SSubn and Incn (σ · {X1, . . . , Xs} = {σ(X1), . . . , σ (Xs)}).

Theorem 6.2. Let a be a proper ideal of the algebra In. Then

StGn (a) = StSn

(
Min(a)

)
� Tn � Inn(In)

where StSn (Min(a)) := {σ ∈ Sn | σ(q) ∈ Min(a) for all q ∈ Min(a)}. Moreover, if Min(a) = {q1, . . . ,qs} and,
for each number t = 1, . . . , s, qt = ∑

i∈It
pi for some subset It of {1, . . . ,n} then the group StSn (Min(a)) is the

stabilizer in the group Sn of the element {I1, . . . , Is} of SSubn.

Remark. Note that the group

StGn

(
Min(a)

) = StSn

({I1, . . . , Is}
) := {

σ ∈ Sn
∣∣ {σ(I1), . . . , σ (Is)

} = {I1, . . . , Is}
}

(and also the group StGn (a)) can be effectively computed in finitely many steps.

Proof of Theorem 6.2. Recall that each nonzero prime ideal of the algebra In is a unique sum of
height one prime ideals of the algebra In . By Theorem 6.1 and Corollary 5.8, StGn (a) ⊇ StGn (H1) =
Tn � Inn(In). Since Gn = Sn � Tn � Inn(In) (Theorem 5.5.(1)),

StGn (a) = (
StGn (a) ∩ Sn

)
� Tn � Inn(In) = StSn(a) � Tn � Inn(In).

By Theorem 6.1, StSn (a) = StSn (Min(a)) = StSn ({I1, . . . , Is}), and the statement follows. �
The index of a subgroup H in a group G is denoted by [G : H].

Corollary 6.3. Let a be a proper ideal of In. Then [Gn : StGn (a)] = |Sn : StSn (Min(a))| < ∞.

Proof. This follows from Theorem 5.5.(1) and Theorem 6.2. �
Corollary 6.4.

1. StGn (pi) � Sn−1 �Tn � Inn(In), for i = 1, . . . ,n. Moreover, if n > 1 then the groups StGn (pi) are maximal
subgroups of Gn with [Gn : StGn (pi)] = n (if n = 1 then StG1 (p1) = G1 , see statement 3).

2. Let p be a nonzero prime ideal of the algebra In and h = ht(p) be its height. Then StGn (p) � (Sh × Sn−h)�
Tn � Inn(In).

3. The ideal an is the only nonzero, prime, Gn-invariant ideal of the algebra In.
4. Suppose that n > 1. Let p be a nonzero prime ideal of the algebra In. Then its stabilizer StGn (p) is a maximal

subgroup of Gn iff the ideal p is of height one.
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Proof. 1. Clearly, StGn (pi) ∩ Sn = {τ ∈ Sn | τ (pi) = pi} � Sn−1. By Theorem 6.2, StGn (pi) = Sn−1 � Tn �
Inn(In). When n > 1, the group StGn (pi) is a maximal subgroup of Gn since

Sn−1 � StGn (pi)/Tn � Inn(In) ⊆ Gn/Tn � Inn(In) � Sn

and Sn−1 = {σ ∈ Sn | σ(i) = i} is a maximal subgroup of Sn . Clearly, [Gn : StGn (pi)] = [Sn : Sn−1] = n.
2. By Corollary 2.3.(9), p = pi1 + · · · + pih for some distinct indices i1, . . . , ih ∈ {1, . . . ,n}. Let I =

{i1, . . . , ih} and C I be its complement in the set {1, . . . ,n}. Statement 2 follows from Theorem 6.2 and
the fact that

StGn (p) ∩ Sn = {
σ ∈ Sn

∣∣ σ(I) = I, σ (C I) = C I
} � Sh × Sn−h.

3. Since an = p1 + · · · + pn , statement 3 follows from statement 2.
4. Statement 4 follows from statements 1 and 2. �
Next, we find the stabilizers of the generic ideals (see Corollary 6.5). First, we recall the definition

of the wreath product A � B of finite groups A and B . The set Fun(B, A) of all functions f : B → A is a
group: ( f g)(b) := f (b)g(b) for all b ∈ B where g ∈ Fun(B, A). There is a group homomorphism

B → Aut
(
Fun(B, A)

)
, b1 �→ (

f �→ b1( f ) : b �→ f
(
b−1

1 b
))

.

Then the semidirect product Fun(B, A)� B is called the wreath product of the groups A and B denoted
by A � B , and so the product in A � B is given by the rule:

f1b1 · f2b2 = f1b1( f2)b1b2, where f1, f2 ∈ Fun(B, A), b1,b2 ∈ B.

Recall that each nonzero prime ideal p of the algebra In is a unique sum p = ∑
i∈I pi of height one

prime ideals. The set Supp(p) := {pi | i ∈ I} is called the support of p.

Definition. We say that a proper ideal a of In is generic if Supp(p) ∩ Supp(q) = ∅ for all p,q ∈ Min(a)

such that p �= q.

Corollary 6.5. Let a be a generic ideal of the algebra In. The set Min(a) of minimal primes over a is the disjoint
union of its non-empty subsets, Minh1 (a) ∪ · · · ∪ Minht (a), where 1 � h1 < · · · < ht � n and the set Minhi (a)

contains all the minimal primes over a of height hi . Let ni := |Minhi (a)|. Then StGn (a) = (Sm × ∏t
i=1(Shi �

Sni )) � Tn � Inn(In) where m = n − ∑t
i=1 nihi .

Proof. Suppose that Min(a) = {q1, . . . ,qs} and the sets I1, . . . , Is are defined in Theorem 6.2. Since
the ideal a is generic, the sets I1, . . . , Is are disjoint. By Theorem 6.2, we have to show that

StSm

({I1, . . . , Is}
) � Sm ×

t∏
i=1

(Shi � Sni ). (30)

The ideal a is generic, and so the set {1, . . . ,n} is the disjoint union
⋃t

i=0 Mi of its subsets where
Mi := ⋃

|I j |=hi
I j , i = 1, . . . , t , and M0 is the complement of the set

⋃t
i=1 Mi . Let S(Mi) be the sym-

metric group corresponding to the set Mi (i.e. the set of all bijections Mi → Mi ). Then each element
σ ∈ StGn ({I1, . . . , Is}) is a unique product σ = σ0σ1 · · ·σt where σi ∈ S(Mi). Moreover, σ0 can be an
arbitrary element of S(M0) � Sm , and, for i �= 0, the element σi permutes the sets {I j | |I j| = hi}
and simultaneously permutes the elements inside each of the sets I j , i.e. σi ∈ Shi � Sni . Now, (30) is
obvious. �



V.V. Bavula / Journal of Algebra 348 (2011) 233–263 263
Corollary 6.6. For each number s = 1, . . . ,n, let bs := ∏
|I|=s(

∑
i∈I pi) where I runs through all the subsets of

the set {1, . . . ,n} that contain exactly s elements. The ideals bs are the only proper, Gn-invariant ideals of the
algebra In, and so there are precisely n + 2 Gn-invariant ideals of the algebra In.

Proof. By Theorem 6.2, the ideals bs are Gn-invariant, and they are proper. The converse follows at
once from the classification of ideals for the algebra In (Theorem 6.1) and Theorem 6.2. The ideals bs

are distinct, by Theorem 6.1, and so there are precisely n + 2 Gn-invariant ideals of the algebra In . �
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