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A b s t r a c t - - I n  this paper, a roughness theorem of exponential dichotomy and trichotomy of linear 
difference equations is proved. It is also shown that if an almost periodic difference equation has an 
exponential dichotomy on a sufficiently long finite interval, then it has one on ( -co ,  + ~ ) .  (~) 1999 
Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

The theory of difference equations has received much attention because of its importance in 
various fields, such as numerical methods of differential equations and dynamical systems, finite 
elements techniques, control theory, and computer sciences (see [1-8]). The almost periodic type . 
difference equations have been discussed in [5,9]. In this paper, we focus our attention on some 
properties of exponential dichotomy and trichotomy of linear difference equations. In the rest of 
this section, some fundamental concepts of this paper are given. The invariance of the exponential 
dichotomy and trichotomy under some perturbations, which is called roughness, is discussed in 
Section 2. The equivalence between the exponential dichotomy for linear difference equations 
with almost periodic coefficients in an infinite integer's interval and in a finite sufficiently long 
integer's interval is proved in Section 3. In what follows, we denote by I" I the Euclidean norm 
when the argument is a vector and the corresponding operator norm when the argument is a 
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matr ix .  Let  l~ (J )  :=  {x : J --. R d : x is bounded  on J c { Z , Z + , Z - } } ,  where Z denotes  the  
set of  integer numbers ,  Z + = {n E Z : n  > 0} and Z -  = {n E Z : n < 0}. T h e  set l°°(J) is 
a Banach  space endowed wi th  the  norm ][x[[ := SUPneg ]x(n)l. Note  t h a t  an e lement  x E l ~ ( J )  
can be identified with the  sequence {z(n)}neg. Given a sequence {x(n)}neg and p E Z +, we 
define x(n  + 1), z (n  + p) := {x(n + 1 ) , . . . ,  x(n + p)}, called sequence interval  wi th  length p, and  

integer 's  interval  wi th  length p if x(m) = m E J for n + 1 < m _< n + p. 

DEFINITION 1.1. (See [5,9].) A sequence x E l°°(Z) is called a /mos t  periodic i f  for each e > O, 

the set 

T(x ,e )  :=  {r  C Z :  Ix(n + r) - x(n)l < e for every  n C Z}  

is relatively dense in Z, that is, there exists a positive integer l(e), which is cM1ed the length 
of contain interval, such that there  is a T E T(x,  e) in every integer's interval with length l(e). 
A number r E T(x,  e) is called an e-translation number o£ x. We denote by A P ( Z )  the set  o f  

almost periodic sequences. A matrix sequence {A(n) }nez is called almost periodic i f  each one of  

its entries forms  an almost periodic sequence. 

REMARK 1.1. The  sequence {x(n)}neZ is almost periodic i f  and only i f  any  sequence {k~}iez+ 

of integers admits a subsequence {ki}iez+ such that x(n  + ki) converges uniformly on n C Z as 
i --* oc. Furthermore, the limit sequence is also an almost periodic sequence (see Proposition 6 
in [9, p. 1442]). Recall that almost periodic sequences and functions are closely related. In fact, 
a sequence {x(n)}nez  is almost periodic i f  and only i f x (n )  = f (n )  for every n c Z, where f is 
an almost periodic function on R. If  x, y E .AP(Z), then for each ¢ > O, T(x,  e) M T(y, e) ~ 0 

(see [5,9]). 

Now we consider the  difference equat ion 

x(n + 1) = A(n)x(n) ,  n e Z, (1.1) 

where  A(n) is a d x d invertible ma t r ix  for each n E Z. Let X(t )  be a fundamenta l  ma t r ix  of  (1.1) 
wi th  X(0)  = I .  T h e n  the t rans i t ion ma t r ix  oh(n, m) = X ( n ) X - l ( m )  has the  cocycle p rope r ty  

[6, p. 2671. 

DEFINITION 1.2. 

(1) Equation (1.1) is said to have an exponential dichotomy on Z (respectively, Z + , Z  - )  i f  
there  exists a projection P (p2  = p)  and constants K > O, a > 0 such that for m, n E Z 
(respectively, Z +, Z -  ), 

[ X ( n ) P X - l ( m ) [  <_ K e  -'~(n-'~), n >_ m, 

IX(n) ( I  - P ) X - I ( m ) I  <_ Ke  -a(m-n), m > n, 

and 
(1.2) 

(see [1-a,5-12]). 
(2) Equation (1.1) is said to h a r e  an exponential trichotomy on Z i f  there  exist projections 

P1, P'2, Pa with PiPj = 0 i f  i ¢ j and P1 + P2 + Pa = I (identity matr ix) ,  and  cons tan t s  
K > O, a > O such that, form,  n E Z, 

[X(n)P1X-I(m)[  < Ke-" (n-m) ,  

IX (n )P2X- l (m) l  <_ K e  -a (m-n ) ,  

< 
Ke-a(n-m) ,  

-- k Ke  -afro-n), 

n ~ m ,  

m > n, and  

O < _ m < n ,  

n < _ m < O ,  

(1.3) 

(see [7]). 
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Obviously, equation (1.1) has an exponential tr ichotomy with P3 = 0 if and only if it has 
an exponential dichotomy on Z. And in Section 3, it will be pointed out that  the exponential 

t r ichotomy on Z is equivalent to the exponential dichotomy on Z if {A(n)}neZ is almost periodic 
(also see [5]). 

To end this section, we point out that  (1) in Definition 1.2 is equivalent to the definition of 
exponential dichotomy given in [6, p. 267]. 

REMARK 1.2. 

(1) Equation (1.1) has an exponential dichotomy on J E {Z, Z +, Z - }  with projection P and 
constants K > 0, a > 0 if and only if there are positive constants K ' ,  a ' ,  and a family of 

projections P(n),  n E J, such that  
(i) 

P(n  + 1)A(n) = A(n)P(n) ,  for all n(n < 0 if J = Z - ) ,  

(ii) 

[ X ( n ) X - l ( m ) P ( m ) l  <_ K'  e-'~'('~-'~), 
! - -  t 

[ X ( n ) X l ( m ) ( I  -- P(m))  I <_ K e c~ (m-n), 

f o r n > m ,  n, m c  J, 

f o r m _ > n ,  n, m E J .  

In fact, let J = Z + and equation (1.1) have an exponential dichotomy on J with pro- 
jection P and constants K > 0, a > 0. Taking K' = K, a' = a, P(n) = X ( n ) P X - I ( n ) ,  
then it follows immediately that  (i) and (ii) are satisfied. Now let there be positive con- 
stants K ' ,  a ' ,  and a family of projections P(n), n C J such that  (i) and (ii) are satisfied. 
We take K = K' ,  a = a ' ,  P = P(0),  then it follows from (i) that  

P(m)  = A ( m  - 1)P(m - 1 )A- l (m  - 1) 

= A(m - 1)A(m - 2 ) . . .  A(O)P(O)A-I(O). . .  A - l ( m  - 2 ) A - l ( m  - 1) 

= X ( m ) P ( O ) X - l ( m )  = X ( m ) P X - l ( m ) .  

Therefore, 

I X ( n ) P X - I ( m ) I  = I X ( n ) X - l ( m ) P ( m ) l  <_ Ke-a(n-m) ,  

Ix(n)(  - P ) X - l ( m ) [  = [ X ( n ) X - l ( m ) ( I  - P(m))[  ~ g e  -a(m-n), 

f o r n > _ m ,  n, m E  J, 

for m >_ n, n, m E J .  

(2) 
The case of J -- Z or J -- Z -  can be verified in the same manner. 
Equation (1.1) has an exponential tr ichotomy on Z with projections Pi (i = 1, 2, 3) and 
constants K, a if and only if there exist positive constants K ' ,  a ' ,  and three families of 
projections Pl(n), P2(n), P3(n), n c Z, such that  

(i) 

for each n e Z, Pi(n)Pj(n) = O, if i • j and Pl(n) + P2(n) + P3(n) = I; 

(ii) 

(iii) 

P ~ ( n + l ) A ( n ) = A ( n ) P i ( n ) ,  for all n e Z, i = 1,2,3; 

[X(n)X-1(m)Pl (m) l  <_ K'  e-'~'("-m), 

IX (n )X- l (m)P2(m) l  <_ K'  e-~'(m-~), 
{ Kte-a'(n-m),  

IX (n )X- l (m)P3(m) l  <_ K,e_a,(m_n) ' 

n>_m, 

?Tt ~ n ~  

O < m < n ,  

n<m<_O. 
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2. R O U G H N E S S  

In this section, we give a result on the roughness of exponential dichotomy and trichotomy of 
linear difference equations. We improve some known results on the invariance of exponential di- 
chotomy and trichotomy under some perturbations. First of all, we summarize some fundamental 
results on this topic. 

PROPOSITION 2.1. Suppose that equation (1.1) has an exponential trichotomy on Z with pro- 
jections P/ (i = 1, 2, 3) and constants K, a. Let B(n)  be a d x d matrix function defined on Z 
such that A(n)  + B(n)  is an invertible matrix function for every n C Z. Then i f  

e ~ - 1 
IIBII = sup{lB(n)l, n e Z} = ~ < 9K2e--------5, 

we have that the perturbed equation 

y(n + 1) = (A(n) + B(n) )y(n)  (2.1) 

has an exponential trichotomy on Z with projections Di(B) (i = 1, 2, 3). Moreover if  6 is sum- 
ciently small we have r a n k S ( B )  = rank P~ (i = 1, 2, 3) (see [7, p. 99]). 

PROPOSITION 2.2. Let A(n)  be a d × d invertible matrix defined for n E J E {Z, Z +, Z - }  such 
that for all n, [A-l(n)[ <_ M and such that equation (1.1) has an exponential dichotomy on J 
with constants K, a and projections P(n)  (see [6]). Suppose 0 < 5 < a and B(n)  is a d x d 

matrix function defined for n E J and satisfying 

IB(n)[ _~ M -I ,  

2K (1 + e - s )  (1 - e-a)  -1 IB(n)l < 1, 

2Ke (e + 1) (e - 1) -1 IB(n)l _< 1. 

Then A(n)  + B(n)  is invertible for alln E J and equation (2.1) has an exponential dichotomy 

on J with constants 2K  (1 + (1 - , a - 6 and projections of the same rank as for 

equation (1.1) (See [6, p. 2761). 

PROPOSITION 2.3. Equation (1.1) has an exponential trichotomy (respectively, dichotomy) on Z 

with projections Pi (i = 1, 2, 3) (respectively, with projection P)  i f  and only if  the inhomogeneous 

equation 
y(n + 1) = A(n)y(n)  + f (n )  (2.2) 

has at least one (respectively, has a unique) bounded solution y(n) on Z for every bounded 
function f (n) ,  n E Z. In fact, the bounded solution can be given by 

y(n) = E G ( n , m  + 1)f(m),  n e Z, 
rnEZ  

where 

X ( n ) P _ X - I ( m ) ,  

- X ( n ) ( I  - P _ ) X - l ( m ) ,  

G(n ,m)  = X ( n ) P + X _ l ( m )  ' 

- X ( n ) ( I  - P+)X-X(m) ,  

i f m < O < n ,  m < n < 0 ,  

K n < m < 0 ,  

i f  O < m < n, 

i f  O < n < m, n < 0 < m, 

X ( n ) P X - l ( m ) ,  i f m  <_ n, 
respectively, G(n ,m)  = - X ( n ) ( I  - P ) X - l ( m ) ,  i f  m > n, 

with P+ = I - t:)2 and P_ = P1, and 

e ~ + l  ( K ( e a + l )  ) 
I[Y[[-~ 2 K e - x ~ _  l[[fll respectively, [[y[[ < e ~ - 1  ]]/[[ " 

(2.3) 

(2.4) 
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REMARK 2.1. The proof of Proposition 2.3 can be found in [6, pp. 272-273; 7, pp. 97-99; 11]. 
We only need to note that, in the case of  the trichotomy, 

[G(n,m)l <_ 2Ke-aln-ml. 

In fact, 

i f m  < O < n  orm < n  <O, 

then ]G(n,m)[ = ]X(n)p-x-~(.~)l = ]x(rt)P1X-l(m)l <_ lr(e-aln-ml; 

if n < r e < O ,  

then [G(n,m)[ = I X ( n ) ( I -  P_)X-I (m)I  = [X(n)(P2 + Pa)X-l(rn)[ 

<_ Ix(n)P2X-~(m)l + ]x(n)PaX-~(m)[ <_ 2Ke-"'"-ml; 

ifO < m < n ,  

then Ia(n,m)l = IX(n)P+X-l(m)[ = IX(n)(P1 + P3) X- l (m)[  

< IX(n)P1X-l(m)[ + IX(r~)P3X-l(m)l ~ 2Ke-aln-rnl; 

ifO < n < m o r n  < 0 < m, 

then Ia(n,m)[ = [ X ( n ) ( I -  P+)X-l(m)[ = [X(n)P2X-l(m)[ <_ Ke -a'n-ml. 

THEOREM 2.1. Let A(n) be a d x d invertible matrix function defined for n E Z such that the 
linear difference equation (1.1) has an exponential trichotomy (respectively, dichotomy) on Z 
with constants K > 1, a > 0 and projections Pi (i = 1, 2, 3) (respectively, P). Suppose B(n) is a 
d x d matrix function defined for n E Z and satisfying 

(1) A(n) + B(n) is invertible for all n; 
(2) LB = SUPnEZ ~-~mez e -~ l~-m- l l [B(m)[  < 1/2K (respectively, < 1/K). 

Then the perturbed difference equation (2.1) has an exponential trichotomy (respectively, di- 
chotomy) on Z with projections/~i (i = 1, 2, 3) (respectively, P). Moreover, the projections in 
the exponential trichotomy (respectively, dichotomy) of the difference equation (2.1) have the 
same rank as for equation (1.1)if conditions (1) and (2) are replaced by 

(1)' ]IA-1[[ < M, for some constant M > O, 

(2)' I ]B l l<min{M -1 c a - 1  } 
- ' 2 K  ( e  ~ + 1)  ¢ ( 2 . 5 )  

- ' K(e a + 1) e , 

for every sufficiently small e > O. 

PROOF. In the case of the trichotomy, it follows from Proposit ion 2.3 tha t  for every f E / ~ ( Z ) ,  
the difference equation 

xo(n + 1) = A(n)xo(n) + f(n) (2.6) 

has a bounded solution xo(n) with Ilx0[I ~ (2K (e a + 1)) (e a - 1)[[f[I. Consider the difference 
equat ion 

z l (n  + 1) = A(n)xl(n) + B(n)xo(n). (2.7) 

By Proposi t ion 2.3, equation (2.7) has a solution 

x l (n )  = E G(n, m + 1)B(m)xo(m), n E Z, (2.8) 
mEZ 
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with 

fxl(n)] < ~ IG(n,m + 1)llB(m)llxo(m)l 
mCZ 

< 2K ~_, e-~l~-m-llIB(m)l 2K(e~- + 1)llfll 
e - - 1  

m E Z  

2K (e ~ + 1) 
< rIfH(2KLB), n e Z, 
- e a - 1 

where G(n, m) is the same as in (2.3). We define inductively difference equations as 

xi(n + 1) = A(n)xi(n) + B(n)xi_l(n), i = 1,2,.... 

Assume tha t  Xi_ 1 (n) satisfies 

iXi_l(n)  [ ~ 2 K  (e ~ + 1) e~  - 1 Ilfl l  ( 2 K L B )  i - 1  , n • Z, 

then equation (2.9) has a solution 

with 

xi(n) = E G(n, rn + 1)B(m)xi-l(m), 
m ~ Z  

n E  Z, 

Now let 

Then 

And 

Ixi(n)[ _< ~ IG(n,m + 1)llB(m)llXi-l(m)l 
m E Z  

< 2K y~ e-~l"-m-~'lB(m)l IIx~-, II 
m E Z  

2K (e a + 1) 
-< e ~ - 1 ]lf[[ (2KLB) i .  

~-oo 

x(n) = ~o(n) + ~ ~(n), 
i = l  

n E Z .  

Ix(n)] <_ 2 K ( e a  + 1) + ~  e--L - ~ IIf]] E (2KLB)i = 2K (e ~ + 1)Ilfll 
i=o (e ~ - 1) (1 - 2KLB)' 

n E Z .  

-~(x) 

x(n + 1) = xo(n + 1) + E x i ( n +  1) 
i = l  

= A(n)xo(n) + f(n) + A(n) E x i ( n )  + B(n )EXi_ l (n )  
i = l  i=1  

= A(n) xo(n) + x~(n) + B(n) zo(n) + ~ ~,(~) + I(n) 
~=1 

= (A(n) + B(n)) x(n) + f(n), 

t ha t  is, x(n) is a bounded solution of the difference equation 

x(n + 1) = (A(n) + B(n)) x(n) + f(n) 

on Z. Therefore, equation (2.1) has an exponential t r ichotomy on Z. 

(2.9) 

(2.1o) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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Now assume that  (1) ~ and (2) ~ hold. We prove that  

rank Pi = rank Pi, i = 1,2,3. (2.15) 

Let Mo = { B :  Z ~ Rdxd,B is bounded on Z} with the norm []B]I = suPnez IB(n)]. Then Mo 
is a Banach space. And let 

M I =  { B : B E M o  and [[BI[ < mAn { M  -1 e ~ - i  } }  
- ' 2 K ( e ~ + l )  ~ ' 

M2 -- {B : B C M1 and (2.15) holds for the perturbed equation (2.1)}. 

Then for any B E M1, equation (2.1) has an exponential trichotomy on Z with projections Pi(B) 
(i = 1, 2, 3), and M1 is a connected subset of M0, and the fact which we want to prove is equivalent 
to M1 = M2. Obviously, Ogxd E M2, that  is, M2 ¢ 0, where Odxd is the zero matrix. For any 
{Bm}mEZ+ C M2 with Bm --* B E M1 (as m -~ +co), it follows from Proposition 2.1 that  there 
exists N > 0 such that  the linear difference equation x(n + 1) = (A(u) + Bm(n))x(n) (m > N) 
has an exponential trichotomy on Z with projections Pi(Bm) (i = 1, 2, 3) satisfying rank Pi(B) = 
rankPi(Bm), (i = 1, 2, 3). This implies B E M2, that  is, M2 is a closed set. On the other hand, for 
any B E M2, the perturbed equation (2.1) has an exponential trichotomy on Z with projections 
P~(B) (i = 1, 2, 3) and (2.15) holds. By Proposition 2.1, we know that  there exists a 5 > 0 such 
that  the difference equation x(n + 1) -- (A(n) + C(n))x(n) has an exponential trichotomy on 
Z with projections Pi(C) (i = 1, 2, 3) satisfying rankPi(C) = rankP~(B) (i -- 1, 2, 3) for every 
C E U = {C : C E M1 and HC - B[[Mo < 5}. We thus have 

rankPi(C) = rank Pi(B) = rankPi,  i = 1,2,3. 

Consequently, B E U C M2, that  is, M2 is an open set in M1. Hence, it follows from the 
connection property of M1 that  M1 = M2. 

In the case of the exponential dichotomy, note that  the bounded solution of the inhomogeneous 
equation is unique. The proof is similar to the previous case. This completes the proof. 

REMARK 2.2. 

(1) Comparing with the known results on roughness (Proposition 2.1, Proposition 2.2, also 
see [6, 7]), the radius of the perturbation for the invariance of exponential trichotomy and 
dichotomy in Theorem 2.1 are larger than those known. Speaking precisely, under the con- 
dition that A(n) + B(n) is invertible for every n E Z, the radius of the perturbation in the 
case of the trichotomy (respectively, dichotomy) is extended from II B]] A (e ~ -1) / (9K2e ~) 
(respectively, IIBII -< (e" - 1)/(2K(e ~ + 1)t) to at least [[BI[ < (e a - 1)/(2K(e a + 1) 
(respectively, [[B[] < (e a - 1)/(K(e a + 1)). 

(2) In [13-15], the exact bound for exponential dichotomy roughness including the cases of 
strong and semistrong dichotomy are discussed for differential equations. The correspond- 
ing results for difference equations are not available in the literature. Work in this topic 
is in progress. 

(3) The similar results of random difference equations [16] to Theorem 2.1 can be concluded 
by the methods used in the proofs of the previous theorems. 

3. E X P O N E N T I A L  D I C H O T O M Y  F O R  A L M O S T  
P E R I O D I C  D I F F E R E N C E  E Q U A T I O N S  

In [10,11], it is known that  for an almost periodic linear differential equation 

dx 
dt A(t)x, (3.1) 
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where A(t) is almost periodic on R, the following statements are equivalent: 

(1) equation (3.1) has an exponential dichotomy on R; 
(2) equation (3.1) has an exponential dichotomy on [a, + ~ )  for every a 6 R; 
(3) equation (3.1) has an exponential dichotomy on some sufficiently long finite interval. 

In this section, we give the discrete version of the above equivalence. To do this, the following 
propositions are needed. 

PROPOSITION 3.1. Equation (1.1) has an exponential dichotomy on Z + if  and only i f  there exist 
constants 0 < 0 < 1, T > 1, T E Z + such that 

]x(n)l _< Osup{Ix(u)[ : lu - n[ <_ T ,u  e Z+}, n _> T (3.2) 

(see [3, pp. 296-297]) 

Combining Proposition 10 in [9, p. 1446] and the method of the proof for Lemma 1 in [11, p. 70], 
we have the following. 

PROPOSITION 3.2. Let {A(n)}nEZ be almost periodic on Z. Then equation (1.1) has an expo- 
nential dichotomy on Z if and only i f  it has one on Z + (or Z - ) .  

This result implies that  the exponential trichotomy of equation (1.1) on Z is equivalent to the 
exponential dichotomy on Z if {A(n)}nEz is almost periodic. 

By using induction, it can be deduced. 

PROPOSITION 3.3. Let {A(n) }nEZ, {B(n)  }nEZ be two matrix sequences whose elements are in- 
partible matrices. I f  { A(n) }nez and {B(n)  }nez satisfy: 

(1) " 

max~suplA(n)[ ,suplB(n)hsuplA-a(n) l , supiB-a(n)I~ < V < +oo ;  (a.a) 
I. n E Z  n E Z  n E Z  n E Z  

(2) there exists a positive number ~ > 0 such that 

max ~ sup ]A(n) - Ban)i, sup IA-i(n)  - B- i (n ) l  ~ < ~. (3.4) 
I, nEZ nEZ ) 

Then 
IY(n)Y-a(rn)  - X ( n ) X - l ( m ) l  <_ In - m l M l ~ - ' q - a ¢  (3.5) 

holds for n, m E Z, where X(n)  is a fundamental matrix for equation (1.i) and Y(n)  is one for 
equation y(n + 1) = B(n)y(n), with X(O) = Y(O) = I. 

THEOREM 3.1. Let { A(n) }nEZ be a d x d invertible matrix sequence, defined and almost periodic 
on Z, such that 

(1) { A - l ( n )  }nEz is almost periodic; 

(2) equation (1.1) has an exponential dichotomy on an integer's interval 0, T = {0, 1, 2 , . . . ,  T} 
( T E  Z +) with constants K >_ 1 and a > 0 such that a-1 In K > 1. 

Consider M = max { IIAII + 1, IIA-al l  } ,  fat) = e t - e - t  for  t e (0, + o o ) ,  h = ~ - a  ( f - 1 ( 8 )  + In K)  
and 6 the largest positive number such that hMh-16 <_ 1. T h e n / f T  > 0 is so large that  T > 4h 
and every integer's interval of length [T/2] contains a common &translation number for A(n) and 
A-l (n ) ,  equation (1.1) has an exponential dichotomy on Z with constants L and 13 = h -a ln3, 
where L depends only on M, K and a, [.] is the greatest-integer function. 

PROOF. Let m E Z, m > h. Then it follows from [a + b] _> [a] + [b] for alla, b E R that  there 
is a common &translation number r for A(n) and A- l (n )  in the integer's interval m -  [3/4T], 
m - [1/4T]. Therefore, for all n, 

IA(n) - A(n - v)l < 6, [A-nan) - A-nan - 7)1 < 6. (3.6) 
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Since 

the difference equation 

m -  ~ ' -  [T] , m -  r + [TJ CO, T, 

y(n + 1) --- A(n - T)y(n) (3.7) 

has an exponential dichotomy on [m - T/4,  m + T/4] N Z with constants K, a. Then since T > 4h 

and 
K - l e  ah - K e  - a h  = 8, 

it follows from [3, pp. 296-297] that  if y(n) is any solution of equation (3.7), 

ly(m)l <_ sup{ly(n)l : In - ml < h}. 

Now let x(n) be any solution of equation (1.1) and let y(n) be the solution of equation (3.7) 
with y(m) = x(m).  From (3.6), Proposition 3.3, and the definition of 5, we have that  for 
0<_ [ n - m l  < h ,  

ly(n) - x(n)l = I(X(n - r ) X - X ( m  -- ~-) -- X ( n ) X - ' ( m ) ) x ( m ) l  <_ 

Hence, 

that  is, 

1 
Ix(m)l = ly(m)l ~ ~ sup{ly(n)l : In - m] < h} 

<_ l sup{Ix(n)] :  I n - m  I <__ h} + 4]x(m)l, 

1 
Ix(m)] _ ~sup{Ix(n)l:  I n - m l  _ h}. 

From Proposition 2 in [3, p. 297] and its proof and similar arguments to those in the proof of 
Theorem 1 in [10, p. 295], this proof is completed. 
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