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A b s t r a c t - - T h i s  paper considers the stationary instability of convective flow between heated ver- 
tical planes in the limit of high Rayleigh number, A -~ co. This limit is of practical importance 
in applications. The planes axe held at temperatures that increase linearly with height and differ 
horizontally by a constant amount. This allows an exact solution of the Boussinesq equations whose 
nature depends on the  value of a convective parameter % The lower branch of the neutral stability 
curve is obtained for general values of V and large Prandtl numbers, ~, revealing a dramatic change 
in the stability properties of the system in the limit as (r ---* c~. (~) 2004 Elsevier Ltd. All rights 
reserved. 

K e y w o r d s - - I n s t a b i l i t y ,  Convective flow, Convective parameter % Rayleigh number A, Prandtl 
number or. 

1. I N T R O D U C T I O N  

In a previous investigation of the stability of the high Rayleigh number (A >> 1) buoyancy-driven 
flow between heated vertical planes [1-3], the lower branch of the neutral curve for stationary 
disturbances was obtained for an infinite Prandtl number fluid. The present note extends this 
analysis to consider how the lower branch is modified for large but finite values of the Prandtl 
number. This leads to the identification of a significant shift in the range of the convective 
parameter 

for which stationary instability occurs. Here/3 is a measure of the positive vertical temperature 
gradient maintained over the two vertical planes and A is the Rayleigh number based on the gap 
width and the constant horizontal temperature difference between the planes. The stability of 
the buoyancy-driven flow which consists of fluid rising near the hot plane and descending near 
the cold plane has been studied numerically [4] and is related to the onset of multiple transverse 
rolls observed in experimental investigations of vertical slot flows [5-7]. It has been established 
that for infinite Prandtl number and high Rayleigh number (A >> 1), stationary instability is 
limited to values of V greater than a critical value V0 ~ 6.30 and the critical wavelength of the 
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instabili ty at  "y0 has been found [8]. In the present paper,  the lower branch is t raced at finite 
values of the Prandt l  number  where it emerges tha t  instabil i ty occurs for general values of ~ />  0. 
The  main results are presented in Section 4 where it is shown tha t  for 0 _< V -< ~'0, a thermal  
critical layer is formed midway between the planes. The  results are summar ized  in Section 5. 

2. F O R M U L A T I O N  

The  nondimensional system governing s ta t ionary  transverse disturbances is derived [6], and 
has the form 

¢ , , , ,  _ 2~2¢,, + ~ 4 ¢  = 8' + i ~ - l A  (9 '"¢  - 9 '  (¢" - ~ 2 ¢ ) ) ,  (2.1) 

8" - a28 = i a A ( O ' ¢  - 9 ' 8 )  - 4~/4¢ ', (2.2) 

1 
¢ = ¢'  = 8 = 0, x = + ~ ,  (2.3) 

where primes denote differentiation with respect  to x, (x, z) are horizontal and vertical coordinates 
nondimensionalised with respect  to the gap width l*, 

V* 
= k-: (2.4) 

is the Prandt l  number  where v* is the kinematic  viscosity and k* is the thermal  diffusivity, and 

fl* gAT*l*3 (2.5) 
A - k 'v* 

is the Rayleigh number  where fl* is the coefficient of thermal  expansion, g is the acceleration 
due to gravity, and AT* is the horizontal t empera tu re  difference between the planes. The  overall 
s t ream function and tempera ture ,  nondimensionalised with respect  to k* and AT*,  respectively, 
are 

¢ = A (9 ( x )  + e¢(x)e'•Z), 

T = flz + O(x) + eS(x)e i~z, 

(2.6) 

(2.7) 

where e << 1 denotes the size of the s ta t ionary  per turba t ion  and 9 and O are the base flow and 
horizontal t empera tu re  fields which depend only on "y and are given in detail  [8]. The  functions 9 
and 0 are even and odd about  x = 0, respectively. 

3. L O W E R  B R A N C H  F O R  F I N I T E  P R A N D T L  N U M B E R S  

In the high Rayleigh number  limit, the lower branch of the neutral  stabil i ty curve is associated 
with small wavenumber  disturbances such tha t  

5 
(~ ~ ~ ,  A ~ c~, (3.1) 

and it follows from (2.1)-(2.3) tha t  5 and the leading approximat ions  to the per turba t ion  func- 
tions ¢ and 8 satisfy the reduced system 

¢""  + iOa -1 ( 9 ' ¢ "  -- 9 ' " ¢ )  ---- 8', (3.2) 

8" =- i a A  (O '¢  - 9 ' 8 )  - 4V4¢ ', (3.3) 

1 
¢ = ¢ '  -- 8 ----- 0, x = ± ~ .  (3.4) 

I t  has been shown previously [1] tha t  this sys tem has a solution for infinite Prandt l  number  in the 
region ~, > "Y0 ~ 6.30 such tha t  5 --~ c~ as V -~ "Y0+. This is shown in Figure 1. Here solutions 
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were ob ta ined  for finite P r a n d t l  numbers  using a fourth-order  Runge K u t t a  scheme. The system 

was converted into six f irst-order equat ions and three l inear ly independent  complex solutions 

satisfying the  b o u n d a r y  condit ions at  x = - 1 / 2  computed  across to  x = 1/2. Appl icat ions  of the  

bounda ry  condit ions there  then  led to a 3 × 3 complex de te rminan t  whose zeros were located to 

obta in  c% for given values of a and 7. Results  for a = 20, 100, and 1000 are shown in Figure  2 

where A --  (%/a is p lo t t ed  in the  range 0 < 7 -< 10. Also shown is a dashed line corresponding to 
the  l imit ing case a = cx~ which is discussed in the  next  section. 
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4. LARGE P R A N D T L  N U M B E R  LIMIT, c r - - *  o o  

In order to determine the limiting form of the solution as ~ --* c~ in the region 7 < Vo ~-- 6.30, 
it is necessary to assume that  A = &/a remains finite as ~ --* oo so that  (3.2) becomes 

¢'" '  + ~ ( ¢ ' ¢ "  - ~ ' "¢ )  = 0', (4.1) 

while to a first approximation, equation (3.3) reduces to 

0 = ~7¢" (4.2) 

Conduction represented by the highest derivative term 0" in (3.3) has been neglected in (4.2) 
but remains important  in wall layers near x = 4-1/2 and a thermal critical layer surrounding 

x = 0. Thus, (4.1) and (4.2) must be viewed as leading approximations in two outer zones 
0 < [x[ < 1/2 either side of the critical layer. The solution of (4.1) and (4.2) for ¢ in x < 0 can 
be written in the form 

¢ = u ~ f l ( x )  + u2f2(x) ,  (4.3) 

where/Y~,2 a r e  complex constants and fl,2 are complex functions uniquely defined as the solutions 
of the third-order systems 

f~. O/ --  ~ - 7 f l  = iA  ( @ " f l  --  ~ ' f ~ )  ; 

0 ~ 
f~" - ~ h  = ~ ( ¢ " h  - ¢ ' f~)  + 1; 

1 
' " = - -  ( 4 . 4 )  ( f l ,  f l ,  f l  ) = (0 ,  0,  1) ,  a t  x 2 '  

1 
' " = - -  ( 4 . 5 )  (h, f~, f~)  = (0,0,0),  at x 2" 

Here it is assumed that  fl,2 must  satisfy the full boundary  conditions on ¢ at x = - 1 / 2 ,  in 
which case the behavior of 0 obtained from (4.2) is also consistent with its boundary  condition 
in (3.4). Detailed consideration of the wall layer of thickness order ~ - i / 3  confirms this to be a 
consistent procedure. 

The appropriate solution in x > 0 follows from the fact tha t  O ~ and ¢d ~ are odd and even 
functions of x, respectively, and can be written as 

¢ = . ? f ; ( - x )  + ~.~+f~(-x), 

where * denotes the complex conjugate and u~2 are complex constants. 
The general form of f j  (x) as x --* 0 -  is given by 

f j  = aj + bjx + cj0x 2 in Fxl + c 9  + dj~ 3 + o ( ~  in I~l), 

(4.6) 

(4.7) 

where the constants aj,  bj, and cj (j = 1, 2) are determined from a numerical solution of (4.4) 
and (4.5). The remaining coefficients are known in terms of these, so that ,  for example, 

#oaj dj = (#obj/wl  + i)~u~laj + j - 1) (4.8) 
c j 0 -  2wl ' 6 ' 

where #0 -- f) '(0) and wl -- ~"(0)  depend upon V. This was carried out using series expansions 
in the neighborhood of x -- - 1 / 2  and then a fourth-order Runge-Kut ta  scheme to integrate the 
equations across to the neighborhood of x -- 0. Here the solution was terminated at x -- x8 
where x8 is small and negative, and the numerical solution for f j ,  f~, and f~ equated to the 
corresponding values given by extended versions of the series expansion (4.7). This allowed the 
complex coefficients aj, bj, and cj to be determined, and checks on accuracy were carried out 
using different step sizes in the Runge-Kut ta  scheme and by changing the value of xs. 
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The eigenvalue A can now be determined as a function of V by considering continuity of the 
solution across the thermal critical layer centered on x = 0. This layer is of thickness x ,~ a-1/3  

and consideration of the solution there leads to four bridging conditions, 

+ * = v i a l  + v2a2, (4.9) v+ d~ + v2 a2 

~+~ b~ + v+~ b~ = -v~b~ - ,~b~, (4.10) 

rv+o* + ~ )  
v+icl + v+c~ = v ' ~ q  + v2c2 + i#ozr ~ 1 ~1 (4.11) 

2w 1 

+ * = - v ' ~ d l  - v~d2.  (4.12) v+ dl + v2 d2 

Details of the analysis leading to (4.9)-(4.12) are similar to those described by [8] in relation 
to the critical layer structure near 7o and are omit ted here; further information is given by [9]. 

Using the result for di in (4.8), it follows from (4.9), (4.10), and (4.12) tha t  v + = - v  2 and then 
following elimination of v~ from (4.9)-(4.11) the condition for a nontrivial solution is found to 

be 
(~ib~ + albl) (4  + ~)  + (~ic1 - ~ I )  (b~ - b~) - (blc~ + b~cl) (~; + a~) 

a * * (4.13) - i ~ o ~  [( 1a261 + ~l~2b~) - (b~ - b~) ~ i ]  = 0. 
2wl 

It may  be seen tha t  the left-hand side of equation (4.13) is real and since #o and w1 depend 
on V and the coefficients aj ,  bj, cj depend on V and A, it yields the eigenvalue A as a function 
of 7. This is plotted as a dashed line in Figure 2, in the range 0 < ~, < Vo. I t  was found that  

A -* 0 as 7 -* 7 o - ,  with a locM behavior given by 

A ~ m(7o - V), 7 -+ 7 o - ,  (4.14) 

where rn ~ 5.065 x 10 4. 

5.  S U M M A R Y  

It is seen tha t  as a --~ 0% the lower branch of the neutral stability curve adopts two distinct 
forms in the regions V < 70 and "~ > 70. For 3' < 70, the wavenumber is proportional to the 
Prandt l  number (} ~ Aa with A finite, whereas for V > 70 the wavenumber (~ is finite as cr -* oo 
and the limiting curve is tha t  given by Figure 1. This appears as the dashed line A = 0 for 7 > 70 
in Figure 2. 

The results demonstrate  tha t  the lower branch of the neutral stability curve experiences dra- 
matic transition as the Prandt l  number becomes large. For finite Prandt l  number, the lower 
branch extends all the way to 7 = 0, so tha t  long wavelength convection can occur with 
a = O ( A  -1 )  for any value of the convective parameter.  As the Prandt l  number increases, the 

wavenumber of the section of the lower branch in the range 0 < 7 < 6.3 increases in proportion 
to the size of the Prandt l  number so that  when a ,- A, the wavenumber a will be of order one, 
comparable with tha t  of the upper branch, with the approximation used to obtain the lower 
branch equation in Section 3 no longer valid. Thus, it is reasonable to conjecture tha t  as the 
Prandt l  number increases through values of order A, both the lower and upper branches of the 
neutral stability curve are associated with order one wavenumbers in the region 0 _< V < 7o such 
that  there is a minimum value ~/c of -y for instability which increases from 0 to O'0 as o ' /A  increases 
from zero to infinity. This is shown schematically in Figure 3 and at 3' = 0 is consistent with 
the critical point for the conduction regime obtained by [5] as c~c = 2.65 when A~ ,,~ 7.9 × 103cr 
and c~ >> 1. It  is also consistent with the results obtained by [7] which describe the nature of 
the solution near V0 when a = 0 ( A 4 / 3 ) .  These show that  when cr ~ A4/aao,  the location of the 
critical point ('~c, ac) is determined by 

7c = "YO -t- A-2/3"/1,  ac = A - 1 / 3 a l ,  (5.1) 
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where 71 and a l  are the solutions of the cubic equation 

- Co ol - c 1 7 a l  + c2  = 0 (5.2) 

for which 71 is a minimum. Here the coefficients of the equation are given by co = 0.00108, 
cl = 53.37, and c2 = 1.677 x 107, respectively. As a0 --+ 0, it follows tha t  

7 c ' ~ 6 . 3 0 - 5 . 4 6 × 1 0  -9 , a c ~ 5 . 4 0 × 1 0  -4  , A << a << A 4/3) , (5.3) 

consistent with finite changes to the values of %, ac when cr = O(A) .  Note also that  as ~0 --+ 0, 
the second and third terms dominate in the neutral stability curve (5.2) and the relation a l  
ClOo7/Co is consistent, to a reasonable degree of accuracy, with the linear behavior obtained 
in (4.14). As ao ---+ 0% "/1 ~ 3(c2/2)2/3/Cl = 2.32 x 103, and a l  --~ (c2/2) 1/3 = 2.03 × 102, and 

the infinite Prandt l  number limit is finally achieved. 
In a future investigation, it is hoped to confirm the above ideas by tracking the location of the 

critical point %, ac in the V, a plane for Prandt l  numbers of order A. This will allow the main 
adjustment in the region of s tat ionary instability to be determined for large Rayleigh numbers 
and Prandt l  numbers. I t  would also be of interest to consider how the travelling wave instability 
discussed by [4] develops at both  high Rayleigh numbers and Prandt l  numbers. Here the critical 
Rayleigh number A in the conduction regime (7 = 0) is of order ~1/2 [10] and it seems likely 
that ,  in contrast to the stat ionary case, the instability is completely suppressed for all values of 7 
when the Prandt l  number is infinite. 
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