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It has long been known that every positive semidefinite function of R(x, y)
is the sum of four squares. This paper gives the first example of such a function
which is not expressible as the sum of three squares. The proof depends on the
determination of the points on a certain elliptic curve defined over C(x). The
2-component of the Tate—Safarevi¢ group of this curve is nontrivial and in-
finitely divisible.

3TO HE TOJIBKO OTPUILIATEJIBHAS BEJIMUYMHA, HO OTPUIIA-
TEJIbHASI BEJIMUMHA BO3BEIEHHAS B KBAIPAT!

(ATTRIBUTED TO J. V. STALIN)

0. INTRODUCTION

Let x, y be independent indeterminates over the real field R. Hilbert [6]
showed that every positive semidefinite function of R(x, y) is the sum of
squares of elements of R(x, y). Landau [16] showed that four squares
suffice and it has been a long-standing problem whether or not three
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squares would suffice. The main object of this paper is to show that the
positive semidefinite function

fy) =1+ x%x* —3) y® + xB4, 0.1)

exhibited by Motzkin [8] in another context, cannot be represented as
a sum of three squares in R(x, »).

The proof is in two steps: First, we show that fis a sum of three squares
if and only if a certain elliptic curve ¥~ (the notation will become clear
later) defined over & = R(x) has k-rational points with a certain additional
property (Theorem 2.1). Secondly, we prove that there are no such points
on €-1 by determining completely the group ¢, of C(x)-rational points
on € (Theorem 7.1).

We also discuss briefly some consequences of this result for the general
theory of quadratic forms and of elliptic curves over function fields.

1. QuaDRrATIC Forms IN ReAL FuncTiON FIELDS

The problem of representing rational functions as sums of squares was
first discussed by Hilbert [5]. Landau [16] using ideas of Hilbert [6]
showed that every positive semidefinite rational function in two variables
over the reals is a sum of four squares. On the other hand, it is easy to see
that

p(x,y) =1 4 x% 4 y*

is not a sum of two squares in R(x, y). For p is irreducible in C[x, y] so
that any representation

Pt =12+ = (L + (A — 1),

with 0 # f;, f1, fe € R[x, y] would imply p | /1, p | f3 ; which immediately
leads to a contradiction.

Both results have been generalized to the n-variable case where they
read as follows: Every positive semidefinite function in R(x; ,..., x,,) is a
sum of 2" squares [1, 10]; 1 4 x;® -+ -+ + x,2 is not a sum of » squares
in R(x, ,..., x,,) [4, 2].

Let ¢ = #(n) be the smallest natural number such that every sum of
squares in R(x, ,..., x,) is already a sum of ¢ squares. Then #(n) satisfies
the inequality

n+1<tn <2n

We will prove that #(2) = 4, but it should be pointed out that our method
of proof—to franslate the problem into a question about an elliptic
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curve—is restricted to the case n = 2. We have no idea how to attack the
conjecture t(n) = 2" for arbitrary n.

From now on we work in the field R(x, y). Let f be a positive semi-
definite function in R(x, y). If we ask for a representation of f as a sum
of squares we may clearly suppose that fis a polynomial. Since the cor-
responding problem for R(x) is trivial one may also suppose that factually
depends on x and y, i.e., cannot be written as a function of only one
variable. Hence, the “casiest” cases for f'to be considered are:

(a) fis a polynomial of total degree 4;
(b) fis a polynomial of degree 2 with respect to y.
In both cases fis a sum of three squares in R(x, y).

In case (a) this result is due to Hilbert [5], in case (b) it may be proved as
follows: We can suppose that

fxp) = g(x) y* + h(x),
where g = g, 4+ g.% & = 2 4+ hy* in R[x]. Put

f=(gwy +gm*+(gy — g + &
with £, n € R(x). The condition on &, 7 is

& +gn® =h

This equation is soluble since a quadratic form of shape (1, g) represents
all totally positive elements of the field R(x) [10].

Thus, a positive semidefinite polynomial f(x, y) which is not a sum of
three squares must be of total degree at least 6 and of degree at least 4 in
the single variables x and y. Fortunately, a promising polynomial 1 of
this type has been discovered by Motzkin [8],' namely (0.1). It is the
simplest known positive semidefinite polynomial which is not a sum of
(any finite number of) squares of polynomials in R[x, y]. Other poly-
nomials with this property have been given by R.M. Robinson [12].
There are various ways to show that f(x, y) in (0.1) is positive semi-
definite. Perhaps the simplest proof is to note that x2y? is the geometric
mean of 1, x*2, and x2)%. Alternatively,

_ QX X — R
f(x7 y) - 1 + x2 2 (1'1)

which leads to an explicit representation of f as a sum of four squares in
R(x)[y] on multiplying numerator and denominator with 1 -+ x2.

1 We owe the reference to this paper to R. M. Robinson and O. Taussky-~Todd.
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2. A CONNEXION BETWEEN QUADRATIC FORMS
AND ELLipTiIC CURVES

Let k be a formally real field, let
f» =14+a?+ by (2.1)
€ k[y] with b ## 0, a® # 4b. Then we have:

TueoreM 2.1.  f(p) is a sum of three squares in k(y) iff the elliptic curve
@11 = E(E — 2af + a* — 4b) 2.2)

has a k-rational point (€, n) with &, m € k, such that
& and —£% + 2a€ — a® + 4b are sums of two squares ink. (2.3)

Proof. Suppose first that () is a sum of three squares in k(y). Then
by Ref. [2], the same is true in £[y], i.e., we have

S =1+ 1 + /5" with f; € k[y].
Since k is formally real, the f; must be of degree < 2, say
fO) =a; + by +c)? (i =12)3).

Comparing coeflicients we get the following system of quadratic equations
ink:
3

3 3 3 3 3
Yar=1Yab, =0 Y b2+2Y ac;=a, ) bic;=0,) ¢2=b.

1 1 1 1 1 1
24

After an orthogonal transformation over k& which takes the vector
(a, , a; , a;) into (1, 0, 0) we may assume that @, = 1, @, = a3 = 0. Then
(2.4) reduces to

by =0, b2+ b2 =a—2¢, bycy + byeg =0, 2 + ¢.2 = b — 2.
2.5)
This implies
(@ — 2c)(b — &1®) = (b + bsd)(cs® + 5P
= (ba0s + b3c3)® + (byes — bscy)?
= (bacs — bycy)® (2.6)
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Putting £ = a - 2¢, , 7 = 2(bycs ~ byey), We get 4(b - ¢,?) = 4b - (€ -a)®
and

§(§ —a)* —4b) = —7*. 2.7

From (2.5) we see that £ and 4b — (¢ — a)? are sums of two squares in
k. This proves the first part of the theorem.

Conversely, if £, € k with (2.2) and (2.3) are given, we get a solution
of the system (2.5) as follows: If § = 0,4b — a® = d* - €%, we take

by =0b,=b;,=0,2¢, =a,2c, =d, 2¢; = e.

If § = b2 + b2 # 0, we have 4b — (¢ — a)® = (/€)% (b,® + b3?).
Hence we may take

by=0, 2¢,=a—¢, 2c2=%b3, 205 = —

Clearly every solution of (2.5) leads to a representation of f(y) as a sum of
three squares.

by.

]

COROLLARY 2.1. f(x,3) = 1 + x%(x?* — 3) y* + x2* is a sum of three
squares in R(x, y) iff the elliptic curve

F1r— = E(E — xAx®— 3) —2x)(é — x*(x2 — 3) +2x) (2.8)
has a rational point (£, ) over R(x) with n # 0 and & positive semidefinite.

Proof. The trivial points (0, 0) and (x*x* — 3) & 2x, 0) on (2.8) do
not lead to a representation of f as a sum of three squares, since, in the
first case,

4x2 — (x¥(x? — 3))* = —x¥x? — 12 (x* —4),
and in the two other cases
xX(x2—3)+2x =x(xF 1)*(x +2)

would have to be a sum of two squares in R(x). Furthermore, if (£, 9) is on
#-1 and £ # 0, then (2.3) is satisfied iff ¢ is a sum of two squares in
R(x) and this is equivalent to the condition that £ should be positive
semidefinite.

COROLLARY 2.2. The elliptic curve €' defined by (2.8) has no point
(€, m) with €, 1€ Q(x), £ € Q(x)?, and 7 +# 0.

Proof. The existence of such a point would imply that

f,p) =1+ 202 —3) )" + x4
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is a sum of three squares in Q(x)[y], say

F e 2) fo(x) = filx, y)* + falx, p)* + folx, 3)?

with 0 £ fi(x) € Q[x], f1, /2, /5 € Qlx, y]. Here we may suppose that
fo(x) has no zeros in Q since otherwise £; , f; , /2 » f3 have a common factor.
Thus, one may substitute arbitrary values u, v € Q for x, y and f(u, v) is
then a sum of three squares in Q. But

f(3,13) = 64.4159,

which is not a sum of three squares since 4159 = —1 mod 8. This con-
cludes the proof of Corollary 2.2.

Theorem 7.1, Corollary 2.1 reduces the representability of f(x, y) by the
sum of three squares to a problem about elliptic curves. We shall actually
do more than is required to demonstrate that no such representation
exists and will determine a basis for the group of points on (2.8) defined
over C(x). The details are given as Theorem 2 at the beginning of Section 7.
Note that it is convenient to replace n by iz in (2.8), and so to work with
the curve (7.0).

3. LEMMAS FROM THE GENERAL THEORY OF ELLIPTIC CURYVES

In this section we give some familiar results from the general theory of
elliptic curves in a form suited for later application. The cognoscenti are
advised to skip this section and to refer back only when necessary.

3.1. Letk and K = k(v/d)(d < k) be fields of characteristic 0 and
let

Cin? =+ A8+ BEH+C 3.1

be an elliptic curve defined over k. Let €, , € be the group of points on
(3.1) defined over k, K, respectively, so €, C € . Let €,2 be the group of
points of

@i =g+ A2+ BE+C

defined over k. Then we can regard %% as a subgroup of €, since ¢¢ can
be written

(Vdn)* = & + A¢* + BE + C.

LeEMMA 3.1. 2%y is contained in the subgroup of Cy generated by €;, and
€,°.
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Proof. Let o be the automorphism v/d — — 4/d of K/k. Then o acts
on €y and a € € is in €, resp. €2 if

oa = a Tesp. oa = —a.
But now any 2a € 2% can be written
2a = (a -+ ca) + (a — ca).
3.2, Now consider the two curves

E P = EE + 24¢ + B) (3.2.1)
and
D :m? = &(&2 + 24,6, + B, (3.2.2)

where 4, Bek and 4, = —24, B, = 44® — 4B. Denote the point at
infinity on € by o and the point (£, 1) = (0, 0) on € by p; and similarly
for o, and p, on Z. Then we have the following isogenies of degree 2:

¢ : € — D given by ¢(0) = ¢(p) = o, and

$(, ) = ((%)2 52—;—5 n) for £#0; (3.2.3)

1 D — € given by ¥(o,) = ¥(p,) = o and

P, m) = 2;1 )2, 5128;1231 m) for &0 (324)

The composite maps i o ¢ resp. ¢ o are just multiplication by 2 on
% resp. 9.
A necessary and sufficient condition that a point a = (a, b) € %, be in
WD) is that
ack?® a* + 24a + Be k?,

where k? denotes the set of squares in k. One can say rather more. Let k*
be the multiplicative group of nonzero elements of k. We have a map

y 1 G — k¥ [k (3.2.5)
defined as follows:
y(o) = 1-k*,
@) =a- k¥, if a+#0,
= (a® + 24a + B)k** if a® + 24a + B + 0.
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The two definitions on the right-hand side are both applicable if & % 0
and then they coincide, and one of the two definitions is always applicable
fora # o.

LEMMA 3.2. v is a group homomorphism. Its kernel is precisely y(2y).

Proof. See Ref. [14].
Replacing % by & we have a map & : &, — k*/k*" for which the analog
of Lemma 3.2 holds.

3.3. Now suppose that € has the shape
E:n? = (€ —e)€ —e)€ —ey), (3.3.1)

where

e ,e,e€k.
To (a, b) € €, with b # 0 there correspond three a; € k*/(k*)" given by
o = (a — e;) o k*'. (3.3.2)
Further
oy = 10 k¥ (3.3.3)

by (3.3.1). When b = 0, only two of the a; in (3.3.2) are well defined and
the third is defined by (3.3.3). We thus have an everywhere-defined map
ye of €, into three copies of kXJ(k*).

LEMMA 3.3. v, is a group homomorphism. Its kernel is precisely 2€, .

3.4. We are particularly concerned with a groundfield & = ky(x),
where x is transcendental. The curve

C:n*=E+A8+BE+C, A4,B Cek, (34.1)

is birationally equivalent to one defined over k, iff there is a linear trans-
formation

n=mh, §E=mé+n (l,mnek)

such that 7,2 € ky(&,). [See, e.g., 3, p. 212.] The analog of the Mordell-
Weil finite basis theorem [7] implies the following:

LeMMA 3.4. Suppose that k = ko(x) and that € is not birationally
equivalent to a curve defined over k,. Then %, is finitely generated.
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3.5. In kyx) the ring ky[x] of polynomials is an analog of the
integers in the classical theory over the rationals. The analog of theorems
by Nagell and Lutz [3] is

LemMA 3.5, In (3.4.1), suppose that
A, B, Ce ky[x]
and that a = (a, b) € €, is of finite order. Then
a, b € ky[x].
Further, either b = 0 or b® divides the discriminant 4(%) of

£+ A8 + B + C.

4. PoINTS OF FINITE ORDER

4.1. Let now 4 = —x¥x* — 3), B = x¥(x? — 1)? (x* — 4),
Ay = 2x¥x* — 3), and B, = 16x? in Section 3.2, i.c.,
GoP = E(E — 22(x — 3) € + Xz — 1 (52 — 4)
= &(§ — x*(x* — 3) — 2x)(§ — x*(x* — 3) + 2x),
D:m? = &6 + 4x(x® — 3) & + 16x7). “4.2)

(@.1)

We intend to determine all points of finite order on € and 2 defined
over k = C(x). There are clearly the following points of order 2:

p =00, g=0*—3)+2x0), r =(x*(*—3)—2x,0) on &,
p; = (0,0) on 2.

[The two other points of order 2 on £ which are given by
£ 4 4x3(x2 —3) & H16x2 =0

are not rational over C(x).] The image under v of p,q,and r is not a
square in k, hence p, q, r ¢ H(Z,) by Lemma 3.2. A fortiori there are no
points of order 4 on %} and 2, . (Use p; = ¢(q) = ¢().)

It remains to determine the points of odd order. Suppose that
o, = (a,, b) € D, is of odd order n > 1. Then a = (a;) = (a, b) € €,
is also of order n. By Lemma 3.5 we have

a, b) a, bl € C[x]s b’ bl ;é 0 and b2 l A(%’ b12 I A(‘@)'
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In addition, @, € C[x]? since a; = 2((n + 1)/2 ay) € §(%,). By (3.2.4),

b2 a4 4x*(x® — 3) a, 4- 16x%
4a2 da, ’

a =

hence @, | x. Further, the point a; +p; = ;' = (¢;, b)) € &, has
order 2n and an easy calculation shows that a," = 16x*/a, . Replacing
a; by a;’, if necessary, we may, therefore, assume that a, € C*. Then
5% = 4a,®x* + 4a,(4 — 3a) x* + a,®
and
b2 | A(2) = 4B X(B, — A.®) = —16B2B = —163x%(x? — 1)2 (x% — 4).

This implies

bi? = da*(x® — 1),

(11 = 4, bl = j:8(x2 - 1).
Put

5 =0@,8x*—1)e%,. 4.3)

By Lemma 3.2, s, € ¢(%;) and an easy calculation shows that the pre-
images of s, under ¢ are

s = (x¥(x% — 1), 2x¥(x2 — 1)) € €» 4.4

and s - p. We also note that
25 = ifsy) = ((6* — 1%, — (x* — 1)?), (4.5)
2s; = ¢$(2s) = (1, — (2x2 4+ 1)). 4.6)

By assumption s, has order n or 2n, hence 2s, has order ». But this
is impossible since
2x% + 1+ 4(9D).

Therefore s € €, and s, € 2, are points of infinite order. We have proved:

LemMA 4.1. Let k = C(x) and denote the torsion subgroup of C; resp.
D, by €ro 165 Dry. Then €, 0= Z[2Z X Z|2Z, with generators
P, 0, Dro= Z[2Z, with generator p, .

4.2. For later reference we will also prove that the points
$1, %1 + Py € Dy, are not divisible in £, by any number n > 1. This is
clear for n = 2, since s,s + p, 5 -+ g, and s + ¢ are not in ¥(2,) by
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Lemma 3.2. So let n be an odd integer >>1. It is enough to show that
2s; = (1, — (2x% -+ 1)) is not divisible by n in &, . Suppose

251 - nCl1 s 01 € ‘@k . (47)

The group of automorphisms ¢ of C over Q acts in a natural way on Z,
and leaves ¢, invariant since s, is defined over Q(x). Hence

n(ea; — a,) = 0.

But 2, contains no points of odd order, so ga;, = q;, i.e., q, is defined

over Q(x).
From the general theory of elliptic curves ([3], Lemma 7.2) we have the
following results: Let ¥, = (§; , 7,) be a generic point on Z;

n? = &(&P + 24,6, + By).
Then 23(1 = 32 == (52 N 7]2) With

£, = ( &2 — By )2 _ ¢2(§1) _ Qz(f;) . (4.8)

2m R

nxy == ¥, = (gn s nn) with

48D 2@
7 NI & (“9)

where ¢, , ¢, , and 2, are polynomials with coefficients in Q[4, , B,], ¢,
of degree n? with top coefficient 1, 4, of degree 3(n2 — 1) with top coeffi-
cient n.

From the addition formula we have

_ Ebn(la + &+ 44,) + By(&; + €,) — 209
e (&, — £)°

(PobnlPathn® + b - 40 ® + 4A1f,? - Any?)
? + Bl ' 4"]125[’712((#2‘/’112 -+ ‘]Sn * 47712)

(¢n ' 4’712 - ‘f’z : ‘/Jn2)2
40,202,924,
(¢n 4 — ‘f’z‘;bnz)z .
This shows that

oD 46162 + 2416, + BY) (&) — (&2 — By)* . 2(ED).
(4.11)

(4.10)
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We can now prove by a specialization argument that ¢,(0) = 0 and
that ,,(0) is a power (depending on n) of B, . For, if x, = p, = (0, 0) we
must have x, = np; = p;, hence ¢, = 0 whenever £, = 0, i.e.,

$.(0) = 0. (4.12)

From (4.11)
¢n+2(0)] Blz‘pnz(o)

and since 4(0) = 1 and B, = 16x* this shows by induction that ,(0)
is a power of x (up to a constant factor) for any odd number n.
In our assumption (4.7), let
a b
o= (22

_6'—12_ 2N
with a, , b, , ¢; € Q[x], and g.c.d. (a; , ¢;) = 1. Then

| = $@/e) al + 4 $a0)

Y Hafe®) (a4 g (0) R e

This implies ¢, = 1 and q, | $,(0)?, i.e., a; divides a power of B, = 16x2
From (4.7) and Lemma (3.2) a, € Q[x]% Suppose now that

aq = a*x*, aeQ* k=0 (4.13)
Ifk > 1,
a2 + 4x3(x? — 3) a; + 16x* = x%(a*x¥ 2 + 4a*(x* — 3) x* + 16)

has to be a square, say

= x¥4 — $a%x% - terms of degree >2k in x)2

This is clearly impossible for k¥ > 1. For k = 1, we find

a’x? + 4a*x* — 12a2x® + 16 = (Qax? + 4)3,
at — 12a* = +16a,
a(a® — 12) = +16,
a= 12, +4,
a; = 4x® or ¢, = 16x2.
If £ = 0, we find

at + 4a?x* — 12a%x% 4 16x% = (a® 4 2ax?)?,
—12a% + 16 = +4a®,
a3 L a) =4,
a= +1, +2,
a =1lora =4
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The solutions a; = 1, 4, 4x2, 16x? correspond to the points

a = izsla j:sls :t51+p15 :i:251+P1,

respectively; which do not satisfy the Eq. (4.7). We have

LemMA 4.2.  Let k = C(x). The points s, and s, + p, are not divisible
in &, . The points s,s + p,s + q, and s + t are not divisible in €, .

S. FIRsT DESCENTS OVER R(x)

5.0. In this section we look at the first descents for € and €. It
is convenient to decompose multiplication by 2 into the product of two
isogenies along the lines of Section 3.2 by considering the curve

Dt = &+ 4x3(x? — 3) £ + 16x?) (5.0.1)

as well as %.

It is convenient to work in R[x] rather than in R(x). By abuse of lan-
guage we denote by (£, 9) a point of the curve we are considering defined
over R(x). On writing £ as a quotient of polynomials, one readily sees
that the denominator must be a perfect square, say

£ = wfy?, (5.0.2)
where
w, peR[x], gcd. (w, ) = 1. (5.0.3)

Considerations of divisibility show that

w = f? (5.0.4)
where
0 eR[x], gcd.(f, ) = g.cd.(4, ) =1 (5.0.5)
and
fe R[x] (5.0.6)

is one of a finite set. We endeavour to make this finite set as small as
possible. By Lemma 3.2, a bound on the number of f gives a bound on the
cokernel of the corresponding isogeny.

5.1. On applying the above substitution to ¢ in the equation for
% we obtain

w{w? - 2x%(x2 - 3) wi? + x¥(x2 - 1) (x? - 4) J*} = square. B.1.1)
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The greatest common divisor of the two factors on the left side divides
x}(x%2 — 1)? (x> — 4) and so
w=f0 flx(x+ Dx— D +2)x—2) (5.1.2)
and
f204 — 2x2(x2 —_ 3)f02¢2 + x2(x2 —_ 1)2 (x2 __ 4) 1/14
= +fA* (A € R[x]). (5.1.3)

Suppose first that the coefficient of the highest power of x in fis negative.
Then the coefficient of the highest power of x on the left side of (5.1.3) is
positive, while that on the right side is negative; a contradiction. Hence the
highest coefficient is positive.

Now suppose that f has odd degree, so the left side of (5.1.3) has odd
degree (because the right has). Then the degrees of the three summands on
the left side of (5.1.3) are unequal and either the first or the third has the
highest degree; a contradiction.

Thus, fis of even degree with positive highest coefficient. By (5.1.2), the
group generated by the f in (R(x))*/(R(x))*)" has thus at most four
generators, of which we can account for three:

LemMA 5.1. Independent generators of
coker(Zr(z) —> Cria) (5.1.9)
are given by the point
s = (x¥(x® — 1), 2x¥x% — 1)) (5.1.5)

and the two points

= (x(x — 1) 2), 0),
q = (x(x — 1)*(x + 2),0) (5.1.6)
r = (e(x + 12 (x — 2),0)

of order 2. There is at most one further generator, corresponding to
f=x(x—1).

Lemma 3.2 ensures, of course, that the three specified points give
independent generators of the cokernel.

5.2. We now consider (5.0.1) similarly and make the substitution
(5.0.2). Then

w(w? + 4x3(x?* — 3) wy? 4 16x%)*) = square. (5.2.1)
The greatest common divisor of the factors on the r.h.s. divides x* and so
w=f0 f|x (5.2.2)
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and
R0t 4 AxA(x® — 3) 020 + 16x%t = +f A2 (5.2.3)

with
A€ R[x]. 5249
The possibilities f = —1 and f = +x lead to a contradiction, on

considering the sign of the lowest power of x on both sides of (5.2.3).
Hence,

LemMMA 5.2.  coker (€p(y) = Drey)) IS trivial.

Since our curve % is not birationally equivalent to one defined over C,

the following lemma follows on combining Lemmas 3.4, 4.1, 5.1, and 5.2.

LemMA 5.3.  The group €y, is the direct sum of two cycles of order 2
and either two or one cycle of infinite order according as there is or is not a
point (§, 1) € €y With§ € x(x — 1) R(x)*".

5.3. We now consider the same problem for €* in which —»?* is
substituted for #2 As in Section 5.1, we have to consider

R 20363 — 3) FOR XAt — DR (62— 4) g = LR, (531)

where
=2 w = —f§?
f (ﬁg ’ f
and
Flx(x 4+ Dix — D(x + 2)(x — 2). (5.3.2)

As in Section 5.1, the degree of fis even.
We now show that (x — 1)| f is impossible. Suppose

f=&-1Dgglx(x+ Dx + 2)(x —2).
Dividing by x — 1 and then putting x = 1, we get from (5.3.1)
~d4g(1) 6(1)% ¥(1)* = g(1) A(1)%. (5.3.3)

Since g.c.d. (f, ¥) =1 we have (1) 5= 0, hence 6(1) = A(1) == 0. But
then the r.h.s of (5.3.1) is divisible by (x — 1)? and the Lh.s is not.
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Similarly, (x + 1)| f is impossible. Thus, the degree of f is even and
flx(x + 20(x —2). As in Section 5.1 the points with 5 = 0 give the
possibilities

f=x(x+2), x(x — 2).
If any other value of f occurs, then so must /= —1, since the possible
values of f'are a group modulo R(x) **, We have thus proved the following
lemma :

LEMMA 5.4. coker(@;}w, — Briz) has three or two generators according
as there is or is not a point of €l with £ € R(x)*". Two generators are
given by the points (5.1.6) of order 2.

The same arguments as in Section 5.2 give

LemMA 5.5. coker(€xt.) — Prix) IS trivial.

Combining Lemmas 5.4 and 5.5 with Lemma 3.4 and 4.1, we have the
following:

LEMMA 5.6. Gyl is the direct sum of two groups of order 2 and either
one or no cyclic group of infinite order according as there is or is not a point
(&, 1) € Crlyy with £ € R(x)*".

In the latter case where there is no such point (¢, n) we have clearly
Frizy C €rie) - By Lemma 3.1 this implies 2a € €y, for any a € €, or,
if p denotes the automorphism “complex conjugation”, 2(a — pa) = o.
Thus a — pa is one of the four 2-division points. On the other hand, a and
pa have the same image under y in C(x)* [C(x)**, since W€ () is generated
by square-classes which are defined over Q(x) as we see from (5.1.2). So
we must have ¢ = pa, i.e., a € Gy, -

Finally, we have proved the following:

LEMMA 5.7. € IS the direct sum of two groups of order 2 and either
1, 2 or 3 infinite cyclic groups. Further, € ¢, = Cr() unless there is a point
(€, ) of €gly with £ e R(X)¥".

It is perhaps worth remarking that we could have obtained the first

sentence of Lemma 5.7 more easily by doing the descents in C(x); which
provides a check on the preceding argument.

6. THE AcTION OF GALOIS

The curve ¥ itself is defined over Q(x). The elements of %¢(,, are each
defined over a finite extension of Q(x) since otherwise one could get
uncountably many elements of %, by specialization, contrary to
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Lemma 3.4. Let K be the smallest extension of Q such that a set of
generators of €, is defined over K(x). Then K is a finite extension and
every element of €, is defined over K(x). Further, K/Q is normal since
the conjugate of a point of €, is also in €, . The Galois group I’ (say)
of K/Q clearly acts faithfully on € ¢, .

By Lemmas 4.1, 4.2, and 5.7 a set of generators of €, can be chosen
such as to contain the points p, q (generators for € ¢, 0), and s. Let

$ C C(x) (6.1)

denote the subgroup of ., which is generated by p, q, and s. Then the
factor group

8 = Ccwld (6.2)

is a direct product of 0, 1 or 2 infinite cyclic groups and I" acts on §,
since the action of I" on § is trivial.
Further information is given by the following two lemmas.

LemMa 6.1.  I' acts trivially on € ¢ (/2 € cia)-

For it is easy to verify that I" acts trivially on the image of y, in Lemma
3.3, when the % of (3.3.1) is identified with the present % and k = C(x).
Indeed by a consideration of factorization like that of Section 5, one can
verify that representatives of the relevant classes of C(x)*/C(x)*" can be
chosen in Q(x).

LEMMA 6.2. The action of I' on § is faithful. The induced action on
&2 is trivial.

For suppose that o € I" acts trivially on &. Let ¢ be any element of
% cw - Then
ot = ¢ + b, 6.3)

with h € § and §) € 2%, by Lemma 6.1. Hence, by Lemma 4.2,
h =2t 6.4
for some ¥ € §. Let n be the order of ¢. Then
¢ = o"c = ¢ 4 2nk. (6.5)

Thus 2#f = o and so 2f = o by the properties of . Hence o acts trivially
on €¢(y and ¢ = 1.
The second sentence of the enunciation follows at once from Lemma 6.1.
We now consider the abstract situation revealed by Lemma 6.2.

641/3/2-2
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LeMMA 6.3. Let I' be any finite group and § a torsionfree module of
rank at most 2 on which I' acts faithfully. Suppose that the induced action
on §[2& is trivial. Then I' is either trivial, of order 2, or noncyclic of order 4.

The proof, when § has rank O or 1, is simpler than when rank § = 2,
which we shall suppose from now on. Let f; and f; be a basis and suppose
that o € I'. Then

ofy = (1 + 2a) f; + 2bf;,
ofy = 2¢h + (1 +2d) /5,

where
a,b,c,deZ.
The matrix
(14 2a 2b
M= ( 2¢ 1+ Zd)
has finite order, and so either
10
M=z )

or the sum of the eigenvalues is less than 2 in absolute value, i.e.,
I(1 +2a) + (1 +2d)| < 2.

Hence
1+2a)+(1+2d)=0
and so
det(M) = (1 + 2a)(1 + 2d) — 4cd
= —1 (mod 4),
that is
det(M) = —1.

Hence, the eigenvalues of o and M are +1 and —1. Let g, ,g_€ & be
bases of the one-dimensional submodules belonging to the eigenvalues
+1, —1, respectively. We want to show that g, , g_ is a basis for §. For
any fe & we have

A =(f+of) +(f— of)

and so
2f =ag, +bg_, a,bel.

Since § is torsion-free, it is enough to show that @ and b are both even.
Suppose, first that 2 5 g and 2|b. Then there is an f; € & with

2y =g,
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Then
20fy = 2f;
SO

Ufs =f;¥’

in contradiction to the definition of g, . Similarly, we cannot have 2 | a
2 4 b. Finally, if 2 + aand 2 + b, then there is an f; € § with

2y =8+ + 8-
and so 20fy =g, —g_ =2f —2g_,
Uf:l :f:!—g—9

in contradiction to the assumption that o is trivial on §&/2§. By suitable
choice of base we can thus ensure that

M=y )

Now let = be another element of I, say corresponding to

w= (3 ) #xY)
and = + M.

Then, as before,
(1 422+ (1 +2d) =0.

On the other hand, or corresponds to the matrix

. (l+2a W
My = (", —d + 2d'))'
Hence
(1 +2a) — (1 +2d') = 0.
Thus

1+2d =1+2d = 0;
a contradiction.

This concludes the proof of the Lemma.
Lemmas 6.2 and 6.3 together give

LEMMA 6.4. @y = €k for some normal extension X of Q whose
Galois group is either trivial, of order 2, or noncyclic of order 4.

Finally, we have the following refined version of Lemma 5.7:
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LEMMA 6.5. €y is generated by the points v, q, and s defined over
Q(x) and at most two further points ¢, and ¢, defined over K(x). The elements
of the Galois group I of K|Q act like +1 on ¢, and ¢, .

For the proof we may suppose that §& has rank 2, the other cases being
simpler. By the proof of Lemma 6.3, & has a basis f; , f; such that the
elements of I" operate like (5 ) or +(¢ _}). Let ¢; € ¥, be represen-
tatives for f; (i = 1, 2). Suppose also that I" is nontrivial and that pe I”
satisfies

ph=—h-
Let Iy C I' be the subgroup consisting of the o € I" such that
afi = /-
Then I, is of index 2 in I". By Lemma 6.2,
pey = —¢; +2h

for some § € $. On replacing ¢; by ¢; — b and recalling that I" acts tri-
vially on $, we have

pC1 = ~—C1 .
The argument used to prove Lemma 6.2 shows that
Ucl == Cl

for all s e Iy . Thus 7¢; = +¢, for all 7 € I'. Similarly, ¢, = L, for all
7 if ¢, is a suitable representative for f; .

7. PROOF OF THEOREM 7.1

We are now able to determine the group %, of C(x)-rational points
on our curve

€2 = € — x(x® — 3) — 2x)(€ — x*(x® — 3) + 2x). (7.0
THEOREM 7.1. Cc) = 9 = Z[2Z X Z[2Z X Z with generators

p= (0’ 0)’
q = (x%(x% — 3) + 2x, 0),
s = (x%(x2 — 1), 2x%(x% — 1)).

In particular, € ¢y = Co -
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Proof. Suppose first that €, has rank 3. By Lemmas 5.3, 5.7, and
6.5, the field K is not real and there is a point ¢ € €, defined over an
imaginary quadratic field Q(v/(—d)) C K with ¢ — —c¢ under the auto-
morphism v (—d) - —+/(—d). Here d > 0 is a square-free integer. The
point ¢ corresponds to a point (£, n) on

E-: —dn? = (¢ — x(x% — 3) — 2x)(§ — x3(x% — 3) + 2x), (7.1)

with &, n € Q(x).

By Lemma 5.4 we may suppose, on replacing 3 by 3 — [, where his a
point of order 2, if need be, that £ € R(x)*". (Note that } is defined over
Q(x) and so goes over into ) = —§ under the automorphism.) This
implies

§:c-%2§, (1.2)

where 6, € Q[x], g.cd. (0, ¥) = 1, and ¢ > 0 is a square-free integer.
Hence
(e — x2(x® — 3) Y2)? — dx2t) = —d\® (1.3)

for some A € Qfx].
Comparing constant terms in (7.3) shows that § = x; , A = xA;, and
x + . Then

e(x¥(ch,? — (x® — 3) $H? — 4Y) = —dA\z2 (7.4)

On specializing x to 0, this implies ¢ == d, and on looking at terms of
highest degree we have

deg(cf,2 — (x® — 3) ¢ < deg 3, (7.5)
SO
c=d=1.

Thus (£, 7) is a Q(x)-rational point on %-! with £ € Q(x)** in contra-
diction to Corollary 2.2 of Theorem 2.1.
Secondly, suppose that €, has rank 2 and that X is not real. Then
K = 0 (_—7)) with d > 0 and the proof proceeds as in the first case.
Suppose finally that ¢, has rank 2 and that K is real. Then either
K = Q(v/d) is real quadratic or K = Q (when we put d = 1). There is a
point (£, ) on

Cirdpf = -2 =3 E+ X -1 (2 —4) (7.6

with ¢, 7 € Q(x)*.
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In addition, by Lemma 5.1 we may suppose, on adding an appropriate
point of order 2 if necessary, that

Eex(x — DRE)* or Eex(x + 1) RX)*.

We suppose ¢ € x(x — 1) R(x)*", on replacing x by —x if need be. Then
02
€=cx(x—1) :/,_2 , N

where 8, ¢ € Q[x], g.c.d. (x(x — 1) 8, ) = 1, and ¢ > 0 is a square-free
integer. From (7.6) we find

o(c2x(x — 1) % — 252(x — 3) B £ x(x — 1)(x + 1)2 (x2 — 4) %) = dX2
(1.8)

for some A € Q[x].
Comparison of lowest terms in x shows that

c20(0)* — 4¢(0)* = 0,
1)
c=2.

This implies that the highest terms in x on the left cannot cancel, so d = 2.
On the other hand
4c20(1)? (1) = dX(1)2.

This is possible only if 6(1) == A(1) == 0; and then the r.h.s of (7.8) is
divisible by (x — 1)?, whereas the Lh.s is not: a contradiction.

Thus the rank of €, must be 1 and then the result follows from
Lemma 4.2.

8. CONSEQUENCES FOR THE HASSE PRINCIPLE
OF QUADRATIC ForMS AND OF ELLIPTIC CURVES

Our result that f(x,y) = 1 4 x%(x* — 3) »* + x¥* is not a sum of
3 squares in R(x, y) is of interest for the general theory of quadratic forms
in function fields. Similarly, our curve € serves as an example for the
general behavior of elliptic curves over function fields. In both cases, one
has the following notion of Hasse principle. Let X be an algebraic function
field of transcendence degree 1 over a field k. Denote by p the inequivalent
valuations of K/k, by K, the completion of K with respect to p. We say
that the Hasse principle for quadratic forms resp. elliptic curves holds in
K if every quadric hypersurface resp. elliptic curve over K which has
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points in all completions K, (“everywhere locally”) has a point in K
(“globally™).

8.1. First, consider the case of quadratic forms and let k¥ = R(x),
K = k(). It can be shown (for details see [11]) that all completions K,
of K have the property that any sum of squares in K, is a sum of three
squares. In particular, our polynomial f(x, y) is a sum of three squares in
every K, . But it is not a sum of three squares in K. Hence, the Hasse prin-
ciple in K does not hold for the quadric

B2+ R+ — =
In contrast to this the Hasse principle in K is true for
t2F b t2—at =0, aeck*

whenever n = 3. This is proved in Ref. {11] for n = 1, 2, 4 and follows
trivially for n > 4, from the case n = 4. Another proof can be deduced
from a recent result of G. Harder (unpublished) who shows that in every
rational functional field K = k(y), char k == 2, the following weaker
form of Hasse’s principle for quadratic forms holds: Two quadratic forms
¢ and ¢ over K are equivalent over K if and only if they are equivalent
over all X, .

It has been known at least since Witt’s paper [15] that the Hasse prin-
ciple for quadratic forms is not generally true in function fields. This is
rather trivial if the function field has genus > 1. Witt’s example is a field
of genus 0 over k = Q. But it seems to be new that the Hasse principle
fails already in such a “‘simple” rational function field as R(x, y).

8.2. We turn now to the Hasse principle for elliptic curves.
Again let K/k be a function field in one variable and let % be an elliptic
curve with rational point o defined over XK. We are interested in the Tate-
Safarevi¢ group I == III(¥, K) (for definition see, ¢.g., [3]) because LI
measures the validity of the Hasse principle for elliptic curves. More
precisely, IIl = 0 if and only if the Hasse principle holds for all elliptic
curves defined over K which become isomorphic to € over the separable
algebraic closure of K.

In our case K = R(x) or K = C(x) and ¥ is the curve (4.1). From our
treatment in Section 7 we can easily deduce that the curve

E:m?=x(x — 1) & — 2x¥(x2 —3) £ + x(x — D(x + 12— 4)

corresponds to a nonzero element (of order 2) of IIl. & has no K-rational
point, since such a point would correspond to a K-rational point (£, 7) on
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%, where ¢ has square-class x(x — 1). On the other hand, we can show
that € has points in every completion of K.
On clearing denominators the equation in question is

X(x — 1) 6* — 2x3(x2 — 3) %% + x(x — 1)(x 4 1) (x2 — 4) §* = A2

First, consider formal power series solutions in x — x, with 0 < x, < 1.
We get a solution by putting § = 0.If x, = Owecantake § = V2,4 = 1,
if xo =1, § = ¢ = 1 will do. For the remaining places, that is the real
places with x, < 0 or x, > 1, the infinite place and the complex places,
one can put ¢ = 0.

In conclusion it should be pointed out that there is an essential difference
in the properties of III over number fields and over function fields. Over
number fields III is conjectured to be finite whereas over function fields
it may contain infinitely divisible elements (see [9], [13]). In fact, it follows
from Theorems 3, 4, and 5 of Ref. [13] that Il is infinitely divisible for our
curve ¢ and K = C(x). The result that € has rank 1 implies then that
the 2-component of III is isomorphic to the direct sum of two copies of

Q/Z, .
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