
Discrete Applied Mathematics 118 (2002) 25–42

Finding the ‘-core of a tree

Ronald I. Beckera;b, Yen I. Changa, Isabella Laric, Andrea Scozzaric,
Giovanni Storchic; ∗

aDepartment of Mathematics, University of Cape Town, Rondebosh 7700, South Africa
bTechnion, Haifa, Israel

cDipartimento di Statistica, Probabilit#a e Statistiche Applicate, Universit#a di Roma “La Sapienza”
P.le A. Moro 5, 00185 Roma, Italy

Received 1 December 1999; received in revised form 1 September 2000; accepted 11 July 2001

Abstract

An ‘-core of a tree T = (V; E) with |V |= n, is a path P with length at most ‘ that is central
with respect to the property of minimizing the sum of the distances from the vertices in P to
all the vertices of T not in P. The distance between two vertices is the length of the shortest
path joining them. In this paper we present e6cient algorithms for 7nding the ‘-core of a tree.
For unweighted trees we present an O(n‘) time algorithm, while for weighted trees we give
a procedure with time complexity of O(n log2 n). The algorithms use two di:erent types of
recursive principle in their operation. ? 2002 Elsevier Science B.V. All rights reserved.

Keywords: Core; Facility location; Median problems

1. Introduction

Location theory is concerned with the location of facilities on a given network. These
facilities can be seen as single points, located at either a vertex or along an arc of the
network, or as complex structures, possibly of a given length, in the form of a path
or a tree. The criteria for optimality extensively studied in the literature are:
(a) minisum criterion in which the sum of the distances from all the vertices of the

network to the facility is minimized;
(b) minimax criterion in which the distance from the facility to the farthest vertex is

minimized;
where the distance between two vertices is the length of the shortest path between the
two points. Hakimi 7rst considered both minimax and minisum optimization problems

∗ Corresponding author. Tel.: +39-6499-10086; fax: +39-6495-9241.
E-mail addresses: rib@maths.uct.ac.za (R.I. Becker), yeni@maths.uct.ac.za (Y.I. Chang), isabella.lari@

uniroma1.it (I. Lari), scozzar@rosd.sta.uniroma1.it (A. Scozzari), giovanni.storchi@uniroma1.it (G. Storchi).

0166-218X/02/$ - see front matter ? 2002 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(01)00254 -2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82184146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

26 R.I. Becker et al. / Discrete Applied Mathematics 118 (2002) 25–42

related to the location of one site or of several sites in a network [4,5]. In this work
we are interested in problems in which the facilities are path-shaped and the criterion
is the minisum one. In recent years there has been a growing interest in this 7eld,
since in particular several applications require the location of a path-shaped facility
instead of a single point or of a set of points. The location of pipelines, of express
lanes in a highway and the design of public transportation routes, can be regarded as
the location of path-shaped facilities. Hakimi et al. [3], have shown that these problems
are NP-hard on general networks while are polynomially solvable on tree networks.
Richey [10] presented a pseudo-polynomial time algorithm for the solution of these
problems on series-parallel graphs.

A core of a tree is de7ned to be a path that is optimal with respect to the property of
minimizing the sum of the distances from each vertex in the tree to the path. Morgan
and Slater [8] developed a linear time algorithm for 7nding a core of a tree network
of equal arc lengths and show how to extend this algorithm when there are di:erent
arc lengths. Becker [1] also presented a linear time algorithm for 7nding a minisum
path of a tree. Minieka [7] considered the optimal location of facilities of a speci7ed
size that are path-shaped or tree-shaped on a tree network. In his work the facility
may include part of an arc, that is, in the case of a path facility, the tips of the path
may not be vertices of the tree. Peng and Lo [9] presented a recursive O(n log n) time
algorithm for 7nding a core of speci7ed length, that is, a path with length “exactly”
equal to a speci7ed value ‘, in unweighted trees. They do not allow the possibility to
include partial arcs. It is claimed that their method can be applied to trees with integer
lengths, but no details are given and the extension is not immediately obvious.

In this paper we consider the more general problem of 7nding a core on a tree
network, with length “at most” a speci7ed value ‘. We denote the resulting path by
the ‘-core of the tree and we present e6cient algorithms for this problem. As in Peng
and Lo we consider the case where the tips of the path are vertices of the tree. An
‘-core of a tree can be trivially obtained in O(n3) time by enumeration. We 7rst provide
an algorithm that solves the problem on unweighted trees in O(n‘) time. Notice that,
in the unweighted case, ‘ is bounded by n. For weighted trees we present a recursive
algorithm with time complexity of O(n log2 n). Note that, as in Peng and Lo, the latter
algorithm applied to the unweighted case has a time complexity of O(n log n). Hence,
we can combine the two algorithms for the unweighted case achieving a total time
complexity of O(nmin{‘; log n}).

The methods employed use two di:erent types of recursion. Firstly, the tree is given
a root and we use a standard bottom up and top down level by level visit of the rooted
tree. This enables rapid calculation when the quantities that need to be computed for a
given vertex are related recursively to corresponding quantities at child vertices. This is
the method largely used for the O(n‘) time algorithm for the unweighted case. Similar
approaches are taken in the papers of Becker [1], Kim et al. [6] and Tamir [11]. In [1]
the general bottom up and top down procedure is outlined with a number of examples.
In [6] the authors present a method with O(n) time complexity to solve the Median
Subtree Location Problem on tree networks, consisting of minimizing the sum of the

R.I. Becker et al. / Discrete Applied Mathematics 118 (2002) 25–42 27

32 33 34 35 36 37

|V|=42

a

s

t

1 28

29

42

30

31

............2

b c d e f g h

z

38 39 40

 41

Fig. 1. An example of an ‘-core.

facility cost plus the sum of the distances of each vertex to the facility. In [11] an
improved algorithm for 7nding a p-median on tree networks is presented. The papers
[1,6,11] all use bottom up procedures relating values at one level to values at the
present level and also top down procedure to determine further necessary quantities.
The problem of 7nding a path of given length is harder than the above problems for
two reasons. Firstly, in [6] a tree facility is sought. Optimal trees in two subtrees of
a vertex can be combined to give another tree. In our case, that of a path, combining
two such paths may not lead to another path. Secondly, in [6] if we know the optimal
facility in a subtree, we can use it unchanged to combine with optimal facilities in a
complementary subtree. In our (path) case, the optimal facility in a subtree is a path,
but we are not sure what its length is, since it must be combined with another piece
of path so as to make the total length ‘. We require two di:erent types of recursion
to cope with this problem. In our weighted case a “central” vertex is computed and
the best path of length at most ‘ through it is found. If it is not the ‘-core, then the
‘-core must lie entirely in one of the subtrees rooted at the adjacent vertices of the
“central” vertex. The algorithm is recursively applied to these subtrees. An appropriate
choice of the “central” vertex ensures that the depth of the recursion is O(log n). The
second type of recursion was introduced in Peng and Lo [9].

Our treatment in the weighted case requires the introduction of a data structure
which will handle the complexity of combining two paths on each side of a single
vertex so as to form a path of length at most ‘. The complexity is thus reduced
from O(n3) to O(n log2 n). Thus this paper improves the complexity in the weighted
case to O(n log2 n) and in the unweighted case to O(nmin{‘; log n}). Moreover, the
problem we consider is a slightly di:erent problem than the one in [9], namely that
of 7nding a path of length at most ‘ in place of a path of length exactly equal to
‘. The optimal value of our problem can be less than or equal to the optimal value
of the latter problem (see Fig. 1). An easy modi7cation of our algorithm will 7nd, in
addition, the best path of length exactly equal to ‘. The paper is organized as follows;
in Section 2 we give notation and de7nitions; Section 3 describes the algorithm for the
unweighted ‘-core. At the end of the section an example is presented. The algorithm

28 R.I. Becker et al. / Discrete Applied Mathematics 118 (2002) 25–42

for the weighted ‘-core is described in Section 4. In Section 5 conclusions and further
researches are depicted.

2. Notation and de�nitions

Given a tree T = (V; E), with |V |= n, let w(a)¿ 1 be a weight associated to each
edge a∈E. Let P be a path in T . The length of P is L(P) =

∑
a∈P w(a). Given two

vertices u and v, we denote the unique path from u to v as Puv. We de7ne the distance
d(u; v) between two vertices u and v of V as the length of Puv. We denote the length
of a path Puv by L(Puv). Given a path P in T , the distance from P to all the vertices
v∈V , such that v �∈ P, is d(P) =

∑
v �∈P d(v; P), where d(v; P) is the minimum distance

from v �∈ P to a vertex of P (see [8]). We call d(P) DISTSUM of P.
An ‘-core of T is a path of length at most ‘, that minimizes DISTSUM.
Notice that, we consider the case where the path has length at most ‘, since having

7xed ‘ and given a path P of length exactly equal to ‘ that minimizes DISTSUM among
all the paths with length exactly equal to ‘, there could be a path P′ having length
less than ‘ such that d(P′)¡d(P).

This is shown in Fig. 1 in the case of an unweighted tree. Suppose that we want
to 7nd an ‘-core with ‘= 8. The path P which minimizes DISTSUM among those paths
of length exactly equal to 8 is given by the edges {a; b; c; d; e; f; g; h} with d(P) = 61.
While, the ‘-core P∗ of T is given by the edges {s; t; e; f; g; h; z}, with d(P∗) = 48 and
length 7.

Given an arbitrary vertex r ∈V , we may consider r as the root of T , and we denote
the resulting rooted tree by Tr . For each edge a we call tail(a), the endpoint of a
closest to the root and we call head(a) the endpoint of a farthest to the root. Each
edge a divides Tr into two disjoint subtrees denoted by T r

head(a) and T r
tail(a), having as

roots the vertices head(a) and tail(a) respectively (see Fig. 2). If the root of the tree
is understood then we will simply write Thead(a) and Ttail(a) in place of T r

head(a) and
T r
tail(a).
A vertex v is a leaf if the number of edges incident to v is equal to 1. Given an

edge a we also de7ne headedges(a) to be the set of edges incident to head(a) not
containing a. We indicate with |Thead(a)| and |Ttail(a)| the cardinality of Thead(a) and
Ttail(a), respectively, where the cardinality of a tree T is the number of vertices of T .

Given a path Puv and a path Pvw with edges disjoint from Puv, the distance saving
of Pvw with respect to Puv, is the reduction of DISTSUM obtained by adding Pvw to Puv

(see [8]), that is:

sav(Puv; Pvw) =d(Puv) − d(Puw): (1)

If the path consists of only one vertex v, we simply write sav(v; Pvw). In the following
best path will denote a path satisfying a given property having minimum DISTSUM.

R.I. Becker et al. / Discrete Applied Mathematics 118 (2002) 25–42 29

head

 tail

Thead

T

r

tail

a

Fig. 2. The two trees separated by an edge a.

3. The algorithm for the unweighted ‘-core

The basic idea of the algorithm for the unweighted ‘-core is that for each edge a
we 7nd a best path P∗ with length at most ‘, that has a as an extremal edge. In order
to 7nd P∗, for each edge a we look for the best path in Thead(a), having as endpoint
head(a) and length q, with q= 0; 1; : : : ; ‘ − 1. Similarly we look for the best paths in
Ttail(a). Then, to 7nd the best paths in Thead(a) we use bottom up recursive formulas,
while to 7nd the best paths in Ttail(a) we need top down recursive formulas. In any
event we show that the additional top down phase does not add to the complexity.

We denote by Wr
head(a; q) and Wr

tail(a; q) the DISTSUM of the best paths in each of the
two subtrees of Tr with length exactly equal to q= 0; 1; : : : ; ‘−1. As before for T r

head(a)
and T r

tail(a), if the root of the tree is understood we will simply write Whead(a; q) and
Wtail(a; q) in place of Wr

head(a; q) and Wr
tail(a; q).

In order to compute these weights, we have to consider the maximum distance
saving, Msavhead(a; q) and Msavtail(a; q), that can be obtained by adding to a a path
of length q, with q= 0; 1; : : : ; ‘ − 1 in Thead(a) and in Ttail(a), respectively. Note that,
changing the mode of the above formulas did not seem to make the formulas any more
legible, and we have decided to leave them as they are.

The above quantities can be calculated recursively by using a bottom up and top
down level by level visit of the tree as formalized in Becker [1]. In the following we
7rst start by showing how to compute all the head recursive functions.

By proceeding up from the edges incident to the leaves of Tr that are in the lowest
level until the edges incident to the root are reached, we compute the quantity |Thead(a)|

30 R.I. Becker et al. / Discrete Applied Mathematics 118 (2002) 25–42

as follows:

|Thead(a)|=


1 if head(a) is a leaf ; ∑

b∈headedges(a)

|Thead(b)|
 + 1:

(2)

To compute the maximum distance saving of a path of length q for each edge a we
have:

Msavhead(a; q) =

0 if q= 0;

−∞ if head(a) is a leaf and

q= 1; 2; : : : ; ‘ − 1;

max
b∈headedges(a)

{Msavhead(b; q− 1) + |Thead(b)|} otherwise:

(3)

The following step consists in computing Whead(a; 0) ∀a. This weight represents the
DISTSUM of the edge a from all the vertices in Thead(a).

Whead(a; 0) =


0 if head(a) is a leaf ;∑
b∈headedges(a)

{Whead(b; 0) + |Thead(b)|}: (4)

In order to 7nd the DISTSUM of the best path P ∪ a in Thead(a), and such that P has
length exactly equal to q we consider:

Whead(a; q) =Whead(a; 0) −Msavhead(a; q): (5)

Proceeding bottom up in Tr it is easy to evaluate the total e:ort to compute the recursive
equations. Since each edge belongs to only one headedges set it is considered only
once in the right-hand side of the recursive formulas. Hence, the number of required
operation is O(n) for (2) and (4) and is O(n‘) for (3).

Let us consider the problem of computing |Ttail(a)|, Wtail(a; 0) and Msavtail(a; q). We
will show that for the tail formulas it is possible to obtain the same time complexity
as the head ones.

Having computed |Thead(a)| we calculate |Ttail(a)| in a constant time by using:

|Ttail(a)|= n− |Thead(a)|: (6)

In Fig. 3 there is an example of the calculation of the “head” and the “tail” cardinalities.
Proceeding top down level by level from the edges incident to the root towards the

edges incident to the leaves of the tree, we obtain Wtail(a; 0) as follows. For each
vertex v∈V , let Sv be the sum of the distances from the vertices in the subtree of
Tr rooted at v to vertex v. We can compute Sv for all v in Tr in O(n) time during a

R.I. Becker et al. / Discrete Applied Mathematics 118 (2002) 25–42 31

(c)

h
e f (a)

c

d

r

head

a

b

head(e)

head(f)

head(h)

head

head(b)

|T | = 1 |T | = 7head(d)

|T | = 1

|T | = 1

|T | = 3

|T | = 2

|T | = 6

|T | = 1

|T | = 2

tail(c)

tail(d)

tail(e)

tail(f)

tail(h)

tail(a)

tail(b)

BOTTOM-UP TOP-DOWN

|T | = 6

|T | = 5

|T | = 7

|T | = 7

|T | = 7

Fig. 3. head and tail cardinalities of an unweighted tree.

bottom up level by level scan.

Sv =


0 if v is a leaf ;∑
b incident to v

(Whead(b; 0) + |Thead(b)|) otherwise;

where the set of edges incident to v does not contain the parent edge of v. Given the
current edge a, we obtain Wtail(a; 0) as follows:

Wtail(a; 0)

=

{
Stail(a) −Whead(a; 0) − |Thead(a)| if a is incident to r;

Stail(a) −Whead(a; 0) − |Thead(a)| + Wtail(c; 0) + |Ttail(c)|;
(7)

where c is the parent edge of a, that is the edge incident to tail(a) in Ttail(a).
Let us consider Msavtail(a; q). Proceeding bottom up we can associate to each vertex

v∈V , three labels, mq
1(v), mq

2(v), ∀q= 1; 2; : : : ; ‘ − 1, and eq1(v) where mq
1(v) is the

maximum saving obtained by attaching a path of length q in the subtree of Tr rooted
at v and starting from v; eq1(v) is the edge incident to v contained in the path that gives
mq

1(v); m
q
2(v) is the maximum saving obtained by attaching a path of length q in the

subtree of Tr rooted at v, starting from v and which does not contain the edge eq1(v).
If v is a leaf, then mq

1(v) =mq
2(v) = − ∞ ∀q. If v has only one edge incident to

it then mq
2(v) = − ∞. Notice that, the assignment of the labels to each vertex in the

subtree of Tr rooted at v can be performed during a bottom up procedure.
Proceeding top down, if a is incident to the root r, the maximum saving is:

Msavtail(a; q) =

{
mq

1(r) if a �= eq1(r);

mq
2(r) if a= eq1(r):

(8)

32 R.I. Becker et al. / Discrete Applied Mathematics 118 (2002) 25–42

BOTTOM-UP

1 2

3 4 5

6
7

8

9

q=1 q=2

9 5 2 (9,6) 8 3 (6,

2 11 1 2

 (1,3) (2,3) (3,6) (4,6) (6,9) (7,9) (5,7) (8,9)

 (1,3) (2,3) (3,6) (4,6) (6,9) (7,9) (5,7) (8,9)

q=2 10 10 6 6 3 8 12 8

3 1 1 (3,1) - - -

q=1 6 6 4 4 2 5 7 5

1vertex m m e m m e

6 3 1 (3,6) 4 1 (3,

[8,6,10]

{1,-,-}

[8,6,10]

{1,-,-}

[6,4,6]

{3,1,-}

[8,4,6]

{1,-,-}

[4,2,3]

[8,7,12]

{1,-,-}

{5,3,4}

[7,5,8]
{2,1,-}

{1,-,-}
[8,5,8]

q=1 - - 1 - 3 1 - -
q=2 - - - - 4 - - -

1 - - - - - -

2 - - - - - -

4 - - - - - -

5 - - - - - -

8 - - - - - -

Msav

Msav

 head

 tail

7 1 - (7,5) - - -

6)

9)

Fig. 4. Maximum savings of length q.

If a is not incident to the root we have:

Msavtail(a; q)

=

{
max{|Ttail(b)| + Msavtail(b; q− 1); mq

1(tail(a))} if a �= eq1(tail(a));

max{|Ttail(b)| + Msavtail(b; q− 1); mq
2(tail(a))} if a= eq1(tail(a));

(9)

where b is the parent edge of a.
The time needed for computing mq

1(v) and mq
2(v) for all vertices v is O(n). So for

all q= 1; 2; : : : ; ‘ − 1 all the labels associated with the vertices can be computed in
O(n‘) time. Figure Fig. 4 gives an example of the computation of these labels when
q= 1; 2, and shows the table of the maximum savings for each edge.

In Fig. 4, there are two parentheses associated with each edge, where the one with
the curly brackets refers to Thead(a) and the one with the squared brackets refer to
Ttail(a) ∀a. In particular, the values in each parentheses refer to the cardinality, and the
saving of paths of lengths q= 1; 2, respectively.

In order to 7nd the DISTSUM of the best path P ∪ a in Ttail(a), and such that P has
length exactly equal to q we consider:

Wtail(a; q) =Wtail(a; 0) −Msavtail(a; q): (10)

Given an edge a∈E, to obtain P∗, that is, the best path of length at most ‘ having as
extremal edge a in Thead(a), we need to compute the weights W̃ head(a; q) that represent
the DISTSUM of a best path of length “at most” q= 0; 1; : : : ; ‘ − 1 in Thead(a) starting

R.I. Becker et al. / Discrete Applied Mathematics 118 (2002) 25–42 33

from head(a). We have:

W̃ head(a; q) =

{
Whead(a; q) if q= 0;

min{Whead(a; q); W̃ head(a; q− 1)} for q= 1; : : : ; ‘ − 1:
(11)

Given an edge a∈E, to obtain P∗ in Ttail(a), we compute the weights W̃ tail(a; q) that
represent the DISTSUM of a best path of length “at most” q= 0; 1; : : : ; ‘ − 1 in Ttail(a)
starting from tail(a). Then:

W̃ tail(a; q) =

{
Wtail(a; q) if q= 0;

min{Wtail(a; q); W̃ tail(a; q− 1)} for q= 1; : : : ; ‘ − 1:
(12)

Next de7ne the DISTSUM
∏

(a) of a path P∗ of length at most ‘ having as extremal
edge a in T as:∏

(a) = min{[W̃ head(a; ‘ − 1) + Wtail(a; 0)]; [W̃ tail(a; ‘ − 1) + Whead(a; 0)]}:
(13)

The relevance of the above de7nition is clear since the optimal solution of the problem
is achieved by taking the minimum of

∏
(a) over all the edges a, where the minimum

gives the cost of an ‘-core. We can keep track of an ‘-core by using for each a and
q= 1; 2; : : : ; ‘ − 1 the following label during a bottom up scan of Tr:

yhead(a; q) = the edge that gives the maximum distance saving in (3);

ytail(a; q) = the edge that gives the maximum distance saving in (8) or (9):

(14)

Then, the major cost of the algorithm for 7nding an ‘-core of T consists in computing
7rst all the head quantities by the bottom up approach and then, proceeding from the
root towards the leaves of the tree, in computing the tail quantities.

Theorem 1. The algorithm for the ‘-core of an unweighted tree has an overall running
time of O(n‘).

Proof. The computation of |Thead(a)|, |Ttail(a)|, Whead(a; 0) and Wtail(a; 0); ∀a, can be
done in O(n) time as described above. The time needed for 7nding Msavhead(a; q) and
Msavtail(a; q) for all a and q is O(n‘) by using the previous formulas and hence, the
time needed for computing Whead(a; q), Wtail(a; q), W̃ head(a; q) and W̃ tail(a; q) ∀a and
∀q¿ 0, is O(n‘). Finally, the computation of

∏
(a) ∀a∈E requires O(n‘) time. Then,

the algorithm runs in O(n‘) time.

The correctness of the Procedure follows from the recursive nature of the formulas to
be calculated, and it would be tedious to provide further justi7cation. In the following
we present an outline of the algorithm.

34 R.I. Becker et al. / Discrete Applied Mathematics 118 (2002) 25–42

Algorithm: ‘-CORE
begin
Proceeding bottom up level by level in Tr
for each edge a∈E do

7nd |Thead(a)| (see (2))
7nd Whead(a; 0) (see (4))
for each q= 0; : : : ; ‘ − 1 do

7nd Msavhead(a; q) (see (3))
for each edge a∈E do
for each value of q do

7nd Whead(a; q) (see (5))
7nd W̃head(a; q) (see (11))

for each edge a∈E do
compute |Ttail(a)| (see (6))

Proceeding top down level by level in Tr
for each edge a∈E do

7nd Wtail(a; 0) (see (7))
for each q= 0; : : : ; ‘ − 1 do

7nd Msavtail(a; q) (see (8) or (9))
for each edge a∈E do
for each value of q do

7nd Wtail(a; q) (see (10))
7nd W̃tail(a; q) (see (12))

for each edge a do
compute

∏
(a) (see (13))

Find an edge a that has the minimum
∏

(a)
Starting from a, build an ‘-core (see (14))

end

3.1. An example

We want to 7nd the ‘-core of the tree represented in the following 7gure for
‘= 1; 2; : : : ; 6.

We consider the vertex 2 as the root of the tree. The two labels associated with each
edge represent the head and the tail cardinality, according to the de7nitions given and
to (2) see Fig. 5. Then, we have to compute the maximum distance saving referring
to (3) for each edges and ∀q. The values are stored in Tables 1 and 2, respectively.

From Tables 1 and 2 we can obtain Whead(a; q) and Wtail(a; q) ∀a, (Tables 3 and
4). Finally by referring to (11) and (12) we are able to determine W̃head(a; q) and
W̃tail(a; q). Hence, by using

∏
(a) ∀a we can 7nd a core of length ‘, for ‘= 1; 2; : : : ; 6

(Table 5).

R.I. Becker et al. / Discrete Applied Mathematics 118 (2002) 25–42 35

1

2 3 4 5

678

9

10

11

12

13

14

i

j

1

1 2 1

1

2 3 2 1 1

17

13

12
11

7 3 11 13

1313
12

13

12 13

13

head cardinality

tail cardinality

Fig. 5. An example.

Table 1
Msavhead of length q

11,12 8,9 4,5 4,6 13,14 10,11 3,8 3,7 3,4 1,2 2,13 2,10 2,3 q

−∞ −∞ −∞ −∞ −∞ 1 1 −∞ 1 −∞ 1 2 3 1
−∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ 3 4 2
−∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ 3
−∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ 4
−∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ 5

Table 2
Msavtail of length q

11,12 8,9 4,5 4,6 13,14 10,11 3,8 3,7 3,4 1,2 2,13 2,10 2,3 q

12 12 11 11 12 11 7 7 7 7 7 7 3 1
23 19 18 18 19 18 10 10 10 10 10 10 5 2
30 22 21 21 22 21 12 12 12 11 11 11 6 3
33 24 23 23 23 22 13 13 13 −∞ −∞ −∞ −∞ 4
34 25 24 24 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ 5

Table 3
head weights

11,12 8,9 4,5 4,6 13,14 10,11 3,8 3,7 3,4 1,2 2,13 2,10 2,3 q

0 0 0 0 0 1 1 0 2 0 1 3 9 0
∞ ∞ ∞ ∞ ∞ 0 0 ∞ 1 ∞ 0 1 6 1
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 5 2
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 4
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 5

36 R.I. Becker et al. / Discrete Applied Mathematics 118 (2002) 25–42

Table 4
tail weights

11,12 8,9 4,5 4,6 13,14 10,11 3,8 3,7 3,4 1,2 2,13 2,10 2,3 q

43 35 33 33 35 31 23 25 21 25 23 20 10 0
31 23 22 22 23 20 16 18 14 18 16 13 7 1
20 16 15 15 16 13 13 15 11 15 13 10 5 2
13 13 12 12 13 10 11 13 9 14 12 9 4 3
10 11 10 10 12 9 10 12 8 ∞ ∞ ∞ ∞ 4
9 10 9 9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 5

Table 5
Cores of length ‘

‘= 1 (2,3)
‘= 2 (2,3)(3,4) or (2,3)(2,10)
‘= 3 (2,3)(3,4)(2,10)
‘= 4 (2,3)(3,4)(2,10)(10,11)
‘= 5 (2,3)(3,4)(2,10)(10,11)(11,12) or (2,3)(3,4)(2,10)(10,11)(4,6)
‘= 6 (2,3)(3,4)(2,10)(10,11)(11,12)(4,5) or (2,3)(3,4)(2,10)(10,11)(4,6)(11,12)

4. The algorithm for the weighted ‘-core

The algorithm given in Section 3 for unweighted trees can be generalized to the
case of weighted trees, but the time complexity O(n‘) may not be good, since ‘ may
be larger than n. The aim of this section is to give a more e6cient algorithm for the
‘-core on weighted trees. The task of computing the best path of length at most ‘ is
signi7cantly easier if it is known that it passes through a 7xed vertex. In this case a
“central” vertex is computed and the best path of length at most ‘ through it is found.
If it is not the ‘-core, then the ‘-core must lie entirely in one of the subtrees rooted
at the adjacent vertices of the “central” vertex. The algorithm is recursively applied to
these subtrees.

Peng and Lo [9] present a similar recursive algorithm, that gives a core with length
exactly equal to ‘ in O(n log n) time, only in unweighted trees. In their procedure,
given a rooted tree, by proceeding top down level by level, they generate the “best”
path of length k = 1; : : : ; ‘ from the root to the other vertices of the tree. These paths
are obviously already ordered by length, since in unweighted trees the length of a path
is the number of edges in the path. Then they combine for each k the path with length
k with the path with length ‘ − k.

In the weighted case, all the paths from the root to the other vertices have in general
di:erent lengths. For that reason, one has to maintain all the paths from the root to the
other vertices, not only the “best” ones and, moreover, the paths generated proceeding
top down level by level are not already ordered by length. Then, if we do not order
the paths, the time needed for 7nding the “best” path containing the root with length
at most ‘ is O(n2), because we have to combine all pairs of paths from the root. If the

R.I. Becker et al. / Discrete Applied Mathematics 118 (2002) 25–42 37

paths are ordered we can 7nd the “best” path containing the root in O(n) time. Then,
in order to reduce the time complexity we 7rst sort the paths in O(n log n) time.

Given a vertex v∈V , we can compute in O(n) time the DISTSUM and the lengths of
all the paths having as endpoint v. Consider v as the root of T and, as in Section 3,
by a bottom up scan of Tv, we 7nd, ∀a∈E, the cardinality of the subtree Tv

head(a) and
the sum of the distances from head(a) to the vertices in Tv

head(a), that is, the weight
Wv

head(a; 0). Given a vertex u∈V \ {v}, let p(u) be its parent. We write w(p(u); u)
instead of w((p(u); u)), and similarly for other functions of edges. The distance saving
sav(v; Pvu) obtained by adding Pvu to v, is given by:

sav(v; Pvu) =

{
w(p(u); u)|Thead(p(u); u)| if p(u) = v;

sav(v; Pvp(u)) + w(p(u); u)|Thead(p(u); u)| if p(u) �= v:
(15)

Hence we can compute these distance saving for each path Pvu, ∀u∈V \ {v} by a top
down scan of Tv. Moreover, as has been computed by a number of authors, for d(v)
we have:

d(v) =
∑

a incident to v

(Whead(a; 0) + w(a)|Thead(a)|): (16)

Then ∀u we can compute the DISTSUM of the path Pvu:

d(Pvu) =d(v) − sav(v; Pvu):

Finally, by a top down scan of Tv, we can 7nd the lengths of the paths Pvu from v to
each u∈V \ {v} as follows:

L(Pvu) =L(Pvp(u)) + w(p(u); u): (17)

Hence, for each vertex v∈V , we can compute the distance saving, the DISTSUM and the
lengths of all the paths having an extreme in v, in O(n) time. Notice that, by applying
this procedure for each vertex v∈V , we can 7nd the ‘-core in a weighted tree in
O(n2) time. When ‘¿n this time complexity is better than O(n‘).

The removal of a vertex v in T and all its incidents edges splits the tree into one
or more subtrees.

Remark 1. Given a tree T = (V; E) and a vertex v∈V we have two cases:
• the ‘-core contains v;
• the ‘-core is fully contained in one of the subtrees obtained by removing v from T .

De�nition. Given a weighted tree T , a central vertex v of T is the centroid of the
corresponding unweighted tree of T , that is a vertex that minimizes the maximum of
the number of vertices of the subtrees obtained by removing it.

Remark 2. By [5, Lemma 3:1], a central vertex has maximum subtree cardinality less
than or equal to n=2. By [5, Theorem 3:1], a (unweighted) median of a tree is a central
vertex.

38 R.I. Becker et al. / Discrete Applied Mathematics 118 (2002) 25–42

By Remark 1 the following recursive algorithm 7nds the ‘-core of T .

Algorithm SPLIT-TREE:
Input: a weighted tree T
Output: an ‘-core P∗ of T and its DISTSUM d∗

begin
d∗:= + ∞
SUBTREE(T)

end

Procedure SUBTREE(T ′):
Input: a subtree T ′ = (V ′; E′) of T with n′ vertices and the best current
DISTSUM d∗

Output: if the best path in T ′ has DISTSUM less than d∗, the best path P∗ in
T ′ with length at most ‘ and its distsum d∗

begin
7nd a central vertex v of T ′

BESTPATH(T ′; v) {7nds a best path P′ in T ′ with length at most ‘
and containing v}
if d(P′)¡d∗ then
d∗:=d(P′)
P∗:=P′

for each subtree T i obtained from T ′ by removing v do
SUBTREE(T i)

end

In procedure BESTPATH(T ′; v), we consider all the paths in T ′ having v as an
endpoint and length at most ‘ and we sort them in non-increasing order of length.
Notice that the number n′′ of these paths is at most n′ − 1. Let Pi, with i= 1; : : : ; n′′,
be the ith path in the order. Let j(i) be the maximum index j, such that:

L(Pi) + L(Pj)6 ‘: (18)

If such an index does not exist, we let j(i) = 0. We denote by P0 the path composed
only by the vertex v.

The idea is that we 7nd the best path containing v by combining Pi, for each
i= 0; : : : ; n′′, with the best path Pj with j6 j(i). In particular, if T 1; T 2; : : : ; T h are the
subtrees obtained by removing v from T ′, we have to consider only pairs of paths
Pi and Pj, j6 j(i), lying in di:erent subtrees. In this case the DISTSUM of a path P
obtained from the connection of two paths Pi and Pj is:

d(P) =d(v) − sav(v; Pi) − sav(v; Pj): (19)

R.I. Becker et al. / Discrete Applied Mathematics 118 (2002) 25–42 39

Hence, for each path Pi with i= 0; : : : ; n′′, we have to 7nd a path Pj with j6 j(i),
lying in a di:erent subtree with respect to that of Pi and with maximum distance
saving.

In order to do that, we have to consider, for each i= 1; : : : ; n′′, the following quan-
tities:
t(i) = a label that indicates the subtree in which Pi lies;
Bsav(i) = the maximum distance saving of a path Pj with j belonging to {0; 1; : : : ; i};
Bpath(i) =the index of the path with length at most L(Pi) and with maximum dis-

tance saving;
Bsav′(i) =the maximum distance saving of a path Pj with j belonging to {0; 1; : : : ; i}

and with label di:erent from t(Bpath(i));
Bpath′(i) =the index of the path with length at most L(Pi), with label di:erent from

t(Bpath(i)) and with maximum distance saving.
For the sake of simplicity for i= 0 we let t(0) = 0, Bsav(0) = 0 and Bpath(0) = 0.
The labels t(i) for i= 1; : : : ; n′ − 1 can be obtained when Pi is found, while we can

obtain the other previous quantities by the following formulas:

Bsav(i) = max{sav(v; Pi); Bsav(i − 1)} i= 1; : : : ; n′′: (20)

Bpath(i) =

 i if Bsav(i) = sav(v; Pi)

Bpath(i − 1) otherwise:
(21)

Bsav′(i) =



Bsav(i − 1) if t(Bpath(i − 1)) �= t(Bpath(i))

max{sav(v; Pi); if t(i) �= t(Bpath(i)) and

Bsav′(i − 1)} t(Bpath(i − 1)) = t(Bpath(i))

Bsav′(i − 1) otherwise:

(22)

Bpath′(i) =



Bpath(i − 1) if t(Bpath(i − 1)) �= t(Bpath(i))

i if t(Bpath(i − 1)) = t(Bpath(i));

t(i) �= t(Bpath(i))

and sav(v; Pi)¿Bsav′(i − 1)

Bpath′(i − 1) otherwise:

(23)

To 7nd the best path Qi containing Pi, we attach Pi to:

PBpath(j(i)) if t(i) �= t(Bpath(j(i)))

PBpath′(j(i)) otherwise: (24)

40 R.I. Becker et al. / Discrete Applied Mathematics 118 (2002) 25–42

In the following we present an outline of the procedure BESTPATH(T ′; v).

Procedure: BESTPATH(T ′; v):
begin
7nd the DISTSUM d(v) (see (16))
for all vertices u �= v in T ′ do
7nd sav(v; Pvu) (see (15))

7nd T 1; T 2; : : : ; T h, the subtrees obtained from T ′ by removing v
7nd all paths Pvu for which L(Pvu)6 ‘ (see (17))

sort all the paths in non-increasing order of length

Let P1; P2; : : : ; Pn′′ be these paths

for each i= 0; : : : ; n′′ do
let t(i) = k be the label of the subtree Tk to which Pi belongs

for each i= 0; : : : ; n′′ do
7nd j(i) (see (18))
7nd Bsav(i) (see (20))
7nd Bpath(i) (see (21))

for each i= 1; : : : ; n′′ do
7nd Bsav′(i) (see (22))
7nd Bpath′(i) (see (23))

for each i= 0; : : : ; n′′ do
7nd the best path Qi containing Pi (see (24))

Choose the path Qi with i= 1; : : : ; n′′ which has the minimum DISTSUM

end

4.1. The complexity of the algorithm

Let us consider the time complexity of the procedure BESTPATH(T ′; v). As noted at
the beginning of Section 4, we can compute the DISTSUM of a vertex v and the distance
saving sav(v; Pvu) for all the vertices u∈V ′ \ {v} in O(n′) time. The following remark
allows us to calculate the DISTSUM and the distance saving in O(n′) time in the subtree
T ′ of T .

Remark 3. Given a tree T and given a vertex z, let us consider Tz. Let a= (z; u) be an
edge incident to z and T ′ = (V ′; E′) be the subtree T z

head(a). Moreover let d′ =Wz
head(a; 0)

be the sum of the distances from all the vertices in T ′ to u and n′ = |T z
head(a)|= |T z

u |
be the number of vertices of T ′. Now we consider a vertex v in T z

head(a) as the new
root of T and we call Tv the rooted tree so obtained. We have:
|Tv

head(a)|= |Tv
z |= n− n′ (note that z is head(a) with respect to the new root v),

Wv
head(a; 0) =d(z) − (d′ + w(a)n′).

R.I. Becker et al. / Discrete Applied Mathematics 118 (2002) 25–42 41

Hence, having already computed in Tz the cardinalities |T z
head(a)| and the weights

Wz
head(a; 0) for each edge a∈E, we can compute the corresponding quantities in Tv,

that is |Tv
head(a)| and Wv

head(a; 0) in O(n′) time.

Lemma 1. The solution time of the procedure BESTPATH(T ′; v) is O(n′ log n′) for
any v∈V .

Proof. By Remark 3 we can compute sav(v; Pvu) for each u �= v in T ′ and d(v) in O(n′)
time, since by (15) and (16) these quantities depend only on |Tv

head(a)| and Wv
head(a; 0).

Moreover by using (17), we can compute the lengths L(Pvu) for all u �= v in T ′ also in
O(n′) time by a top down scan. Sorting the paths Pi can be done in O(n′ log n′) time.
We can 7nd all the indices j(i) = 1; : : : ; n′′ in O(n′) time since n′′ is at most n′ − 1
and since if i′ ¿i then j(i′)6 j(i).

We can 7nd t(i) when Pi =Pvu is found by checking which T j contains u —
this adds linear time for a reasonable data structure. The quantities Bsav(i), Bpath(i),
Bsav′(i) and Bpath′(i) in the procedure can also be calculated with a time complexity
of O(n′) by using (20)–(23).

The time complexity of the Algorithm SPLIT-TREE depends on the depth of the
recursion, that is, depends on the cardinalities of the subtrees obtained by removing
the central vertex of each current tree T ′.

Theorem 2. The algorithm SPLIT-TREE ;nds the ‘-core of T in O(n log2 n).

Proof. A central vertex v of a tree T can be found in O(n) time, by applying the
algorithm for the median of an unweighted tree T presented in [2] (see Remark 2).
By Lemma 1 the procedure BESTPATH(T ′; v) can be implemented in O(n′ log n′)
time.

Let us now consider the recursive procedure SUBTREE. At a given level of the
recursion there are a number k of subproblems to be solved. Let ni with i= 1; : : : ; k be
the number of vertices of the ith subproblem. In order to solve it, we need O(ni log ni)
time for 7nding the best path P′ in T ′. Since

∑k
i=1 (ni)¡n we obtain, for each level

of the recursion, a time complexity of O(n log n).
Moreover, the depth of the recursion is O(log n) since v is a central vertex (the

cardinalities of the subtrees obtained by removing a central vertex v are at most n=2
by Remark 2). Hence, the overall execution time of the algorithm SPLIT-TREE is
O(n log2 n).

Notice that, as in the paper of Peng and Lo, the algorithm SPLIT-TREE 7nds an
‘-core in O(n log n) time when w(a) = 1 ∀a∈E, i.e. in the unweighted case. Hence,
in the unweighted case we have two algorithms which have a combined complexity of
O(nmin{‘; log n}) time.

42 R.I. Becker et al. / Discrete Applied Mathematics 118 (2002) 25–42

5. Conclusion

In this paper we have presented the problem of 7nding an ‘-core of a tree network,
that is, a path with length at most ‘ which minimizes the sum of the distances from it
to the other vertices of the tree. Peng and Lo [9] 7rst provided a recursive O(n log n)
time algorithm for 7nding a path with length exactly equal to a speci7ed value ‘
only in unweighted trees. It is claimed that their method can be applied to trees with
integer lengths, but no details are given and the extension is not immediately obvious.
Our problem can be considered an extension of the latter one, since the optimal value
of our problem can be less than or equal to the optimal value in [9]. We have also
considered the ‘-core problem both in unweighted trees and in weighted ones. Then,
two algorithms have been provided, one with time complexity of O(n‘) for unweighted
trees and the other for weighted trees which runs in O(n log2 n) time. Notice that, as in
[9], the latter algorithm applied when the weigths associated to each edge are all equal
to 1, has a time complexity of O(n log n). Hence, we can combine the two procedures
for the unweighted case achieving a total time complexity of O(nmin{‘; log n}).

The methods employed use two types of recursion, in an unweighted tree we use a
standard bottom up and top down level by level visit of the rooted tree, while in the
weighted case the algorithm is based on a divide and conquer technique.

The result presented might provide a basis for the study of other facility shapes such
as trees, cycles and for other measures of distances. Ultimately, one would hope to
obtain good algorithms for location in general networks.

References

[1] R.I. Becker, Inductive algorithms on 7nite trees, Quaestiones Math. 13 (1990) 165–181.
[2] A.J. Goldman, Optimum center location in simple networks, Transportation Sci. 5 (1971) 212–221.
[3] S.L. Hakimi, E.F. Schmeichel, M. LabbTe, On locating path or tree shaped facilities on network,

Networks 23 (1993) 543–555.
[4] O. Kariv, S.L. Hakimi, An algorithmic approach to network location problems. I: The p-centers, SIAM

J. Appl. Math. 37 (1979) 513–538.
[5] O. Kariv, S.L. Hakimi, An algorithmic approach to network location problems. II: The p-medians,

SIAM J. Appl. Math. 37 (1979) 539–560.
[6] T.U. Kim, T.J. Lowe, A. Tamir, J.E. Ward, On the location of a tree-shaped facility, Networks

28 (1996) 167–175.
[7] E. Minieka, The optimal location of a path or tree in a tree network, Networks 15 (1985) 309–321.
[8] C.A. Morgan, J.P. Slater, A linear algorithm for a core of a tree, J. Algorithms 1 (1980) 247–258.
[9] S. Peng, W. Lo, E6cient algorithms for 7nding a core of a tree with a speci7ed length, J. Algorithms

20 (1996) 445–458.
[10] M.B. Richey, Optimal location of a path or tree on a network with cycles, Networks 20 (1990) 391–407.
[11] A. Tamir, An O(pn2) algorithm for the p-median and related problems on tree graphs, Oper. Res. Lett.

19 (1996) 59–64.

