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Abstract

The periodic unfolding method, introduced in [D. Cioranescu, A. Damlamian, G. Griso, Periodic unfolding and homogenization,
C. R. Acad. Sci. Paris, Ser. I 335 (2002) 99-104], was developed to study the limit behavior of periodic problems depending on a
small parameter e. The same philosophy applies to a range of periodic problems with small parameters and with a specific period
(as well as to almost any combinations thereof). One example is the so-called Neumann sieve.

In this work, we present these extensions and show how they apply to known results and allow for generalizations (some in
dimension N > 3 only). The case of the Neumann sieve is treated in details. This approach is significantly simpler than the original
ones, both in spirit and in practice.
© 2007 Elsevier Masson SAS. All rights reserved.

Résumé

La méthode de 1I’éclatement périodique, introduite dans [D. Cioranescu, A. Damlamian, G. Griso, Periodic unfolding and
homogenization, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 99-104], a pour but I’étude du comportement asymptotique de problemes
périodiques avec période tendant vers zéro. La méme approche permet de traiter toute une famille de problemes caractérisés par
des périodicités de tailles tendant vers zéro. Un exemple est donné par le probléme connu sous le nom de la passoire de Neumann.

Nous présentons ici divers prolongements et généralisations de 1’éclatement périodique (certains nécéssitant que la dimension
N soit supérieure a 3) et nous I’appliquons a la passoire de Neumann. Pour ce type de probleémes, cette approche apparait comme
élémentaire, directe et plus efficace que les méthodes classiques.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The periodic unfolding method (see [8]), as a simpler alternative to the two-scale convergence, was developed to
study the limit behavior of periodic problems depending on a small parameter €. As it turns out, the same philosophy
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applies to a whole range of periodic problems with small parameters, provided they have a specific period. The method
is flexible enough to apply as well to almost any combinations of the preceding cases.

In this work, we present these various extensions and show how they apply to known results and allow for
generalizations. This approach is significantly simpler than the original ones, both in spirit and in practice.

The plan of the paper is as follows.

Section 2 is devoted to the presentation of various unfolding operators and their main properties for domains in
RY, N e N*. More precisely, in Section 2.1, we recall the definition of the unfolding operator 7, for the periodic
case in fixed domains ([8] and [12]). In Section 2.2, we present the unfolding operator adapted to the case of holes of
size ¢ (with Neumann boundary condition) with period of same size (see [9] for details and applications). Section 2.3
introduces the unfolding operator 7, s depending of two small parameters ¢ and § (corresponding to the scales ¢
and ¢4) and which was first introduced in a similar form in [6] and [7]. The following subsections deal again with
an unfolding operator Tgb(ls depending on the scales ¢ and €8 when the latter occurs only on a layer. This approach
never assumes the existence of an extension operator in the cells but is based on the Poincaré—Wirtinger inequality
(Section 2.1) and Sobolev—Poincaré—Wirtinger inequality (Sections 2.2 and 2.3). The latter requires that the dimension
N be larger than 2.

The remainder of the paper is devoted to the application to various linear problems in perforated domains and with
oscillating coefficients. For simplicity, we assume a homogeneous Dirichlet boundary condition on the outer boundary
of the domain, but more general boundary conditions can be handled provided the outer boundary is Lipschitz and the
perforations do not intersect it. In each case, we obtain both the unfolded and the classical (standard) form for the limit
problem. The operator 7, allows to homogenize the coefficients of the differential operators, whereas the operators
Te.5 (or T;’é ...) generates the “strange terms” in the limit.

Section 3 concerns the homogenization of elliptic problems with oscillating coefficients, for volume e-periodically
distributed small holes of size €6 with Dirichlet condition. These results are well known for the Laplace operator,
with the appearance of the “strange term” (see [10] and references therein). For the case of oscillating coefficients, we
refer to [11] where H-convergence is used. It should be noted that for technical reasons, our method fails to apply in
dimension N = 2. See also [2] for the nonlinear case.

Section 4 considers small perforations of size €6 which are distributed e-periodically in a layer of thickness ¢.
It generalizes the results of [21,17] and [10] to the case of oscillating coefficients.

Section 5 deals with the Neumann sieve problem with zero thickness and oscillating coefficients. For the case of
constant coefficients, we refer the reader to [4,12,16,20,1] and [19]. We also refer to the recent paper [3] for a different
approach. In Section 6, the thick sieve is treated (for which we refer to [15] for the case of constant coefficients).
The unfolding method was applied for the first time for sieve problems in [18], also in the case of constant coefficients.

To conclude this section, we would like to point out that using the various unfolding operators introduced in
this paper, one can treat any combination of the previous problems, for instance, a medium with e-size Neumann
perforations and e§-size Dirichlet holes in the bulk (see Fig. 10), or even a thick sieve in such a medium. This will be
presented in a forthcoming paper which will also include the proof of convergence for the energies.

2. The periodic unfolding operator

In this section we recall the general properties of the periodic unfolding operator introduced in [8] and include
variants and generalizations, all based on the technique of unfolding. In particular, we introduce the notion of unfolding
criterion for integrals (in short u.c.i.), in order to simplify the proofs where unfolding is used.

For N in N*, let Y be the unit cube of RV centered in the origin, ¥ = ]—%, %[N (more general sets Y having the
paving property in RY can also be used, cf. [14]). We consider the periodical net on RV (i.e. the subgroup Z") and
all the corresponding translates of Y. By analogy with the one-dimensional case, to each x € RV we can associate
its integer part, [x]y belonging to the net, such that x — [x]y € Y, the latter being its fractional part, respectively, i.e,
{x}y = x — [x]y (see Fig. 1). These definitions are ambiguous, but only on a set of measure zero, which is enough for
our purpose.

Therefore we have:

x:g{i} +s|:£] for every x € RY.
Y Y
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A

Fig. 1. The basic decomposition.

0 0 oQ

Fig. 2. The sets £2, 2¢ and Ag.

Let £2 be open and bounded in RY . We use the following notations:
§8={xe9,<s[f]+ey)c9}, Ae=02\ O, @.1)
€

The set £2, is the largest union of eY cells contained in §2, while A, is the subset of £2 containing the parts from ¢Y
cells intersecting the boundary 92 (see Fig. 2).
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2.1. The case of fixed domains: the operator T,

We recall here the definition of the unfolding operator and its main properties (for details and proofs we refer the
reader to [8] and [13]).

Definition 2.1. For ¢ € L?(£2), the unfolding operator 7, : L”(£2) — LP(£2 x Y) is defined as follows:

P(e[Xly +ey) if (x,y) € 2. x Y,
7;,‘ ’ = &
@), ) {0 if (x,y)e A, xY.

Theorem 2.2 (Properties of the operator Ty).

—_—

. Forany v,w € LP(82), T,(vw) = T, (v) 7, (w).
2. Forany w € LP(82), one has the following “exact integration” formula:

/ ’Z}(w)(x,y)dxdy:/w(x)dx—/w(x)dx:/w(x)dx.

QxY Q A o,

3. Forany u € L'(£2),

[ 1mwlaxey< [ o
2

2xY

4. Foranyu € L'(£2),

'[udx— / Z(u)dxdy‘</|u|dx. (2.2)
2 Ag

2xY
5. Let {w.} C L2(.Q) such that w, — w strongly in L2(2). Then
Te(we) = w  strongly in LY(2 x Y).

6. Let w, — w weakly in HY(2). Then, there exists a subsequence and W € L2(£2; le (Y)) such that

er
T.(Vwe) = Vew + Vyw  weakly in L2(2 x Y).
Property 4 shows that any integral of a function w on 2, is “almost equivalent” to the integral of its unfolded
on £2 x Y, the “integration defect” arises only from the cells intersecting the boundary 92 and is controlled by the
right-hand side integral in (2.2).

The next proposition, which we call unfolding criterion for integrals (u.c.i.), is a very useful tool when treating
homogenization problems.

Proposition 2.3 (u.c.i.). If {w,} is a sequence in L' (§2) satisfying

/ |we|dx — 0,
Ag
then

/wgdx— / Te(we)dxdy — 0.
2 2xY

Based on this result, in order to simplify the proofs in the sequel, we introduce the following notation:
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Notation 2.4. If {w.} is a sequence satisfying u.c.i., we write:

7,
/wgdxé / Te(we)dx dy.

2 2xY

Corollary 2.5. Let {u;} be bounded in L*>($2) and {v,} be bounded in L (§2) with p > 2. Then we have:

T
f pv dy = / To(ue) To (ve) dx dy.
2 2xY

We end this subsection with the notion of local average of a function.
Definition 2.6. The local average M7 : L?(§2) — L”(£2), is defined for any ¢ in L?(£2), 1 < p < oo, by
M@0 = [ T dy.
Y
Remark 2.7. The function M f/ (¢) is indeed a local average, since

1 ; O
M;’;((ﬁ)(x) 2/7:9(4’)(35,)’) dy = { eV Je[X]+ey ¢()de ifx e 2,
’ 0 if x € Ag.

Remark 2.8. Note that 7, (M7, (¢)) = My (¢) on the set 2 x Y.
The next proposition, which will be frequently used as well, is classical:

Proposition 2.9. Let {w.} be a sequence such that w, — w strongly in LP ($2) where 1 < p < 00. Then we have:

My (we) — w  strongly in LP(£2).
2.2. Unfolding in domains with volume-distributed “small” holes: the operator T; s

In Section 4 below, we will consider domains with ¢Y -periodically di_stributed holes of size €§ (§ — 0 with &).
More precisely (see Fig. 3), for a given open B € Y we denote Y3 =Y \ § B and define the perforated domain Q;‘ 5 as

:Bz{xefz, suchthat{i} eY(;*}. (2.3)
’ &

This geometry of domains with “small” holes requires another unfolding operator 7; s depending on both parameters
¢ and 8. In the next sections, we will consider functions v, s which vanish on the whole boundary of the perforated
domain £2; 5, namely belonging to the space H(} (£2;"5)- These functions are naturally extended by zero to the whole of

£2 and these extensions belong to HO1 (£2). Consequently, from now on, we will not distinguish elements of Hé (.Q: s)
and their extensions in H(} (£2). This justifies the introduction of 7; s on the fix domain §2, while it may (and, in
Section 4, will) be applied to elements of H(} (.Q;‘, )

Definition 2.10. For ¢ € L?(£2), p € [1, oo[, the unfolding operator 7, 5: L (£2) — LP(§2 x RY) is defined by:

{Tg(x,so if (r,2) € 2 x 17,

Tes(@)(x,2) = .
otherwise.

For N > 3, the Sobolev exponent % associated to 2 is denoted 2*.
The next results follow from Theorem 2.2 by using the change of variable z = (1/5)y.
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Fig. 3. The sets B and Y and the corresponding £2) ;.

Theorem 2.11 (Properties of the operator T s).

1. Forany v, w € LP(2), T;.s(vw) = T4 s (v) T s ().
2. Foranyu € LY(£2), one has

8N / |7;,5(u)ydxdz</|u|dx.
2

QxRN

3. Forany u € L3(£2),

2 1
||7‘—€,8(u) ||L2(.QXRN) < (S_N ”u”i2(9)

</|u|dx.
Ag

4. Foranyu e L'(R2),

Uudx—aN / Te 5(u)dx dz
2

xRN

5. Letu € H'(R2). Then
1 . 1
Tes(Vat) = — Ve (Tesw)) in 2 x R

6. Suppose N >3 and let w be open and bounded in RN . Then the following estimates hold:

2
2 & 2
|| VZ(,];va(u))HLz(Qx%Y) g mllvu||L2(ﬂ)’ (24)
| Te.s(u — My @) | < Va2 2.5)
&8 Y LA LY (RN)) = gN-2 L2(2) :
and
2 2C¢?
| s @12y < uz @M IVE G2 ) + 210l 7). (2.6)

where C denotes the Sobolev—Poincaré—Wirtinger constant for H'(Y).
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7. Suppose N = 3. Let {wg s} be a sequence in H'(£2) which is uniformly bounded when both & and 8 go to zero.
Then, up to a subsequence, there is W in L%(£2; LY (RN)) with V. Win L2(82 x RN) such that

N
§2~1

(7.5 (we 5) — M?(w&g)léy) —~ W weakly in L*($2; L* (RY)),

N1

52

Vo(Tes(wes)) 11y — VoW weakly in L*(2 x RY).

Assuming furthermore that imsup, 5y, o+ o+) %
L2($2; L2 (RN)) with

loc

< +00, one can choose the subsequence above and some U in

N
5§21

loc

Tes(wes) =~ U  weakly in LZ(Q; L? (RN)).

Remark 2.12. In order to establish (2.5)—(2.6) from (2.4), the Sobolev—Poincaré—Wirtinger inequality is used (because
of its scale-invariance). The use of the standard Poincaré—Wirtinger inequality would give,
2 C/Sz 2
| Zes (u — My ) | L2(2'xRN) N 52 sN—2 IVullL2 (g,

where C’ is the Poincaré-Wirtinger constant of Y. This estimate is not compatible with (2.4).
Concerning the integral formulas, we have the following results, similar to those of the previous subsection.

Proposition 2.13 (u.c.i.). If {w.} is a sequence in LY(2) satisfying

/|w8|dx—> 0,
Ag

then

Tes
fwgdx = gN / T;.5(we) dx dz.
2 2 xRN

Corollary 2.14. Let {u.} be bounded in L%(2) and {ve} be bounded in LP (§2) with p > 2. Then

Tes
/ tpvp dr = 8N / T (4) Too5 (0e) dx dz.
2 2 xRN

H . bl
2.3. The boundary-layer unfolding operator: the operator ’]; s

For sieve-type problems (Sections 4 and 5 below), we consider the case of holes of size &6, distributed in X/, a layer
of thickness ¢ parallel to a hyperplane in the open domain 2 in RY. We denote x’ = X1y, xn=1), [T ={xy =0}
and set X' =11 N £2.

The layer X/ is defined as

, €
2,=80nN x;|xN|<§ ,
and by analogy with (2.1), we introduce the corresponding sets,
f/ _ , X ’ I\
c=1x€X, ¢ " +eY )X, A, =2, \X,,

and denote ;‘\5 =3/NI.
The set X/ is the largest union of ¢Y cells contained in X/ (see Fig. 4).
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Fig. 4. The sets 5/, &, and AL.

Definition 2.15. For ¢ € L”(X/), p € [1, 00| the unfolding operator 7% : LP (%) — LP(X x RV) is defined by:

TH@ .o = SR b 0 e Sy
' 0 otherwise.

This operation, designed to capture the contribution of the barriers in the limit process, was originally used in [18].
We also introduce the notion of local average related to the hyperplane X.

Definition 2.16. The local average Mf,’bl : Ll’(z‘e’) > LP(X), is defined for every ¢ in Lp(zgl)’ 1< p < o0, by
o ey 9 A i € 5

My (@) =" f (@), 2) dz={ o _
iy 0 ifx"e X\ X,.

Remark 2.17. Since elements of L”(X) can be considered as functions of L (X)), Mf,’bl can be applied to them.

With this convention, ’Z:fé(M?bl (@) = Mf,’bl (¢) on the set X.
We also have an equivalent of Proposition 2.9.

Proposition 2.18. Let {w.} be a sequence such that w, — w weakly in H L(2). Then

Mf,’bl(ws) — w|x strongly in LZ(E).
It is easy to check that most of the results stated in the previous subsection extend to Tgbé.

. bl
Theorem 2.19 (Properties of the operator Tg 5)-

1. Foranyv,w € LP(X)),
’]:fé(vw) =7;{7(13(U)T£(ls(w)~
2. Foranyu e L'(2)),

s / @?g(u)dx’dzzfudx, and &8N / ‘7;{’(13(14)|dx'dz</|u|dx.
3

xRN I xRN X/
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3. Foranyu € LZ(ZJE’),

1
”7;[753 (u) ”22(2 xRNy S N [l ”iz(zg)'

</|u|dx.
Ag

4. Foranyu € LI(Z’s’), one has

‘ /udx—erSN / ’Z;l,’(ls(u)dx/dz
X/ X xRN
5. Letu be in H'(X/). Then,

1 . 1
T2 (Veu) = V- (T w) in 2 x R
6. Suppose N >3 and let w be open and bounded in RN . Then the following estimates hold:
bl 2 € 2
I Vz(ﬂ,a(”))”mxxgy) < sN—2 ”V“”LZ():gy
bl e,bl 2 € 2
| 7% (u = My ) ”LZ(Z;LZ*(RN)) < SN2 ”V””Lz(zg)’

and

bl 2 Ce 2/N 2 2
|75 2 s ) < 25z |01 M IVHI L2 ) + 200l T2 5,

where C denotes the Sobolev—Poincaré-Wirtinger constant for H' (Y).
7. Suppose N > 3. Let {w; s} be a sequence in H! (X)) such that ||Vwe,5||L2(z£/) is bounded. Then, up to a subse-

quence, there exist W in L3(X; L (RM)Y) with V.Win L2( X x RY) such that

N
s271 , .
—= (T.5(we 5) — Mi(wg,a)lﬁy) —~ W weakly in L*(Z; L* (R"Y)),
N
52 ) N
7%(7},5(%5)) Liy = V:W  weaklyin L*(Z x R").

. . N/2—1 .
Assuming furthermore that imsup, s\, o+ o+) ’ST < 400, one can choose the subsequence above and some U in

L*(x; L (RN)) with

N
§2~1 ,
77;,3(&9,5) — U weakly in LZ(ZJ; L%OC(RN)).
Proposition 2.20 (u.c.i.). If {w.} is a sequence in LI(ES/ ) satisfying,
/ |wg|dx — 0,
A/
then
YN "
/wgdx = &8 / 7.5 (we) dx’ dz.
X/ X xRN

Corollary 2.21. Let {u.} C L2(E€’) and {ve} C LP(X]) with p > 2, such that ||u, ||L2(ES/) and ||ve|lLr (x;) are bounded
independently of . Then

L
/ ueve dx = g8V / TS (ue) TG (ve) dx' dz.

x/ xRN
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For sieve problems, there is a need to distinguish between the subdomains above and below X'. Set
2, =R¥ne, @ =R¥ne, v,=RY¥ny, Yv_=RYnr.

We suppose that the two domains £24 and £2_ have a Lipschitz boundary.

For simplicity, we will make the convention that all the results stated for 2, are true also for £2_ unless specified
otherwise. For any function u# defined in §2, we denote by u™ its restriction to the domain 24, ie., ut =ulg -
Analogously, u™ =ulg_.

The corresponding definitions and propositions are the following:

&,bl

Definition 2.22. The local average My, (LP(X/) > LP(X), is defined for every ¢ in L?(X/,), 1 < p < 00, by

M @) = / TH @, ) dz.

lYi

IYI

Proposition 2.23. Let {w,} be a sequence such that wy — w* weakly in H'(£2+.). Then

f/fl(wg)—>w |5 strongly in L*(X).

Theorem 2.24. 1. For all ¢ € L*(£22),

1 2
|7 S(M)HLz(ExR Y S (C,‘(S—N”M”Lz(zs,:t)-

2. Suppose N > 3 and let u belong to H' (§2+). For every w open and bounded in Ri’ the following estimates hold:
bl 2 € 2
” VZ(TS,B(”))HL%Exgyi) < SN2 ”v””LZ():g’i)’
b M 2 Ce 2
”7;5( My (”))HU(E;LZ*(RQ)) < SN2 ”V“”LZ(E;i)’
and
Ce 2/N 2 2
” 3(u)”L2(2xw) SZSN—2|(U| ||Vu”L2(2g+)+2|w|”u”L2(Z¥+)’

where C denotes the Sobolev—Poincaré-Wirtinger constant for H' (Y1.).
A similar inequality is true for bounded open subsets of RY .
3. Suppose N > 3. Let {we s} be a sequence in H! (/) such that ||Vw,, 5||L2(2 ) is bounded. Then, up to a

subsequence there exists W in L2(2 L (IR )) with V, W in L2(X x RN) such that

N
§271 , .
7 (7;{’([;(1418,3) - Mf,+(w5,5)1%Y+) —~ WT  weakly in LZ(E; L? (Rﬁ)),
53! bl 2 N
7vz(7;’3(w€,(;)) Liy, = V:W"  weakly in L*(¥ x RY).

N/2-1
Assuming furthermore that imsup, s, o+ o+) ‘ST < 400, one can choose the subsequence above and some

UT in L*(X; L2 (RY)) with

loc
ﬁ*l
[

The same result holds true for sequences in H' (X).

TP (wes) = Ut weakly in L*(2; Ly (RY)).

The equivalent of Proposition 2.20 (u.c.i.) also holds true in £2.
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3. Homogenization in domains with small holes which are periodically distributed in volume
3.1. Functional setting

Let o and B be two real numbers such that 0 < o < 8. For any open set O in RY, denote by M (a, B, O) the set of
the N x N matrix-fields A = (a;j)1<i, j<n € (L=(O))V*V such that
al P < (A0)r, 1) and AL < B(AMOA,A),
for any A € RY and a.e. x in O.
The perforated domain .Q;‘ 5 is defined by (2.3). Assume that the matrix field A®(x) = (afj (x))1<i,jgn belongs to
M(a, B, $2). For f € LZ(Q), consider the following problem:
Find u 5 € Hy (82} ) satisfying
f(z;_a A*Vue sV = fg;_s /o, (Pe,s)
V¢ € H| (2%5)-
In this section we suppose that N > 3 and study the asymptotic behavior of problem (P 5) as ¢ and § = §(¢e) are
such that there exists a positive constant k| satisfying,
N1
2

8
k1 = lim P with 0 < k1 < o0. (3.1)

e—0

3.2. Unfolded homogenization result

We now derive the unfolded formulation of the limit problem for P 5. In the limit we will observe the contribution
of the periodic oscillations as well as the contribution of the perforations.
In order to state the result, we introduce the functional space K p defined as follows:

Kp={® e L¥ RY); V& € L>R"), @ constant on B}. (3.2)

Theorem 3.1. Let A® belong to M («, B, §2). Suppose that, as € goes to 0, there exists a matrix A such that
T (A% (x,y) = A(x,y) ae inf2xY.

Furthermore, suppose that there exists a matrix field Ao such that as € and § — 0,

Tes(A%)(x,2) > Ao(x,2) ae in 2 x (RN \ B). (3.3)
Let u, s be the solution of the problem (P ). Then
Ugs —uog weakly in HO1 (£2), (3.4)

and there exists ii in L*(§2; leer(Y)), and U vanishing on 2 x B with U — kyuq belonging to L*(§2; Kg), such that
the triplet (ug, u, U) satisfies the following three conditions:
fA(x, W (Vxuo(x) + Vyi(x, y)) Vyp (y)dy =0, (3.5)
Y
fora.e. x in 2 and all ¢ € leer(Y);

/ Ao(x,z2)V,U(x,z) V,u(z)dz =0, (3.6)
RN\B
fora.e. x in §2 and all v € Kp with v(B) =0;
/ A(Viuo + Vyi)Vrdx dy — ky / AoV, Uvpy do, :/fl// dx, (3.7
2xY 2x3B Q

forall y € H(} (£2), where vp is the inward normal on 9 B and do, the surface measure.



D. Cioranescu et al. / J. Math. Pures Appl. 89 (2008) 248-277 259

The proof of this theorem, makes use of the next two elementary results.

Lemma 3.2. Let N > 3. Then, for every &9 > 0, the set
U {¢€H), () ¢=00n5B}

0<d8<dy

is dense in Hper(Y).

Proof. Let y € c;;g,(?) be fixed. For 8; =2 0 consider ¢y € leer(Y) smooth with

b= 0 on B,
=11 onY\28B,

and such that |V¢y| < % Define ®@; = ¢ 1. We claim that @, converges to ¥ strongly in leer(Y). To do so, observe
that
H¢k—¢ﬂﬁuj+nv¢k—vwﬂﬁw)<L/|WFdY+t/|V¢de+'/|V¢H%WFd%
281 B 28 B 281 B
For the last integral, using the definition of ¢, one gets:
/|vmﬂwﬁdy<c%54wmﬁmm.
28 B
Hence,
D — Y strongly in Hl}er(Y).

Since lee,(Y ) is the closure of C ,‘,’S,(l? ) in the H'-norm, a density argument completes the proof. [

Lemma 3.3. Ler v in D(RVN)N K (i.e. v = const. = v(B) on B), and set

we,S(x)ZU(B)_U<l{£}> forx e RN,
dlely

Then,
wes — v(B) weakly in H(£2). (3.8)

Proof. For § small enough, the support of v is compact in éY and consequently,

2
JIECI
ly

Clearly, wgs is uniformly bounded on RN. Observe that the set where wes differs from v(B) is
UgezN (€& 4 e8{Support(v)}), so that the measure of its intersection with £2, is at most of order §". Thus, We. s
converges to v(B) in every L9(£2) for finite g.

Since 7; s (we)(x, ) = v(B) — v(z), property (5) from Theorem 2.11 gives:

1 ~ 1
Tes(Vwes) =——Vv in 2, x ~Y, (3.9)
’ ’ ) 1)
hence (see Theorem 2.2(2)),
2 N 2 g2 2
”ng,(S ”LZ(QS) =4 ” TS,&(VU)E,(S) ”Lz(QX%Y) g 8—2 |Q| ”VZUHLZ(]RN)‘

Due to (3.1), Vwg s is bounded in L%OC(Q) which concludes the proof, since w, s is €Y -periodic in RN. O
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Proof of Theorem 3.1 (for the case k; > 0). Observe first that by the Lax—Milgram theorem, there exists a unique
solution u, 5 of (Pgs) and it satisfies

||“€,6||H01(_Q:5) < C”f”LZ(Q)’ (3.10)

which implies convergence (3.4), up to a subsequence. Next, by Theorem 2.2(6), there exists i € L?(£2; H;}er(Y))
such that

Te (Vi 5) — Vauo + Vyii - weakly in L2(£2 x Y). (3.11)
By Theorem 2.11(7), there exists some U in L2(£2; leoC (R™)) such that, up to a subsequence,
571
Tos(uss) =~ U weakly in L?(£2; L (R)). (3.12)
By Proposition 2.9, one has
N
s§271
M3 (ues)11y — kiug  strongly in L2(82; L (RY)). (3.13)
& 3
On the other hand, by Theorem 2.11(7) there exists a W in L?(£2; LY (RM)) with V. W in L?(£2 x RN) such that
53! e 12 2 N
(’Z;,(;(ug,(;) — MY(ug,g)l%Y) —~ W weaklyin L (.Q; L (R )). (3.14)

From (3.12), (3.13) and (3.14), one concludes:
U=W+kug, and V,U=V,W,
and, by Theorem 2.11(5) and (7) again

N
s§271

Vi (Tes(ues)) Ly = 82T, 5(Vues) — V.U weakly in L2(2 x RY). (3.15)

From Definition 2.10, 7; s (#es) = 01in £2 x B, so that by (3.12),
U=0 onf x B. (3.16)
Due to (3.16), W = U — kjuy actually belongs to LZ(Q; Kp).

Using @ () = e (1)@ (;) as atest function in (P 5), with ¢ € D(£2) and ¢ € Cll
of the origin, we have:

e / Afvu8,3v¢¢<é>+ [ Afvug,wv(;s(é):affl/qu(é).

*
&,8 99.8 Qs,&

.~(¥) vanishing in a neighborhood

It is easy to see that the first integral as well as the right-hand side of the above equality converge to zero. The
second integral above is unfolded with 7, noting that 7,(V¢ (-/¢))(x, y) = V¢ (y). Applying Theorem 2.2(1) and (4),
then Corollary 2.5, one gets:

A\ Ze
/ ASVug,awV¢<g>z / T (A%)(r, )T (Vittes) (5, )V T () (x, y) dx dy (3.17)
-Q:_a 2xY

(the unfolding criterion of integrals (u.c.i.) is trivially satisfied since ¥ is compactly supported in §2). From (3.11),
we can pass to the limit with respect to ¢ in (3.17). Then, by Lemma 3.2, we obtain (3.5), the first equation of
the unfolded formulation for the limit problem. This equation describes the effect of the periodic oscillations of the
coefficients in (P s).

In order to describe the contribution of the perforations, we use the function w, s introduced in Lemma 3.3. For v
in D(§2), use we s ¥ as a test function in (Pg 5). By the definition of w, s this function vanishes on the holes and by
the choice of 1, it vanishes near the boundary of £2. Thus, we obtain,

/A‘;Vug,ngg,,gw—l— / ASVug,(ngwg,(g: / fu)g,gl/f. (3.18)
275 275 275
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The first term in (3.18) is unfolded with 7; 5. Again, the choice of the test function implies that the u.c.i. is satisfied,
so by Theorem 2.11 and Corollary 2.14, we can write,

Te s
/ A Vite sV 59y = 68 / o5 (A To 5 (Vite ) Tep (Ve ) Toos (). (3.19)
-Q:ﬁ 2 xRN

Therefore (3.19), together with (3.9), yields

Tes 5%—1 N

[ A Vuesvusy £ [ T8 T (e (V0 T ) (3.20)
275 QxRN

From the following obvious inequality,

[7e500) = V[ o5, 0 1yy < CENVE Lo,

we obtain:
T..s(Y)V,u— Yy Vv strongly in L2(Q X RN). (3.21)
Convergences (3.15), (3.21), as well as hypothesis (3.3), allows us to pass to the limit in (3.20) to obtain:
lirr(l) A*Vug sVwe s dx = —k f Ao(x, )V, U(x, 2)V;v(2)¥ (x) dx dz, (3.22)
£—
27 2x(RN\B)

which by density, is true for every v € K.
The second term in (3.18) is unfolded with 7, and we have,

7
[ A Vs 2 [ LT T w0 T
9:5 2xY
Using Theorem 2.2(5) and convergences (3.8) and (3.11), we can pass to the limit with respect to ¢ in the above

equality to get:

lim AWmewvwsz)/'mvwo+vﬁﬂaw (3.23)
e—
9:,5 2xY

where we also used the fact that 7,(Vr) converges uniformly to Vi (hence strongly in every L7(£2 x Y) for

1 < g <o00).
Passing to the limit with respect to ¢ in (3.18) and using (3.22) and (3.23), we obtain,
v(B) / A(Vyuo + Vyi)Vyr — kg / AoV, UV =v(B) / f, (3.24)
2xyY 2x(RN\B) 2

which, by density, holds true for all ¢ € HO1 (£2) and v € K. Choosing v(B) = 0in (3.24) yields Eq. (3.6), whereupon
the Stokes formula transforms (3.24) into (3.7). This concludes the proof of the theorem. O

3.3. Standard form for the limit problem

Here we show that the unfolded problem is well-posed and we give the formulation in terms of the macroscopic
solution uq alone.

First, consider the classical correctors 5(\], j=1,..., N, defined by the cell problems (see [5]),
R € L(2: HL\ (V)
fY Ax, )V (Xj —yj))Vpdy =0 ae.xec$2, (3.25)

we@;wy
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Assuming u is known and solving Eq. (3.5) for # as a function of u, gives:

N Y oug
(e, y) ==Y —— @)%,
J

—~ Jx
j=1
which used in Eq. (3.7) from Theorem 3.1 yields
fAh"mVuovw dx — k; / AoV, Uvpydo, = / firdx, (3.26)
2 Q2x0B Q
where, for a.e. x in £2, Ahom (x) is the homogenized matrix defined as
AP™ (x) = /(aij () = Y ai(x, y)a—’(x, y)) dy. (3.27)
J P Yk
Eq. (3.26) is the variational formulation for
— div(A™™Vug) — ki / AoV, Uvgdo, = f. (3.28)
dB

It remains to clarify the connection between the second term in (3.28) and u. In order to do so, let 6 be the solution
of the corresponding “cell problem’:

0eL®(2;Kp), 06(x,B)=1,
Jrwyp"A0(x, 2)V0(x, 2)V, ¥ (2)dz =0 ae. forx € £2, (3.29)
YV € Kp with ¥ (B) =0.

From (3.29), (3.16) and Green’s formula together with Eq. (3.6), we get:

/AoVZUVB dO'ZZ/A()VZ(U—klu())I)B dO'ZZ—kluo(/tA()VZQUBdUZ),

9B dB 9B
so that Eq. (3.28) becomes

— div(A™™Vug) + kT Oup = f,
where

Ok = / "Ag(x, 2)V.0(x, 2)vg do. (3.30)
B

Remark 3.4. From definition (3.30) the function @ (x) equals,
Ox)= / Ao(x,2)VL0(x,2)V.0(x, z)dz,
RN\B

which is non-negative and can be interpreted as the local capacity of the set B.
In conclusion, by Lax—Milgram’s theorem, we have:

Theorem 3.5. The limit function ug given by Theorem 3.1 is the unique solution of the homogenized equation:
uop € H) (2),

[ APV VY + k2 [, Ouoy = [, f, (3.31)
vy € H (£2).
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Fig. 5. An example of set .Qs/ 5 an electrostatic screen.

Remark 3.6. The contribution of the oscillations of the matrix A® in the homogenized problem are reflected by the first
term of the left-hand side in (3.31). The contribution of the perforations is the zero order “strange term” k%@ (x)ugp.

Remark 3.7.

1. The proof is actually simpler for the case k; = 0 and the statement is included in Theorem 3.5: the small holes

have no inﬂuenceNat the limit.
N_
2. The case of lim MT = 00 is easy to analyze: from Theorem 2.11(6),

Tos(us5) = uo weakly in L*(2; L, (R™)).
On the other hand, since 7; s(u: 5) =0 in £2 x B, this implies that ug = 0.

4. Homogenization in domains with small holes which are periodically distributed in a layer
4.1. Functional setting

As in the preceding section, we suppose that N > 3. We use the notations introduced in Section 2.3 for domains
with small holes contained in the layer X/. The corresponding perforated layer X 8/ 5 1s given by:
S {x € X/ such that {f} € Yg"}
: e,
The perforated domain is now (see Fig. 5 for an example),
X

R]s=8\ {x ex/ suchthat{ } 633}.
: efy
The small perforations are of size £¢§ with § = §(¢) satisfying,
N1
ky = lim

a—)O\/g’

We consider the asymptotic behavior for the following problem:

where 0 < kp < o0. 4.1)

Find u. s € H (82, ;) satisfying
o, AVuesVe=[o fb. [feELX ), (P.5)
Vo € Hj (2] ).
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4.2. Unfolded homogenization result

Theorem 4.1. Let A® belong to M («, B, §2). Suppose that, as € goes to 0, there exists a matrix A such that
T.(A%)(x,y) = A(x,y) ae inf2xY.
Furthermore, suppose that there exists a matrix field Ao such that, as € and § — 0,
TH(A (', 2) = Ao(x,2) aein Z x RV \ B). 4.2)
Let ug s be the solution of the problem (Pg ). Then
Ugs —uog weakly in HO1 (£2),
and there exists ii € L*(2; H),.(Y)), and U satisfying (4.11) with U — kaug in L*(Z; Kp), such that (ug, i, U)

solves the equations

/A(x, Y)(Vxtto(x) + Vyii(x, y)) Vy¢ (y) dy =0, (4.3)
Y

fora.e xin 2 andall ¢ € lee,(Y);

/ Ao(x', 2) V.U (X', 2)V;u(z) dz = 0, (4.4)
RM\B
fora.e. x'"in X and all v € Kp with v(B) = 0;
/ A(Vxug + Vyi)Vr — ko / AoV Uvpy do, :/fw, 4.5)
2xY X x0B 2

forall € HO1 (£2), where v and do, are the inward normal and the surface measure on 9 B.

For the proof of this theorem, we need the equivalent of Lemma 3.3 with a similar proof (where 7 s is replaced
by 7.%5).

Lemma 4.2. Let v in D(RY) N K g and, for § small enough, set

wffs(x) =v(B) —v(l{x—} x—N> for x eRV.

sle)y e
Then,
wl’s = v(B) weakly in H'(£2). (4.6)

Proof of Theorem 4.1 (for the case k, > 0). We denote u, 5 the extension by zero to the whole of £2 of the solution of
(738’, s)- The reasoning is similar to that of the previous section. The following estimate is straightforward from (738" )

lute.sll 3y < ClL N2y,
so that, up to a subsequence,
ugs — uog weakly in H& (£2).

Eq. (4.3) is obtained exactly as in the proof of Theorem 3.1.
By Theorem 2.19(7), there exists some U in L%(X; L* (RM)) such that, up to a subsequence

loc

N1
2
775{"’3(%,3) —~ U weakly in L*(Z; L} (RY)). 4.7)
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(4.8)

loc

(u&(g)) = Mf,’bl (ug,,g)léy, Proposition 2.18 implies:
4.9)

(ue,6)11y — kauo)  strongly in L*(z;L

Since T4 (My"
Ms,bl
«/E Y
On the other hand, Theorem 2.19(7) gives a W in L2(X; L% (RV)) with V, W in L2(X x RY), such that

571
531
(T2 ue,5) — M;’“(ug,g)l%Y) —~ W weakly in L2(Z; L¥ (RV)).

and V,U=V_,W,
(4.10)

JE
From (4.7), (4.8) and (4.9), one concludes:
U =W + kouy,

VZ(’Z;%(M&(;))I%Y —~ V.U weakly in L>(X x R").
4.11)

and, by Theorem 2.19(5) and (7) again,
Y bl 52
Ves? 1.5(Vues) = 7

From Definition 2.15, ’Tgb(ls (ue5) =01in X' x B, so (4.7) implies:
U=0 onX x B.

bl

e,8

Therefore, W = U — kpuq belongs to L*(X: Kp).
use Lemma 4.2. For ¥ € D(£2), let & = wwé’fé, be a test function in problem (P, ;). Since w

X/ for § small enough, one obtains:
/ASVM&(;wafanr / APVug sVywls = / Fwliy.
2/

Zis 2/
Observe that since wf% vanishes in the holes, one actually has
& bl _ 5 bl
f A*Vug sVw,. sy /A Vue sVw, s,
z

is constant outside

In order to capture the contribution of the perforations to the limit problem, we adapt the proof of Theorem 3.1 and
(4.12)

which unfolded with ’Z;'?é gives:
775
ngwe‘,Swafsw = gV / ToANT (Vue )T (Vw

R
Properties (5) of Theorem 2.19 implies:

so that (4.10) and (4.13) yield,
/ AFVue s Vwllsy

YT

&,

X xRN

1
H(Vulh) = Ve,

N
8271
&

NG

Va(T510)) (= Va0 T35 ()

T N
52
3 fjslfg(As)

=

X xRN

||7;~lf(l$(1//.) - w || Lw(fSX%Y) < CSHwa”LOO(_Q)Ns

Zes
From the compactness of the support of v and the straightforward inequality,

we obtain:

Tbé(lp)Vzv — YV, v strongly in L*(X x RM).

(4.13)

(4.14)

(4.15)
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This, together with convergences (4.1) and (4.10), as well as hypothesis (4.2), allows us to pass to the limit in (4.14)
which now reads

lim AFVue sVwllsy dx = —k; / Ao(x', 2)V U (x', 2)V,vy dx’ dz. (4.16)
Zs X xRN

By a density argument, (4.15) is true for every v in Kp.
The second term in (4.12) is unfolded with 7, and using Theorem 2.2, we get at the limit

lim AV, swb Vi dx = v(B) / A(x, y)(Veug + Vo) Ve dx dy,
£— ’ .
Qs”a 22xY

which, with (4.16) gives Eq. (4.4). Eq. (4.5) is obtained similarly. O
4.3. Standard form of the homogenized equation

Like in Section 3.4, one can rewrite system (4.3)—(4.5) in the standard form. The result is stated in the next theorem,
the proof of which follows the same lines as that of Theorem 3.5.

Theorem 4.3. The limit function ug given by Theorem 4.1 is the solution of the homogenized equation:
up € H} (),
[o APV U VY + k3 [ @ uoy = [, £, (4.17)
VY € Hy(£2),

where @' is defined by (3.30) with x’ in place of x.

Remark 4.4. The strong formulation for (4.17) is the following:

—div A" vy = f inR2\ X,
—[APY V0] = (k2)2O@'ug on X,
ug = 0 on 89,

where [LAM™ V4] denotes the jump across X,
[AhomVuo] = AhomVuan_ + .AhomVugn+ on X,

nt and n~ denoting the respective exterior unit normal to £2; and £2_ on X.

Remark 4.5. 1. The proof for the case ky = 0 is actually simpler, and the statement is included in Theorem 4.3: the
small holes have no influence at the limit, i.e. the equation —div AhomVuo = f is satisfied in the whole of £2.

N_
2. As in Remark 3.7, for the case of lim 21 = 00, Theorem 2.19(6) implies:

NG
TP (ue,s) = uols  weakly in L?(Z; L, (RY)).

loc

On the other hand, ’sté (ue,5) =0 in X' x B implies that ug|x = 0. Therefore, the limit problem splits into two
separate homogeneous Dirichlet problems in £2; and £2_,

—div A" Vg = f in 24,
ug = 0 on B.Qi.

5. The thin Neumann sieve with variable coefficients
5.1. Functional setting

We use the same notations as in Sections 2 and 4. For an open subset S of Y N IT such that Sc (Y NI, set
Ys=Y, UY_USS,
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Z=QNI1

Fig. 6. The set Y3 and the thin sieve .Qé’é

and

X

Ses = {x € X such that { } € SS}.
&

Y
For £2 open and bounded in RN (N > 3), define:
QU =02,U02_US:s and X,;=3, N4

The connection between £24 and £2_ occurs through the “sieve” consisting of the set S; 5 (see Fig. 6). We assume
that ¢ and § satisfy assumption (4.1) of Section 4:

N1

ky = lim where 0 < kr < oc0.

8—)0\/5’

Consider the space
V={veH' (24:UR_); v=00nd%2},

which is a Hilbert space for the scalar product,

(u,v)y = / VuVv forallu,veV.

2.U0_
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For simplicity, when v belongs to V', we denote Vv the L?(£2)—function which equals the gradient of v in £, U £2_
(this is the restriction to £24 U §2_ of the distributional gradient of v). We also denote by [v] the jump of v across
¥, [v]=vt|x — v |y, which belongs to H'/2(X). Finally set

Ves={veV,[v]=0on S, s}

The thin Neumann sieve model is:
Find u, 5 € V, ;5 satisfying,

Jon AVuesNo = [on f¢.  feL* (L), (PLY)
Vo € Ves.

5.2. Unfolded homogenization result

In this problem, the equivalent of the space K p of Section 3 (see (3.2)), is
Ks={® e H! (RYURY); Vo e L*(RY URY), [#]=00n S}. (5.1)
Proposition 5.1. There exist two linear forms I* on I/(\S such that for every @ in I/(\S the functions ®* — (@) belong

o L¥ RY).
The space K is Hilbert space for the norm,

+ — 2
M) _ (52)

2 . 2
1%, = IVI e, + ( :
Furthermore,
Ks™ ={® € Ks, @* € C®(RY), supp(VO™) bounded in RY },

is dense in K for this norm.

Proof. Due to the Sobolev—Poincaré—Wirtinger inequality (applied in the sets %Y 1+ with § — 0), for every @ in Ks,
there exist two constants /= (&) such that (®* — [*(®)) belong to L (]Ri ).

It is well known that the first term in (5.2) is a Hilbert semi-norm on the space K, so that, with the second term, it
defines a norm. The density of I/(\Soo in I/(E follows by a standard argument of truncation and regularization. O
Theorem 5.2. Let A® belong to M («, B, §2). Suppose that, as € goes to 0, there exists a matrix A such that

T.(A%)(x,y) = A(x,y) ae inf2 xY.
Furthermore, suppose that there exists a matrix field Ao such that, as € and § — 0,
TH(A (', 2) > Ag(x',2) aein ¥ xRV, (5.3)
Let u 5 be the solution of the problem (Pf‘lg). Then
Ug s —ug weaklyinV,

and there exists it € L>(£2; leer(Y)), UelL*X;Ks) satisfying,

E(U) =kui), foraex' e, (5.4)
and such that (ug, it, U) solves the following three equations:
/A(x, W) (Vauo(x) + Vyii(x, y)) Vyg (y) dy =0, (5.5)
Y

fora.e xin 2 andall ¢ € lee,(Y),

/Ao(x’,Z)VZU(x’,z)Vzv(z)dz =0, (5.6)

RN
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fora.e. x'in X and all v € I?S with I£ () =0, and

/A(V uo + Vyi)Ve — ko f Ao V.Un™ ¢]2—/f¢ (5.7)

2xY 2xS
forallp e V.

Proof (for the case k» > 0). Let u, s be a test function in (Pg la). Using the Poincaré inequality on §2; and §2_, there
is a constant C (independent of &, §) such that,

luesllv < Cllfll2g2)-
Consequently, up to a subsequence, there exists ug € V such that
ugs — up weaklyin V.

By Theorem 2.2, one can also assume that there exists i € Lz(.Q (Y)) with,

per
Te(Vug,5) = Veug+ Vyii weakly in L2 (2 x Y).

Using ¢ € D(S2) as a test function in (Pg ls), and unfolding with operator 7, we get:
7
/ A*Vue sV dx = / Te(A*)T:(Vue,5)T: (V) dx dy.
Qb oxy
Applying properties (5) and (6) of Theorem 2.2 we can pass to the limit to obtain,

/ A(x,y)[quo—l—Vyﬁ]wadxdy:/fl/fdx.

2xY

per(Y) and Y € D(£24) UD(£2-). Using @ (x) = 51//(x)¢( ) as a test function in (Pb )

e / AgVMmVW(P(é)-F / Aswgww(;):s / fw(;).
el

bl bl
‘Qs. 8 ‘Qs. 8

Next, consider ¢ €
yields,

As in Section 3.3, passing to the limit gives (5.5).

By Theorem 2.24(3), there exists U € L3(X; L? (IR )) such that (up to a subsequence),

loc

§3-1 _
S T(ues) = UF weakly in L2(5: L (®Y)). (5.8)
By construction Tbl (Mg bl( :8)) = ;ibl (us 1 ly,: By Proposition 2.23, one has:
551 w4 +
7 My, (MS,S)I%Y — kou | strongly in L 2(Z; LE(RY)). (5.9

By Theorem 2.24(3) there exists a W in L3(X: LY (RM)) with V., W* in L2(X x RY 1) such that
sY-1

7 —— (T — MY wEp1, y) —~w*  weakly in L2(¥; L¥ (RY)). (5.10)
From (5.8), (5.9) and (5.10), one concludes:
Ut =W*+kuy),, and V.UT=V, W= (5.11)

Again by Theorem 2.24(3), one has the convergence:
¥
52
JeE

V(T2 (us)) = Ve T T (Vuty) = V.UF  weakly in L7(Z x RY), (5.12)
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From Definition 2.15, Isbé (”:5) = ’Tebé (“;5) on X x S, so that by convergences (5.8), (5.12) one has:
[UG',)]=0 onSforae x'€X.

Therefore, U € L2(X; Ks), and (5.11) implies (5.4). .
In order to obtain equations (5.6) and (5.7), choose a function v in K Soo and set:

1 /
we s(x, xN) = v(_{x_} , X—N>
sle)y &8

Clearly, [we 5] = Oon S s and Vw;fa vanishes outside Z‘;’ s for 6 small enough. One easily shows (as in Lemma 4.2)
that

ﬂ(wzfa) — [T(v) strongly in L?(£24), 5.13)
wia —~ [*(v) weakly in H!(£24). :
For ¢ € D(£2), using Y w, 5 as a test function in problem (Pf,ls) gives:
/ Agvua,zﬁvwws,é + / Asvus,évws,él/f = / fwe s (5.14)

2 Zis 22
The first term in (5.14) is unfolded with 7 as usual. This yields
7.
[ A Vuesvvus 2 [ LTG0 T T s dr .
Qb 2xY
Applying (5.13) and properties (5) and (6) of Theorem 2.2, one obtains:

Elg% A*Vue sVywe s =11 (v) / A(x, y)(Viug + Vyi) Ve dx dy
9515 Q+Xy

+17(v) / A(x, y)(Vxug + Vyi) Vi dx dy.
2_xY

The second term in (5.14) is unfolded with ’Z;bé The choice of the test function implies that u.c.i. is satisfied, so

77
f AVue sVwe sy = g8 / TS(A TS (Vue )T (Vwe )T 5 (). (5.15)
/s X xRN
Property (5) from Theorem 2.19 gives:
1
Z?fs(vws,é) = gvzva
which, together with (5.15), yields
e T 53! bl ge L bl
A"Vug sVwe s = NG T75(A)e8 2 T (Vue 5) VT 5 (1), (5.16)
/s xRN

Convergences (5.3), (5.12), allow to pass to the limit in (5.16) to obtain:

lim | A*Vu, sVwe s =ko / Ao V.U (X', 2) V.o dx'dz.

e—0
Z‘g”s I xRN

Now, the limit in (5.14) becomes:
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It (v) f A(Veug + Vyd) Ve + 17 (v) f A(Vyug + Vyid) Vs
2. xY

+ ko / Ao(x’, )V U (X', 2) Vo dx' dz

X xRN

— It () / FU 4 f v, (5.17)
2_

which, by density, holds for every v € KS Eq. (5.6) is then simply obtained by choosing [ (v) =1~ (v) =0in (5.17).
Using (5.6) with an arbitrary v in K> one deduces by Green’s formula that

/ AoV.UV.vdz = f AgV.Un*(v(Z) — I (v))d/, (5.18)
RY S
which still holds for every v € I/(\S Then, (5.18) together with (5.17) leads to,

l+(v)( / A(Vyug + Vyit)Viy — ko / AonUn+1ﬁ—[f¢>
24

24 xY XxS

+l_(v)( / A(Vyuo + Vy i) Ve — kQ/on Un~y — /N)

2_xY YxS

+ky / (AoV-Un™* + AgV.Un™ vy =0. (5.19)
YxS

Taking [T (v) =1~ (v) =0 in (5.19), implies that
AOVZUn+ + AoV, Un™ =[A9V,;U]s=0 ae.on X x S. (5.20)

Since " (v) and [~ (v) are independent, (5.19) now gives the following two formulas:

/ A(Vyup + Vyd) Ve — ko / onzUnwz/fw,

24 xY YxS 24 (5 21)
/ A(Voug + Vyi) Ve — ka / AoV.Un" ¢ = /flﬂ
2_xY YxS

which, by density, hold for every ¥ in Hol(.Q). Let ¢ be arbitrary in V. Eq. (5.7) is obtained by choosing ¢ = ¢,
respectively ¥ = ¢~ in (5.21), and adding the two corresponding equations. O

5.3. Standard form of the homogenized equation

As in Section 4.4, one can write system (5.4)—(5.7) in a standard form, with only ©( as unknown.
First, from (5.6), the first term in the left-hand side of (5.7), can be written in terms of the standard homogenized
operator:

/ A(qu0+Vyﬁ)V¢=fAh°mVu0V¢,
2

2xY

for every ¢ in the space V, using the same cell-problems (3.25) and the same A"™ given by (3.27).
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Next, observe that for a given ug, prg_lzlem (5.4)—(5.6) for U, has a unique solution by the Lax—Milgram theorem

(applied on a closed affine subspace of K).

Now, we show how Eq. (5.7) can be brought to the standard form. More precisely, it remains to clarify
the connection between the term —k» f g Ao V.U n* and [ug]s. In order to do so, let § be the solution of the following

“cell problem”:
0eL®(X;Ky), [£(0)==l,
Jrn "Ao(x', )V O, 2)V W (z)dz =0 forae. x' e X,
VW € K with [* (@) =0.

From (5.18) follows:

/ AgV.UVvdz = (IT(v) — I~ (v)) / AoV.Un™ d7'.
RYURY S
Similarly, the solution of (5.22) is unique and satisfies for a.e. x" in X,
AoV 6n" +'AAGV.0n =['A¢V.0], =0,
f "AgV.0V vdz = (IT(v) — 17 (v)) f "AgV.0n~ d7’.
RYURN S

Formula (5.23) holds for v = 6, whereas (5.24) does for v = U, so that combining the two yields,

s
Consequently, by (5.4),

! !/ — /! k% / /
ko [ Ao(x'. V.U, n™ de' = 2@ (ol s ().
S

where

o) i/tAOVz,@n_dz’ = —/IAOVZGnJr dz’,
s S
the latter equality deriving from (5.23). Thus, Eq. (5.7) becomes:

k2
/Ah°mVro¢dx + %/@(x/)[uo]):(x/)[ﬂz(x/) dx' = / fodx.
2 z 2
We have proved the following theorem:

Theorem 5.3. The limit function ug given by Theorem 5.2 is the solution of the homogenized equation:

up eV,

f_Q Ahomvuov¢ + kz_%/)_'} @[uo]2[¢]2 Zf.Q fd)?
VopeV.

Remark 5.4. Taking v = 6 in (5.24) shows that

1
@(X/)ZE / Ao(x’, ) V.0, 2)V,0(x', z)dz
RYURN

is non-negative. This implies existence and uniqueness of the solution uq of (5.25).

IT@) -1 ITU)—1~(U
/onzyn—dz’z %/onzw—dz’z %/’onzen— d7’.
N S

(5.22)

(5.23)

(5.24)

(5.25)
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Remark 5.5. The strong formulation for the solution uq of the limit problem is:
—divAP"Vyg=f in2\ X,

2
ARV yon~| 5 = — APV iugn |5 = %@[Mo]x,
uop=0 onas2.

Remark 5.6. In the case where Ay is even with respect to zp, 6 vanishes on S. Then, @ (x’) can be interpreted as the
local capacity of the set S, the capacitary potential being (1  6%).

Remark 5.7. 1. The proof for the case ky = 0 is actually simpler and the statement is included in Theorem 5.3: the
holes are too small to keep any connection between £2; and §2_. The limit problem is split into two independent
problems in each of these sets with mixed homogeneous boundary conditions,

—div A" Vg = f  in 24,

APy on®| s =0 on X,
uyp=~0 ondf2y \ X.

N
Yo

NG

3

2. For the case of lim = 00, Theorem 2.24(2) implies:

loc

T;}fé(ug‘a) — u(j)tlg weakly in LZ(Z‘; L2 (Ri))

On the other hand, [’];bé (ue5)ls =0 on X' x S implies that [ug]|x = 0. Therefore, uo belongs to HO1 (£2) so that
the limit problem is satisfied in the whole of £2.

6. The thick Neumann sieve with variable coefficients

In this section we extend the results of Section 5 to the case of a thick Neumann sieve of thickness of order ¢ > 0.
We will use the same notations, unless specified otherwise, and we only sketch the main modifications of setting and
of the proof.

For an open subset S of Y N IT such that S € (Y N IT), we introduce the class Fs of admissible sets, which we use
to describe a thick sieve with holes shaped according to S.

Definition 6.1. The subset set F of RY is in Fs, if

(i) F is closed with connected complement in RV,
(ii) F is symmetric with respect to all the hyperplanes of equations {z; =0, j€1,...,N—1}and F =F, UF_U
{1\ s, B
(iii) F is such that F N %Y C{lznl < 21_8} forevery 0 <6 « 1,
(iv) F4 and F_ are unbounded with Lipschitz boundary,
(v) there exists some positive R such that the boundaries d F. and d F_ outside the ball of radius R, are Lipschitz
graphs over RV 1.

For F € Fg, set

X
Fs=686FNY, and Fgﬂgz{er;suchthat{—} ng}.
€

Y
Define:
g(SSZ.Q\Fgg and S;5= fgﬂﬂ

Fig. 7 present an example of admissible set F' in dimension 3. Fig. 8 is the corresponding sieve. Fig. 9 is a two
dimensional cross-section.
We use the same space V as in Section 5, while the V s is now:

Vs ={ve H' (205+UR% ) vlae =0,[vls,, =0}.
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F

Fig. 7. An example of set F: the hole in the sieve.

Fig. 8. The 3D geometry of the thick Neumann sieve.

Fig. 9. A 2D cross-section of the set F and the domain 2]'.

The thick Neumann sieve problem can be stated as follows:

Find u, 5 € V, ;5 satisfying,
Jam A*Vue sV = [on fb, [ LX),
Vo € Ves.

(Pes)
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The equivalent of the space I/(\S (see (5.1)) is the following, where G denotes the complement of F:
Ko ={® e H! (G); V& e LX(G)}. (6.1)

Proposition 6.2. There exist two linear forms I+ on 1,55 such that for every @ in i(\(/;, the functions ®* — [+ (®)
belong to L% (RN \ F)i).

—~

The space K¢ is a Hilbert space for the norm given by:

191%s = IV gyumsy p + 1 (@ +17(@)7.
Furthermore, for this norm, It and I~ are continuous on I?Z;, and

K™ =|® € Kg, ® € C®(G), supp(V®) bounded in G},

is dense in Kg.

Proof. The proof is the same as that of Proposition 5.1. The only modification concerns the sequence of sets on which
the Sobolev—Poincaré—Wirtinger inequality (with a uniform constant) is applied. In view of Definition 6.1(iv), this can
be achieved on the sets %Yi N{£zy > R} N G (making use of [22]). O

The unfolded limit problem and the standard homogenized equation are given in the next two theorems. Up to the
modifications of notations indicated above, theirs proofs are the same as in Section 5.

Theorem 6.3. Let §2 be open and bounded in RN N >3, and A¢ belong to M («a, B, §2). Suppose that, as & goes to
0, there exists a matrix A such that

T.(A(x,y) = A(x,y) a.e inf2 xY.
Furthermore, suppose that there exists a matrix field Ag such that, as € and 5§ — 0,
TH(AS) (X, 2) > Ao(x',2) ace.in X x (RN \ F).

Let ug 5 be the solution of the problem (P;%). Then

Ugs —ug weaklyin HILC(.Q \ X)),
and there exist ii € L*($2; leer(Y)), UelL*x; EG) satisfying,

IT(U) = kz(ua—L)lz fora.e x' e X,
and such that (ug, i, U) solves the equations,

[A(x, Y)(Vauo(x) + Vyii(x, y)) Vyd (y) dy =0,
Y

fora.e. x in 2 and all ¢ € leer(Y);

/ Ao, VLU (¥, ) V,(2) dz = 0,
G

fora.e. x'in X and all v € K¢ with I£(v) =0,

/A(qu0+Vyﬁ)V¢—k2 / onzun+[¢]Z:/f¢,
2

2xY YxS

forallp V.
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Fig. 10. The combination of a Neumann hole 7" and a Dirichlet hole §B.

Theorem 6.4. The limit function ug given by Theorem 6.3 is the solution of the homogenized equation:
upev,
k2
Jo APMVugVe + 2 [+ Oluglsldls = [, fo.
VoeV,

where

oOx= %fAo(x/,z)VZG(x’,Z)VZG(x/,Z) dz,
G
and 0 is the solution of the cell-problem,
6 €L®(Z;Kg), [FOW,)) ==,
fG TAg(x", )V, 0(x", 2)V;¥(2)dz =0, a.e forx' € X,
YW € K¢ with I*(¥) =0.

Remark 6.5. The function @ (x”) can be interpreted as the local relative capacity (in G) of the set C(x”) defined as the
set where 6 (x’, -) vanishes, the capacitary potential being (1 —8(x’, -)) “above C(x")” and (1+0(x', -)) “below C(x')”.
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