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Abstract

We introduce the notion of a regular quadratic equation and a regular NTQ system over
group. We prove the results that can be described as implicit function theorems for algebr
rieties corresponding to regular quadratic and NTQ systems. We will also show that the im
function theorem is true only for these varieties. In algebraic geometry such results would
scribed as lifting solutions of equations into generic points. From the model theoretic view-po
claim the existence of simple Skolem functions for particular∀∃-formulas over free groups. Provin
these theorems we describe in details a new version of the Makanin–Razborov process for
equations in free groups. We also prove a weak version of the implicit function theorem for
systems which is one of the key results in the solution of the Tarski’s problems about the elem
theory of a free group. We call it the parametrization theorem.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we prove so-called implicit function theorems for regular quadratic
NTQ systems over free groups (Theorems 3, 9, 11). They can be viewed as ana
the corresponding result from analysis, hence the name. To show this we formulate
basic version of the implicit function theorem.

Let

S(x1, . . . , xn, a1, . . . , ak)= 1

be a “regular” quadratic equation in variablesX = (x1, . . . , xn) with constantsa1, . . . , ak

in a free groupF (roughly speaking “regular” means that the radical ofS coincides with

the normal closure ofS andS is not an equation of one of few very specific types). Suppose
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now that for each solution of the equationS(X)= 1 some other equation

T (x1, . . . , xn, y1, . . . , ym, a1, . . . , ak)= 1

has a solution inF , thenT (X,Y ) = 1 has a solutionY = (y1, . . . , ym) in the coordinate
groupGR(S) of the equationS(X)= 1.

This implies, that locally (in terms of Zariski topology), i.e., in the neighborhood defi
by the equationS(X) = 1, the implicit functionsy1, . . . , ym can be expressed as expli
words in variablesx1, . . . , xn and constants fromF , sayY = P(X). This result allows one
to eliminate a quantifier from the following formula

Φ = ∀X∃Y (S(X)= 1 → T (X,Y )= 1
)
.

Indeed, the sentenceΦ is equivalent inF to the following one:

Ψ = ∀X(S(X)= 1 → T
(
X,P (X)

)= 1
)
.

From model theoretic view-point the theorems claim existence of very simple Sk
functions for particular∀∃-formulas over free groups. While in algebraic geometry s
results would be described as lifting solutions of equations into generic points. We d
definitions and general properties of liftings in Section 6. We also prove Theorem 12
is a weak version of the implicit function theorem for NTQ systems. We call it the par
trization theorem. This weak version of the implicit function theorems forms an impo
part of the solution of Tarski’s problems in [16]. All implicit function theorems will
proved in Section 7.

In Sections 4 and 5 we describe a new version of the Makanin–Razborov proces
system of equations with parameters, describe a solution set of such a system (The
and 7) and introduce a new type of equations over groups, so-calledcut equations(see
Definition 21 and Theorem 8).

We collect some preliminary results and basic notions of algebraic geometry fo
groups in Section 2. In Section 3 we discuss first order formulas over a free grou
reduce an arbitrary sentence to a relatively simple form.

This paper is an extended version of the paper [15]; the basic version of the im
function theorem was announced at the Model Theory Conference at MSRI in 199
[23] and [14]).

2. Preliminaries

2.1. Free monoids and free groups

Let A= {a1, . . . , am} be a set. ByFmon(A) we denote the free monoid generated byA

which is defined as the set of all words (including the empty word 1) over the alphaA

with concatenation as multiplication. For a wordw = b1 . . . bn, wherebi ∈ A, by |w| or

d(w) we denote the lengthn of w.
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To eacha ∈ A we associate a symbola−1. PutA−1= {a−1 | a ∈ A}, and suppose tha
A∩A−1= ∅. We assume thata1= a, (a−1)−1= a andA1=A. DenoteA±1=A∪A−1. If
w = b

ε1
1 . . . b

εn
n ∈ Fmon(A

±1), where(εi ∈ {1,−1}), then we putw−1 = b
−εn
n . . . b

−ε1
1 ; we

see thatw−1 ∈M(A±1) and say thatw−1 is an inverse ofw. Furthermore, we put 1−1= 1.
A word w ∈ Fmon(A

±1) is called reducedif it does not contain subwordsbb−1 for
b ∈ A±1. If w = w1bb−1w2, w ∈ Fmon(A

±1) then we say thatw1w2 is obtained fromw

by an elementary reductionbb−1→ 1. A reduction process forw consists of finitely many
reductions which bringw to a reduced word̄w. This w̄ does not depend on a particul
reduction process and is called thereduced formof w.

Consider a congruence relation onFmon(A
±1), defined the following way: two word

are congruent if a reduction process brings them to the same reduced word. The set
gruence classes with respect to this relation forms a free groupF(A) with basisA. If not
said otherwise, we assume thatF(A) is given as the set of all reduced words inA±1. Mul-
tiplication inF(A) of two wordsu,w is given by the reduced form of their concatenati
i.e.,uv̇ = ūv. A word w ∈ Fmon(A

±1) determines the elementw̄ ∈ F(A), in this event we
sometimes say thatw is an element ofF(A) (even thoughw may not be reduced).

Words u,w ∈ Fmon(A
±1) are graphically equal if they are equal in the monoi

Fmon(A
±1) (for example,a1a2a

−1
2 is not graphically equal toa1).

Let X = {x1, . . . , xn} be a finite set of elements disjoint withA. Let w(X) =
w(x1, . . . , xn) be a word in the alphabet(X ∪ A)±1 and U = (u1(A), . . . , un(A)) be a
tuple of words in the alphabetA±1. By w(U) we denote the word which is obtained fro
w by replacing eachxi by ui . Similarly, if W = (w1(X), . . . ,wm(X)) is anm-tuple of
words in variablesX then byW(U) we denote the tuple(w1(U), . . . ,wm(U)). For any set
S we denote bySn the set of alln-tuples of elements fromS. Every wordw(X) gives rise to
a mappw : (Fmon(A

±1))n→ Fmon(A
±1) defined bypw(U)=w(U) for U ∈ Fmon(A

±1)n.
We callpw the word map defined byw(X). If W(X)= (w1(X), . . . ,wm(X)) is anm-tuple
of words in variablesX then we define a word mapPW : (Fmon(A

±1))n→ Fmon(A
±1)m

by the rulePW(U)=W(U).

2.2. OnG-groups

For the purpose of algebraic geometry over a given fixed groupG, one has to conside
the category ofG-groups, i.e., groups which contain the groupG as a distinguished sub
group. IfH andK areG-groups then a homomorphismφ :H →K is aG-homomorphism
if gφ = g for everyg ∈G, in this event we writeφ :H →G K . In this category morphism
areG-homomorphisms; subgroups areG-subgroups, etc. By HomG(H,K) we denote the
set of all G-homomorphisms fromH into K . It is not hard to see that the free pro
uct G ∗ F(X) is a free object in the category ofG-groups. This group is called a fre
G-group with basisX, and we denote it byG[X]. A G-groupH is termedfinitely gener-
atedG-groupif there exists a finite subsetA⊂H such that the setG∪A generatesH . We
refer to [3] for a general discussion onG-groups.

To deal with cancellation in the groupG[X] we need the following notation. Letu =
u1 . . . un ∈G[X] =G ∗ F(X). We say thatu is reduced(as written) ifui 
= 1, ui andui+1
are in different factors of the free product, and ifui ∈ F(X) then it is reduced in the fre

groupF(X). By red(u) we denote the reduced form ofu. If red(u) = u1 . . . un ∈ G[X],
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then we define|u| = n, so |u| is the syllable length ofu in the free productG[X]. For
reducedu,v ∈G[X], we writeu◦v if the productuv is reduced as written. Ifu= u1 . . . un

is reduced andu1, un are in different factors, then we say thatu is cyclically reduced.
If u= r ◦ s, v = s−1 ◦ t , andrt = r ◦ t then we say that the words cancels out in reduc

ing uv, or, simply,s cancels out inuv. Therefores corresponds to themaximalcancellation
in uv.

2.3. Formulas in the languageLA

Let G be a group generated by a set of generatorsA. The standard first-order langua
of group theory, which we denote byL, consists of a symbol for multiplication·, a symbol
for inversion−1, and a symbol for the identity 1. To deal withG-groups, we have to enlarg
the languageL by all non-trivial elements fromG as constants. In fact, we do not need
add all the elements ofG as constants, it suffices to add only new constants correspo
to the generating setA. By LA we denote the languageL with constants fromA.

A group word in variablesX and constantsA is a word S(X,A) in the alphabe
(X ∪ A)±1. One may consider the wordS(X,A) as a term in the languageLA. Observe
that every term in the languageLA is equivalent modulo the axioms of group theory t
group word in variablesX and constantsA ∪ {1}. An atomic formulain the languageLA

is a formula of the typeS(X,A)= 1, whereS(X,A) is a group word inX andA. With a
slight abuse of language we will consider atomic formulas inLA as equations overG, and
vice versa. Aboolean combinationof atomic formulas in the languageLA is a disjunction
of conjunctions of atomic formulas or their negations. Thus every boolean combinatΦ

of atomic formulas inLA can be written in the formΦ =∨n
i=1 Ψi , where eachΨi has one

of the following forms:

n∧
j=1

(
Sj (X,A)= 1

)
,

n∧
j=1

(
Tj (X,A) 
= 1

)
,

n∧
j=1

(
Sj (X,A)= 1

)
&

m∧
k=1

(
Tk(X,A) 
= 1

)
.

Observe that if the groupG is not trivial, then every formulaΨ , as above, can be writte
in the from

n∧
j=1

(
Sj (X,A)= 1 & Tj (X,A) 
= 1

)
,

where (if necessary) we add into the formula the trivial equality 1= 1, or an inequality of
the typea 
= 1 for a given fixed non-triviala ∈A.

It follows from general results on disjunctive normal forms in propositional logic

every quantifier-free formula in the languageLA is logically equivalent (modulo the ax-
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Φ in LA with variablesZ{z1, . . . , zk} is logically equivalent to a formula of the type

Q1x1Q2x2 . . .QnxnΨ (X,Z,A),

whereQi ∈ {∀,∃}, andΨ (X,Z,A) is a boolean combination of atomic formulas in va
ables fromX ∪Z. Using vector notationsQY =Qy1 . . .Qyn for strings of similar quanti-
fiers we can rewrite such formulas in the form

Φ(Z)=Q1Z1 . . .QkZkΨ (Z1, . . . ,Zk,X).

Introducing fictitious quantifiers, one can always rewrite the formulaΦ in the form

Φ(Z)= ∀X1∃Y1 . . .∀Xk∃YkΨ (X1, Y1, . . . ,Xk,Yk,Z).

If H is a G-group, then the set ThA(H) of all sentences inLA which are valid inH

is called theelementary theoryof H in the languageLA. Two G-groupsH andK are
elementarily equivalentin the languageLA (or G-elementarily equivalent) if ThA(H)=
ThA(K).

Let T be a set of sentences in the languageLA. For a formulaΦ(X) in the languageLA,
we writeT �Φ if Φ is a logical consequence of the theoryT . If K is aG-group, then we
write K |= T if every sentence fromT holds inK (where we interpret constants fromA
by corresponding elements in the subgroupG of K). Notice, that ThA(H) � Φ holds if
and only ifK |= ∀XΦ(X) for everyG-groupK which isG-elementarily equivalent toH .
Two formulasΦ(X) andΨ (X) in the languageLA are said to beequivalent moduloT (we
write Φ ∼T Ψ ) if T � ∀X(Φ(X)↔ Ψ (X)). Sometimes, instead ofΦ ∼ThA(G) Ψ we write
Φ ∼G Ψ and say thatΦ is equivalent toΨ overG.

2.4. Elements of algebraic geometry over groups

Here we introduce some basic notions of algebraic geometry over groups. We
to [3] and [11] for details.

Let G be a group generated by a finite setA, F(X) be a free group with basisX =
{x1, x2, . . . , xn}, G[X] =G∗F(X) be a free product ofG andF(X). If S ⊂G[X] then the
expressionS = 1 is calleda system of equationsoverG. As an element of the free produc
the left side of every equation inS = 1 can be written as a product of some elements f
X∪X−1 (which are calledvariables) and some elements fromA (constants). To emphasize
this we sometimes writeS(X,A)= 1.

A solutionof the systemS(X)= 1 over a groupG is a tuple of elementsg1, . . . , gn ∈G

such that after replacement of eachxi by gi the left-hand side of every equation inS = 1
turns into the trivial element ofG. Equivalently, a solution of the systemS = 1 overG can
be described as aG-homomorphismφ :G[X]→G such thatφ(S)= 1. Denote by ncl(S)

the normal closure ofS in G[X], and byGS the quotient groupG[X]/ncl(S). Then every

solution ofS(X)= 1 in G gives rise to aG-homomorphismGS→G, and vice versa. By
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VG(S) we denote the set of all solutions inG of the systemS = 1, it is called thealgebraic
set defined byS. This algebraic setVG(S) uniquely corresponds to the normal subgrou

R(S)= {T (x) ∈G[X] ∣∣ ∀A ∈Gn
(
S(A)= 1 → T (A)= 1

)}
of the groupG[X]. Notice that ifVG(S) = ∅, thenR(S) = G[X]. The subgroupR(S)

containsS, and it is called theradical ofS. The quotient group

GR(S) =G[X]/R(S)

is thecoordinate groupof the algebraic setV (S). Again, every solution ofS(X)= 1 in G

can be described as aG-homomorphismGR(S)→G.
We recall from [25] that a groupG is called aCSA groupif every maximal abelian sub

groupM of G is malnormal, i.e.,Mg∩M = 1 for anyg ∈G−M. The class of CSA-group
is quite substantial. It includes all abelian groups, all torsion-free hyperbolic groups
all groups acting freely onΛ-trees [2], and many one-relator groups [8].

We define a Zariski topology onGn by taking algebraic sets inGn as a sub-basis fo
the closed sets of this topology. IfG is a non-abelian CSA group, in particular, a no
abelian freely discriminated group, then the union of two algebraic sets is again alg
(see Lemma 4). Therefore the closed sets in the Zariski topology overG are precisely the
algebraic sets.

A G-group H is calledequationally Noetherianif every systemS(X) = 1 with co-
efficients fromG is equivalent overG to a finite subsystemS0 = 1, whereS0 ⊂ S, i.e.,
VG(S) = VG(S0). If G is G-equationally Noetherian, then we say thatG is equationally
Noetherian. It is known that linear groups (in particular, freely discriminated groups
equationally Noetherian (see [3,5,10]). IfG is equationally Noetherian then the Zaris
topology overGn is Noetherianfor everyn, i.e., every proper descending chain of clos
sets inGn is finite. This implies that every algebraic setV in Gn is a finite union of irre-
ducible subsets (calledirreducible componentsof V ), and such a decomposition ofV is
unique. Recall that a closed subsetV is irreducibleif it is not a union of two proper close
(in the induced topology) subsets.

Two algebraic setsVF (S1) andVF (S2) arerationally equivalentif there exists an iso
morphism between their coordinate groups which is identical onF .

2.5. Discrimination and big powers

Let H and K be G-groups. We say that a family ofG-homomorphismsF ⊂
HomG(H,K) separates(discriminates) H into K if for every non-trivial elementh ∈ H

(every finite set of non-trivial elementsH0 ⊂ H ) there existsφ ∈ F such thathφ 
= 1
(hφ 
= 1 for everyh ∈ H0). In this case we say thatH is G-separated(G-discriminated)
by K . Sometimes we do not mentionG and simply say thatH is separated (discrimi
nated) byK . In the event whenK is a free group we say thatH is freely separated(freely
discriminated).

Below we describe a method of discrimination which is called abig powersmethod.

We refer to [25] and [24] for details about BP-groups.
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Let G be a group. We say that a tupleu = (u1, . . . , uk) ∈ Gk has commutationif
[ui, ui+1] = 1 for somei = 1, . . . , k − 1. Otherwise we callu commutation-free.

Definition 1. A groupG satisfies thebig powers condition(BP) if for any commutation-
free tupleu= (u1, . . . , uk) of elements fromG there exists an integern(u) (calleda bound-
ary of separationfor u) such that

u1
α1 . . . u

αk

k 
= 1

for any integersα1, . . . , αk � n(u). Such groups are calledBP-groups.

The following provides a host of examples of BP-groups. Obviously, a subgroup
BP-group is a BP-group; a group discriminated by a BP-group is a BP-group [25];
torsion-free hyperbolic group is a BP-group [26]. From those facts it follows that e
freely discriminated group is a BP-group.

Let G be a non-abelian CSA group andu ∈ G not be a proper power. The followin
HNN-extension

G(u, t)= 〈G, t
∣∣ gt = g

(
g ∈ CG(u)

)〉
is called afree extensionof the centralizerCG(u) by a letter t . It is not hard to see
that for any integerk the mapt → uk can be extended uniquely to aG-homomorphism
ξk :G(u, t)→G.

The result below is the essence of the big powers method of discrimination.

Theorem [25]. Let G be a non-abelian CSA BP-group. IfG(u, t) is a free extension o
the centralizer of the non-proper poweru by t , Then the family ofG-homomorphisms
{ξk | k is an integer} discriminatesG(u,v) into G. More precisely, for everyw ∈G(u, t)

there exists an integerNw such that for everyk � Nw, wξk 
= 1.

If G is a non-abelian CSA BP-group andX is a finite set, then the groupG[X] is
G-embeddable intoG(u, t) for any non-proper poweru ∈G. It follows from the theorem
above thatG[X] is G-discriminated byG.

Unions of chains of extensions of centralizers play an important part in this paper.G

be a non-abelian CSA BP-group and

G=G0 < G1 < · · ·< Gn

be a chain of extensions of centralizersGi+1 =Gi(ui, ti). Then everyn-tuple of integers
p = (p1, . . . , pn) gives rise to aG-homomorphismξp :Gn→ G which is composition
of homomorphismsξpi

:Gi → Gi−1 described above. If a centralizer ofui is extended
several times, we can suppose it is extended on the consecutive steps by lettersti , . . . , ti+j .
Thereforeui+1= ti , . . . , ui+j = ti+j−1.

A setP of n-tuples of integers is calledunboundedif for every integerd there exists a
tuplep = (p1, . . . , pn) ∈ P with pi � d for eachi. The following result is a consequen

of the theorem above.



O. Kharlampovich, A. Myasnikov / Journal of Algebra 290 (2005) 1–203 9

[4]).
ble

ial for

p [3].

ts are

pre-
f groups

resid-
Corollary. LetGn be as above. Then for every unbounded set of tuplesP the set ofG-ho-
momorphismsΞP = {ξp | p ∈ P } G-discriminatesGn into G.

Similar results hold for infinite chains of extensions of centralizers (see [25] and
For example, Lyndon’s freeZ[x]-group FZ[x] can be realized as union of a counta
chain of extensions of centralizers which starts with the free groupF (see [25]), hence
there exists a family ofF -homomorphisms which discriminatesFZ[x] into F .

2.6. Freely discriminated groups

Here we formulate several results on freely discriminated groups which are cruc
our considerations.

It is not hard to see that every freely discriminated group is a torsion-free CSA grou
Notice that every CSA group is commutation transitive [25]. A groupG is calledcom-

mutation transitiveif commutation is transitive on the set of all non-trivial elements ofG,
i.e., if a, b, c ∈ G− {1} and[a, b] = 1, [b, c] = 1, then[a, c] = 1. Clearly, commutation
transitive groups are precisely the groups in which centralizers of non-trivial elemen
commutative. It is easy to see that every commutative transitive groupG which satisfies
the condition[a, ab] = 1→[a, b] = 1 for all a, b ∈G is CSA.

Theorem [28]. Let F be a free non-abelian group. Then a finitely generatedF -groupG

is freelyF -discriminated byF if and only if G is F -universally equivalent toF (i.e., G
andF satisfy precisely the same universal sentences in the languageLA).

Theorem [3,11]. LetF be a free non-abelian group. Then a finitely generatedF -groupG

is the coordinate group of a non-empty irreducible algebraic set overF if and only ifG is
freelyF -discriminated byF .

Theorem [12]. Let F be a non-abelian free group. Then a finitely generatedF -group is
the coordinate groupFR(S) of an irreducible non-empty algebraic setV (S) overF if and
only if G is F -embeddable into the free Lyndon’sZ[t]-groupFZ[t].

This theorem implies that finitely generated freely discriminated groups are finitely
sented, also it allows one to present such groups as fundamental groups of graphs o
of a very particular type (see [12] for details).

2.7. Quadratic equations over freely discriminated groups

In this section we collect some known results about quadratic equations over fully
ually free groups, which will be in use throughout this paper.

Let S ⊂G[X]. Denote by var(S) the set of variables that occur inS.

Definition 2. A setS ⊂G[X] is called quadratic if every variable from var(S) occurs inS
not more then twice. The setS is strictly quadratic if every letter from var(S) occurs inS
exactly twice.
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A systemS = 1 overG is quadratic(strictly quadratic) if the corresponding setS is
quadratic (strictly quadratic).

Definition 3. A standard quadratic equation over a groupG is an equation of the one o
the following forms (belowd, ci are non-trivial elements fromG):

n∏
i=1

[xi, yi] = 1, n > 0, (1)

n∏
i=1

[xi, yi]
m∏

i=1

z−1
i cizid = 1, n,m � 0, m+ n � 1, (2)

n∏
i=1

x2
i = 1, n > 0, (3)

n∏
i=1

x2
i

m∏
i=1

z−1
i cizid = 1, n,m � 0, n+m � 1. (4)

Equations (1), (2) are calledorientableof genusn, Eqs. (3), (4) are callednon-orientable
of genusn.

Lemma 1. Let W be a strictly quadratic word overG. Then there is aG-automorphism
f ∈ AutG(G[X]) such thatWf is a standard quadratic word overG.

Proof. See [7]. �
Definition 4. Strictly quadratic words of the type[x, y], x2, z−1cz, wherec ∈G, are called
atomic quadratic wordsor simplyatoms.

By definition a standard quadratic equationS = 1 overG has the form

r1r2 . . . rkd = 1,

whereri are atoms,d ∈G. This numberk is called theatomic rank of this equation, we
denote it byr(S). In Section 2.4 we defined the notion of the coordinate groupGR(S).

Every solution of the systemS = 1 is a homomorphismφ :GR(S)→G.

Definition 5. Let S = 1 be a standard quadratic equation written in the atomic f
r1r2 . . . rkd = 1 with k � 2. A solutionφ :GR(S)→G of S = 1 is called:

(1) degenerate, ifrφ
i = 1 for somei, and non-degenerate otherwise;

(2) commutative, if[rφ
i , r

φ
i+1] = 1 for all i = 1, . . . , k − 1, and non-commutative othe

wise;
φ φ
(3) in a general position, if[ri , ri+1] 
= 1 for all i = 1, . . . , k− 1.
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Observe that if a standard quadratic equationS(X) = 1 has a degenerate no
commutative solution then it has a non-degenerate non-commutative solution, see [

Theorem 1 [12]. Let G be a freely discriminated group andS = 1 a standard quadratic
equation overG which has a solution inG. In the following cases a standard quadra
equationS = 1 always has a solution in a general position:

(1) S = 1 is of the form(1), n > 2;
(2) S = 1 is of the form(2), n > 0, n+m > 1;
(3) S = 1 is of the form(3), n > 3;
(4) S = 1 is of the form(4), n > 2;
(5) r(S) � 2 andS = 1 has a non-commutative solution.

The following theorem describes the radicalR(S) of a standard quadratic equationS =
1 which has at least one solution in a freely discriminated groupG.

Theorem 2 [12]. Let G be a freely discriminated group and letS = 1 be a standard
quadratic equation overG which has a solution inG. Then:

(1) If S = [x, y]d or S = [x1, y1][x2, y2], thenR(S)= ncl(S);
(2) If S = x2d , thenR(S)= ncl(xb) whereb2= d;
(3) If S = czd , thenR(S)= ncl([zb−1, c]) whered−1= cb;
(4) If S = x2

1x2
2, thenR(S)= ncl([x1, x2]);

(5) If S = x2
1x2

2x2
3, thenR(S)= ncl([x1, x2], [x1, x3], [x2, x3]);

(6) If r(S) � 2 andS = 1 has a non-commutative solution, thenR(S)= ncl(S);
(7) If S = 1 is of the type(4) and all solutions ofS = 1 are commutative, thenR(S) is the

normal closure of the following system:

{
x1 . . . xn = s1 . . . sn, [xk, xl] = 1,

[
a−1
i zi , xk

]= 1, [xk,C] = 1,
[
a−1
i zi ,C

]= 1,[
a−1
i zi , a

−1
j zj

]= 1 (k, l = 1, . . . , n, i, j = 1, . . . ,m)
}
,

wherexk→ sk , zi→ ai is a solution ofS = 1 andC = CG(c
a1
1 , . . . , c

am
m , s1, . . . , sn) is

the corresponding centralizer. The groupGR(S) is an extension of the centralizerC.

Definition 6. A standard quadratic equationS = 1 overF is calledregular if either it is an
equation of the type[x, y] = d (d 
= 1), or the equation[x1, y1][x2, y2] = 1, or r(S) � 2
andS(X)= 1 has a non-commutative solution and it is not an equation of the typec

z1
1 c

z2
2 =

c1c2, x2cz = a2c, x2
1x2

2 = a2
1a2

2.

Put

κ(S)= |X| + ε(S),
whereε(S)= 1 if the coefficientd occurs inS, andε(S)= 0 otherwise.
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Equivalently, a standard quadratic equationS(X)= 1 is regular if κ(S) � 4 and there is
a non-commutative solution ofS(X)= 1 in G, or it is an equation of the type[x, y]d = 1.

Notice, that ifS(X) = 1 has a solution inG, κ(S) � 4, andn > 0 in the orientable
case (n > 2 in the non-orientable case), then the equationS = 1 has a non-commutativ
solution, hence regular.

Corollary 1.

(1) Every consistent orientable quadratic equationS(X)= 1 of positive genus is regula
unless it is the equation[x, y] = 1;

(2) Every consistent non-orientable equation of positive genus is regular, unless it
equation of the typex2cz = a2c, x2

1x2
2 = a2

1a2
2, x2

1x2
2x2

3 = 1, or S(X)= 1 can be trans-
formed to the form[z̄i , z̄j ] = [z̄i , a] = 1, i, j = 1, . . . ,m, by changing variables.

(3) Every standard quadratic equationS(X) = 1 of genus 0 is regular unless either it
an equation of the typecz1

1 = d , c
z1
1 c

z2
2 = c1c2, or S(X)= 1 can be transformed to th

form [z̄i , z̄j ] = [z̄i , a] = 1, i, j = 1, . . . ,m, by changing variables.

2.8. Formulation of the basic implicit function theorem

In this section we formulate the implicit function theorem over free groups in its b
simplest form. We refer to Sections 7.2, 7.4 for the proofs and to Section 7.6 for ge
izations.

Theorem 3. Let S(X) = 1 be a regular standard quadratic equation over a non-abel
free groupF and let T (X,Y ) = 1 be an equation overF , |X| = m, |Y | = n. Suppose
that for any solutionU ∈ VF (S) there exists a tuple of elementsW ∈ Fn such that
T (U,W)= 1. Then there exists a tuple of wordsP = (p1(X), . . . ,pn(X)), with constants
from F , such thatT (U,P (U))= 1 for anyU ∈ VF (S). Moreover, one can fund a tupleP
as above effectively.

From algebraic geometric view-point the implicit function theorem tells one that (in
notations above)T (X,Y )= 1 has a solution at a generic point of the equationS(X)= 1.

3. Formulas over freely discriminated groups

In this section we collect some results (old and new) on how to effectively re
formulas over a non-abelian freely discriminated groupG into more simple or more conve
nient “normal” forms. Some of these results hold for many other groups beyond the c
freely discriminated ones. We do not present the most general formulations here, in
we limit our considerations to a class of groupsT which will just suffice for our purposes

Let us fix a finite set of constantsA and the corresponding group theory languageLA,

let alsoa, b be two fixed elements inA.
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Definition 7. A groupG satisfies Vaught’s conjecture if the following universal sente
holds inG

(V) ∀x∀y∀z(x2y2z2= 1 → [x, y] = 1 & [x, z] = 1 & [y, z] = 1).

Lyndon proved that every free group satisfies the condition (V) (see [17]).
Denote byT the class of all groupsG such that:

(1) G is torsion-free;
(2) G satisfies Vaught’s conjecture;
(3) G is CSA;
(4) G has two distinguished elementsa, b with [a, b] 
= 1.

It is easy to write down axioms for the classT in the languageL{a,b}. Indeed, the
following universal sentences describe the conditions (1)–(4) above:

(TF) xn = 1→ x = 1 (n= 2,3, . . .);
(V) ∀x∀y∀z(x2y2z2= 1 → [x, y] = 1 & [x, z] = 1 & [y, z] = 1);

(CT) ∀x∀y∀z(x 
= 1 & y 
= 1 & z 
= 1 & [x, y] = 1 & [x, z] = 1 → [y, z] = 1);
(WCSA) ∀x∀y([x, xy] = 1 → [x, y] = 1);

(NA) [a, b] 
= 1.

Observe that the condition (WCSA) is a weak form of (CSA) but (WCSA) and (CT
gether provide the CSA condition. Let GROUPS be a set of axioms of group theory. D
by AT the union of axioms (TF), (V), (CT), (WCSA), (NA) and GROUPS. Notice that
axiom (V) is equivalent modulo GROUPS to the following quasi-identity

∀x∀y∀z(x2y2z2= 1 → [x, y] = 1
)
.

It follows that all axioms inAT , with exception of (CT) and (NA), are quasi-identities.

Lemma 2. The classT contains all freely discriminated non-abelian groups.

Proof. We show here that every freely discriminated groupG satisfies (V). Similar ar
guments work for the other conditions. Ifu2v2w2 = 1 for someu,v,w ∈ G and, say,
[u,v] 
= 1, then there exists a homomorphismφ :G→ F from G onto a free groupF such
that [uφ, vφ] 
= 1. This shows that the elementsuφ, vφ,wφ in F give a counterexample t
Vaught’s conjecture. This contradicts to the Lyndon’s result. Hence (V) holds inG. This
proves the lemma. �

Almost all results in this section state that a formulaΦ(X) in LA is equivalent modulo
AT to a formulaΨ (X) in LA. We will use these results in the following particular for
Namely, ifG is a group generated byA andH is aG-group fromT then for any tuple of
elementsU ∈Hn (heren= |X|) the formulaΦ(U) holds inH if and only if Ψ (U) holds

in H .
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3.1. Quantifier-free formulas

In this section by lettersX, Y , Z we denote finite tuples of variables.
The following result is due to A. Malcev [21]. He proved it for free groups, but

argument is valid in a more general context.

Lemma 3. LetG ∈ T . Then the equation

x2ax2a−1= (ybyb−1)2 (5)

has only the trivial solutionx = 1 andy = 1 in G.

Proof. Let G be as above and letx, y be a solution inG of Eq. (5) such thatx 
= 1. Then

(
x2a

)2
a−2= ((yb)2b−2)2. (6)

In view of the condition (V), we deduce from (6) that[x2a, a−1] = 1, hence[x2, a−1] = 1.
By transitivity of commutation[x, a] = 1 (here we use inequalityx 
= 1). Now, we can
rewrite (6) in the form

x2x2= ((yb)2b−2)2,
which implies (according to (V)), that[x2, (yb)2b−2] = 1, and hence (sinceG is torsion-
free)

x2= (yb)2b−2. (7)

Again, it follows from (V) that[y, b] = 1. Henceforth,x2= y2 and, by the argument abov
x = y. We proved that[x, a] = 1 and[x, b] = 1 therefore, by transitivity of commutation
[a, b] = 1, which contradicts to the choice ofa, b. This contradiction shows thatx = 1. In
this event, Eq. (6) transforms into

(
(yb)2b−2)2= 1,

which implies (yb)2b−2 = 1. Now from (V) we deduce that[yb, b] = 1, and hence
[y, b] = 1. It follows thaty2= 1, soy = 1, as desired. �
Corollary 2. LetG ∈ T . Then for any finite system of equationsS1(X)= 1, . . . , Sk(X)= 1
overG one can effectively find a single equationS(X)= 1 overG such that
VG(S1, . . . , Sn)= VG(S).
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Proof. By induction it suffices to prove the result fork = 2. In this case, by the lemm
above, the following equation (after bringing the right side to the left)

S1(X)2aS1(X)2a−1= (S2(X)bS2(X)b−1)2
can be chosen as the equationS(X)= 1. �
Corollary 3. For any finite system of equations

S1(X)= 1, . . . , Sk(X)= 1

in LA, one can effectively find a single equationS(X)= 1 in LA such that

(
k∧

i=1

Si(X)= 1

)
∼AT S(X)= 1.

Remark 1. In the proof of Lemma 3 and Corollaries 2 and 3 we did not use the
dition (WCSA) so the results hold for an arbitrary non-abelian torsion-free commut
transitive group satisfying Vought’s conjecture.

The next lemma shows how to rewrite finite disjunctions of equations into conjunc
of equations. In the case of free groups this result was known for years (in [20] Ma
attributes this to Y. Gurevich). We give here a different proof.

Lemma 4. LetG be a CSA group and leta, b be arbitrary non-commuting elements inG.
Then for any solutionx, y ∈G of the system

[
x, ya

]= 1,
[
x, yb

]= 1,
[
x, yab

]= 1, (8)

eitherx = 1 or y = 1. The converse is also true.

Proof. Supposex, y are non-trivial elements fromG, such that

[
x, ya

]= 1,
[
x, yb

]= 1,
[
x, yab

]= 1.

Then by the transitivity of commutation[yb, yab] = 1 and[ya, yb] = 1. The first relation
implies that[y, ya] = 1, and since a maximal abelian subgroupM of G containingy is
malnormal inG, we have[y, a] = 1. Now from [ya, yb] = 1 it follows that [y, yb] = 1
and, consequently,[y, b] = 1. This implies[a, b] = 1, a contradiction, which complete
the proof. �

Combining Lemmas 4 and 3 yields an algorithm to encode an arbitrary finite disjun

of equations into a single equation.
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finite
Corollary 4. Let G ∈ T . Then for any finite set of equationsS1(X) = 1, . . . , Sk(X) = 1
overG one can effectively find a single equationS(X)= 1 overG such that

VG(S1)∪ · · · ∪ VG(Sk)= VG(S).

Inspection of the proof above shows that the following corollary holds.

Corollary 5. For any finite set of equationsS1(X) = 1, . . . , Sk(X) = 1 in LA, one can
effectively find a single equationS(X)= 1 in LA such that

(
k∨

i=1

Si(X)= 1

)
∼AT S(X)= 1.

Corollary 6. Every positive quantifier-free formulaΦ(X) in LA is equivalent moduloAT
to a single equationS(X)= 1.

The next result shows that one can effectively encode finite conjunctions and
disjunctions ofinequalitiesinto a single inequality moduloAT .

Lemma 5. For any finite set of inequalities

S1(X) 
= 1, . . . , Sk(X) 
= 1

in LA, one can effectively find an inequalityR(X) 
= 1 and an inequalityT (X) 
= 1 in LA

such that (
k∧

i=1

Si(X) 
= 1

)
∼AT R(X) 
= 1

and (
k∨

i=1

Si(X) 
= 1

)
∼AT T (X) 
= 1.

Proof. By Corollary 5 there exists an equationR(X)= 1 such that

k∨
i=1

(
Si(X)= 1

) ∼AT R(X)= 1.

Hence(
k∧

Si(X) 
= 1

)
∼A ¬

(
k∨

Si(X)= 1

)
∼A ¬(R(X)= 1

) ∼A R(X) 
= 1.
i=1
T

i=1
T T
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This proves the first part of the result. Similarly, by Corollary 3 there exists an equ
T (X)= 1 such that

(
k∧

i=1

Si(X)= 1

)
∼AT T (X)= 1.

Hence(
k∨

i=1

Si(X) 
= 1

)
∼AT ¬

(
k∧

i=1

Si(X)= 1

)
∼AT ¬

(
T (X)= 1

) ∼AT T (X) 
= 1.

This completes the proof.�
Corollary 7. For every quantifier-free formulaΦ(X) in the languageLA, one can effec
tively find a formula

Ψ (X)=
n∨

i=1

(
Si(X)= 1 & Ti(X) 
= 1

)

in LA which is equivalent toΦ(X) modulo AT . In particular, if G ∈ T , then every
quantifier-free formulaΦ(X) in LG is equivalent overG to a formulaΨ (X) as above.

3.2. Universal formulas overF

In this section we discuss canonical forms of universal formulas in the languagLA

modulo the theoryAT of the classT of all torsion-free non-abelian CSA groups satisfyi
Vaught’s conjecture. We show that every universal formula inLA is equivalent moduloAT
to a universal formula in canonical radical form. This implies that ifG ∈ T is generated
by A, then the universal theory ofG in the languageLA consists of the axioms describin
the diagram ofG (multiplication table forG with all the equalities and inequalities betwe
group words inA), the set of axiomsAT , and a set of axiomsAR which describes the
radicals of finite systems overG.

Also, we describe an effective quantifier elimination for universal positive formula
LA modulo ThA(G), whereG ∈ T andG is a BP-group (in particular, a non-abelian free
discriminated group). Notice, that in Section 4.4 in the case whenG is a free group, we
describe an effective quantifier elimination procedure (due to Merzljakov and Mak
for arbitrary positive sentences modulo ThA(G).

Let G ∈ T andA be a generating set forG.
We say that a universal formula inLA is in canonical radical form(is aradical formula)

if it has the following form

ΦS,T (X)= ∀Y (S(X,Y )= 1 → T (Y )= 1
)

(9)
for someS ∈G[X ∪ Y ], T ∈G[Y ].
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For an arbitrary finite systemS(X) = 1 with coefficients fromA denote byS̃(X) = 1
an equation which is equivalent overG to the systemS(X) = 1 (suchS̃(X) exists by
Corollary 3). Then for the radicalR(S) of the systemS = 1 we have

R(S)= {T ∈G[X] ∣∣G |=Φ
S̃,T

}
.

It follows that the set of radical sentences

AS = {ΦS̃,T
|G |=Φ

S̃,T
}

describes precisely the radicalR(S) of the systemS = 1 overG, hence the name.

Lemma 6. Every universal formula inLA is equivalent moduloAT to a radical formula.

Proof. By Corollary 7 every boolean combination of atomic formulas in the languageLA

is equivalent moduloAT to a formula of the type

n∨
i=1

(Si = 1 & Ti 
= 1).

This implies that every existential formula inLA is equivalent to a formula in the form

∃Y
(

n∨
i=1

(
Si(X,Y )= 1 & Ti(X,Y ) 
= 1

))
.

This formula is equivalent moduloAT to the formula

∃z1 . . .∃zn∃Y
((

n∧
i=1

zi 
= 1

)
&

(
n∨

i=1

(
Si(X,Y )= 1 & Ti(X,Y )= zi

)))
.

By Corollaries 5 and 3 one can effectively findS ∈ G[X,Y,Z] and T ∈ G[Z] (where
Z = (z1, . . . , zn)) such that

n∨
i=1

(
Si(X,Y )= 1 & Ti(X,Y )= zi

) ∼AT S(X,Y,Z)= 1

and

n∧
i=1

(zi 
= 1) ∼AT T (Z) 
= 1.

It follows that every existential formula inLA is equivalent moduloAT to a formula of the
type ( )
∃Z∃Y S(X,Y,Z)= 1 & T (Z) 
= 1 .
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Hence every universal formula inLA is equivalent moduloAT to a formula in the form

∀Z∀Y (S(X,Y,Z) 
= 1 ∨ T (Z)= 1
)
,

which is equivalent to the radical formula

∀Z∀Y (S(X,Y,Z)= 1 → T (Z)= 1
)
.

This proves the lemma.�
Now we consider universal positive formulas.

Lemma 7. LetG be a BP-group fromT . Then

G |= ∀X(U(X)= 1
) ⇔ G[X] |=U(X)= 1,

i.e., only the trivial equation has the whole setGn as its solution set.

Proof. The groupG[X] is discriminated byG [3]. Therefore, if the wordU(X) is a
non-trivial element ofG[X], then there exists aG-homomorphismφ : G[X] → G such
thatUφ 
= 1. But thenU(Xφ) 
= 1 in G—contradiction with conditions of the lemma. S
U(X)= 1 in G[X]. �
Remark 2. The proof above holds for every non-abelian groupG for which G[X] is dis-
criminated byG.

The next result shows how to eliminate quantifiers from positive universal formulas
non-abelian freely discriminated groups.

Lemma 8. LetG be a BP-group fromT . For a given wordU(X,Y ) ∈G[X ∪ Y ], one can
effectively find a wordW(Y) ∈G[Y ] such that

∀X(U(X,Y )= 1
) ∼G W(Y)= 1. (10)

Proof. By Lemma 7, for any tuple of constantsC fromG, the following equivalence holds

G |= ∀X(U(X,C)= 1
) ⇔ G[X] |=U(X,C)= 1.

Now it suffices to prove that for a givenU(X,Y ) ∈ G[X ∪ Y ] one can effectively find a
wordW(Y) ∈G[Y ] such that for any tuple of constantsC overF the following equivalence
holds

G[X] |=U(X,C)= 1 ⇔ G |=W(C)= 1.

We do this by induction on the syllable length ofU(X,Y ) which comes from the fre

productG[X∪Y ] =G[Y ]∗F(X) (notice thatF(X) does not contain constants fromG, but
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G[Y ] does). IfU(X,Y ) is of the syllable length 1, then eitherU(X,Y )=U(X) ∈ F(X) or
U(X,Y )=U(Y ) ∈G[Y ]. In the first eventF |=U(X)= 1 means exactly that the reduc
form of U(X) is trivial, so we can takeW(Y) trivial also. In the eventU(X,Y ) = U(Y )

we can takeW(Y)=U(Y ).
Suppose now thatU(X,Y ) ∈G[Y ] ∗ F(X) and it has the following reduced form:

U(X,Y )= g1(Y )v1(X)g2(Y )v2(X) . . . vm(X)gm+1(Y )

wherevi ’s are reduced non-trivial words inF(X) andgi(Y )’s are reduced words inG[Y ]
which are all non-trivial except, possibly,g1(Y ) andgm+1(Y ).

If for a tuple of constantsC overG we haveG[X] |= U(X,C)= 1 then at least one o
the elementsg2(C), . . . , gm(C) must be trivial inG. This observation leads to the followin
construction. For eachi = 2, . . . ,m delete the subwordgi(Y ) from U(X,Y ) and reduce
the new word to the reduced form in the free productF(X) ∗G[Y ]. Denote the resulting
word by Ui(X,Y ). Notice that the syllable length ofUi(X,Y ) is less then the length o
U(X,Y ). It follows from the argument above that for any tuple of constantsC the following
equivalence holds:

G[X] |=U(X,C)= 1 ⇔ G[X] |=
m∨

i=2

(
gi(C)= 1 & Ui(X,C)= 1

)
.

By induction one can effectively find wordsW2(Y ), . . . ,Wm(Y ) ∈G[Y ] such that for any
tuple of constantsC we have

G[X] |=Ui(X,C)= 1 ⇔ G |=Wi(C)= 1,

for eachi = 2, . . . ,m. Combining the equivalences above we see that

G[X] |=U(X,C)= 1 ⇔ G |=
m∨

i=2

(
gi(C)= 1 & Wi(C)= 1

)
.

By Corollaries 3 and 5 from the previous section we can effectively rewrite the disjun

m∨
i=2

(
gi(Y )= 1 & Wi(Y )= 1

)

as a single equationW(Y)= 1. That finishes the proof.�
3.3. Positive and general formulas

In this section we describe normal forms of general formulas and positive formula
show that every positive formula is equivalent moduloAT to a formula which consists o
an equation and a string of quantifiers in front of it; and for an arbitrary formulaΦ either
Φ or ¬Φ is equivalent moduloAT to a formula in a general radical form (it is a radic

formula with a string of quantifiers in front of it).



O. Kharlampovich, A. Myasnikov / Journal of Algebra 290 (2005) 1–203 21

d a

ions

la

m

Lemma 9. Every positive formulaΦ(X) in LA is equivalent moduloAT to a formula of
the type

Q1X1 . . .QkXk

(
S(X,X1, . . . ,Xk)= 1

)
,

whereQi ∈ {∃,∀} (i = 1, . . . , k).

Proof. The result follows immediately from Corollaries 3 and 5.�
Lemma 10. LetΦ(X) be a formula inLA of the form

Φ(X)=Q1X1 . . .QkXk∀YΦ0(X,X1, . . . ,Xk,Y ),

whereQi ∈ {∃,∀} and Φ0 is a quantifier-free formula. Then one can effectively fin
formulaΨ (X) of the form

Ψ (X)=Q1X1 . . .QkXk∀Y∀Z
(
S(X,X1, . . . ,Xk,Y,Z)= 1 → T (Z)= 1

)
such thatΦ(X) is equivalent toΨ (X) moduloAT .

Proof. Let

Φ(X)=Q1X1 . . .QkXk∀YΦ0(X,X1, . . . ,Xk,Y ),

whereQi ∈ {∃,∀} andΦ0 is a quantifier-free formula. By Lemma 6 there exists equat
S(X,X1, . . . ,Xk,Y,Z)= 1 andT (Z)= 1 such that

∀YΦ0(X,X1, . . . ,X,Y ) ∼AT ∀Y∀Z
(
S(X1, . . .Xk,Y,Z)= 1 → T (Z)= 1

)
.

It follows that

Φ(X)=Q1X1 . . .QkXk∀YΦ0(X,X1, . . . ,Xk,Y )

∼AT Q1X1 . . .QkXk∀Y∀Z
(
S(X, . . . ,Xk,Y,Z)= 1 → T (Z)= 1

)
,

as desired. �
Lemma 11. For any formulaΦ(X) in the languageLA, one can effectively find a formu
Ψ (X) in the languageLA in the form

Ψ (X)= ∃X1∀Y1 . . .∃Xk∀Yk∀Z
(
S(X,X1, Y1, . . . ,Xk,Yk,Z)= 1 → T (Z)= 1

)
,

such thatΦ(X) or its negation¬Φ(X) (and we can check effectively which one of the)

is equivalent toΨ (X) moduloAT .
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Proof. For any formulaΦ(X) in the languageLA one can effectively find a disjunctiv
normal formΦ1(X) of Φ(X), as well as a disjunctive normal formΦ2 of the negation
¬Φ(X) of Φ(X) (see, for example, [6]). We can assume that either inΦ1(X) or in Φ2(X)

the quantifier prefix ends with a universal quantifier. Moreover, adding (if necessa
existential quantifier∃v in front of the formula (wherev does not occur in the formula) w
may also assume that the formula begins with an existential quantifier. Now by Lem
one can effectively find a formulaΨ with the required conditions.�
4. Generalized equations and positive theory of free groups

Makanin [19] introduced the concept of a generalized equation constructed for a
system of equations in a free groupF = F(A). Geometrically a generalized equation co
sists of three kinds of objects: bases, boundaries and items. Roughly it is a long in
with marked division points. The marked division points are the boundaries. Subint
between division points are items (we assign a variable to each item). Line segments
certain subintervals, beginning at some boundary and ending at some other bound
bases. Each base either corresponds to a letter fromA or has a double.

This concept becomes crucial to our subsequent work and is difficult to under
This is one of the main tools used to describe solution sets of systems of equatio
subsequent papers we will use it also to obtain effectively different splittings of gr
Before we give a formal definition we will try to motivate it with a simple example.

Suppose we have the simple equationxyz= 1 in a free group. Suppose that we hav
solution to this equation denoted byxφ , yφ , zφ where isφ is a given homomorphism int
a free groupF(A). Sincexφ , yφ , zφ are reduced words in the generatorsA there must be
complete cancellation. If we take a concatenation of the geodesic subpaths corresp
to xφ , yφ and zφ we obtain a path in the Cayley graph corresponding to this com
cancellation. This is called a cancellation tree (see Fig. 1). In the simplest situatiox =
λ1 ◦ λ2, y = λ−1

2 ◦ λ3 and z = λ−1
3 ◦ λ−1

1 . The generalized equation would then be
following interval.

The boundaries would be the division points, the bases are theλ’s and the items in this
simple case are also theλ’s. In a more complicated equation where the variablesX, Y , Z

appear more than one time this basic interval would be extended. Since the solution

Fig. 1. From the cancellation tree for the equationxyz= 1 to the generalized equation (x = λ1◦λ2, y = λ−1
2 ◦ λ3,
z= λ−1
3 ◦ λ−1

1 ).
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equation in a free group must involve complete cancellation this drawing of the inter
essentially the way one would solve such an equation. Our picture depended on on
solutionφ. However for any equation there are only finitely many such cancellation
and hence only finitely many generalized equations.

4.1. Generalized equations

Let A = {a1, . . . , am} be a set of constants andX = {x1, . . . , xn} be a set of variables
PutG= F(A) andG[X] =G ∗ F(X).

Definition 8. A combinatorial generalized equationΩ (with constants fromA±1) consists
of the following objects.

(1) A finite set ofbases BS= BS(Ω). Every base is either a constant base or a vari
base. Each constant base is associated with exactly one letter fromA±1. The set of
variable basesM consists of 2n elementsM = {µ1, . . . ,µ2n}. The setM comes
equipped with two functions: a functionε :M→{1,−1} and an involution∆ :M→
M (i.e.,∆ is a bijection such that∆2 is an identity onM). Basesµ and∆(µ) (or µ̄)
are calleddual bases. We denote variable bases byµ,λ, . . . .

(2) A set ofboundaries BD= BD(Ω). BD is a finite initial segment of the set of positiv
integersBD= {1,2, . . . , ρ + 1}. We use lettersi, j, . . . for boundaries.

(3) Two functionsα : BS→ BD andβ : BS→ BD. We callα(µ) andβ(µ) the initial and
terminal boundaries of the baseµ (or endpoints ofµ). These functions satisfy th
following conditions:α(b) < β(b) for every baseb ∈ BS; if b is a constant base the
β(b)= α(b)+ 1.

(4) A finite set ofboundary connections BC= BC(Ω). A boundary connection is a tripl
(i,µ, j) where i, j ∈ BD, µ ∈M such thatα(µ) < i < β(µ) and α(∆(µ)) < j <

β(∆(µ)). We will assume for simplicity, that if(i,µ, j) ∈ BC then(j,∆(µ), i) ∈ BC.
This allows one to identify connections(i,µ, j) and(j,∆(µ), i).

For a combinatorial generalized equationΩ , one can canonically associate a syst
of equations invariablesh1, . . . , hρ overF(A) (variableshi are sometimes calleditems).
This system is called ageneralized equation, and (slightly abusing the language) we den
it by the same symbolΩ . The generalized equationΩ consists of the following three type
of equations.

(1) Each pair of dual variable bases(λ,∆(λ)) provides an equation

[hα(λ)hα(λ)+1 . . . hβ(λ)−1]ε(λ) = [hα(∆(λ))hα(∆(λ))+1 . . . hβ(∆(λ))−1]ε(∆(λ)).

These equations are calledbasic equations.
(2) For each constant baseb we write down acoefficient equation

hα(b) = a,
wherea ∈A±1 is the constant associated withb.
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Fig. 2. A cancellation tree and the generalized equation corresponding to this tree for the equation[x, y][b, a] = 1.

(3) Every boundary connection(p,λ, q) gives rise to aboundary equation

[hα(λ)hα(λ)+1 . . . hp−1] = [hα(∆(λ))hα(∆(λ))+1 . . . hq−1],
if ε(λ)= ε(∆(λ)) and

[hα(λ)hα(λ)+1 . . . hp−1] = [hqhq+1 . . . hβ(∆(λ))−1]−1,

if ε(λ)=−ε(∆(λ)).

Remark 3. We assume that every generalized equation comes associated with a co
torial one.

Example. Consider as an example the Malcev equation[x, y][b, a] = 1, wherea, b ∈ A.

Consider the following solution of this equation:

xφ = ((bn1a
)n2b

)n3bn1a, yφ = (bn1a
)n2b.

Figure 2 shows the cancellation tree and the generalized equation for this solution
generalized equation has ten variablesh1, . . . , h10 and eleven boundaries. The system
basic equations for this generalized equation is the following

h1= h7, h2= h8, h5= h6,

h1h2h3h4= h6h7, h5= h8h9h10.

The system of coefficient equations is

h3= b, h4= a, h9= a, h10= b.

Definition 9. Let Ω(h)= {L1(h)= R1(h), . . . ,Ls(h)= Rs(h)} be a generalized equatio
in variablesh= (h1, . . . , hρ) with constants fromA±1. A sequence of reduced non-emp

wordsU = (U1(A), . . . ,Uρ(A)) in the alphabetA±1 is asolutionof Ω if:
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(1) all wordsLi(U),Ri(U) are reduced as written;
(2) Li(U)=Ri(U), i = 1, . . . , s.

The notation(Ω,U) means thatU is a solution of the generalized equationΩ .

Remark 4. Notice that a solutionU of a generalized equationΩ can be viewed as a solu
tion of Ω in the free monoidFmon(A

±1) (i.e., the equalitiesLi(U)=Ri(U) are graphical)
which satisfies an additional conditionU ∈ F(A) � Fmon(A

±1).

Obviously, each solutionU of Ω gives rise to a solution ofΩ in the free groupF(A).
The converse does not hold in general, i.e., it might happen thatU is a solution ofΩ
in F(A) but not inFmon(A

±1), i.e., all equalitiesLi(U) = Ri(U) hold only after a free
reduction but not graphically. We introduce the following notation which will allow u
distinguish in which structure (Fmon(A

±1) or F(A)) we are looking for solutions forΩ .
If

S = {L1(h)=R1(h), . . . ,Ls(h)=Rs(h)
}

is an arbitrary system of equations with constants fromA±1, then byS∗ we denote the
system of equations

S∗ = {L1(h)R1(h)−1= 1, . . . ,Ls(h)Rs(h)−1= 1
}

over the free groupF(A).

Definition 10. A generalized equationΩ is called formally consistentif it satisfies the
following conditions.

(1) If ε(µ) = −ε(∆(µ)), then the basesµ and∆(µ) do not intersect, i.e., none of th
itemshα(µ), hβ(µ)−1 is contained in∆(µ).

(2) If two boundary equations have respective parameters(p,λ, q) and (p1, λ, q1) with
p � p1, then q � q1 in the case whenε(λ)ε(∆(λ)) = 1, and q � q1 in the case
ε(λ)ε(∆(λ))=−1, in particular, ifp = p1 thenq = q1.

(3) Letµ be a base such thatα(µ)= α(∆(µ)) (in this case we say that basesµ and∆(µ)

form a matched pair of dual bases). If(p,µ,q) is a boundary connection related toµ

thenp = q.

(4) A variable cannot occur in two distinct coefficient equations, i.e., any two con
bases with the same left endpoint are labelled by the same letter fromA±1.

(5) If hi is a variable from some coefficient equation, and if(i,µ, q1), (i + 1,µ, q2) are
boundary connections, then|q1− q2| = 1.

Lemma 12.

(1) If a generalized equationΩ has a solution thenΩ is formally consistent.
(2) There is an algorithm which for every generalized equation checks whether it i
mally consistent or not.
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The proof is easy and we omit it.

Remark 5. In the sequel we consider only formally consistent generalized equations

It is convenient to visualize a generalized equationΩ as follows.

1 2 3 ρ − 1 ρ

λ
∆(λ)

µ
∆(µ)

4.2. Reduction to generalized equations

In this section, following Makanin [19], we show how for a given finite system of eq
tionsS(X,A)= 1 over a free groupF(A) one can canonically associate a finite collect
of generalized equationsGE(S) with constants fromA±1, which to some extent describ
all solutions of the systemS(X,A)= 1.

Let S(X,A) = 1 be a finite system of equationsS1 = 1, . . . , Sm = 1 over a free group
F(A). We writeS(X,A)= 1 in the form

r11r12 . . . r1l1 = 1,

r21r22 . . . r2l2 = 1,

. . .

rm1rm2 . . . rmlm = 1, (11)

whererij are letters in the alphabetX±1 ∪A±1.

A partition tableT of the system above is a set of reduced words

T = {Vij (z1, . . . , zp)
}

(1� i � m, 1� j � li )

from a free groupF [Z] = F(A∪Z), whereZ = {z1, . . . , zp}, which satisfies the following
conditions:

(1) the equalityVi1Vi2 . . . Vili = 1, 1� i � m, holds inF [Z];
(2) |Vij |� li − 1;
(3) if rij = a ∈A±1, thenVij = a.

Since|Vij |� li − 1 then at most|S| =∑m
i=1(li − 1)li different letterszi can occur in a
partition table of the equationS(X,A)= 1. Therefore we will always assume thatp � |S|.
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Each partition table encodes a particular type of cancellation that happens whe
substitutes a particular solutionW(A) ∈ F(A) into S(X,A) = 1 and then freely reduce
the words inS(W(A),A) into the empty word.

Lemma 13. LetS(X,A)= 1 be a finite system of equations overF(A). Then:

(1) the set PT(S) of all partition tables ofS(X,A) = 1 is finite, and its cardinality is
bounded by a number which depends only on|S(X,A)|;

(2) one can effectively enumerate the set PT(S).

Proof. Since the wordsVij have bounded length, one can effectively enumerate th
nite set of all collections of words{Vij } in F [Z] which satisfy the conditions (2), (3
above. Now for each such collection{Vij }, one can effectively check whether the equ
tiesVi1Vi2 . . . Vili = 1, 1� i � m, hold in the free groupF [Z] or not. This allows one to
list effectively all partition tables forS(X,A)= 1. �

To each partition tableT = {Vij } one can assign a generalized equationΩT in the
following way (below we use the notation

.= for graphical equality). Consider the followin
wordV in M(A±1 ∪Z±1):

V
.= V11V12 . . . V1l1 . . . Vm1Vm2 . . . Vmlm = y1 . . . yρ,

whereyi ∈ A±1 ∪ Z±1 andρ = l(V ) is the length ofV . Then the generalized equatio
ΩT =ΩT (h) hasρ + 1 boundaries andρ variablesh1, . . . , hρ which are denoted byh=
(h1, . . . , hρ).

Now we define bases ofΩT and the functionsα, β, ε.
Let z ∈Z. For any two distinct occurrences ofz in V as

yi = zεi , yj = zεj
(
εi, εj ∈ {1,−1})

we introduce a pair of dual variable basesµz,i ,µz,j such that∆(µz,i)= µz,j (say, ifi < j ).
Put

α(µz,i)= i, β(µz,i)= i + 1, ε(µz,i)= εi .

The basic equation that corresponds to this pair of dual bases ish
εi

i = h
εj

j .

Let x ∈X. For any two distinct occurrences ofx in S(X,A)= 1 as

ri,j = xεij , rs,t = xεst
(
εij , εst ∈ {1,−1})

we introduce a pair of dual basesµx,i,j andµx,s,t such that∆(µx,i,j ) = µx,s,t (say, if
(i, j) < (s, t) in the left lexicographic order). Now letVij occurs in the wordV as a sub-
word
Vij = yc . . . yd .
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α(µx,i,j )= c, β(µx,i,j )= d + 1, ε(µx,i,j )= εij .

The basic equation which corresponds to these dual bases can be written in the form

[hα(µx,i,j ) . . . hβ(µx,i,j )−1]εij = [hα(µx,s,t ) . . . hβ(µx,s,t )−1]εst .

Let rij = a ∈A±1. In this case we introduce a constant baseµij with the labela. If Vij

occurs inV asVij = yc, then we put

α(µij )= c, β(µij )= c+ 1.

The corresponding coefficient equation is written ashc = a.
The list of boundary connections here (and hence the boundary equations) is

This defines the generalized equationΩT . Put

GE(S)= {ΩT

∣∣ T is a partition table forS(X,A)= 1
}
.

ThenGE(S) is a finite collection of generalized equations which can be effectively
structed for a givenS(X,A)= 1.

For a generalized equationΩ we can also consider the same system of equations
free group. We denote this system byΩ∗. By FR(Ω) we denote the coordinate group ofΩ∗.
Now we explain relations between the coordinate groups ofS(X,A)= 1 andΩ∗T .

For a letterx in X we choose an arbitrary occurrence ofx in S(X,A)= 1 as

rij = xεij .

Let µ= µx,i,j be the base that corresponds to this occurrence ofx. ThenVij occurs inV

as the subword

Vij = yα(µ) . . . yβ(µ)−1.

Define a wordPx(h) ∈ F [h] (whereh= {h1, . . . , hρ}) as

Px(h,A)= hα(µ) . . . h
εij

β(µ)−1,

and put

P(h)= (Px1, . . . ,Pxn).

The tuple of wordsP(h) depends on a choice of occurrences of letters fromX in V . It
follows from the construction above that the mapX→ F [h] defined byx→ Px(h,A)

gives rise to anF -homomorphism
π :FR(S)→ FR(ΩT ).
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Observe that the imageπ(x) in FR(ΩT ) does not depend on a particular choice of
occurrence ofx in S(X,A) (the basic equations ofΩT make these images equal). Hen
π depends only onΩT .

Now we relate solutions ofS(X,A) = 1 with solutions of generalized equations fro
GE(S). Let W(A) be a solution ofS(X,A)= 1 in F(A). If in the system (11) we make th
substitutionσ :X→W(A), then

(ri1ri2 . . . rili )
σ = rσ

i1r
σ
i2 . . . rσ

ili
= 1

in F(A) for everyi = 1, . . . ,m. Hence every productRi = rσ
i1r

σ
i2 . . . rσ

ili
can be reduced t

the empty word by a sequence of free reductions. Let us fix a particular reduction p
for eachRi . Denote bỹz1, . . . , z̃p all the (maximal) non-trivial subwords ofrσ

ij that cancel
out in someRi (i = 1, . . . ,m) during the chosen reduction process. Since every worrσ

ij

in this process cancels out completely, that implies that

rσ
ij = Vij (z̃1, . . . , z̃p)

for some reduced wordsVij (Z) in variablesZ = {z1, . . . , zp}. Moreover, the equality
above is graphical. Observe also that ifrij = a ∈ A±1 thenrσ

ij = a and we haveVij = a.
Since every wordrσ

ij in Ri has at most one cancellation with any other wordrσ
ik and does

not have cancellation with itself, we havel(Vij ) � li −1. This shows that the setT = {Vij }
is a partition table forS(X,A)= 1. Obviously,

U(A)= (z̃1, . . . , z̃p)

is the solution of the generalized equationΩT , which is induced byW(A). From the con-
struction of the mapP(H) we deduce thatW(A)= P(U(A)).

The reverse is also true: ifU(A) is an arbitrary solution of the generalized equationΩT ,
thenP(U(A)) is a solution ofS(X,A)= 1.

We summarize the discussion above in the following lemma, which is essentially d
Makanin [19].

Lemma 14. For a given system of equationsS(X,A) = 1 over a free groupF = F(A),
one can effectively construct a finite set

GE(S)= {ΩT

∣∣ T is a partition table forS(X,A)= 1
}

of generalized equations such that:

(1) if the setGE(S) is empty, thenS(X,A)= 1 has no solutions inF(A);
(2) for each Ω(H) ∈ GE(S) and for eachx ∈ X one can effectively find a wor

Px(H,A) ∈ F [H ] of length at most|H | such that the mapx :→Px(H,A) (x ∈ X)

gives rise to anF -homomorphismπΩ :FR(S)→ FR(Ω);
(3) for any solutionW(A) ∈ F(A)n of the systemS(X,A) = 1 there existsΩ(H) ∈

GE(S) and a solutionU(A) of Ω(H) such thatW(A) = P(U(A)), whereP(H) =

(Px1, . . . ,Pxn), and this equality is graphical;
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(4) for anyF -group F̃ , if a generalized equationΩ(H) ∈ GE(S) has a solutionŨ in F̃ ,
thenP(Ũ) is a solution ofS(X,A)= 1 in F̃ .

Corollary 8. In the notations of Lemma14 for any solutionW(A) ∈ F(A)n of the system
S(X,A) = 1 there existsΩ(H) ∈ GE(S) and a solutionU(A) of Ω(H) such that the
following diagram commutes.

FR(S)
π

πW

FR(Ω)

πU

F

4.3. Generalized equations with parameters

In this section, following [27] and [13], we consider generalized equations withpara-
meters. This kind of equations appear naturally in Makanin’s type rewriting processe
provide a convenient tool to organize induction properly.

Let Ω be a generalized equation. An itemhi belongsto a baseµ (and, in this event
µ containshi ) if α(µ) � i � β(µ)− 1. An item hi is constantif it belongs to a constan
base,hi is free if it does not belong to any base. Byγ (hi)= γi we denote the number o
bases which containhi . We callγi thedegreeof hi .

A boundaryi crosses(or intersects) the baseµ if α(µ) < i < β(µ). A boundaryi

touchesthe baseµ (or i is an endpoint ofµ) if i = α(µ) or i = β(µ). A boundary is said to
beopenif it crosses at least one base, otherwise it is calledclosed. We say that a boundar
i is tied (or bound) by a baseµ (or µ-tied) if there exists a boundary connection(p,µ,q)

such thati = p or i = q. A boundary isfree if it does not touch any base and it is not ti
by a boundary connection.

A set of consecutive items[i, j ] = {hi, . . . , hi+j−1} is called asection. A section is said
to beclosedif the boundariesi andi + j are closed and all the boundaries between th
are open. A baseµ is contained in a baseλ if α(λ) � α(µ) < β(µ) � β(λ). If µ is a
base then byσ(µ) we denote the section[α(µ),β(µ)] and byh(µ) we denote the produc
of itemshα(µ) . . . hβ(µ)−1. In general for a section[i, j ] by h[i, j ] we denote the produc
hi . . . hj−1.

Definition 11. Let Ω be a generalized equation. If the setΣ =ΣΩ of all closed sections
of Ω is partitioned into a disjoint union of subsets

ΣΩ = V Σ ∪ PΣ ∪CΣ, (12)

thenΩ is called ageneralized equation with parametersor aparametricgeneralized equa
tion. Sections fromV Σ,PΣ , andCΣ are called correspondingly,variable, parametric,
andconstantsections. To organize the branching process properly, we usually divide
able sections into two disjoint parts:
V Σ =AΣ ∪NAΣ. (13)
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Sections fromAΣ are calledactive, and sections fromNAΣ arenon-active. In the case
when partition (13) is not specified we assume thatAΣ = V Σ . Thus, in general, we hav
a partition

ΣΩ =AΣ ∪NAΣ ∪ PΣ ∪CΣ. (14)

If σ ∈Σ , then every base or item fromσ is called active, non-active, parametric, or co
stant, with respect to the type ofσ .

We will see later that every parametric generalized equation can be written in a p
lar standardform.

Definition 12. We say that a parametric generalized equationΩ is in a standard formif
the following conditions hold:

(1) all non-active sections fromNAΣΩ are located to the right of all active sections fro
AΣ , all parametric sections fromPΣΩ are located to the right of all non-active se
tions, and all constant sections fromCΣ are located to the right of all parametr
sections; namely, there are numbers 1� ρA � ρNA � ρP � ρC � ρ = ρΩ such that
[1, ρA + 1], [ρA + 1, ρNA+ 1], [ρNA+ 1, ρP + 1], and[ρP + 1, ρΩ + 1] are, corre-
spondingly, unions of all active, all non-active, all parametric, and all constant sec

(2) for every lettera ∈A±1 there is at most one constant base inΩ labelled bya, and all
such bases are located in theCΣ;

(3) every free variable (item)hi of Ω is located inCΣ .

Now we describe a typical method for constructing generalized equations with pa
ters starting with a system of ordinary group equations with constants fromA.

Parametric generalized equations corresponding to group equations
Let

S(X,Y1, Y2, . . . , Yk,A)= 1 (15)

be a finite system of equations with constants fromA±1 and with the set of variable
partitioned into a disjoint union

X ∪ Y1 ∪ · · · ∪ Yk (16)

Denote byGE(S) the set of generalized equations corresponding toS = 1 from Lemma 14.
PutY = Y1∪ · · · ∪ Yk . Let Ω ∈ GE(S). Recall that every baseµ occurs inΩ either related
to some occurrence of a variable fromX ∪ Y in the systemS(X,Y,A) = 1, or related to
an occurrence of a letterz ∈ Z in the wordV (see Lemma 13), or is a constant base
µ corresponds to a variablex ∈ X (y ∈ Yi ) then we say thatµ is anX-base(Yi -base).
Sometimes we refer toYi -bases as toY -bases. For a baseµ of Ω denote byσµ the section

σµ = [α(µ),β(µ)]. Observe that the sectionσµ is closed inΩ for everyX-base, orY -base.
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If µ is anX-base (Y -base orYi -base), then the sectionσµ is called anX-section(Y -sec-
tion or Yi -section). If µ is a constant base and the sectionσµ is closed then we callσµ a
constantsection. Using the derived transformationD2 we transport all closedY1-sections
to the right end of the generalized equations behind all the sections of the equat
an arbitrary order), then we transport allY2-sections an put them behind allY1-sections,
and so on. Eventually, we transport allY -sections to the very end of the interval and th
appear there with respect to the partition (16). After that we take all the constant se
and put them behind all the parametric sections. Now, letAΣ be the set of allX-sections,
NAΣ = ∅, PΣ be the set of allY -sections, andCΣ be the set of all constant sections. T
defines a parametric generalized equationΩ =ΩY with parameters corresponding to t
set of variablesY . If the partition of variables (16) is fixed we will omitY in the notation
above and callΩ theparameterizedequation obtained fromΩ . Denote by

GEpar(Ω)= {ΩY

∣∣Ω ∈ GE(Ω)
}

the set of all parameterized equations of the system (15).

4.4. Positive theory of free groups

In this section we prove first the Merzljakov’s result on elimination of quantifiers
positive sentences over free groupF = F(A) [22]. This proof is based on the notion of
generalized equation. Combining Merzljakov’s theorem with Makanin’s result on d
ability of equations over free groups we obtain decidability of the positive theory of
groups. This argument is due to Makanin [20].

Recall that every positive formulaΨ (Z) in the languageLA is equivalent moduloAT
to a formula of the type

∀x1∃y1 . . .∀xk∃yk

(
S(X,Y,Z,A)= 1

)
,

whereS(X,Y,Z,A) = 1 is an equation with constants fromA±1, X = (x1, . . . , xk), Y =
(y1, . . . , yk),Z = (z1, . . . , zm). Indeed, one can insert fictitious quantifiers to ensure
direct alteration of quantifiers in the prefix. In particular, every positive sentence inLA is
equivalent moduloAT to a formula of the type

∀x1∃y1 . . .∀xk∃yk

(
S(X,Y,A)= 1

)
.

Now we prove the Merzljakov’s theorem from [22], though in a slightly different form

Merzljakov’s Theorem. If

F |= ∀x1∃y1 . . .∀xk∃yk

(
S(X,Y,A)= 1

)
,

then there exist words(with constants fromF ) q1(x1), . . . , qk(x1, . . . , xk) ∈ F [X], such
that ( )
F [X] |= S x1, q1(x1), . . . , xk, qk(x1, . . . , xk,A) = 1,
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i.e., the equation

S(x1, y1, . . . , xk, yk,A)= 1

(in variablesY ) has a solution in the free groupF [X].

Proof. Let GE(u) = {Ω1(Z1), . . . ,Ωr(Zr)} be generalized equations associated w
equationS(X,Y,A)= 1 in Lemma 14. Denote byρi = |Zi | the number of variables inΩi .

Let a, b ∈A, [a, b] 
= 1, and put

g1= bam11bam12b . . . am1n1b,

wherem11 < m12 < · · ·< m1n1 and max{ρ1, . . . , ρr}|S(X,A)|< n1. Then there existsh1
such that

F |= ∀x2∃y2 . . .∀xk∃yk

(
S(g1, h1, x2, y2, . . . , xk, yk)= 1

)
.

Suppose now that elementsg1, h1, . . . , gi−1, hi−1 ∈ F are given. We define

gi = bami1bami2b . . . amini b (17)

such that:

(1) mi1 < mi2 < · · ·< mini
;

(2) max{ρ1, . . . , ρr}|S(X,A)|< ni;
(3) no subword of the typebamij b occur in any of the wordsgl , hl for l < i.

We call words (17)Merzljakov’s words.Then there exists an elementhi ∈ F such that

F |= ∀xi+1∃yi+1 . . .∀xk∃yk

(
S(g1, h1, . . . , gi, hi, xi+1, yi+1, . . . , xk, yk)= 1

)
.

By induction we have constructed elementsg1, h1, . . . , gk, hk ∈ F such that

S(g1, h1, . . . , gk, hk)= 1

and eachgi has the form (17) and satisfies the conditions (1)–(3).
By Lemma 14 there exists a generalized equationΩ(Z) ∈ GE(S), wordsPi(Z,A),

Qi(Z,A) ∈ F [Z] (i = 1, . . . , k) of length not more thenρ = |Z|, and a solutionU =
(u1, . . . , uρ) of Ω(Z) in F such that the following words are graphically equal:

gi = Pi(U), hi =Qi(U) (i = 1, . . . , k).

Sinceni > ρ|S(X,A)| (by condition (2)) andPi(U)= y1 . . . yq with yi ∈U±1, q � ρ, the
graphical equalities
gi = bami1bami2b . . . amini b= Pi(U) (i = 1, . . . , k) (18)
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show that there exists a subwordvi = bamij b of gi such that every occurrence of th
subword in (18) is an occurrence inside someu±1

j . For eachi fix such a subwordvi =
bamij b in gi . In view of condition (3) the wordvi does not occur in any of the wordsgj

(j 
= i), hs (s < i), moreover, ingi it occurs precisely once. Denote byj (i) the unique
index such thatvi occurs insideu±1

j (i) in Pi(U) from (18) (andvi occurs in it precisely
once).

The argument above shows that the variablezj (i) does not occur in wordsPt (Z,A)

(t 
= i), Qs(Z,A) (s < i). Moreover, inPi(Z) it occurs precisely once. It follows tha
the variablezj (i) in the generalized equationΩ(Z) does not occur neither in coefficie
equations nor in basic equations corresponding to the dual bases related toxt (t 
= i), ys

(s < i).
We “mark” (or select) the unique occurrence ofvi (asv±1

i ) in uj(i) i = 1, . . . , k. Now
we are going to mark some other occurrences ofvi in wordsu1, . . . , uρ as follows. Suppos
someud has a marked occurrence of somevi . If Ω contains an equation of the typezε

d = zδ
r ,

thenuε
d = uδ

r graphically. Henceur has an occurrence of subwordv±1
i which correspond

to the marked occurrence ofv±1
i in ud . We mark this occurrence ofv±1

i in ur .
SupposeΩ contains an equation of the type

[hα1 . . . hβ1−1]ε1 = [hα2 . . . hβ2−1]ε2

such thatzd occurs in it, say in the left. Then

[uα1 . . . uβ1−1]ε1 = [uα2 . . . uβ2−1]ε2

graphically. Sincev±1
i is a subword ofud , it occurs also in the right-hand part of th

equality above, say in someur . We marked this occurrence ofv±1
i in ur . The marking

process will be over in finitely many steps. Observe that one and the sameur can have
several marked occurrences of somev±1

i .
Now in all words u1, . . . , uρ we replace every marked occurrence ofvi = bamij b

with a new wordbamij xib from the groupF [X]. Denote the resulting words from
F [X] by ũ1, . . . , ũρ . It follows from description of the marking process that the tu
Ũ = (ũ1, . . . , ũρ) is a solution of the generalized equationΩ in the free groupF [X]. In-
deed, all the equations inΩ are graphically satisfied by the substitutionzi→ ui hence the
substitutionui→ ũi still makes them graphically equal. Now by Lemma 14,X = P(Ũ),
Y =Q(Ũ) is a solution of the equationS(X,A)= 1 overF [X] as desired. �
Corollary 9 [20]. There is an algorithm which for a given positive sentence

∀x1∃y1 . . .∀xk∃yk

(
S(X,Y,A)= 1

)
in LA determines whether or not this formula holds inF , and if it does, the algorithm find
words
q1(x1), . . . , qk(x1, . . . , xk) ∈ F [X]
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such that

F [X] |= u
(
x1, q1(x1), . . . , xk, qk(x1, . . . , xk)

)= 1.

Proof. The proof follows from Proposition 4 and decidability of equations over free gr
with constraintsyi ∈ F [Xi], whereXi = {x1, . . . , xi} [19]. �
Definition 13. Let φ be a sentence in the languageLA written in the standard form

φ = ∀x1∃y1 . . .∀xk∃ykφ0(x1, y1, . . . , xk, yk),

whereφ0 is a quantifier-free formula inLA. We say thatG freely liftsφ if there exist words
(with constants fromF ) q1(x1), . . . , qk(x1, . . . , xk) ∈ F [X], such that

F [X] |= φ0
(
x1, q1(x1), . . . , xk, qk(x1, . . . , xk,A)

)= 1.

Theorem 4. F freely lifts every sentence inLA that is true inF .

Proof. Suppose a sentence

φ = ∀x1∃y1 . . .∀xk∃yk

(
U(x1, y1, . . . , xk, yk)= 1 ∧ V (x1, y1, . . . , xk, yk) 
= 1

)
, (19)

is true inF . We choosex1= g1, y1= h1, . . . , xk = gk , yk = hk precisely like in the Mer-
zljakov’s theorem. Then the formula

U(g1, h1, . . . , gk, hk)= 1 ∧ V (g1, h1, . . . , gk, hk) 
= 1

holds inF . In particular,U(g1, h1, . . . , gk, hk)= 1 in F . It follows from the argument in
Theorem 4 that there are wordsq1(x1) ∈ F [x1], . . . , qk(x1, . . . , xk) ∈ F [x1, . . . , xk] such
that

F [X] |=U
(
x1, q1(x1, . . . , xk), . . . , xk, qk(x1, . . . , xk)

)= 1.

Moreover, it follows from the construction thath1= q1(g1), . . . , hk = qk(g1, . . . , gk). We
claim that

F [X] |= V
(
x1, q1(x1, . . . , xk), . . . , xk, qk(x1, . . . , xk)

) 
= 1.

Indeed, if

( )

V x1, q1(x1, . . . , xk), . . . , xk, qk(x1, . . . , xk) = 1
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in F [X], then its image inF under any specializationX→ F is also trivial, but this is no
the case for specializationx1→ g1, . . . , xk→ gk—contradiction. This proves the theore
for sentencesφ of the form (19). A similar argument works for formulas of the type

φ = ∀x1∃y1 . . .∀xk∃yk

n∨
i=1

(
Ui(x1, y1, . . . , xk, yk)= 1 ∧ Vi(x1, y1, . . . , xk, yk) 
= 1

)
,

which is, actually, the general case by Corollary 7. This finishes the proof.�
5. Makanin’s process and cut equations

5.1. Elementary transformations

In this section we describeelementary transformationsof generalized equations whic
were introduced by Makanin in [19]. Recall that we consider only formally consistent e
tions. In general, an elementary transformationET associates to a generalized equationΩ

a finite set of generalized equationsET(Ω)= {Ω1, . . . ,Ωr} and a collection of surjectiv
homomorphismsθi :GR(Ω)→GR(Ωi) such that for every pair(Ω,U) there exists a uniqu
pair of the type(Ωi,Ui) for which the following diagram commutes.

FR(Ω)

θi

πUi

FR(Ωi)

πUi

F (A)

HereπU(X) = U. Since the pair(Ωi,Ui) is defined uniquely, we have a well-defin
mapET : (Ω,U)→ (Ωi,Ui).

ET1 (Cutting a base). SupposeΩ contains a boundary connection〈p,λ, q〉. Then we
replace (cut inp) the baseλ by two new basesλ1 andλ2 and also replace (cut inq) ∆(λ)

by two new bases∆(λ1) and∆(λ2) such that the following conditions hold.
If ε(λ)= ε(∆(λ)), then

α(λ1)= α(λ), β(λ1)= p, α(λ2)= p, β(λ2)= β(λ),

α
(
∆(λ1)

)= α
(
∆(λ)

)
, β

(
∆(λ1)

)= q, α
(
∆(λ2)

)= q, β
(
∆(λ2)

)= β
(
∆(λ)

)
.

If ε(λ)=−ε(∆(λ)), then

α(λ1)= α(λ), β(λ1)= p, α(λ2)= p, β(λ2)= β(λ),

α
(
∆(λ1)

)= q, β
(
∆(λ1)

)= β
(
∆(λ)

)
, α

(
∆(λ2)

)= α
(
∆(λ)

)
, β

(
∆(λ2)

)= q.

Putε(λi)= ε(λ), ε(∆(λi))= ε(∆(λ)), i = 1,2.
Let (p′, λ, q ′) be a boundary connection inΩ .
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If p′ < p, then replace(p′, λ, q ′) by (p′, λ1, q
′).

If p′ > p, then replace(p′, λ, q ′) by (p′, λ2, q
′).

Notice, since the equationΩ is formally consistent, then the conditions above de
boundary connections in the new generalized equation. The resulting generalized
tion Ω ′ is formally consistent. PutET(Ω) = {Ω ′}. Figure 3(a) explains the name of t
transformationET1.

ET2 (Transfer of a base). Let a baseθ of a generalized equationΩ be contained in the
baseµ, i.e., α(µ) � α(θ) < β(θ) � β(µ)). Suppose that the boundariesα(θ) andβ(θ))

areµ-tied, i.e., there are boundary connections of the type〈α(θ),µ,γ1〉 and〈β(θ),µ,γ2〉.
Suppose also that everyθ -tied boundary isµ-tied. Then we transferθ from its location
on the baseµ to the corresponding location on the base∆(µ) and adjust all the basic an
boundary equations (see Fig. 3(b)). More formally, we replaceθ by a new baseθ ′ such that
α(θ ′)= γ1, β(θ ′)= γ2 and replace eachθ -boundary connection(p, θ, q) with a new one
(p′, θ ′, q) wherep andp′ come from theµ-boundary connection(p,µ,p′). The resulting
equation is denoted byΩ ′ = ET2(Ω).

ET3 (Removal of a pair of matched bases(see Fig.3(c))). Let µ and∆(µ) be a pair
of matched bases inΩ . SinceΩ is formally consistent one hasε(µ)= ε(∆(µ)), β(µ)=
β(∆(µ)) and everyµ-boundary connection is of the type(p,µ,p). Remove the pair o
basesµ,∆(µ) with all boundary connections related toµ. Denote the new generalize
equation byΩ ′.

Remark. Observe, that fori = 1,2,3, ETi(Ω) consists of a single equationΩ ′, such that
Ω andΩ ′ have the same set of variablesH , and the identity mapF [H ]→ F [H ] induces
anF -isomorphismFR(Ω)→ FR(Ω ′). Moreover,U is a solution ofΩ if and only if U is a
solution ofΩ ′.

ET4 (Removal of a lonely base(see Fig.3(d))). Suppose inΩ a variable baseµ does
not intersect any other variable base, i.e., the itemshα(µ), . . . , hβ(µ)−1 are contained in
only one variable baseµ. Suppose also that all boundaries inµ areµ-tied, i.e., for every
i (α(µ) + 1 � i � β − 1) there exists a boundaryb(i) such that(i,µ, b(i)) is a bound-
ary connection inΩ . For convenience we define:b(α(µ)) = α(∆(µ)) and b(β(µ)) =
β(∆(µ)) if ε(µ)ε(∆(µ)) = 1, and b(α(µ)) = β(∆(µ)) and b(β(µ)) = α(∆(µ)) if
ε(µ)ε(∆(µ))=−1.

The transformationET4 carriesΩ into a unique generalized equationΩ1 which is
obtained fromΩ by deleting the pair of basesµ and∆(µ); deleting all the boundarie
α(µ)+1, . . . , β(µ)−1 (and renaming the restβ(µ)−α(µ)−1 boundaries) together wit
all µ-boundary connections; replacing every constant baseλ which is contained inµ by a
constant baseλ′ with the same label asλ and such thatα(λ′)= b(α(λ)), β(λ′)= b(β(λ)).

We define the homomorphismπ :FR(Ω)→ FR(Ω ′) as follows:π(hj )= hj if j < α(µ)

or j � β(µ);

π(hi)=
{

hb(i) . . . hb(i)−1, if ε(µ)= ε(∆µ),

hb(i) . . . hb(i−1)−1, if ε(µ)=−ε(∆µ)
for α + 1� i � β(µ)− 1. It is not hard to see thatπ is anF -isomorphism.
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(a)ET1 (b) ET2

(c) ET3 (d) ET4

Fig. 3. Elementary transformationsETi, i = 1,2,3,4.
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Fig. 4. Elementary transformationET5.

ET5 (Introduction of a boundary(see Fig.4)). Suppose a pointp in a baseµ is not
µ-tied. The transformationET5 µ-ties it in all possible ways, producing finitely man
different generalized equations. To this end, letq be a boundary on∆(µ). Then we perform
one of the following two transformations.

(1) Introduce the boundary connection〈p,µ,q〉 if the resulting equationΩq is formally
consistent. In this case the correspondingF -homomorphismπq :FR(Ω)→ FR(Ωq) is
induced by the identity isomorphism onF [H ]. Observe thatπq is not necessary a
isomorphism.

(2) Introduce a new boundaryq ′ betweenq andq + 1 (and rename all the boundarie
introduce a new boundary connection(p,µ,q ′). Denote the resulting equation byΩ ′q .
In this case the correspondingF -homomorphismπq ′ :FR(Ω)→ FR(Ωq′ ) is induced by
the mapπ(h) = h, if h 
= hq , andπ(hq) = hq ′hq ′+1. Observe thatπq ′ is anF -iso-
morphism.

Let Ω be a generalized equation andE be an elementary transformation. ByE(Ω)

we denote a generalized equation obtained fromΩ by elementary transformationE (per-
haps several such equations) ifE is applicable toΩ , otherwise we putE(Ω) = Ω . By
φE :FR(Ω)→ FR(E(Ω)) we denote the canonical homomorphism of the coordinate gr
(which has been described above in the caseE(Ω) 
=Ω), otherwise, the identical isomo

phism.
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Lemma 15. There exists an algorithm which for every generalized equationΩ and
every elementary transformationE determines whether the canonical homomorph
φE :FR(Ω)→ FR(E(Ω)) is an isomorphism or not.

Proof. The only non-trivial case is whenE =E5 and no new boundaries were introduc
In this caseE(Ω) is obtained fromΩ by adding a new particular equation, says = 1, which
is effectively determined byΩ andE(Ω). In this event, the coordinate group

FR(E(Ω)) = FR(Ω∪{s})

is a quotient group ofFR(Ω). NowφE is an isomorphism if and only ifR(Ω)=R(Ω∪{s}),
or, equivalently,s ∈ R(Ω). The latter condition holds if and only ifs vanishes on all solu
tions of the system of (group-theoretic) equationsΩ = 1 in F , i.e., if the following formula
holds inF :

∀x1 . . .∀xρ

(
Ω(x1, . . . , xρ)= 1 → s(x1, . . . , xρ)= 1

)
.

This can be checked effectively, since the universal theory of a free groupF is decid-
able [20]. �
5.2. Derived transformations and auxiliary transformations

In this section we describe several useful transformations of generalized equ
Some of them can be realized as finite sequences of elementary transformations,
themderived transformations. Other transformations result in equivalent generalized
tions but cannot be realized by finite sequences of elementary moves.

D1 (Closing a section). Let σ be a section ofΩ . The transformationD1 makes the sec
tion σ closed. To performD1 we introduce boundary connections (transformationsET5)
through the endpoints ofσ until these endpoints are tied by every base containing th
and then cut through the endpoints all the bases containing them (transformationET1)
(see Fig. 5(a)).

D2 (Transporting a closed section). Let σ be a closed section of a generalized eq
tion Ω . We cutσ out of the interval[1, ρΩ ] together with all the bases and bounda
connections onσ and putσ at the end of the interval or between any two consecu
closed sections ofΩ . After that we correspondingly re-enumerate all the items and bo
aries of the latter equation to bring it to the proper form. Clearly, the original equatioΩ

and the new oneΩ ′ have the same solution sets and their coordinate groups are isom
(see Fig. 5(b)).

D3 (Complete cut). Let Ω be a generalized equation. For every boundary conne
(p,µ,q) in Ω we cut the baseµ at p applyingET1. The resulting generalized equati
Ω̃ is obtained fromΩ by a consequent application of all possibleET1 transformations
Clearly,Ω̃ does not depend on a particular choice of the sequence of transformationET1.

SinceET1 preserves isomorphism between the coordinate groups, equationsΩ and Ω̃
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Fig. 5. Derived transformationsD1 (a) andD2 (b).

have isomorphic coordinate groups, and the isomorphism arises from the identit
F [H ]→ F [H ].
D4 (Kernel of a generalized equation). Suppose that a generalized equationΩ does not
contain boundary connections. An active baseµ ∈AΣΩ is calledeliminableif at least one
of the following holds:

(a) µ contains an itemhi with γ (hi)= 1;
(b) at least one of the boundariesα(µ),β(µ) is different from 1, ρ + 1 and it does no

touch any other base (exceptµ).

An elimination processfor Ω consists of consequent removals (eliminations) of elim-

inable bases until no eliminable bases left in the equation. The resulting generalized equa-
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tion is called akernelof Ω and we denote it by Ker(Ω). It is easy to see that Ker(Ω) does
not depend on a particular elimination process. Indeed, ifΩ has two different eliminable
basesµ1, µ2, and deletion ofµi results in an equationΩi then by induction (on the numbe
of eliminations) Ker(Ωi) is uniquely defined fori = 1,2. Obviously,µ1 is still eliminable
in Ω2, as well asµ2 is eliminable inΩ1. Now eliminatingµ1 andµ2 from Ω2 andΩ1 we
get one and the same equationΩ0. By induction Ker(Ω1)= Ker(Ω0)= Ker(Ω2) hence the
result. We say that a variablehi belongs to the kernel(hi ∈ Ker(Ω)), if either hi belongs
to at least one base in the kernel, or it is parametric, or it is constant.

Also, for an equationΩ by Ω̄ we denote the equation which is obtained fromΩ by
deleting all free variables. Obviously,

FR(Ω) = FR(Ω̄) ∗ F(Y )

whereY is the set of free variables inΩ .
Let us consider what happens on the group level in the elimination process.
We start with the case when just one base is eliminated. Letµ be an eliminable base i

Ω =Ω(h1, . . . , hρ). Denote byΩ1 the equation resulting fromΩ by eliminatingµ.
(1) Supposehi ∈ µ and γ (hi) = 1. Then the variablehi occurs only once inΩ—

precisely in the equationsµ = 1 corresponding to the baseµ. Therefore, in the coordinat
groupFR(Ω) the relationsµ = 1 can be written ashi = w, wherew does not containhi .
Using Tietze transformations we can rewrite the presentation ofFR(Ω) asFR(Ω ′), where
Ω ′ is obtained fromΩ by deletingsµ and the itemhi . It follows immediately that

FR(Ω1) � FR(Ω ′) ∗ 〈hi〉
and

FR(Ω) � FR(Ω ′) � FR(Ω̄1)
∗ F(Z) (20)

for some free groupF(Z). Notice that all the groups and equations which occur above
be found effectively.

(2) Suppose now thatµ satisfies case (b) above with respect to a boundaryi. Then in the
equationsµ = 1 the variablehi−1 either occurs only once or it occurs precisely twice a
in this event the second occurrence ofhi−1 (in ∆(µ)) is a part of the subword(hi−1hi)

±1.
In both cases it is easy to see that the tuple

(h1, . . . , hi−2, sµ,hi−1hi, hi+1, . . . , hρ)

forms a basis of the ambient free group generated by(h1, . . . , hρ) and constants fromA.
Therefore, eliminating the relationsµ = 1, we can rewrite the presentation ofFR(Ω) in
generatorsY = (h1, . . . , hi−2, hi−1hi, hi+1, . . . , hρ). Observe also that any other equat
sλ = 1 (λ 
= µ) of Ω either does not contain variableshi−1, hi or it contains them as par
of the subword(hi−1hi)

±1, i.e., any such a wordsλ can be expressed as a wordwλ(Y ) in
terms of generatorsY and constants fromA. This shows that
FR(Ω) � F(Y ∪A)R(wλ(Y )|λ
=µ) � FR(Ω ′),



O. Kharlampovich, A. Myasnikov / Journal of Algebra 290 (2005) 1–203 43

can

wing

ur

ons

0) and

ich
whereΩ ′ is a generalized equation obtained fromΩ1 by deleting the boundaryi. Denote
by Ω ′′ an equation obtained fromΩ ′ by adding a free variablez to the right end ofΩ ′. It
follows now that

FR(Ω1) � FR(Ω ′′) � FR(Ω) ∗ 〈z〉
and

FR(Ω) � FR(Ω̄ ′) ∗ F(Z) (21)

for some free groupF(Z). Notice that all the groups and equations which occur above
be found effectively.

By induction on the number of steps in elimination process we obtain the follo
lemma.

Lemma 16.

FR(Ω) � FR(KerΩ) ∗ F(Z)

whereF(Z) is a free group onZ. Moreover, all the groups and equations which occ
above can be found effectively.

Proof. Let

Ω =Ω0→Ω1→ ·· ·→Ωl = KerΩ

be an elimination process forΩ . It is easy to see (by induction onl) that for everyj =
0, . . . , l − 1

KerΩj = KerΩ̄j .

Moreover, if Ωj+1 is obtained fromΩj as in the case (2) above, then (in the notati
above)

Ker(Ωj )1= KerΩ ′j .

Now the statement of the lemma follows from the remarks above and equalities (2
(21). �
D5 (Entire transformation). We need a few further definitions. A baseµ of the equation
Ω is called aleadingbase ifα(µ)= 1. A leading base is said to bemaximal(or acarrier)
if β(λ) � β(µ), for any other leading baseλ. Letµ be a carrier base ofΩ. Any active base
λ 
= µ with β(λ) � β(µ) is called atransferbase (with respect toµ).

Suppose now thatΩ is a generalized equation withγ (hi) � 2 for eachhi in the active
part of Ω . An entire transformationis a sequence of elementary transformations wh

are performed as follows. We fix a carrier baseµ of Ω . For any transfer baseλ we µ-tie
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(applyingET5) all boundaries inλ. UsingET2 we transfer all transfer bases fromµ onto
∆(µ). Now, there exists somei < β(µ) such thath1, . . . , hi belong to only one baseµ,

while hi+1 belongs to at least two bases. ApplyingET1 we cutµ along the boundaryi+1.
Finally, applyingET4 we delete the section[1, i + 1].

D6 (Identifying closed constant sections). Let λ and µ be two constant bases inΩ
with labelsaελ and aεµ , wherea ∈ A and ελ, εµ ∈ {1,−1}. Suppose that the sectio
σ(λ) = [i, i + 1] and σ(µ) = [j, j + 1] are closed. Then we introduce a new varia
baseδ with its dual∆(δ) such thatσ(δ) = [i, i + 1], σ(∆(δ)) = [j, j + 1], ε(δ) = ελ,
ε(∆(δ)) = εµ. After that we transfer all bases fromδ onto ∆(δ) usingET2, remove the
basesδ and∆(δ), remove the itemhi , and enumerate the items in a proper order. O
ously, the coordinate group of the resulting equation is isomorphic to the coordinate
of the original equation.

5.3. Construction of the treeT (Ω)

In this section we describe a branching rewrite process for a generalized equatΩ .
This process results in an (infinite) treeT (Ω). At the end of the section we describe infin
paths inT (Ω).

Complexity of a parametric generalized equation
Denote byρA the number of variableshi in all active sections ofΩ, by nA = nA(Ω)

the number of bases in active sections ofΩ , by ν′—the number of open boundaries in t
active sections, byσ ′—the number of closed boundaries in the active sections.

The number of closed active sections containing no bases, precisely one base, o
than one base are denoted bytA0, tA1, tA2 respectively. For a closed sectionσ ∈ΣΩ denote
by n(σ ), ρ(σ ) the number of bases and, respectively, variables inσ .

ρA = ρA(Ω)=
∑

σ∈AΣΩ

ρ(σ ),

nA = nA(Ω)=
∑

σ∈AΣΩ

n(σ ).

Thecomplexityof a parametric equationΩ is the number

τ = τ(Ω)=
∑

σ∈AΣΩ

max
{
0, n(σ )− 2

}
.

Notice that the entire transformation (D5) as well as the cleaning process (D4) do not
increase complexity of equations.

Let Ω be a parametric generalized equation. We construct a treeT (Ω) (with associated
structures), as a directed tree oriented from a rootv0, starting atv0 and proceeding by
induction from vertices at distancen from the root to vertices at distancen+ 1 from the

root.
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We start with a general description of the treeT (Ω). For each vertexv in T (Ω)

there exists a unique generalized equationΩv associated withv. The initial equation
Ω is associated with the rootv0, Ωv0 = Ω . For each edgev→ v′ (herev and v′ are
the origin and the terminus of the edge) there exists a unique surjective homomor
π(v, v′) :FR(Ωv)→ FR(Ω ′v) associated withv→ v′.

If

v→ v1→ ·· ·→ vs→ u

is a path inT (Ω), then byπ(v,u) we denote composition of corresponding homom
phisms

π(v,u)= π(v, v1) . . . π(vs, u).

The set of edges ofT (Ω) is subdivided into two classes:principal andauxiliary. Every
newly constructed edge is principle, if not said otherwise. Ifv→ v′ is a principle edge
then there exists a finite sequence of elementary or derived transformations fromΩv to Ωv′
and the homomorphismπ(v, v′) is composition of the homomorphisms corresponding
these transformations. We also assume that active (non-active) sections inΩv′ are naturally
inherited fromΩv , if not said otherwise.

Suppose the treeT (Ω) is constructed by induction up to a leveln, and supposev is a
vertex at distancen from the rootv0. We describe now how to extend the tree fromv. The
construction of the outgoing edges atv depends on which case described below takes p
at the vertexv. We always assume that if we have Casei, then all Casesj , with j � i − 1,
do not take place atv. We will see from the description below that there is an effec
procedure to check whether or not a given case takes place at a given vertex. It
obvious for all cases, except Case 1. We treat this case below.

Preprocessing

Case 0. In Ωv we transport closed sections usingD2 in such a way that all active sectio
are at the left end of the interval (the active part of the equation), then come all
active sections (the non-active part of the equation), then come parametric sectio
parametric part of the equation), and behind them all constant sections are locat
constant part of the equation).

Termination conditions

Case 1. The homomorphismπ(v0, v) is not an isomorphism (or equivalently, the hom
morphismπ(v1, v), wherev1 is the parent ofv, is not an isomorphism). The vertexv is
called aleafor anendvertex. There are no outgoing edges fromv.

Lemma 17. There is an algorithm to verify whether the homomorphismπ(v,u), associated
with an edgev→ u in T (Ω) is an isomorphism or not.

Proof. We will see below (by a straightforward inspection of Cases 1–15 below) that

homomorphism of the typeπ(v,u) is a composition of the canonical homomorphisms
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Fig. 6. Cases 3, 4: Moving constant bases.

corresponding to the elementary (derived) transformations. Moreover, this composi
effectively given. Now the result follows from Lemma 15.�
Case 2. Ωv does not contain active sections. The vertexv is called aleafor anendvertex.
There are no outgoing edges fromv.

Moving constants to the right

Case 3. Ωv contains a constant baseλ in an active section such that the sectionσ(λ) is not
closed.

Here we close the sectionσ(λ) using the derived transformationD1.

Case 4. Ωv contains a constant baseλ with a labela ∈ A±1 such that the sectionσ(λ) is
closed.

Here we transport the sectionσ(λ) to the location right after all variable and paramet
sections inΩv using the derived transformationD2. Then we identify all closed section
of the type[i, i+1], which contain a constant base with the labela±1, with the transported
sectionσ(λ), using the derived transformationD6. In the resulting generalized equati
Ωv′ the sectionσ(λ) becomes a constant section, and the corresponding edge(v, v′) is

auxiliary. See Fig. 6.
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Fig. 7. Cases 5, 6: Trivial equations and useless variables.

Moving free variables to the right

Case 5. Ωv contains a free variablehq in an active section.
Here we close the section[q, q+1] usingD1, transport it to the very end of the interv

behind all items inΩv usingD2. In the resulting generalized equationΩv′ the transported
section becomes a constant section, and the corresponding edge(v, v′) is auxiliary.

Remark 6. If Cases 0–5 are not possible atv then the parametric generalized equationΩv

is in standard form.

Case 6. Ωv contains a pair of matched bases in an active section.
Here we performET3 and delete it. See Fig. 7.

Eliminating linear variables

Case 7. In Ωv there ishi in an active section withγi = 1 and such that both boundariei
andi + 1 are closed.

Here we remove the closed section[i, i + 1] together with the lone base usingET4.

Case 8. In Ωv there ishi in an active section withγi = 1 and such that one of the boun

ariesi, i + 1 is open, sayi + 1, and the other is closed.
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Here we performET5 andµ-tie i + 1 through the only baseµ it intersects; usingET1
we cutµ in i + 1; and then we delete the closed section[i, i + 1] by ET4. See Fig. 8.

Case 9. In Ωv there ishi in an active section withγi = 1 and such that both boundariei
andi + 1 are open. In addition, assume that there is a closed sectionσ containing exactly
two (not matched) basesµ1 andµ2, such thatσ = σ(µ1)= σ(µ2) and in the generalize
equationΩ̃v (see the derived transformationD3) all the bases obtained fromµ1, µ2 by
ET1 in constructingΩ̃v from Ωv , do not belong to the kernel of̃Ωv.

Here, usingET5, we µ1-tie all the boundaries insideµ1; usingET2, we transferµ2

onto∆(µ1); and removeµ1 together with the closed sectionσ usingET4.

Case 10. Ωv satisfies the first assumption of Case 9 and does not satisfy the second
In this event we close the section[i, i + 1] usingD1 and remove it usingET4.

Tying a free boundary

Case 11. Some boundaryi in the active part ofΩv is free. Since we do not have Case 5
boundaryi intersects at least one base, say,µ.
Here weµ-tie i usingET5.
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Quadratic case

Case 12. Ωv satisfies the conditionγi = 2 for eachhi in the active part.
We apply the entire transformationD5.

Case 13. Ωv satisfies the conditionγi � 2 for eachhi in the active part, andγi > 2 or
at least one suchhi . In addition, for some active baseµ sectionσ(µ) = [α(µ),β(µ)] is
closed.

In this case usingET5, weµ-tie every boundary insideµ; usingET2, we transfer al
bases fromµ to ∆(µ); usingET4, we remove the lone baseµ together with the sectio
σ(µ).

Case 14. Ωv satisfies the conditionγi � 2 for eachhi in the active part, andγi > 2 for at
least one suchhi . In addition, some boundaryj in the active part touches some baseλ,
intersects some baseµ, andj is notµ-tied.

Here weµ-tie j .

General JSJ-case

Case 15. Ωv satisfies the conditionγi � 2 for eachhi in the active part, andγi > 2 for at
least one suchhi . We apply, first, the entire transformationD5.

Here for every boundaryj in the active part that touches at least one base, weµ-tie j

by every baseµ containingj . This results in finitely many new verticesΩv′ with principle
edges(v, v′).

If, in addition,Ωv satisfies the following condition (we called it Case 15.1 in [13]) th
we construct the principle edges as was described above, and also construct a fe
auxiliary edges outgoing from the vertexv:

Case 15.1. The carrier baseµ of the equationΩv intersects with its dual∆(µ).
Here we construct an auxiliary equation̂Ωv (which does not occur inT (Ω)) as follows.

Firstly, we add a new constant section[ρv + 1, ρv + 2] to the right of all sections inΩv

(in particular,hρv+1 is a new free variable). Secondly, we introduce a new pair of b
(λ,∆(λ)) such that

α(λ)= 1, β(λ)= β
(
∆(µ)

)
, α

(
∆(λ)

)= ρv + 1, β
(
∆(λ)

)= ρv + 2.

Notice thatΩv can be obtained from̂Ωv by ET4: deletingδ(λ) together with the close
section[ρv + 1, ρv + 2].

Let

π̂v :FR(Ωv)→ F
R(Ω̂v)

be the isomorphism induced byET4. Case 15 still holds for̂Ωv , but nowλ is the carrier

base. Applying toΩ̂v transformations described in Case 15, we obtain a list of new vertices



50 O. Kharlampovich, A. Myasnikov / Journal of Algebra 290 (2005) 1–203

-

g

e,
e part,
and 2

nitely
he

rt.
Ωv′ together with isomorphisms

ηv′ :FR(Ω̂v)
→ FR(Ωv′ ).

Now for each suchv′ we add toT (Ω) an auxiliary edge(v, v′) equipped with compo
sition of homomorphismsπ(v, v′)= ηv′ ◦ π̂v and assignΩv′ to the vertexv′.

If none of Cases 0–15 is possible, then we stop, and the treeT (Ω) is constructed. In
any case, the treeT (Ω) is constructed by induction. Observe that, in general,T (Ω) is an
infinite locally finite tree.

If Casei (0 � i � 15) takes place at a vertexv then we say thatv has typei and write
tp(v)= i.

Lemma 18 [27, Lemma 3.1]. If u→ v is a principal edge of the treeT (Ω), then:

(1) nA(Ωv) � nA(Ωu), if tp(v1) 
= 3,10, this inequality is proper iftp(v1)= 6,7,9,13;
(2) if tp(v1)= 10, thennA(Ωv) � nA(Ωu)+ 2;
(3) ν′(Ωv) � ν′(Ωu) if tp(v1) � 13 and tp(v1) 
= 3,11;
(4) τ(Ωv) � τ(Ωu), if tp(v1) 
= 3.

Proof. Straightforward verification. �
Lemma 19. Let

v1→ v2→ ·· ·→ vr→ ·· ·

be an infinite path in the treeT (Ω). Then there exists a natural numberN such that all
the edgesvn→ vn+1 of this path withn � N are principal edges, and one of the followin
situations holds:

(1) (linear case) 7� tp(vn) � 10 for all n � N;
(2) (quadratic case) tp(vn)= 12 for all n � N;
(3) (general JSJ-case) tp(vn)= 15 for all n � N .

Proof. Observe that starting with a generalized equationΩ we can have Case 0 only onc
afterward in all other equations the active part is at the left, then comes the non-activ
then—the parametric part, and at the end—the constant part. Obviously, Cases 1
do not occur on an infinite path. Notice also that Cases 3 and 4 can only occur fi
many times, namely, not more then 2t times wheret is the number of constant bases in t
original equationΩ . Therefore, there exists a natural numberN1 such that tp(vi) � 5 for
all i � N1.

Now we show that the number of verticesvi (i � N ) for which tp(vi)= 5 is not more
than the minimal number of generators of the groupFR(Ω), in particular, it cannot be
greater thanρ + 1+ |A|, whereρ = ρ(Ω). Indeed, if a path from the rootv0 to a vertex
v containsk vertices of type 5, thenΩv has at leastk free variables in the constant pa

This implies that the coordinate groupFR(Ωv) has a free group of rankk as a free factor,
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hence it cannot be generated by less thank elements. Sinceπ(v0, v) :FR(Ω)→ FR(Ωv) is a
surjective homomorphism, the groupFR(Ω) cannot be generated by less thenk elements.
This shows thatk � ρ + 1+ |A|. It follows that there exists a numberN2 � N1 such that
tp(vi) > 5 for everyi � N2.

Supposei > N2. If tp(vi)= 12, then it is easy to see that tp(vi+1)= 6 or tp(vi+1)= 12.
But if tp(vi+1)= 6, then tp(vi+2)= 5—contradiction withi > N2. Therefore, tp(vi+1)=
tp(vi+2)= · · · = tp(vi+j )= 12 for everyj > 0 and we have situation (2) of the lemma.

Suppose now tp(vi) 
= 12 for all i � N2. By Lemma 18,τ(Ωvj+1) � τ(Ωvj
) for every

principle edgevj → vj+1 wherej � N2. If vj → vj+1, wherej � N2, is an auxiliary edge
then tp(vj ) = 15 and, in fact, Case 15.1 takes place atvj . In the notation of Case 15.1
Ωvj+1 is obtained fromΩ̂vj

by transformations from Case 15. In this event, both ba
µ and∆(µ) will be transferred from the new carrier baseλ to the constant part, so th
complexity will be decreased at least by two:τ(Ωvj+1) � τ(Ω̂vj

)− 2. Observe also tha
τ(Ω̂vj

)= τ(Ωvj
)+ 1. Henceτ(Ωvj+1) < τ(Ωvj

).

It follows that there exists a numberN3 � N2 such thatτ(Ωvj
) = τ(ΩvN3

) for every
j � N3, i.e., complexity stabilizes. Since every auxiliary edge gives a decrease of
plexity, this implies that for everyj � N3 the edgevj → vj+1 is principle.

Suppose now thati � N3. We claim that tp(vi) 
= 6. Indeed, if tp(vi) = 6, then the
closed section, containing the matched basesµ, ∆(µ), does not contain any other bas
(otherwise the complexity ofΩvi+1 would decrease). But in this event tp(vi+1)= 5 which
is impossible.

So tp(vi) � 7 for everyi � N3. Observe thatET3 (deleting match bases) is the on
elementary transformation that can produce new free boundaries. Observe also thET3
can be applied only in Case 6. Since Case 6 does not occur anymore along the p
i � N3, one can see that no new free boundaries occur in equationsΩvj

for j � N3. It
follows that there exists a numberN4 � N3 such that tp(vi) 
= 11 for everyj � N4.

Suppose now that for somei � N4, 13� tp(vi) � 15. It is easy to see from the descri
tion of these cases that in this event tp(vi+1) ∈ {6,13,14,15}. Since tp(vi+1) 
= 6, this
implies that 13� tp(vj ) � 15 for everyj � i. In this case the sequencenA(Ωvj

) stabilizes
by Lemma 18. In addition, if tp(vj )= 13, thennA(Ωvj+1) < nA(Ωvj

). Hence there exist
a numberN5 � N4 such that tp(vj ) 
= 13 for all j � N5.

Supposei � N5. There cannot be more than 8(nA(Ωvi
))2 vertices of type 14 in a row

starting at a vertexvi; hence there existsj � i such that tp(vj )= 15. The series of trans
formationsET5 in Case 15 guarantees the inequality tp(vj+1) 
= 14; hence tp(vj+1)= 15,
and we have situation (3) of the lemma.

So we can suppose tp(vi) � 10 for all the vertices of our path. Then we have situat
(1) of the lemma. �
5.4. Periodized equations

In this section we introduce a notion of a periodic structure which allows one to des
periodic solutions of generalized equations. Recall that a reduced wordP in a free group
F is called aperiod if it is cyclically reduced and not a proper power. A wordw ∈ F is

calledP -periodic if |w| � |P | and it is a subword ofP n for somen. EveryP -periodic
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wordw can be presented in the form

w =ArA1 (22)

whereA is a cyclic permutation ofP±1, r � 1, A= A1 ◦A2, andA2 
= 1. This represen
tation is unique ifr � 2. The numberr is called theexponentof w. A maximal exponen
of P -periodic subword in a wordu is called theexponent ofP -periodicity inu. We denote
it eP (u).

Definition 14. Let Ω be a standard generalized equation. A solutionH :hi→Hi of Ω is
calledperiodic with respect to a periodP , if for every variable sectionσ of Ω one of the
following conditions hold:

(1) H(σ) is P -periodic with exponentr � 2;
(2) |H(σ)|� |P |;
(3) H(σ) is A-periodic and|A|� |P |.

Moreover, condition (1) holds at least for one suchσ .

Let H be aP -periodic solution ofΩ . Then a sectionσ satisfying (1) is calledP -peri-
odic (with respect toH ).

5.4.1. Periodic structure
Let Ω be a parametrized generalized equation. It turns out that every periodic so

of Ω is a composition of a canonical automorphism of the coordinate groupFR(Ω) with
either a solution with bounded exponent of periodicity (modulo parameters) or a solut
a “proper” equation. These canonical automorphisms correspond to Dehn twists ofFR(Ω)

which are related to the splitting of this group (which comes from the periodic struc
over an abelian edge group.

We fix till the end of the section a generalized equationΩ in standard form. Recall tha
in Ω all closed sectionsσ , basesµ, and variableshi belong to either the variable partV Σ ,
or the parametric partPΣ , or the constant partCΣ of Ω .

Definition 15. Let Ω be a generalized equation in standard form with no boundary
nections. Aperiodic structureonΩ is a pair〈P,R〉, where:

(1) P is a set consisting of some variableshi , some basesµ, and some closed sectionsσ

from V Σ and such that the following conditions are satisfied:
(a) if hi ∈P andhi ∈ µ, and∆(µ) ∈ V Σ , thenµ ∈P;
(b) if µ ∈P , then∆(µ) ∈ P;
(c) if µ ∈P andµ ∈ σ , thenσ ∈P;
(d) there exists a functionX mapping the set of closed sections fromP into {−1,+1}

such that for everyµ,σ1, σ2 ∈ P , the condition thatµ ∈ σ1 and∆(µ) ∈ σ2 implies

ε(µ) · ε(∆(µ))=X (σ1) ·X (σ2);
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(2) R is an equivalence relation on a certain setB (defined below) such that the followin
conditions are satisfied.
(e) Notice, that for every boundaryl belonging to a closed section inP either there

exists a unique closed sectionσ(l) in P containingl, or there exist precisely tw
closed sectionσleft(l) = [i, l], σright = [l, j ] in P containingl. The set of bound
aries of the first type we denote byB1, and of the second type—byB2. Put

B = B1 ∪ {lleft, lright | l ∈ B2}
herelleft, lright are two “formal copies” ofl. We will use the following agreemen
for any baseµ if α(µ) ∈ B2 then byα(µ) we meanα(µ)right and, similarly, if
β(µ) ∈ B2 then byβ(µ) we meanβ(µ)left.

(f) Now, we defineR as follows. Ifµ ∈ P then

α(µ)∼R α
(
∆(µ)

)
, β(µ)∼R β

(
∆(µ)

)
if ε(µ)= ε

(
∆(µ)

)
,

α(µ)∼R β
(
∆(µ)

)
, β(µ)∼R α

(
∆(µ)

)
if ε(µ)=−ε

(
∆(µ)

)
.

Remark 7. This definition coincides with the definition of a periodic structure given in [
in the case of empty set of parametersPΣ . For a givenΩ one can effectively find al
periodic structures onΩ .

Let 〈P,R〉 be a periodic structure ofΩ . Put

NP = {µ ∈ BΩ
∣∣ ∃hi ∈ P such thathi ∈ µ and∆(µ) is parametric or constant

}
.

Now we will show how one can associate with aP -periodic solutionH of Ω a periodic
structureP(H,P ) = 〈P,R〉. We defineP as follows. A closed sectionσ is in P if and
only if σ is P -periodic. A variablehi is in P if and only if hi ∈ σ for someσ ∈ P and
|Hi |� 2|P |. A baseµ is in P if and only if bothµ and∆(µ) are inV Σ and one of them
containshi from P .

Put X ([i, j ]) = ±1 depending on whether in (22) the wordA is conjugate toP or
to P−1.

Now let [i, j ] ∈ P andi � l � j . Then there exists a subdivisionP = P1P2 such that
if X ([i, j ]) = 1, then the wordH [i, l] is the end of the word(P∞)P1, whereP∞ is the
infinite word obtained by concatenations of powers ofP , andH [l, j ] is the beginning of
the wordP2(P

∞), and if X ([i, j ]) = −1, then the wordH [i, l] is the end of the word
(P−1)∞P−1

2 andH [l, j ] is the beginning ofP−1
1 (P−1)∞. Lemma 1.2.9 of [1] implies

that the subdivisionP = P1P2 with the indicated properties is unique; denote it byδ(l).
Let us define a relationR in the following way:R(l1, l2) � δ(l1)= δ(l2).

Lemma 20. LetH be a periodic solution ofΩ . ThenP(H,P ) is a periodic structure onΩ .

Proof. Let P(H,P )= 〈P,R〉. Obviously,P satisfies (a) and (b) from Definition 15.
Let µ ∈ P and µ ∈ [i, j ]. There exists an unknownhk ∈ P such thathk ∈ µ or
hk ∈ ∆(µ). If hk ∈ µ, then, obviously,[i, j ] ∈ P . If hk ∈ ∆(µ) and ∆(µ) ∈ [i′, j ′],
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then [i′, j ′] ∈ P , and hence, the wordH [α(∆(µ)),β(∆(µ))] can be written in the form
Qr ′Q1, whereQ = Q1Q2; Q is a cyclic shift of the wordP±1 and r ′ � 2. Now let
(22) be a presentation for the section[i, j ]. ThenH [α(µ),β(µ)] = BsB1, whereB is
a cyclic shift of the wordA±1, |B| � |P |, B = B1B2, and s � 0. From the equality
H [α(µ),β(µ)]ε(µ) =H [α(∆(µ)),β(∆(µ)))]ε(∆(µ)) and [1, Lemma 1.2.9] it follows tha
B is a cyclic shift of the wordQ±1. Consequently,A is a cyclic shift of the wordP±1, and
r � 2 in (22), since|H [i, j ]|� |H [α(µ),β(µ)]|� 2|P |. Therefore,[i, j ] ∈ P; i.e, part (c)
of Definition 15 holds.

If µ ∈ [i1, j1], ∆(µ) ∈ [i2, j2], and µ ∈ P , then the equalityε(µ) · ε(∆(µ)) =
X ([i1, j1]) · X ([i2, j2]) follows from the fact that givenArA1 = BsB1 and r, s � 2, the
wordA cannot be a cyclic shift of the wordB−1. Hence part (d) also holds.

Condition (e) of the definition of a periodic structure obviously holds.
Condition (f) follows from the graphic equalityH [α(µ),β(µ)]ε(µ) = H [α(∆(µ)),

β(∆(µ))]ε(∆(µ)) and [1, Lemma 1.2.9].
This proves the lemma.�
Now let us fix a non-empty periodic structure〈P,R〉. Item (d) allows us to assum

(after replacing the variableshi, . . . , hj−1 by h−1
j−1, . . . , h

−1
i on those sections[i, j ] ∈ P

for whichX ([i, j ])=−1) thatε(µ)= 1 for all µ ∈ P . For a boundaryk, we will denote
by (k) the equivalence class of the relationR to which it belongs.

Let us construct an oriented graphΓ whose set of vertices is the set ofR-equivalence
classes. For each unknownhk lying on a certain closed section fromP , we introduce an
oriented edgee leading from(k) to (k + 1) and an inverse edgee−1 leading from(k + 1)

to (k). This edgee is assigned the labelh(e) � hk (respectively,h(e−1) � h−1
k ). For

every pathr = e±1
1 . . . e±1

s in the graphΓ , we denote byh(r) its labelh(e±1
1 ) . . . h(e±1

j ).
The periodic structure〈P,R〉 is calledconnected, if the graphΓ is connected. Suppos
first that 〈P,R〉 is connected. Suppose that some boundaryk (betweenhk−1 andhk) in
the variable part ofΩ is not a boundary between two bases. Sincehk−1 andhk appear
in all the basic equations together, and there is no boundary equations, one can c
a generalized equationΩ1 obtained fromΩ by replacing the producthk−1hk in all basic
equations by one variableh′k . The groupFR(Ω) splits as a free product of the cyclic grou
generated byhk−1 andFR(Ω1). In this case we can considerΩ1 instead ofΩ . Therefore
we suppose now that each boundary ofΩ is a boundary between two bases.

Lemma 21. Let H be a P -periodic solution of a generalized equationΩ , 〈P,R〉 =
P(H,P ); c be a cycle in the graphΓ at the vertex(l); δ(l) = P1P2. Then there exist
n ∈ Z such thatH(c)= (P2P1)

n.

Proof. If e is an edge in the graphΓ with initial vertexV ′ and terminal vertexV ′′, and
P = P ′1P ′2, P = P ′′1 P ′′2 are two subdivisions corresponding to the boundaries fromV ′, V ′′
respectively, then, obviously,H(e) = P ′2P nkP ′′1 (nk ∈ Z). The claim is easily proven b

multiplying together the valuesH(E) for all the edgese taking part in the cyclec. �
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Definition 16. A generalized equationΩ is calledperiodizedwith respect to a given per
odic structure〈P,R〉 of Ω , if for every two cyclesc1 andc2 with the same initial vertex in
the graphΓ , there is a relation[h(c1), h(c2)] = 1 in FR(Ω).

5.4.2. Case 1. SetNP is empty
Let Γ0 be the subgraph of the graphΓ having the same set of vertices and consis

of the edgese whose labels do not belong toP . Choose a maximal subforestT0 in the
graphΓ0 and extend it to a maximal subforestT of the graphΓ . Since〈P,R〉 is connected
by assumption, it follows thatT is a tree. Letv0 be an arbitrary vertex of the graphΓ
andr(v0, v) the (unique) path fromv0 to v all of whose vertices belong toT . For every
edgee :v→ v′ not lying in T , we introduce a cyclece = r(v0, v)e(r(v0, v

′))−1. Then the
fundamental groupπ1(Γ, v0) is generated by the cyclesce (see, for example, the proo
of Proposition 3.2.1 in [18]). This and decidability of the universal theory of a free g
imply that the property of a generalized equation “to be periodized with respect to a
periodic structure” is algorithmically decidable.

Furthermore, the set of elements

{
h(e)

∣∣ e ∈ T
}∪ {h(ce)

∣∣ e /∈ T
}

(23)

forms a basis of the free group with the set of generators{hk | hk is an unknown lying
on a closed section fromP}. If µ ∈ P , then(β(µ)) = (β(∆(µ))), (α(µ)) = (α(∆(µ)))

by part (f) from Definition 15 and, consequently, the wordh[α(µ),β(µ)]h[α(∆(µ)),

β(∆(µ))]−1 is the label of a cyclec′(µ) from π1(Γ, (α(µ))). Let

c(µ)= r
(
v0,

(
α(µ)

))
c′(µ)r

(
v0,

(
α(µ)

))−1
.

Then

h
(
c(µ)

)= uh
[
α(µ),β(µ)

]
h
[
α
(
∆(µ)

)
, β
(
∆(µ)

)]−1
u−1, (24)

whereu is a certain word. Sincec(µ) ∈ π1(Γ, v0), it follows thatc(µ)= bµ({ce | e /∈ T }),
wherebµ is a certain word in the indicated generators which can be effectively constr
(see [18, Proposition 3.2.1]).

Let b̃µ denote the image of the wordbµ in the abelianization ofπ(Γ,v0). Denote by
Z̃ the free abelian group consisting of formal linear combinations

∑
e/∈T nec̃e (ne ∈ Z),

and byB̃ its subgroup generated by the elementsb̃µ (µ ∈ P) and the elements̃ce (e /∈ T ,
h(e) /∈ P). Let Ã= Z̃/B̃, T (Ã) the torsion subgroups of the group̃A, andZ̃1 the preimage
of T (Ã) in Z̃. The groupZ̃/Z̃1 is free; therefore, there exists a decomposition of the f

Z̃ = Z̃1⊕ Z̃2, B̃ ⊆ Z̃1,
(
Z̃1 : B̃

)
<∞. (25)

Note that it is possible to express effectively a certain basis˜̄c(1), ˜̄c(2) of the groupZ̃ in
terms of the generators̃ce so that for the subgroups̃Z1, Z̃2 generated by the sets˜̄c(1), ˜̄c(2)

respectively, relation (25) holds. For this it suffices, for instance, to look through the

one by one, using the fact that under the conditionZ̃ = Z̃1 ⊕ Z̃2 the relationsB̃ ⊆ Z̃1,
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(Z̃1 : B̃) <∞ hold if and only if the generators of the groupsB̃ andZ̃1 generate the sam
linear subspace overQ, and the latter is easily verified algorithmically. Notice, that a m
economical algorithm can be constructed by analyzing the proof of the classificatio
orem for finitely generated abelian groups. By [18, Proposition 1.4.4], one can effec
construct a basis̄c(1), c̄(2) of the free (non-abelian) groupπ1(Γ, v0) so that ˜̄c(1), ˜̄c(2) are
the natural images of the elementsc̄(1), c̄(2) in Z̃.

Now assume that〈P,R〉 is an arbitrary periodic structure of a periodized generali
equationΩ , not necessarily connected. LetΓ1, . . . ,Γr be the connected components
the graphΓ . The labels of edges of the componentΓi form in the equationΩ a union
of closed sections fromP; moreover, if a baseµ ∈ P belongs to such a section, th
its dual∆(µ), by condition (f) of Definition 15, also possesses this property. There
by taking forPi the set of labels of edges fromΓi belonging toP , sections to which
these labels belong, and basesµ ∈ P belonging to these sections, and restricting in
corresponding way the relationR, we obtain a periodic connected structure〈Pi ,Ri〉 with
the graphΓi .

The notation〈P ′,R′〉 ⊆ 〈P,R〉 means thatP ′ ⊆ P, and the relationR′ is a restriction
of the relationR. In particular,〈Pi ,Ri〉 ⊆ 〈P,R〉 in the situation described in the previo
paragraph. SinceΩ is periodized, the periodic structure must be connected.

Let e1, . . . , em be all the edges of the graphΓ from T \ T0. SinceT0 is the spanning
forest of the graphΓ0, it follows that h(e1), . . . , h(em) ∈ P . Let F(Ω) be a free group
generated by the variables ofΩ . Consider in the groupF(Ω) a new basisA∪ x̄ consisting
of A, variables not belonging to the closed sections fromP (we denote bȳt the family
of these variables), variables{h(e) | e ∈ T } and wordsh(c̄(1)), h(c̄(2)). Let vi be the initial
vertex of the edgeei . We introduce new variables̄u(i) = {uie | e /∈ T , e /∈ P}, z̄(i) = {zie |
e /∈ T , e /∈ P} for 1� i � m, as follows

uie = h(r(v0, vi)
−1h(ce)h

(
r(v0, vi)

)
, (26)

h(ei)
−1uieh(ei)= zie. (27)

Notice, that without loss of generality we can assume thatv0 corresponds to the begin
ning of the periodP .

Lemma 22. Let Ω be a consistent generalized equation periodized with respect to a
odic structure〈P,R〉 with empty setNP . Then the following is true.

(1) One can choose the basisc̄(1) so that for any solutionH of Ω periodic with respect to
a periodP andP(H,P )= 〈P,R〉 and anyc ∈ c̄(1), H(c)= P n, where|n|< 2ρ.

(2) In a fully residually free quotient ofFR(Ω) discriminated by solutions from(1) the
image of〈h(c̄(1))〉 is either trivial or a cyclic subgroup.

(3) Let K be the subgroup ofFR(Ω) generated bȳt , h(e), e ∈ T0, h(c̄(1)), ū(i) and z̄(i),
i = 1, . . . ,m. If |c̄(2)| = s � 1, then the groupFR(Ω) splits as a fundamental group o
a graph of groups with two vertices, where one vertex group isK and the other is a
free abelian group generated byh(c̄(2)) andh(c̄(1)). The corresponding edge group

generated byh(c̄(1)). The other edges are loops at the vertex with vertex groupK , have
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stable lettersh(ei), i = 1, . . . ,m, and associated subgroups〈ūi〉, 〈z̄i〉. If c̄(2) = ∅, then
there is no vertex with abelian vertex group.

(4) LetA∪ x̄ be the generators of the groupFR(Ω) constructed above. Ifei ∈P ∩ T , then
the mapping defined ash(ei)→ uk

ieh(ei) (k is any integer) on the generatorh(ei) and
fixing all the other generators can be extended to an automorphism ofFR(Ω).

(5) If c ∈ c̄(2) andc′ is a cycle with initial vertexv0, then the mapping defined byh(c)→
h(c′)kh(c) and fixing all the other generators can be extended to an automorp
of FR(Ω).

Proof. To prove assertion (1) we have to show that each simple cycle in the graphΓ0 has
length less than 2ρ. This is obvious, because the total number of edges inΓ0 is not more
thanρ and corresponding variables do not belong toP .

(2) The image of the group〈h(c̄(1))〉 in F is cyclic, therefore one of the finite numb
of equalitiesh(c1)

n = h(c2)
m, wherec1, c2 ∈ c(1), n,m < 2ρ, must hold for any solution

Therefore in a fully residually free quotient the group generated by the image of〈h(c̄(1))〉
is a cyclic subgroup.

To prove (3) we are to study in more detail how the unknownsh(ei) (1 � i � m) can
participate in the equations fromΩ∗ rewritten in the set of variables̄x ∪A.

If hk does not lie on a closed section fromP , or hk /∈ P , but e ∈ T (whereh(e) =
hk), thenhk belongs to the basis̄x ∪ A and is distinct from each ofh(e1), . . . , h(em).
Now let h(e) = hk , hk /∈ P and e /∈ T . Then e = r1cer2, where r1, r2 are paths inT .
Sincee ∈ Γ0, h(ce) belongs to〈c(1)〉 modulo commutation of cycles. The vertices(k)

and (k + 1) lie in the same connected component of the graphΓ0, and hence they ar
connected by a paths in the forestT0. Furthermore,r1 and sr−1

2 are paths in the tre
T connecting the vertices(k) andv0; consequently,r1 = sr−1

2 . Thus,e = sr−1
2 cer2 and

hk = h(s)h(r2)
−1h(ce)h(r2). The unknownh(ei) (1 � i � m) can occur in the right-han

side of the expression obtained (written in the basisx̄ ∪A) only in h(r2) and at most once
Moreover, the sign of this occurrence (if it exists) depends only on the orientation
edgeei with respect to the rootv0 of the treeT . If r2= r ′2e

±1
i r ′′2 , then all the occurrences o

the unknownh(ei) in the wordshk written in the basis̄x ∪A, with hk /∈ P , are contained
in the occurrences of words of the formh(ei)

∓1h((r ′2)−1cer
′
2)h(ei)

±1, i.e., in occurrence
of the formh(ei)

∓1h(c)h(ei)
±1, wherec is a certain cycle of the graphΓ starting at the

initial vertex of the edgee±1
i .

Therefore all the occurrences ofh(ei), i = 1, . . . ,m, in the equations correspondin
to µ /∈ P are of the formh(e−1

i )h(c)h(ei). Also, h(ei) does not occur in the equation
corresponding toµ ∈ P in the basisA ∪ x̄. The systemΩ∗ is equivalent to the following
system in the variables̄x, z̄(i), ū(i), A, i = 1, . . . ,m: Eqs. (26), (27),

[uie1, uie2] = 1, (28)[
h(c1), h(c2)

]= 1, c1, c2 ∈ c(1), c(2), (29)

and a system̄ψ(h(e), e ∈ T \ P, h(c̄(1)), t̄ , z̄(i), ū(i),A)= 1, such that eitherh(ei) or c̄(2)

do not occur inψ̄ . Let K = FR(ψ̄). Then to obtainFR(Ω) we fist take an HNN extension o

the groupK with abelian associated subgroups generated byū(i) andz̄(i) and stable letters
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h(ei), and then extend the centralizer of the image of〈c̄(1)〉 by the free abelian subgrou
generated by the images ofc̄(2).

Statements (4) and (5) follow from (3).�
We now introduce the notion of acanonical group of automorphisms corresponding

a connected periodic structure.

Definition 17. In the case when the family of basesNP is empty automorphisms describ
in Lemma 22 fore1, . . . , em ∈ T \ T0 and allce for e ∈ P \ T generate thecanonical group
of automorphismsP0 corresponding to a connected periodic structure.

Lemma 23. Let Ω be a non-degenerate generalized equation with no boundary con
tions, periodized with respect to the periodic structure〈P,R〉. Suppose that the setNP
is empty. LetH be a solution ofΩ periodic with respect to a periodP andP(H,P ) =
〈P,R〉. Combining canonical automorphisms ofFR(Ω) one can get a solutionH+ of Ω

with the property that for anyhk ∈ P such thatHk = P2P
nkP1 (P2 andP1 are an end and

a beginning ofP), H+k = P2P
n+k P1, wherenk,n

+
k > 0 and the numbersn+k ’s are bounded

by a certain computable functionf2(Ω,P,R). For all hk /∈P , Hk =H+k .

Proof. Let δ((k))= P
(k)
1 P

(k)
2 . Denote byt (µ,hk) the number of occurrences of the ed

with labelhk in the cyclecµ, calculated taking into account the orientation. Let

Hk = P
(k)
2 P nkP

(k+1)
1 (30)

(hk lies on a closed section fromP), where the equality in (30) is graphic wheneverhk ∈ P .
Direct calculations show that

H(bµ)= P
∑

k t (µ,hk)(nk+1). (31)

This equation implies that the vector{nk} is a solution to the following system of Diopha
tine equations in variables{zk | hk ∈ P}:∑

hk∈P
t (µ,hk)zk +

∑
hk /∈P

t (µ,hk)nk = 0, (32)

µ ∈ P . Note that the number of unknowns is bounded, and coefficients of this syste
bounded from above (|nk| � 2 for hk /∈ P) by a certain computable function ofΩ,P,

andR. Obviously,(P (k)
2 )−1H+k H−1

k P
(k)
2 = P n+k −nk commutes withH(c), wherec is a

cycle such thatH(c)= P n0, n0 < 2ρ.
If system (32) has only one solution, then it is bounded. Suppose it has infinitely

solutions. Then(z1, . . . , zk, . . .) is a composition of a bounded solution of (32) and a lin
combination of independent solutions of the corresponding homogeneous system.
ing canonical automorphisms from Lemma 22 we can decrease the coefficients

linear combination to obtain a bounded solutionH+. Hence forhk = h(ei), ei ∈ P , the
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valueHk can be obtained by a composition of a canonical automorphism (Lemma 22
a suitable bounded solutionH+ of Ω . �
5.4.3. Case 2. SetNP is non-empty

We construct an oriented graphBΓ with the same set of vertices asΓ . For each item
hk /∈ P such thathk lie on a certain closed section fromP introduce an edgee leading from
(k) to (k+1) ande−1 leading from(k+1) to (k). For each pair of basesµ,∆(µ) ∈ P intro-
duce an edgee leading from(α(µ))= (α(∆(µ))) to (β(µ))= (β(δ(µ))) ande−1 leading
from (β(µ)) to (α(µ)). For each baseµ ∈ NP introduce an edgee leading from(α(µ)

to (β(µ)) ande−1 leading from(β(µ)) to (α(µ)). Denote byBΓ0 the subgraph with the
same set of vertices and edges corresponding to items not fromP and bases fromµ ∈NP .
Choose a maximal subforestBT0 in the graphBΓ0 and extend it to a maximal subfore
BT of the graphBΓ . SinceP is connected,BT is a tree. The proof of the following lemm
is similar to the proof of Lemma 21.

Lemma 24. Let H be a solution of a generalized equationΩ periodic with respect to a
periodP , 〈P,R〉 =P(H,P ); c be a cycle in the graph BΓ at the vertex(l); δ(l)= P1P2.
Then there existsn ∈ Z such thatH(c)= (P2P1)

n.

As we did in the graphΓ , we choose a vertexv0. Let r(v0, v) be the unique path in
BT from v0 to v. For every edgee= e(µ) :v→ v′ not lying in BT, introduce a cyclecµ =
r(v0, v)e(µ)r(v0, v

′)−1. For every edgee = e(hk) :V → V ′ not lying in BT, introduce a
cyclechk

= r(v0, v)e(hk)r(v0, v
′)−1.

It suffices to restrict ourselves to the case of a connected periodic structure. Ife= e(hk),
we denoteh(e) = hk; if e = e(µ), thenh(e) = µ. Let e1, . . . , em be all the edges of th
graphBΓ from BT \ BT0. SinceBT0 is the spanning forest of the graphBΓ0, it follows
thath(e1), . . . , h(em) ∈ P . Consider in the free groupF(Ω) a new basisA ∪ x̄ consisting
of A, itemshk such thathk does not belong to closed sections fromP (denote this se
by t̄), variables{h(e) | e ∈ T } and words fromh(C(1)), h(C(2)), where the setC(1), C(2)

form a basis of the free groupπ(BΓ,v0), C(1) correspond to the cycles that represent
identity in FR(Ω) (if v andv′ are initial and terminal vertices of some closed section iP
andr andr1 are different paths fromv to v′, thenr(v0, v)rr−1

1 r(v0, v)−1 represents the
identity), cyclescµ,µ ∈ NP andchk

, hk /∈ P; andC(2) contains the rest of the basis
π(BΓ,v0).

We study in more detail how the unknownsh(ei) (1 � i � m) can participate in the
equations fromΩ∗ rewritten in this basis.

If hk does not lie on a closed section fromP , orhk = h(e),h(µ)= h(e) /∈ P , bute ∈ T ,
thenh(µ) or hk belongs to the basis̄x ∪A and is distinct from each ofh(e1), . . . , h(em).
Now let h(e) = h(µ), h(µ) /∈ P and e /∈ T . Then e = r1cer2, wherer1, r2 are path in
BT from (α(µ)) to v0 and from(β(µ)) to v0. Sincee ∈ BΓ0, the vertices(α(µ)) and
(β(µ)) lie in the same connected component of the graphBΓ0, and hence are connect
by a paths in the forestBT0. Furthermore,r1 and sr−1

2 are paths in the treeBT con-
necting the vertices(α(µ)) and v0; consequently,r1= sr−1

2 . Thus, e = sr−1
2 cer2 and

h(µ) = h(s)h(r2)
−1h(ce)h(r2). The unknownh(ei) (1 � i � m) can occur in the right
hand side of the expression obtained (written in the basisx̄ ∪A) only in h(r2) and at most
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once. Moreover, the sign of this occurrence (if it exists) depends only on the orientat
the edgeei with respect to the rootv0 of the treeT . If r2 = r ′2e

±1
i r ′′2 , then all the occur

rences of the unknownh(ei) in the wordsh(µ) written in the basis̄x ∪A, with h(µ) /∈ P ,
are contained in the occurrences of words of the formh(ei)

∓1h((r ′2)−1cer
′
2)h(ei)

±1, i.e.,
in occurrences of the formh(ei)

∓1h(c)h(ei)
±1, wherec is a certain cycle of the graphBΓ

starting at the initial vertex of the edgee±1
i . Similarly, all the occurrences of the unknow

h(ei) in the wordshk written in the basis̄x, A, with hk /∈ P , are contained in occurrenc
of words of the formh(ei)

∓1h(c)h(ei)
±1.

Therefore all the occurrences ofh(ei), i = 1, . . . ,m, in the equations corresponding
µ /∈ P are of the formh(e−1

i )h(c)h(ei). Also, cycles fromC(1) that represent the identit
and not inBΓ0 are basis elements themselves. This implies

Lemma 25.

(1) Let K be the subgroup ofFR(Ω) generated bȳt , h(e), e ∈ BT0, h(C(1)) and ū(i), z̄(i),
i = 1, . . . ,m, where elements̄z(i) are defined similarly to the case of emptyNP .
If |C(2)| = s � 1, then the groupFR(Ω) splits as a fundamental group of a graph
groups with two vertices, where one vertex group isK and the other is a free abelia
group generated byh(C(2)) and h(C(1)). The edge group is generated byh(C(1)).
The other edges are loops at the vertex with vertex groupK and have stable letter
h(e), e ∈ BT \BT0. If C(2) = ∅, then there is no vertex with abelian vertex group.

(2) LetH be a solution ofΩ periodic with respect to a periodP and〈P,R〉 = P(H,P ).

LetP1P2 be a partition ofP corresponding to the initial vertex ofei . A transformation
H(ei)→ P2P1H(ei), i ∈ {1, . . . ,m}, which is identical on all the other elements fro
A,H(x̄), can be extended to another solution ofΩ∗. If c is a cycle beginning at th
initial vertex ofei , then the transformationh(ei)→ h(c)h(ei) which is identical on all
other elements fromA∪ x̄, is an automorphism ofFR(Ω).

(3) If c(e) ∈ C(2), then the transformationH(c(e))→ PH(c(e)) which is identical on all
other elements fromA,H(x̄) , can be extended to another solution ofΩ∗. A transfor-
mationh(c(e))→ h(c)h(c(e)) which is identical on all other elements fromA ∪ x̄, is
an automorphism ofFR(Ω).

Definition 18. If Ω is a non-degenerate generalized equation periodic with respec
connected periodic structure〈P,R〉 and the setNP is non-empty, we consider the grou
Ā(Ω) of transformations of solutions ofΩ∗, whereĀ(Ω) is generated by the transform
tions defined in Lemma 25. If these transformations are automorphisms, the group
denotedA(Ω).

Definition 19. In the case when for a connected periodic structure〈P,R〉, the setC(2)

has more than one element orC(2) has one element, andC(1) contains a cycle formed b
edgese such that variableshk = h(e) are not fromP , the periodic structure will be calle
singular.

This definition coincides with the definition of singular periodic structure given in [
in the case of empty setΛ.
Lemma 25 implies the following
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Lemma 26. Let Ω be a non-degenerate generalized equation with no boundary con
tions, periodized with respect to a singular periodic structure〈P,R〉. LetH be a solution
of Ω periodic with respect to a periodP and 〈P,R〉 = P(H,P ). Combining canonica
automorphisms fromA(Ω) one can get a solutionH+ of Ω∗ with the following properties:

(1) for anyhk ∈P such thatHk = P2P
nkP1 (P2 andP1 are an end and a beginning ofP)

H+k = P2P
n+k P1, wherenk,n

+
k ∈ Z;

(2) for anyhk /∈ P , Hk =H+k ;
(3) for any baseµ /∈P , H(µ)=H+(µ);
(4) there exists a cyclec such thath(c) 
= 1 in FR(Ω) butH+(c)= 1.

Notice, that in the case described in the lemma, solutionH+ satisfies a proper equa
tion. SolutionH+ is not necessarily a solution of the generalized equationΩ , but we will
modify Ω into a generalized equationΩ(P,BT). This modification will be called thefirst
minimal replacement. EquationΩ(P,BT) will have the following properties:

(1) Ω(P,BT) contains all the same parameter sections and closed sections which
in P , asΩ;

(2) H+ is a solution ofΩ(P,BT);
(3) groupFR(Ω(P,BT)) is generated by the same set of variablesh1, . . . , hδ;
(4) Ω(P,BT) has the same set of bases asΩ and possibly some new bases, but each

base is a product of bases fromΩ;
(5) the mappinghi→ hi is a proper homomorphism fromFR(Ω) ontoFR(Ω(P,BT)).

To obtainΩ(P,BT) we have to modify the closed sections fromP .
The label of each cycle inBΓ is a product of some basesµ1 . . .µk . Write a generalized

equationΩ̃ for the equations that say thatµ1 . . .µk = 1 for each cycle fromC(1) represent-
ing the trivial element and for each cycle fromC(2). Eachµi is a productµi = hi1 . . . hit .
Due to the first statement of Lemma 26, in each productH+ij H+i,j+1 either there is no can
cellations betweenH+ij andH+i,j+1, or one of them is completely cancelled in the oth
Therefore the same can be said about each pairH+(µi)H

+(µi+1), and we can make
cancellation table without cutting items or bases ofΩ .

Let Ω̂ be a generalized equation obtained fromΩ by deleting bases fromP ∪NP and
items fromP from the closed sections fromP . Take a union ofΩ̃ andΩ̂ on the disjoint
set of variables, and add basic equations identifying inΩ̂ andΩ̃ the same bases that don
belong toP . This gives usΩ(P,BT).

Suppose thatC(2) for the equationΩ is either empty or contains one cycle. Supp
also that for each closed section fromP in Ω there exists a baseµ such that the initia
boundary of this section isα(µ) and the terminal boundary isβ(∆(µ)).

Lemma 27. Suppose that the generalized equationΩ is periodized with respect to a non
singular periodic structureP . Then for any periodic solutionH of Ω we can choose a
tree BT, some set of variablesS = {hj1, . . . , hjs } and a solutionH+ of Ω equivalent toH
with respect to the group of canonical transformationsĀ(Ω) in such a way that each o

the basesλi ∈ BT \ BT0 can be represented asλi = λi1hki

λi2, wherehki
∈ S and for
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anyhj ∈ S, |H+j |< f3|P |, wheref3 is some constructible function depending onΩ . This
representation gives a new generalized equationΩ ′ periodic with respect to a periodi
structureP ′ with the same periodP and all hj ∈ S considered as variables not fromP ′.
The graph BΓ ′ for the periodic structureP ′ has the same set of vertices as BΓ , has empty
setC(2) and BT′ = BT′0.

Let c be a cycle fromC(1) of minimal length, thenH(c) = P nc , where|nc|� 2ρ. Us-
ing canonical automorphisms fromA(Ω) one can transform any solutionH of Ω into a
solutionH+ such that for anyhj ∈ S, |H+j | � f3|c|. Let P ′ be a periodic structure, in
which allhi ∈ S are considered as variables not fromP ′, then BΓ ′ has empty setC(2) and
BT′ = BT′0.

Proof. Suppose first thatC(2) is empty. We prove the statement of the lemma by induc
on the number of edges inBT\BT0. It is true, when this set is empty. Consider tempora
all the edges inBT \BT0 except one edgee(λ) as edges corresponding to bases fromNP .
Then the difference betweenBT0 andBT is one edge.

ChangingH(e(λ)) by a transformation from̄A(Ω) we can change onlyH(e′) for e′ ∈
BΓ that could be included intoBT \ BT0 instead ofe. For each baseµ ∈ NP , H(µ) =
P2(µ)P n(µ)P1(µ), for each baseµ ∈ P , H(µ) = P2(µ)P x(µ)P1(µ). For each cyclec in
C(1) such thath(c) represents the identity element we have a linear equation in vari
x(µ) with coefficients depending onn(µ). We also know that this system has a solut
for arbitraryx(λ) (whereλ ∈ BT\BT0) and the otherx(ν) are uniquely determined by th
value ofx(λ).

If we write for each variablehk ∈ P, Hk = P2kP
ykP1k , then the positive unknown

yk ’s satisfy the system of equations saying thatH(µ) = H(∆(µ)) for basesµ ∈ P and
equations saying thatµ is a constant for basesµ ∈NP . Fixing x(λ) we automatically fix
all theyk ’s. Therefore at least one of theyk belonging toλ can be taken arbitrary. So the
exist some elementsyk which can be taken as free variables for the second system of l
equations. Using elementary transformations overZ we can write the system of equatio
for yk ’s in the form:

n1y1 0 · · · =m1yk +C1,

n2y2 · · · =m2yk +C2,

. . .

...
...

. . .

· · · nk−1yk−1 =mk−1yk +Ck−1,

(33)

whereC1, . . . ,Ck are constants depending on parameters, we can suppose that th
sufficiently large positive or negative (small constants we can treat as constants n
pending on parameters). Notice that integersn1,m1, . . . , nk−1,mk−1 in this system do no
depend on parameters. We can always suppose that alln1, . . . , nk−1 are positive. Notice
thatmi andCi cannot be simultaneously negative, because in this case it would no
positive solution of the system. Changing the order of the equations we can write fi

equation withmi , Ci positive, then equations with negativemi and positiveCi and, finally,
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equations with negativeCi and positivemi . The system will have the form:

n1y1 0 · · · = |m1|yk + |C1|,
. . .

ntyt · · · = −|mt |yk + |Ct |,
. . .

. . .

nsys = |ms |yk − |Cs |.

(34)

If the last block (with negativeCs ) is non-empty, we can take a minimalys of bounded
value. Indeed, instead ofys we can always take a remainder of the division ofys by
the productn1 . . . nk−1|m1 . . .mk−1|, which is less than this product (or by the prod
n1 . . . nk−1|m1 . . .mk−1|nc if we wish to decreaseys by a multiple ofnc). We respectively
decreaseyk and adjustyi ’s in the blocks with positiveCi ’s. If the third block is not presen
we decreaseyk taking a remainder of the division ofyk by n1 . . . nk−1 (or byn1 . . . nk−1nc)
and adjustyi ’s. Therefore for somehi belonging to a base which can be included i
BT \ BT0, |H+(hi)| < f3|P |. Suppose this base isλ, representλ = λ1hiλ2. Suppose
e(λ) :v→ v1 in BΓ . Let v2, v3 be the vertices inBΓ corresponding to the initial an
terminal boundary ofhk . They would be the vertices inΓ , andΓ andBΓ have the same
set of vertices. To obtain the graphBΓ ′ from BΓ we have to replacee(λ) by three edges
e(λ1) :v→ v2, e(hk) :v2→ v3 ande(λ2) :v3→ v1. There is no path inBT0 from v2 to v3,
because if there were such a pathp, then we would have the equalityhk = h(c1)h(p)h(c2),

in FR(Ω), wherec1 andc2 are cycles inBΓ beginning in verticesv2 andv3 respectively.
ChangingHk we do not changeH(c1),H(c2) andH(p), because all the cycles are ge
erated by cycles inC(1). Therefore there are pathsr :v→ v2 andr1 :v3→ v1 in BT0, and
edgese(λ1), e(λ2) cannot be included inBT′ \BT′0 in BΓ ′. ThereforeBT′ = BT′0. Now we
can recall that all the edges except one inBT \ BT0 were temporarily considered as edg
in NP . We managed to decrease the number of such edges by one. Induction finis
proof.

If the setC(2) contains one cycle, we can temporarily consider all the bases fromBT as
parameters, and consider the same system of linear equations foryi ’s. Similarly, as above
at least oneyt can be bounded. We will bound as manyyi ’s as we can. For the new period
structure eitherBT contains less elements or the setC(2) is empty.

The second part of the lemma follows from the remark that forµ ∈ T left multiplication
of h(µ) by h(rcr−1), wherer is the path inT from v0 to the initial vertex ofµ, is an
automorphism fromA(Ω). �

We call a solutionH+ constructed in Lemma 27 asolution equivalent toH with maxi-
mal number of short variables.

Consider now variables fromS as variables not fromP ′, so that for the equationΩ
the setsC(2) and BT′ \ BT′0 are both empty. In this case we make thesecond minima

replacement, which we will describe in the lemma below.
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Definition 20. A pair of basesµ,∆(µ) is called an overlapping pair ifε(µ) = 1 and
β(µ) > α(∆(µ)) > α(µ) or ε(µ) = −1 andβ(µ) < β(∆(µ)) < α(µ). If a closed sec
tion begins withα(µ) and ends withβ(∆(µ)) for an overlapping pair of bases we c
such a pair of bases aprincipal overlapping pairand say that a section is inoverlapping
form.

Notice, that ifλ ∈NP , thenH(λ) is the same for any solutionH , and we just writeλ
instead ofH(λ).

Lemma 28. Suppose that for the generalized equationΩ ′ obtained in Lemma27 the sets
C(2) and BT′ \ BT′0 are empty,P ′ is a non-empty periodic structure, and each clos
section fromP ′ has a principal overlapping pair. Then for each baseµ ∈ P ′ there is a
fixed presentation forh(µ) = ∏(parameters) as a product of elementsh(λ), λ ∈ NP ,
hk /∈ P ′ corresponding to a path in BΓ ′0. The maximal number of terms in this presentat
is bounded by a computable function ofΩ .

Proof. Let e be the edge in the graphBΓ ′ corresponding to a baseµ and suppose
e :v→ v′. There is a paths in BT′ joining v and v′, and a cyclec̄ which is a product
of cycles fromC(1) such thath(µ)= h(c̄)h(s). For each cyclec from C(1) eitherh(c)= 1
or c can be written using only edges with labels not fromP ′; therefore,c̄ contains only
edges with labels not fromP ′. Therefore

h(µ)=
∏

(parameters)= h(λi1)Π1 . . . h(λsi )Πs, (35)

where the doubles of allλi are parameters, andΠ1, . . . ,Πs are products of variable
hki

/∈ P ′. �
In the equality

H(µ)=H(λi1)Π̄1 . . .H(λsi )Π̄s, (36)

whereΠ̄1, . . . , Π̄s are products ofHki
for variableshki

/∈ P ′, the cancellations betwee
two terms in the right side are complete because the equality corresponds to a pathBΓ ′0.
Therefore the cancellation tree for the equality (36) can be situated on a horizont
with intervals corresponding toλi ’s directed either to the right or to the left. This tree c
be drawn on aP -scaled axis. We call this one-dimensional tree aµ-tree. Denote byI (λ)

the interval corresponding toλ in theµ-tree. IfI (µ)⊆⋃λi∈NP I (λi), then we say thatµ
is covered by parameters. In this case a generalized equation corresponding to (36
situated on the intervals corresponding to bases fromNP .

We can shift the wholeµ-tree to the left or to the right so that in the new situation
uncovered part becomes covered by the bases fromNP . Certainly, we have to make su
that the shift is through the interval corresponding to a cycle inC(1). Equivalently, we can
shift any base belonging to theµ-tree through such an interval.

If c is a cycle fromC(1) with shortestH(c), then there is a correspondingc-tree.

Shifting this c-tree to the right or to the left through the intervals corresponding to
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H(c) bounded number of times we can cover everyHi , where hi ∈ S by a product
H(λj1)Π̄1 . . .H(λjt )Π̄t , whereΠ̄1, . . . , Π̄t are products of values of variables not fro
P andλj1, . . . λjt are bases fromNP . Combining this covering together with the coveri
of H(µ) by the product (36), we obtain thatH([α(µ),β(∆(µ))]) is almost covered by
parameters, except for the short productsΠ̄ . Let h(µ) be covered by

h(Λ1)Π1, . . . , h(Λs)Πs, (37)

whereh(Λ1), . . . , h(Λs) are parts completely covered by parameters, andΠ1, . . . ,Πs are
products of variables not inP . We also remove those bases fromNP from eachΛi which
do not overlap withh(µ). Denote byf4 the maximal number of bases inNP andhi /∈ P
in the covering (37).

If λi1, . . . , λis are parametric bases, then for any solutionH and any pairλi, λj ∈
{λi1, . . . , λis } we have either|H(λi)| < |H(λj )| or |H(λi)| = |H(λj )| or |H(λi)| >
|H(λj )|. We call arelationship between lengths of parametric basesa collection that con
sists of one such inequality or equality for each pair of bases. There is only a finite n
of possible relationships between lengths of parametric bases. Therefore we can tal
a parametric baseλ of maximal length meaning that we consider the family of soluti
for whichH(λ) has maximal length.

Lemma 29. Let λµ ∈ NP be a base of max length in the covering(37) for µ ∈ P . If
for a solutionH of Ω, and for each closed section[α(µ),β(∆(µ)] in P , min|H [α(ν),

α(∆(ν))]| � |H(λµ)|, where the minimum is taken for all pairs of overlapping bases
this section, then one can transformΩ into one of the finite number(depending onΩ) of
generalized equationsΩ(P) which do not contain closed sections fromP but contain the
same other closed sections except for parametric sections. The content of closed s
fromP is transferred using bases fromNP to the parametric part. This transformation
called thesecond minimal replacement.

Proof. Suppose for a closed section[α(µ),β(∆(µ))] that there exists a baseλ in (37) such
that |H(λ)| � min(H(α(ν),α(∆(ν))), where the minimum is taken for all pairs of ove
lapping bases for this section. We can shift the coverH(Λ1)Π̄1, . . . ,H(Λs)Π̄s through
the distanced1 = |H [α(µ),α(∆(µ))]|. Consider first the case whend1 � |H(λ)| for the
largest base in (37). Suppose the part ofH(µ) corresponding toΠ̄i is not covered by para
meters. Take the first baseλj in (37) to the right or to the left of̄Πi such that|H(λj )|� d1.
Supposeλj is situated to the left from̄Πi . Shiftingλj to the right through a bounded byf4
multiple ofd1 we will coverΠ̄i .

Consider now the case whend1 > |H(λ)|, but there exists an overlapping pairν,∆(ν)

such that

d2=
∣∣H [α(ν),α

(
∆(ν)

)]∣∣� ∣∣H(λ)
∣∣.

If the part ofH(µ) corresponding toΠ̄i is not covered by parameters, we take the fi

baseλj in (37) to the right or to the left ofΠ̄i such that|H(λj )| � d2. Without loss of
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generality we can suppose thatλj is situated to the left ofΠ̄i . Shifting λj to the right
through a bounded byf4 multiple ofd2 we will coverΠ̄i .

Therefore, if the first alternative in the lemma does not take place, we can
the whole section[α(µ),β(∆(µ))] by the bases fromNP , and transformΩ into one
of the finite number of generalized equations which do not contain the closed s
[α(µ),β(∆(µ))] and have all the other non-parametric sections the same. All the ca
lations between two neighboring terms of any equality that we have gotten are com
therefore the coordinate groups of new equations are quotients ofFR(Ω). �
5.5. Minimal solutions and treeT0(Ω)

5.5.1. Minimal solutions
Let F = F(A∪B) be a free group with basisA∪B, Ω be a generalized equation wi

constants from(A∪B)±1, and parametersΛ. Let A(Ω) be an arbitrary group of(A∪Λ)-
automorphisms ofFR(Ω). For solutionsH(1) and H(2) of the equationΩ in the group
F we write H(1) <A(Ω) H(2) if there exists an endomorphismπ of the groupF which
is an (A,Λ)-homomorphism, and an automorphismσ ∈ A(Ω) such that the following
conditions hold:

(1) πH(2) = σπH(1)π ,
(2) for all active variablesd(H

(1)
k ) � d(H

(2)
k ) for all 1� k � ρ andd(H

(1)
k ) < d(H

(2)
k ) at

least for one suchk (hered(H) is an alternative notation for the length|H |).

We also define a relation<cA(Ω) by the same way as<A(Ω) but with extra property:

(3) for any k, j , if (H
(2)
k )ε(H

(2)
j )δ in non-cancellable, then(H (1)

k )ε(H
(1)
j )δ in non-

cancellable (ε, δ =±1).

Obviously, both relations are transitive.
A solutionH̄ of Ω is calledA(Ω)-minimalif there is no any solution̄H ′ of the equation

Ω such thatH̄ ′ <A(Ω) H̄ . Since the total length
∑ρ

i=1l(Hi) of a solutionH̄ is a non-
negative integer, every strictly decreasing chain of solutionsH̄ > H̄ 1 > · · · > H̄k >A(Ω)

· · · is finite. It follows that for every solutionH̄ of Ω there exists a minimal solution̄H 0

such thatH̄ 0 <A(Ω) H̄ .

5.5.2. Automorphisms
Assign to some verticesv of the treeT (Ω) the groups of automorphisms of grou

FR(Ωv). For each vertexv such that tp(v) = 12 the canonical group of automorphism
A(Ωv) assigned to it is the group of automorphisms ofFR(Ωv) identical onΛ. For each
vertexv such that 7� tp(v) � 10 we assign the group of automorphisms invariant w
respect to the kernel.

For each vertexv such that tp(v)= 2, assign the group̄Av generated by the groups
automorphisms constructed in Lemma 25 that applied toΩv and all possible non-singula

periodic structures of this equation.
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Let tp(v)= 15. Apply transformationD3 and considerΩ = Ω̃v . Notice that the function
γi is constant whenhi belongs to some closed section ofΩ̃v . ApplyingD2, we can suppos
that the section[1, j + 1] is covered exactly twice. We say now that this is a quadr
section. Assign to the vertexv the group of automorphisms ofFR(Ω) acting identically on
the non-quadratic part.

5.5.3. The finite subtreeT0(Ω): cutting off long branches
For a generalized equationΩ with parameters we construct a finite treeT0(Ω). Then

we show that the subtree ofT (Ω) obtained by tracing those path inT (Ω) which actually
can happen for “short” solutions is a subtree ofT0(Ω).

According to Lemma 19, along an infinite path inT (Ω) one can either have 7�
tp(vk) � 10 for all k or tp(vk)= 12 for all k, or tp(vk)= 15 for all k.

Lemma 30 (Lemma 15 from [13]). Let v1→ v2→ ·· · → vk→ ·· · be an infinite path in
the treeT (Ω), and7� tp(vk) � 10 for all k. Then among{Ωk} some generalized equatio
occurs infinitely many times. IfΩvk

=Ωvl
, thenπ(vk, vl) is an isomorphism invariant with

respect to the kernel.

Lemma 31. Let tp(v)= 12. If a solutionH̄ of Ωv is minimal with respect to the canonic
group of automorphisms, then there is a recursive functionf0 such that in the sequence

(
Ωv, H̄

)→ (
Ωv1, H̄

1)→ ·· ·→ (
Ωvi

, H̄ i
)→ ·· · (38)

corresponding to the path inT (Ωv) and for the solutionH̄ , Case12 cannot be repeate
more thanf0 times.

Proof. If µ and∆µ both belong to the quadratic section, thenµ is called aquadratic
base. Consider the following set of generators forFR(Ωv): variables fromΛ and quadratic
bases from the active part. Relations in this set of generators consist of the following
families.

(1) Relations between variables inΛ.
(2) If µ is an active base and∆(µ) is a parametric base, and∆(µ)= hi . . . hi+t , then there

is a relationµ= hi . . . hi+t .
(3) Sinceγi = 2 for eachhi in the active part the product ofhi . . . hj , where[i, j + 1] is

a closed active section, can be written in two different waysw1 andw2 as a produc
of active bases. We write the relationsw1w

−1
2 = 1. These relations give a quadra

system of equations with coefficients in the subgroup generated byΛ.

When we apply the entire transformation in Case 12, the number of variables
increasing and the complexity of the generalized equation is not increasing. Suppo
same generalized equation is repeated twice in the sequence (38), for example,Ωj =Ωj+k .
Thenπ(vj , vj+k) is an automorphism ofFR(Ωj ) induced by the automorphism of the fr
product〈Λ〉 ∗ B, whereB is a free group generated by quadratic bases, identical on〈Λ〉

and fixing all wordsw1w

−1
2 . Therefore,H̄ j > H̄ j+k, which contradicts to the minimality
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of H̄ . Therefore there is only a finite number (bounded byf0) of possible generalize
equations that can appear in the sequence (38).�

Let H̄ be a solution of the equationΩ with quadratic part[1, j + 1]. If µ belongs and
∆µ does not belong to the quadratic section, thenµ is called aquadratic-coefficient base.
Define the following numbers:

d1
(
H̄
)= j∑

i=1

d(Hi), (39)

d2
(
H̄
)=∑

µ

d
(
H
[
α(µ),β(µ)

])
, (40)

whereµ is a quadratic-coefficient base.

Lemma 32. Let tp(v) = 15. For any solutionH̄ of Ωv there is a minimal solutionH̄+,
which is an automorphic image of̄H with respect to the group of automorphisms defin
in the beginning of this section, such that

d1
(
H̄+

)
� f1(Ωv)max

{
d2
(
H̄+

)
,1
}
,

wheref1(Ω) is some recursive function.

Proof. Consider instead ofΩv equationΩ = (Ω̃v) which does not have any bounda
connections,FR(Ωv) is isomorphic toFR(Ω). Consider a presentation ofFR(Ωv) in the set
of generators consisting of variables in the non-quadratic part and active bases. Re
in this generating set consist of the following three families.

(1) Relations between variables in the non-quadratic part.
(2) If µ is a quadratic-coefficient base and∆(µ) = hi . . . hi+t in the non-quadratic par

then there is a relationµ= hi . . . hi+t .

(3) Sinceγi = 2 for eachhi in the active part the producthi . . . hj , where[i, j + 1] is a
closed active section, can be written in two different waysw1 andw2 as a product o
quadratic and quadratic-coefficient bases. We write the relationsw1w

−1
2 = 1.

Let H̄ be a solution ofΩv minimal with respect to the canonical group of autom
phisms of the free productB1 ∗ B, whereB is a free group generated by quadratic ba
andB1 is a subgroup ofFR(Ωv) generated by variables in the non-quadratic part, iden
on 〈Λ〉 and fixing all wordsw1w

−1
2 .

Consider the sequence

(
Ω,H̄

)→ (
Ωv1, H̄

1)→ ·· ·→ (
Ωvi

, H̄ i
)→ ·· · . (41)

Apply now the entire transformations to the quadratic section ofΩ. As in the proof
of the previous lemma, each time we apply the entire transformation, we do not in

complexity and do not increase the total number of items in the whole interval. SinceH̄ is
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a solution ofΩv , if the same generalized equation appear in this sequence 24j2 + 1 times
then for somej, j + k we haveH̄ j >c H̄ j+k , therefore the same equation can only app
a bounded number of times. Every quadratic base (except those that become m
bases of length 1) in the quadratic part can be transferred to the non-quadratic pa
the use of some quadratic-coefficient base as a carrier base. This means that the l
the transferred base is equal to the length of the part of the quadratic-coefficient
base, which will then be deleted. The double of the transferred base becomes a qu
coefficient base. Because there are not more thannA bases in the active part, this wou
give

d1
(
H̄ ′
)
� nAd2

(
H̄ ′
)
,

for some solutionH̄+ of the equationΩ̃v . But H̄+ is obtained from the minimal solutio
H̄ in a bounded number of steps.�

We call a pathv1→ v2→ ·· · → vk → ·· · in T (Ω) for which 7� tp(vk) � 10 for
all k or type 12prohibited if some generalized equation withρ variables occurs amon
{Ωvi
| 1 � i � �} at least 24ρ2 + 1 times. We will define below also prohibited paths

T (Ω), for which tp(vk)= 15 for all k. We will need some auxiliary definitions.
Introduce a new parameter

τ ′v = τv + ρ − ρ′v,

whereρ is the number of variables of the initial equationΩ andρ′v the number of free
variables belonging to the non-active sections of the equationΩv. We haveρ′v � ρ (see
the proof of Lemma 19), henceτ ′v � 0. In addition ifv1→ v2 is an auxiliary edge, the
τ ′2 < τ ′1.

Define by the joint induction onτ ′v a finite subtreeT0(Ωv) and a natural numbers(Ωv).
The treeT0(Ωv) will havev as a root and consist of some vertices and edges ofT (Ω) that
lie higher thanv. Let τ ′v = 0; then inT (Ω) there can not be auxiliary edges and vertice
type 15 higher thanv. Hence a subtreeT0(Ωv) consisting of verticesv1 of T (Ω) that are
higher thanv, and for which the path fromv to v1 does not contain prohibited subpaths
finite.

Let now

s(Ωv)=max
w

max
〈P,R〉

{
ρwf2(Ωw,P,R), f4

(
Ω ′w,P,R

)}
, (42)

wherew runs through all the vertices ofT0(v) for which tp(w) = 2, Ωw contains non-
trivial non-parametric sections,〈P,R〉 is the set of non-singular periodic structures of
equationΩ̃w, f2 is a function appearing in Lemma 23 (f2 is present only if a periodic
structure has empty setNP) andΩ ′w is constructed as in Lemma 27, wheref4 is a function

appearing in covering (37).



70 O. Kharlampovich, A. Myasnikov / Journal of Algebra 290 (2005) 1–203

t

of

nite
he
fer
ng

s to

ng the
s

) to
Suppose now thatτ ′v > 0 and that for allv1 with τ ′v1
< τ ′v the treeT0(Ωv1) and the

numbers(Ωv1) are already defined. We begin with the consideration of the paths

r = v1→ v2→ ·· ·→ vm, (43)

where tp(vi)= 15 (1� i � m). We have

τ ′vi
= τ ′v.

Denote byµi the carrier base of the equationΩvi
. The path (43) will be calledµ-re-

ducing if µ1 = µ and either there are no auxiliary edges from the vertexv2 andµ oc-
curs in the sequenceµ1, . . . ,µm−1 at least twice, or there are auxiliary edgesv2→ w1,

v2→ w2, . . . , v2→ wk from v2 and µ occurs in the sequenceµ1, . . . ,µm−1 at least
max1�i�k s(Ωwi

) times.
The path (43) will be calledprohibited, if it can be represented in the form

r = r1s1 . . . rlslr
′, (44)

such that for some sequence of basesη1, . . . , ηl the following three properties hold:

(1) every base occurring at least once in the sequenceµ1, . . . ,µm−1 occurs at leas
40n2f1(Ωv2) + 20n + 1 times in the sequenceη1, . . . , ηl , wheren is the number of
pairs of bases in equationsΩvi

;
(2) the pathri is ηi -reducing;
(3) every transfer base of some equation of pathr is a transfer base of some equation

pathr ′.

The property of path (43) of being prohibited is algorithmically decidable. Every infi
path (43) contains a prohibited subpath. Indeed, letω be the set of all bases occurring in t
sequenceµ1, . . . ,µm, . . . infinitely many times, and̃ω the set of all bases, that are trans
bases of infinitely many equationsΩvi

. If one cuts out some finite part in the beginni
of this infinite path, one can suppose that all the bases in the sequenceµ1, . . . ,µm, . . .

belong toω and each base that is a transfer base of at least one equation, belongω̃.
Such an infinite path for anyµ ∈ ω contains infinitely many non-intersectingµ-reducing
finite subpaths. Hence it is possible to construct a subpath (44) of this path satisfyi
first two conditions in the definition of a prohibited subpath. Makingr ′ longer, one obtain
a prohibited subpath.

Let T ′(Ωv) be a subtree ofT (Ωv) consisting of the verticesv1 for which the path from
v to v1 in T (Ω) contains neither prohibited subpaths nor verticesv2 with τ ′v2

< τ ′v, except
perhapsv1. So the terminal vertices ofT ′(Ωv) are either verticesv1 such thatτ ′v1

< τ ′v,
or terminal vertices ofT (Ωv). A subtreeT ′(Ωv) can be effectively constructed.T0(Ωv)

is obtained by attaching ofT0(Ωv1) (already constructed by the induction hypothesis
those terminal verticesv1 of T ′(Ωv) for which τ ′v1

< τ ′v. The functions(Ωv) is defined

by (42). Let nowT0(Ω)= T0(Ωv0). This tree is finite by construction.
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5.5.4. Paths corresponding to minimal solutions ofΩ are inT0(Ω)

Notice, that if tp(v) � 6 andv→ w1, . . . , v→ wm is the list of principal outgoing
edges fromv, then the generalized equationsΩw1, . . . ,Ωwm are obtained fromΩv by the
application of several elementary transformations. Denote bye a function that assigns
pair (Ωwi

, H̄ (i)) to the pair(Ωv, H̄ ). For tp(v)= 4,5 this function is identical.
If tp(v)= 15 and there are auxiliary edges from the vertexv, then the carrier baseµ of

the equationΩv intersects∆(µ). For any solutionH̄ of the equationΩv one can construct
solutionH̄ ′ of the equationΩv′ by H ′ρv+1=H [1, β(∆(µ))]. Let e′(Ωv, H̄ )= e(Ωv′ , H̄ ′).

In the beginning of this section we assigned to verticesv of types 12, 15, 2 and suc
that 7� tp(v) � 10 of T (Ω) the groups of automorphismsA(Ωv). Denote by Aut(Ω)

the group of automorphisms ofFR(Ω), generated by all groupsπ(v0, v)A(Ωv)π(v0, v)−1,
v ∈ T0(Ω). (Hereπ(v0, v) is an isomorphism, because tp(v) 
= 1.) We are to formulate th
main technical result of this section. The following proposition states that every min
solution of a generalized equationΩ with respect to the groupA(Ω) either factors through
one of the finite family of proper quotients of the groupFR(Ω) or (in the case of a non
empty parametric part) can be transferred to the parametric part.

Proposition 1. For any solutionH̄ of a generalized equationΩ there exists a termina
vertexw of the treeT0(Ω) having type1 or 2, and a solutionH̄ (w) of a generalized
equationΩw such that:

(1) πH̄ = σπ(v0,w)πH̄ (w)π whereπ is an endomorphism of a free groupF , σ ∈ Aut(Ω);
(2) if tp(w)= 2 and the equationΩw contains non-trivial non-parametric sections, th

there exists a primitive cyclically reduced wordP such thatH̄ (w) is periodic with
respect toP and one of the following conditions holds:
(a) the equationΩw is singular with respect to a periodic structureP(H̄ (w),P ) and

the first minimal replacement can be applied,
(b) it is possible to apply the second minimal replacement and make the fam

closed sections inP empty.

Construct a directed tree with paths from the initial vertex

(
Ω,H̄

)= (Ωv0, H̄
(0)
)→ (

Ωv1, H̄
(1)
)→ ·· ·→ (

Ωvu, H̄
(u)
)→ ·· · (45)

in which thevi are the vertices of the treeT (Ω) in the following way. Letv1= v0 and let
H̄ (1) be some solution of the equationΩ , minimal with respect to the group of automo
phismsA(Ωv0) with the propertyH̄ � H̄ (1).

Let i � 1 and suppose the term(Ωvi
, H̄ (i)) of the sequence (45) has been already c

structed. If 7� tp(vi) � 10 or tp(vi)= 12 and there exists a minimal solution̄H+ of Ωvi

such thatH̄+ < H̄(i), then we setvi+1= vi , H̄ (i+1) = H̄+.

If tp(vi) = 15, vi 
= vi−1 and there are auxiliary edges from vertexvi :vi → w1, . . . ,

vi→wk (the carrier baseµ intersects with its double∆(µ)), then there exists a primitiv
wordP such that

[ ( )]

H(i) 1, β ∆(µ) ≡ P rP1, r � 2, P ≡ P1P2, (46)
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where≡ denotes a graphical equality. In this case the path (45) can be continued
several possible edges ofT (Ω).

For each group of automorphisms assigned to vertices of type 2 in the treesT0(Ωwi
),

i = 1, . . . , k, and non-singular periodic structure including the closed section[1, β(∆(µ)]
of the equationΩvi

and corresponding to solution̄H(i) we replaceH̄ (i) by a solution
H̄ (i)+ with maximal number of short variables (see the definition after Lemma
This collection of short variables can be different for different periodic structures
ther all the variables inH̄ (i)+ are short or there exists a parametric baseλmax of max-
imal length in the covering (37). Suppose there is aµ-reducing path (43) beginning a
vi and corresponding toH̄ (i)+. Let µ1, . . . ,µm be the leading bases of this path. L
H̃ 1 = H(i)+, . . . , H̃ j be solutions of the generalized equations corresponding to the
tices of this path. If for someµi there is an inequalityd(H̃ j [α(µi),α(∆(µi))]) � d(λmax),

we set(Ωvi+1, H̄
(i+1)) = e′(Ωvi

, H̄ (i)) and call the section[1, β(∆(µ))] which becomes
non-active,potentially transferable.

If there is a singular periodic structure in a vertex of type 2 of some treeT0(Ωwi
), i ∈

{1, . . . , k}, including the closed section[1, β(∆(µ)] of the equationΩvi
and corresponding

to the solutionH̄ (i), we also include the possibility(Ωvi+1, H̄
(i+1))= e′(Ωvi

, H̄ (i)).

In all of the other cases we set(Ωvi+1, H̄
(i+1))= e(Ωvi

, H̄ (i)+), whereH̄ (i)+ is a solu-
tion with maximal number of short variables and minimal solution ofΩvi

with respect to
the canonical group of automorphismsPvi

(if it exists). The path (45) ends if tp(vi) � 2.

We will show that in the path (45)vi ∈ T0(Ω). We use induction onτ ′. Supposevi /∈
T0(Ω), and leti0 be the first of such numbers. It follows from the construction ofT0(Ω)

that there existsi1 < i0 such that the path fromvi1 into vi0 contains a subpath prohibite
in the construction ofT2(Ωvi1

). From the minimality ofi0 it follows that this subpath goe
from vi2 (i1 � i2 < i0) to vi0. It cannot be that 7� tp(vi) � 10 or tp(vi)= 12 for all i2 �
i � i1, because there will be two indicesp < q betweeni2 andi0 such thatH̄ (p) = H̄ (q),
and this gives a contradiction, because in this case it must be by constructionvp+1 = vp.
So tp(vi)= 15 (i2 � i � i0).

Suppose we have a subpath (43) corresponding to the fragment

(
Ωv1, H̄

(1)
)→ (

Ωv2, H̄
(2)
)→ ·· ·→ (

Ωvm, H̄ (m)
)→ ·· · (47)

of the sequence (45). Herev1, v2, . . . , vm−1 are vertices of the treeT0(Ω), and for all
verticesvi the edgevi→ vi+1 is principal.

As before, letµi denote the carrier base ofΩvi
, andω= {µ1, . . . ,µm−1}, andω̃ denote

the set of such bases which are transfer bases for at least one equation in (47). Byω1 denote
the set of such basesµ for which eitherµ or ∆(µ) belongs toω ∪ ω̃; by ω2 denote the se
of all the other bases. Let

α(ω)=min
(

min
µ∈ω2

α(µ), j
)
,

wherej is the boundary between active and non-active sections. LetXµ � H [α(µ),β(µ)].

If (Ω, H̄ ) is a member of sequence (47), then denote
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(
H̄
)= α(ω)−1∑

i=1

d(Hi), (48)

ψω

(
H̄
)= ∑

µ∈ω1

d(Xµ)− 2dω

(
H̄
)
. (49)

Every itemhi of the section[1, α(ω)] belongs to at least two bases, and both base
in ω1, henceψω(H̄ ) � 0.

Consider the quadratic part of̃Ωv1 which is situated to the left ofα(ω). The solution
H̄ (1) is minimal with respect to the canonical group of automorphisms correspond
this vertex. By Lemma 32 we have

d1
(
H̄ (1)

)
� f1(Ωv1)d2

(
H̄ (1)

)
. (50)

Using this inequality we estimate the length of the interval participating in the pro
dω(H̄ (1)) from above by a product ofψω and some function depending onf1. This will be
inequality (55). Then we will show that for a prohibited subpath the length of the pa
pating interval must be reduced by more than this figure (equalities (65), (66)). Thi
imply that there is no prohibited subpath in the path (47).

Denote byγi(ω) the number of basesµ ∈ ω1 containinghi . Then

∑
µ∈ω1

d
(
X(1)

µ

)= ρ∑
i=1

d
(
H

(1)
i

)
γi(ω), (51)

whereρ = ρ(Ωv1). Let I = {i | 1 � i � α(ω)− 1 & γi = 2} andJ = {i | 1 � i � α(ω)−
1 & γi > 2}. By (48)

dω

(
H̄ (1)

)=∑
i∈I

d
(
H

(1)
i

)+∑
i∈J

d
(
H

(1)
i

)= d1
(
H̄ (1)

)+∑
i∈J

d
(
H

(1)
i

)
. (52)

Let (λ,∆(λ)) be a pair of quadratic-coefficient bases of the equationΩ̃v1, whereλ belongs
to the non-quadratic part. This pair can appear only from the basesµ ∈ ω1. There are two
types of quadratic-coefficient bases.

Type 1. λ is situated to the left of the boundaryα(ω). Thenλ is formed by items{hi |
i ∈ J } and hence

d(Xλ) �
∑
i∈J

d
(
H

(1)
i

)
.

Thus the sum of the lengthsd(Xλ)+ d(X∆(λ)) for quadratic-coefficient bases

this type is not more than 2n
∑

i∈J d(H
(1)
i ).

Type 2. λ is situated to the right of the boundaryα(ω). The sum of length of the quadrati∑

coefficient bases of the second type is not more than 2ρ

i=α(ω) d(H
(1)
i )γi(ω).
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We have

d2
(
H̄ (1)

)
� 2n

∑
i∈J

d
(
H

(1)
i

)+ 2
ρ∑

i=α(ω)

d
(
H

(1)
i

)
γi(ω). (53)

Now (49) and (51) imply

ψω

(
H̄

(1)
i

)
�
∑
i∈J

d
(
H

(1)
i

)+ ρ∑
i=α(ω)

d
(
H

(1)
i

)
γi(ω). (54)

Inequalities (50), (52), (53), (54) imply

dω

(
H̄ (1)

)
� max

{
ψω

(
H̄ (1)

)(
2nf1(Ωv1)+ 1

)
, f1(Ωv1)

}
. (55)

From the definition of Case 15 it follows that all the wordsH(i)[1, ρi + 1] are the ends
of the wordH(1)[1, ρ1+ 1], that is

H(1)[1, ρ1+ 1] .=UiH
(i)[1, ρi + 1]. (56)

On the other hand basesµ ∈ ω2 participate in these transformations neither as carrier b
nor as transfer bases; henceH(1)[α(ω),ρ1+ 1] is the end of the wordH(i)[1, ρi + 1], that
is

H(i)[1, ρi + 1] .= ViH
(1)
[
α(ω),ρ1+ 1

]
. (57)

So we have

dω

(
H̄ (i)

)− dω

(
H̄ (i+1)

)= d(Vi)− d(Vi+1)= d(Ui+1)− d(Ui)

= d
(
X(i)

µi

)− d
(
X(i+1)

µi

)
. (58)

In particular (49), (58) imply thatψω(H̄ (1))=ψω(H̄ (2))= · · · =ψω(H̄ (m))=ψω. Denote
the number (58) byδi .

Let the path (43) beµ-reducing, that is eitherµ1 = µ andv2 does not have auxiliar
edges andµ occurs in the sequenceµ1, . . . ,µm−1 at least twice, orv2 does have auxiliary
edgesv2→ w1, . . . , v2→ wk and the baseµ occurs in the sequenceµ1, . . . ,µm−1 at
least max1�i�k s(Ωwi

) times. Estimated(Um)=∑m−1
i=1 δi from below. First notice that i

µi1 = µi2 = µ(i1 < i2) andµi 
= µ for i1 < i < i2, then

i2−1∑
δi � d

(
Hi1+1[1, α

(
∆(µi1+1)

)])
. (59)
i=i1
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Indeed, ifi2 = i1 + 1, thenδi1 = d(H(i1)[1, α(∆(µ))] = d(H(i1+1)[1, α(∆(µ))]. If i2 >

i1+ 1, thenµi1+1 
= µ andµ is a transfer base in the equationΩvi1+1. Hence

δi1+1+ d
(
H(i1+2)

[
1, α(µ)

])= d
(
H(i1+1)

[
1, α(µi1+1)

])
.

Now (59) follows from

i2−1∑
i=i1+2

δi � d
(
H(i1+2)

[
1, α(µ)

])
.

So if v2 does not have outgoing auxiliary edges, that is the basesµ2 and∆(µ2) do not
intersect in the equationΩv2; then (59) implies that

m−1∑
i=1

δi � d
(
H(2)

[
1, α(∆µ2)

])
� d

(
X(2)

µ2

)
� d

(
X(2)

µ

)= d
(
X(1)

µ

)− δ1,

which implies that

m−1∑
i=1

δi � 1

2
d
(
X(1)

µ

)
. (60)

Suppose now there are outgoing auxiliary edges from the vertexv2: v2→ w1, . . . ,

v2→wk . The equationΩv1 has some solution. Let

H(2)
[
1, α

(
∆(µ2)

)] .=Q,

andP a word (in the finalh’s) such thatQ
.= P d , thenX

(2)
µ2 andX

(2)
µ are beginnings of the

wordH(2)[1, β(∆(µ2))], which is a beginning ofP∞. DenoteM =max1�j�k s(Ωwj
).

By the construction of (45)we either have

X(2)
µ

.= P rP1, P
.= P1P2, r < M. (61)

or for each baseµi , i � 2, there is an inequalityd(H(i)(α(µi),α(∆(µi)))) � d(λ) and
therefore

d
(
X(2)

µ

)
< Md

(
H(i)

[
α(µi),α

(
∆(µi)

)])
. (62)

Let µi1 = µi2 = µ, i1 < i2, µi 
= µ for i1 < i < i2. If

d
(
X(i1+1)

µi1+1

)
� 2d(P ) (63)

andH(i1+1)[1, ρi1+1+ 1] begins with a cyclic permutation ofP 3, then

( [ ( )]) ( )/

d H(i1+1) 1, α ∆(µi1+1) > d X(2)

µ M.
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Together with (59) this gives

i2−1∑
i=i1

δi > d
(
X(2)

µ

)/
M.

The baseµ occurs in the sequenceµ1, . . . ,µm−1 at leastM times, so either (63) fails fo
somei1 � m− 1 or

∑m−1
i=1 δi(M − 3)d(X

(2)
µ )/M.

If (63) fails, then the inequalityd(X
(i+1)
µi

) � d(X
(i+1)
µi+1 ), and the definition (58) imply

that

i1∑
i=1

δi � d
(
X(1)

µ

)− d
(
X(i1+1)

µi1+1

)
� (M − 2)d

(
X(2)

µ

)/
M;

so everything is reduced to the second case.
Let

m−1∑
i=1

δi � (M − 3)d
(
X(1)

µ

)/
M.

Notice that (59) implies fori1= 1,
∑m−1

i=1 δi � d(Q) � d(P ); so

m−1∑
i=1

δi � max{1,M − 3}d(X(2)
µ

)/
M.

Together with (61) this implies

m−1∑
i=1

δi � 1

5
d
(
X(2)

µ

)= 1

5

(
d
(
X(1)

µ

)− δ1
)
.

Finally,

m−1∑
i=1

δi � 1

10
d
(
X(1)

µ

)
. (64)

Comparing (60) and (64) we can see that for theµ-reducing path (43) inequality (64
always holds.

Suppose now that the path (43) is prohibited; hence it can be represented in th
(44). From definition (49) we have

∑
d
(
X(m)

)
� ψω;
µ∈ω1

µ
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so at least for one baseµ ∈ ω1 the inequalityd(X
(m)
µ ) � 1

2n
ψω holds. BecauseX(m)

µ
.=

(X
(m)
∆(µ))

±1, we can suppose thatµ ∈ ω ∪ ω̃. Let m1 be the length of the pathr1s1 . . . rlsl
in (44). If µ ∈ ω̃ then by the third part of the definition of a prohibited path there ex
m1 � i � m such thatµ is a transfer base ofΩvi

. Hence,

d
(
X(m1)

µi

)
� d

(
X(i)

µi

)
� d

(
X(i)

µ

)
� d

(
X(m)

µ

)
� 1

2n
ψω.

If µ ∈ ω, then takeµ instead ofµi . We proved the existence of a baseµ ∈ ω such that

d
(
X(m1)

µ

)
� 1

2n
ψω. (65)

By the definition of a prohibited path, the inequalityd(X
(i)
µ ) � d(X

(m1)
µ ) (1 � i � m1),

(64), and (65) we obtain

m1−1∑
i=1

δi � max

{
1

20n
ψω,1

}(
40n2f1+ 20n+ 1

)
. (66)

By (58) the sum in the left part of the inequality (66) equalsdω(H̄ (1)) − dω(H̄ (m1));
hence

dω

(
H̄ (1)

)
� max

{
1

20n
ψω,1

}(
40n2f1+ 20n+ 1

)
,

which contradicts (55).
This contradiction was obtained from the supposition that there are prohibited path

in the path (45). Hence (45) does not contain prohibited paths. This implies thatvi ∈ T0(Ω)

for all vi in (45). For alli, vi→ vi+1 is an edge of a finite tree. Hence the path (45) is fin
Let (Ωw, H̄w) be the final term of this sequence. We show that(Ωw, H̄w) satisfies all the
properties formulated in the lemma.

The first property is obvious.
Let tp(w) = 2 and letΩw have non-trivial non-parametric part. It follows from t

construction of (45) that if[j, k] is a non-active section forΩvi
then H(i)[j, k] .=

H(i+1)[j, k] .= · · · .= H(w)[j, k]. Hence (46) and the definition ofs(Ωv) imply that the
word h1 . . . hρw can be subdivided into subwordsh[i1, i2], . . . , h[ik−1, ik], such that for
anya eitherH(w) has length 1, orh[ia, ia+1] does not participate in basic and coefficie
equations, orH(w)[ia, ia+1] can be written as

H(w)[ia, ia+1] .= P r
a P ′a, Pa

.= P ′aP ′′a , r � max
〈P,R〉

max
{
ρwf2(Ωw,P,R),f4

(
Ω ′w

)}
,

(67)

wherePa is a primitive word, and〈P,R〉 runs through all the periodic structures ofΩ̃w
such that either one of them is singular or for a solution with maximal number of short
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variables with respect to the group of extended automorphisms all the closed sectio
potentially transferable. The proof of Proposition 1 will be completed after we prov
following statement.

Lemma 33. If tp(w)= 2 and every closed section belonging to a periodic structureP is
potentially transferable(the definition is given in the construction ofT0 in Case15), one
can apply the second minimal replacement and get a finite number(depending on periodic
structures containing this section in the vertices of type2 in the treesT0(wi), i = 1, . . . ,m)

of possible generalized equations containing the same closed sections not fromP and not
containing closed sections fromP .

Proof. From the definition of potentially transferable section it follows that after fi
number of transformations depending onf4(Ω

′
u,P), whereu runs through the vertices o

type 2 in the treesT0(wi), i = 1, . . . ,m, we obtain a cycle that is shorter than or eq
to d(λmax). This cycle is exactlyh[α(µi),α(∆(µi)] for the baseµi in the µ-reducing
subpath. The rest of the proof of Lemma 33 is a repetition of the proof of Lemma 29�
5.5.5. The decomposition treeTdec(Ω)

We can define now a decomposition treeTdec(Ω). To obtainTdec(Ω) we add some
edges to the terminal vertices of type 2 ofT0(Ω). Let v be a vertex of type 2 inT0(Ω).
If there is no periodic structures inΩv then this is a terminal vertex ofTdec(Ω). Suppose
there exists a finite number of combinations of different periodic structuresP1, . . . ,Ps

in Ωv . If somePi is singular, we consider a generalized equationΩu(P1,...,Ps ) obtained
from Ωv(P1, . . . ,Ps) by the first minimal replacement corresponding toPi . We also draw
the edgev→ u = u(P1, . . . ,Ps). This vertexu is a terminal vertex ofTdec(Ω). If all
P1, . . . ,Ps in Ωv are not singular, we can suppose that for each periodic structurePi with
periodPi some values of variables inPi are shorter than 2|Pi | and values of some othe
variables are shorter thanf3(Ωv)|Pi |, wheref3 is the function from Lemma 27. Then w
apply the second minimal replacement. The resulting generalized equationsΩu1, . . . ,Ωut

will have empty non-parametric part. We draw the edgesv→ u1, . . . , v→ ut in Tdec(Ω).
Verticesu1, . . . , ut are terminal vertices ofTdec(Ω).

5.6. The solution treeTsol(Ω,Λ)

Let Ω =Ω(H) be a generalized equation in variablesH with the set of basesBΩ =
B ∪Λ. Let Tdec(Ω) be the tree constructed in Section 5.5.5 for a generalized equatiΩ

with parametersΛ.
Recall that in a leaf-vertexv of Tdec(Ω) we have the coordinate groupFR(Ωv) which

is a proper homomorphic image ofFR(Ω). We define a new transformationRv (we call
it leaf-extension) of the treeTdec(Ω) at the leaf vertexv. We take the union of two tree
Tdec(Ω) andTdec(Ωv) and identify the verticesv in both trees (i.e., we extend the tr
Tdec(Ω) by gluing the treeTdec(Ωv) to the vertexv). Observe that if the equationΩv

has non-parametric non-constant sections (in this event we callv a terminal vertex), then
Tdec(Ωv) consists of a single vertex, namelyv.

Now we construct a solution treeTsol(Ω) by induction starting atTdec(Ω). Let v be

a leaf non-terminal vertex ofT (0) = Tdec(Ω). Then we apply the transformationRv and
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obtain a new treeT (1) =Rv(Tdec(Ω)). If there exists a leaf non-terminal vertexv1 of T (1),
then we apply the transformationRv1, and so on. By induction we construct a stric
increasing sequence of trees

T (0) ⊂ T (1) ⊂ · · · ⊂ T (i) ⊂ · · · . (68)

This sequence is finite. Indeed, suppose to the contrary that the sequence is infin
hence the unionT (∞) of this sequence is an infinite tree in which every vertex has a fi
degree. By Konig’s lemma there is an infinite branchB in T (∞). Observe that along an
infinite branch inT (∞) one has to encounter infinitely many proper epimorphisms.
contradicts the fact thatF is equationally Noetherian.

Denote the union of the sequence of the trees (68) byTsol(Ω,Λ). We callTsol(Ω,Λ)

the solution tree ofΩ with parametersΛ. Recall that with every edgee in Tdec(Ω) (as
well as inTsol(Ω,Λ)) with the initial vertexv and the terminal vertexw we associate a
epimorphism

πe :FR(Ωv)→ FR(Ωv).

It follows that every connected (directed) pathp in the graph gives rise to a compos
tion of homomorphisms which we denote byπp. SinceTsol(Ω,Λ) is a tree the pathp
is completely defined by its initial and terminal verticesu,v; in this case we sometime
write πu,v instead ofπp. Let πv be the homomorphism corresponding to the path fr
the initial vertexv0 to a given vertexv, we call it thecanonical epimorphismfrom FR(Ω)

ontoFR(Ωv).
Also, with some verticesv in the treeTdec(Ω), as well as in the treeTsol(Ω,Λ), we

associate groups of canonical automorphismsA(Ωv) or extended automorphisms̄A(Ωv)

of the coordinate groupFR(Ωv) which, in particular, fix all variables in the non-active p
of Ωv . We can suppose that the groupĀ(Ωv) is associated to every vertex, but for so
vertices it is trivial. Observe also, that canonical epimorphisms map parametric par
parametric parts (i.e., subgroups generated by variables in parametric parts).

Recall that writing(Ω,U) means thatU is a solution ofΩ . If (Ω,U) andµ ∈ BΩ , then
by µU we denote the element

µU = [uα(µ) . . . uβ(µ)−1]ε(µ). (69)

Let BU = {µU | µ ∈ B} andΛU = {µU | µ ∈Λ}. We refer to these sets as the set of val
of bases fromB and the set of values of parameters fromΛ with respect to the solutionU .
Notice, that the valueµU is given in (69) as a value of one fixed word mapping

Pµ(H)= [hα(µ) . . . hβ(µ)−1]ε(µ).

In vector notation we can write that

BU = PB(U), ΛU = PΛ(U),
wherePB(H) andPΛ(H) are corresponding word mappings.
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The following result explains the name of the treeTsol(Ω,Λ).

Theorem 5. Let Ω = Ω(H,Λ) be a generalized equation in variablesH with parame-
ters Λ. Let Tsol(Ω,Λ) be the solution tree forΩ with parameters. Then the followin
conditions hold.

(1) For any solutionU of the generalized equationΩ there exists a pathv0, v1, . . . , vn = v

in Tsol(Ω,Λ) from the root vertexv0 to a terminal vertexv, a sequence of canonic
automorphismsσ = (σ0, . . . , σn), σi ∈ A(Ωvi

), and a solutionUv of the generalized
equationΩv such that the solutionU (viewed as a homomorphismFR(Ω)→ F) is
equal to the following composition of homomorphisms

U =Φσ,Uv = σ0πv0,v1σ1 . . . πvn−1,vnσnUv. (70)

(2) For any pathv0, v1, . . . , vn = v in Tsol(Ω,Λ) from the root vertexv0 to a terminal
vertexv, a sequence of canonical automorphismsσ = (σ0, . . . , σn), σi ∈A(Ωvi

), and
a solutionUv of the generalized equationΩv , Φσ,Uv gives a solution of the grou
equationΩ∗ = 1; moreover, every solution ofΩ∗ = 1 can be obtained this way.

(3) For each terminal vertexv in Tsol(Ω,Λ) there exists a word mappingQv(Hv) such
that for any solutionUv of Ωv and any solutionU =Φσ,Uv from (70) the values of the
parametersΛ with respect toU can be written asΛU =Qv(Uv) (i.e., these values d
not depend onσ) and the wordQv(Uv) is reduced as written.

Proof. Statements (1) and (2) follow from the construction of the treeTsol(Ω,Λ). To ver-
ify (3) we need to invoke the argument above this theorem which claims that the can
automorphisms associated with generalized equations inTsol(Ω,Λ) fix all variables in the
parametric part and, also, that the canonical epimorphisms map variables from th
metric part into themselves.�

The set of homomorphisms having form (70) is called afundamental sequence.

Theorem 6. For any finite systemS(X)= 1 over a free groupF , one can find effectivel
a finite family of non-degenerate triangular quasi-quadratic systemsU1, . . . ,Uk and word
mappingspi :VF (Ui)→ VF (S) (i = 1, . . . , k) such that for everyb ∈ VF (S) there existsi
andc ∈ VF (Ui) for whichb= pi(c), i.e.,

VF (S)= p1
(
VF (U1)

)∪ · · · ∪ pk

(
VF (Uk)

)
and all setspi(VF (Ui)) are irreducible; moreover, every irreducible component ofVF (S)

can be obtained as a closure of somepi(VF (Ui)) in the Zariski topology.

Proof. Each solution of the systemS(X) = 1 can be obtained asX = pi(Yi), whereYi

are variables ofΩ = Ωi for a finite number of generalized equations. We have to s
that all solutions ofΩ∗ are solutions of some NTQ system. We can use Theorem 5 wi

parameters. In this caseΩv is an empty equation with non-empty set of variables. In other



O. Kharlampovich, A. Myasnikov / Journal of Algebra 290 (2005) 1–203 81

e

rtex
nsions

vertex
ge

e bound-

l-

f
.

that
ses
l au-

h such

se that
ugated
ns by
a

c-
wordsFR(Ωv) = F ∗ F(h1, . . . , hρ). To each of the branches ofTsol we assign an NTQ
system from the formulation of the theorem. LetΩw be a leaf vertex inTdec. ThenFR(Ωw)

is a proper quotient ofFR(Ω). Consider the pathv0, v1, . . . , vn = w in Tdec(Ω) from the
root vertexv0 to a terminal vertexw. All the groupsFR(Ωvi

) are isomorphic. There are th
following four possibilities.

(1) tp(vn−1) = 2. In this case there is a singular periodic structure onΩvn−1. By
Lemma 22,FR(Ωvn−1) is a fundamental group of a graph of groups with one ve
group K , some free abelian vertex groups, and some edges defining HNN exte
of K . Recall that making the first minimal replacement we first replacedFR(Ωvn−1) by a
finite number of proper quotients in which the edge groups corresponding to abelian
groups and HNN extensions are maximal cyclic inK . Extend the centralizers of the ed
groups ofΩvn−1 corresponding to HNN extensions by stable letterst1, . . . , tk . This new
group that we denote byN is the coordinate group of a quadratic equation overFR(Ωw)

which has a solution inFR(Ωw).
In all the other cases tp(vn−1) 
= 2.
(2) There were no auxiliary edges from verticesv0, v1, . . . , vn = w, and if one of

Cases 7–10 appeared at one of these vertices, then it only appeared a bounded (th
ary depends onΩv0) number of times in the sequence. In this case we replaceFR(Ω) by
FR(Ωw).

(3) FR(Ωw) is a term in a free decomposition ofFR(Ωvn−1) (Ωw is a kernel of a genera
ized equationΩvn−1). In this case we also considerFR(Ωw) instead ofFR(Ω).

(4) For somei, tp(vi) = 12 and the pathvi, . . . , vn = w does not contain vertices o
types 7–10, 12 or 15. In this caseFR(Ω) is the coordinate group of a quadratic equation

(5) The pathv0, v1, . . . , vn = w contains vertices of type 15. Supposevij , . . . ,

vij+kj
, j = 1, . . . , l, are all blocks of consecutive vertices of type 15. This means

tp(vij+kj+1) 
= 15 andij + kj + 1 < ij+1. Suppose also that none of the previous ca
takes place. To eachvij we assigned a quadratic equation and a group of canonica
tomorphisms corresponding to this equation. Going along the pathvij , . . . , vij+kj

, we
take minimal solutions corresponding to some non-singular periodic structures. Eac
structure corresponds to a representation of

FR(Ωvij
)

as an HNN extension. As in the case of a singular periodic structure, we can suppo
the edge groups corresponding to HNN extensions are maximal cyclic and not conj
in K . Extend the centralizers of the edge groups corresponding to HNN extensio
stable letterst1, . . . , tk . Let N be the new group. ThenN is the coordinate group of
quadratic system of equations over

FR(Ωvij+kj+1).

Repeating this construction for eachj = 1, . . . , l, we construct NTQ system overFR(Ωw).
SinceFR(Ωw) is a proper quotient ofFR(Ω), the theorem can now be proved by indu
tion. �
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Theorem 7. For any finitely generated group G and a free groupF the setHom(G,F )

[HomF (G,F )] can be effectively described by a finite rooted tree oriented from the
all vertices except for the root vertex are labelled by coordinate groups of genera
equations. Edges from the root vertex correspond to a finite number of homomorp
from G into coordinate groups of generalized equations. Leaf vertices are labelled b
groups. To each vertex group we assign the group of canonical automorphisms. Eac
(except for the edges from the root) in this tree is labelled by a quotient map, and all qu
tients are proper. Every homomorphism from G to F can be written as a composition
homomorphisms corresponding to edges, canonical automorphisms of the groups a
to vertices, and some homomorphism(retract) from a free group in a leaf vertex intoF .

5.7. Cut equations

In the proof of the implicit function theorems it will be convenient to use a modifica
of the notion of a generalized equation. The following definition provides a framewor
such a modification.

Definition 21. A cut equationΠ = (E,M,X,fM,fX) consists of a set of intervalsE , a set
of variablesM , a set of parametersX, and two labeling functions

fX :E→ F [X], fM :E→ F [M].

For an intervalσ ∈ E the imagefM(σ)= fM(σ)(M) is a reduced word in variablesM±1

and constants fromF , we call it apartition of fX(σ ).

Sometimes we writeΠ = (E, fM,fX) omittingM andX.

Definition 22. A solution of a cut equationΠ = (E, fM,fX) with respect to anF -homo-
morphismβ :F [X] → F is anF -homomorphismα :F [M] → F such that: (1) for every
µ ∈M α(µ) is a reduced non-empty word; (2) for every reduced wordfM(σ)(M) (σ ∈ E)

the replacementm→ α(m) (m ∈M) results in a wordfM(σ)(α(M)) which is a reduced
word as written and such thatfM(σ)(α(M)) is graphically equal to the reduced form
β(fX(σ )); in particular, the following diagram is commutative.

E
fMfX

F (X)

β

F (M)

α

F

If α :F [M] → F is a solution of a cut equationΠ = (E, fM,fX) with respect to an

F -homomorphismβ :F [X] → F , then we write(Π,β,α) and refer toα as asolution of
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Π moduloβ. In this event, for a givenσ ∈ E we say thatfM(σ)(α(M)) is apartition of
β(fX(σ )). Sometimes we also consider homomorphismsα :F [M]→ F , for which the di-
agram above is still commutative, but cancellation may occur in the wordsfM(σ)(α(M)).
In this event we refer toα as agroupsolution ofΠ with respect toβ.

Lemma 34. For a generalized equationΩ(H) one can effectively construct a cut equati
ΠΩ = (E, fX,fM) such that the following conditions hold:

(1) X is a partition of the whole interval[1, ρΩ ] into disjoint closed subintervals;
(2) M contains the set of variablesH ;
(3) for any solutionU = (u1, . . . , uρ) of Ω the cut equationΠΩ has a solutionα modulo

the canonical homomorphismβU :F(X)→ F (βU(x)= uiui+1 . . . uj wherei, j are,
correspondingly, the left and the right endpoints of the intervalx);

(4) for any solution(β,α) of the cut equationΠΩ the restriction ofα onH gives a solution
of the generalized equationΩ .

Proof. We begin with defining the setsX andM . Recall that a closed interval ofΩ is a
union of closed sections ofΩ . Let X be an arbitrary partition of the whole interval[1, ρΩ ]
into closed subintervals (i.e., any two intervals inX are disjoint and the union ofX is the
whole interval[1, ρΩ ]).

Let B be a set of representatives of dual bases ofΩ , i.e., for every baseµ of Ω either
µ or ∆(µ) belongs toB, but not both. PutM =H ∪B.

Now let σ ∈ X. We denote byBσ the set of all bases overσ and byHσ the set of all
items inσ . PutSσ = Bσ ∪Hσ . For e ∈ Sσ let s(e) be the interval[i, j ], wherei < j are
the endpoints ofe. A sequenceP = (e1, . . . , ek) of elements fromSσ is called apartition
of σ if s(e1) ∪ · · · ∪ s(ek)= σ ands(ei) ∩ s(ej )= ∅ for i 
= j . Let Partσ be the set of al
partitions ofσ . Now put

E = {P | P ∈ Partσ , σ ∈X}.

Then for everyP ∈ E there exists one and only oneσ ∈X such thatP ∈ Partσ . Denote this
σ by fX(P ). The mapfX :P → fX(P ) is a well-defined function fromE into F(X).

Each partitionP = (e1, . . . , ek) ∈ Partσ gives rise to a wordwP (M) = w1 . . .wk as
follows. If ei ∈Hσ thenwi = ei . If ei = µ ∈ Bσ thenwi = µε(µ). If ei = µ and∆(µ) ∈ Bσ

thenwi = ∆(µ)ε(µ). The mapfM(P ) = wP (M) is a well-defined function fromE into
F(M).

Now setΠΩ = (E, fX,fM). It is not hard to see from the construction that the
equationΠΩ satisfies all the required properties. Indeed, (1) and (2) follow directly f
the construction.

To verify (3), let us consider a solutionU = (u1, . . . , uρΩ ) of Ω . To define correspond
ing functionsβU andα, observe that the functions(e) (see above) is defined for eve
e ∈X ∪M . Now for σ ∈X putβU(σ )= ui . . . uj , wheres(σ )= [i, j ], and form ∈M put
α(m)= ui . . . uj , wheres(m)= [i, j ]. Clearly,α is a solution ofΠΩ moduloβ.

To verify (4) observe that ifα is a solution ofΠΩ moduloβ, then the restriction o

α onto the subsetH ⊂M gives a solution of the generalized equationΩ . This follows
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from the construction of the wordswp and the fact that the wordswp(α(M)) are reduced
as written (see definition of a solution of a cut equation). Indeed, if a baseµ occurs in a
partitionP ∈ E , then there is a partitionP ′ ∈ E which is obtained fromP by replacingµ by
the sequencehi . . . hj . Since there is no cancellation in wordswP (α(M)) andwP ′(α(M)),
this implies thatα(µ)ε(µ) = α(hi . . . hj ). This shows thatαH is a solution ofΩ . �
Theorem 8. Let S(X,Y,A))= 1 be a system of equations overF = F(A). Then one can
effectively construct a finite set of cut equations

CE(S)= {Πi

∣∣Πi = (Ei , fXi
, fMi

), i = 1, . . . , k
}

and a finite set of tuples of words{Qi(Mi) | i = 1, . . . , k} such that:

(1) for every equationΠi = (Ei , fXi
, fMi

) ∈ CE(S), one hasXi =X andfXi
(Ei )⊂X±1;

(2) for any solution(U,V ) of S(X,Y,A) = 1 in F(A), there exists a numberi and a
tuple of wordsPi,V such that the cut equationΠi ∈ CE(S) has a solutionα :Mi→ F

with respect to theF -homomorphismβU :F [X] → F which is induced by the ma
X→ U . Moreover,U =Qi(α(Mi)), the wordQi(α(Mi)) is reduced as written, an
V = Pi,V (α(Mi));

(3) for anyΠi ∈ CE(S) there exists a tuple of wordsPi,V such that for any solution(group
solution) (β,α) of Πi the pair(U,V ), whereU =Qi(α(Mi)) andV = Pi,V (α(Mi)),

is a solution ofS(X,Y )= 1 in F .

Proof. Let S(X,Y ) = 1 be a system of equations over a free groupF . In Section 4.3
we have constructed a set of initial parameterized generalized equationsGEpar(S) =
{Ω1, . . . ,Ωr} for S(X,Y ) = 1 with respect to the set of parametersX. For eachΩ ∈
GEpar(S) in Section 5.6 we constructed the finite treeTsol(Ω) with respect to parame
tersX. Observe that parametric part[jv0, ρv0] in the root equationΩ = Ωv0 of the tree
Tsol(Ω) is partitioned into a disjoint union of closed sections corresponding toX-bases
and constant bases (this follows from the construction of the initial equations in th
GEpar(S)). We label every closed sectionσ corresponding to a variablex ∈X±1 by x, and
every constant section corresponding to a constanta by a. Due to our construction of th
treeTsol(Ω) moving along a branchB from the initial vertexv0 to a terminal vertexv, we
transfer all the bases from the active and non-active parts into parametric parts until
tually, in Ωv the whole interval consists of the parametric part. Observe also that, m
alongB in the parametric part, we neither introduce new closed sections nor delet
All we do is we split (sometimes) an item in a closed parametric section into two new
In any event we keep the same label of the section.

Now for a terminal vertexv in Tsol(Ω) we construct a cut equationΠ ′v = (Ev, fXv , fMv )

as in Lemma 34 taking the set of all closed sections ofΩv as the partitionXv . The set of
cut equations

CE′(S)= {Π ′v ∣∣Ω ∈ GEpar(S), v ∈ VTerm
(
Tsol(Ω)

)}
satisfies all the requirements of the theorem exceptXv might not be equal toX. To satisfy

this condition we adjust slightly the equationsΠ ′v .
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To do this, we denote byl :Xv→X±1∪A±1 the labelling function on the set of close
sections ofΩv . PutΠv = (Ev, fX,fMv ) wherefX is the composition offXv andl. The set
of cut equations

CE(S)= {Πv

∣∣Ω ∈ GEpar(S), v ∈ VTerm
(
Tsol(Ω)

)}
satisfies all the conditions of the theorem. This follows from Theorem 5 and
Lemma 34. Indeed, to satisfy (3) one can take the wordsPi,V that correspond to a minima
solution ofΠi , i.e., the wordsPi,V can be obtained from a given particular way to trans
all bases fromY -part ontoX-part. �

The next result shows that for every cut equationΠ one can effectively and canonical
associate a generalized equationΩΠ .

For every cut equationΠ = (E,X,M,fX,fM) one can canonically associate a gen
alized equationΩΠ(M,X) as follows. Consider the following word

V = fX(σ1)fM(σ1) . . . fX(σk)fM(σk).

Now we are going to mimic the construction of the generalized equation in Lemm
The set of boundariesBD of ΩΠ consists of positive integers 1, . . . , |V | + 1. The set of
basesBSis union of the following sets.

(a) Every letterµ in the wordV . LettersX±1 ∪M±1 are variable bases, for every tw
different occurrencesµε1,µε2 of a letterµ ∈X±1∪M±1 in V we say that these bas
are dual and they have the same orientation ifε1ε2= 1, and different orientation oth
erwise. Each occurrence of a lettera ∈A±1 provides a constant base with the labea.
Endpoints of these bases correspond to their positions in the wordV (see Lemma 14)

(b) Every pair of subwordsfX(σi), fM(σi) provides a pair of dual basesλi , ∆(λi), the
baseλi is located above the subwordfX(σi), and∆(λi) is located abovefM(σi) (this
defines the endpoints of the bases).

Informally, one can visualize the generalized equationΩΠ as follows. Let E =
{σ1, . . . , σk} and letE ′ = {σ ′ | σ ∈ E} be another disjoint copy of the setE . Locate in-
tervals fromE ∪ E ′ on a segmentI of a straight line from left to the right in the followin
orderσ1, σ

′
1, . . . , σk, σ

′
k; then put bases overI according to the wordV . The next resul

summarizes the discussion above.

Lemma 35. For every cut equationΠ = (E,X,M,fx,fM), one can canonically asso
ciate a generalized equationΩΠ(M,X) such that ifαβ :F [M] → F is a solution of the
cut equationΠ , then the mapsα :F [M] → F and β :F [X] → F give rise to a solution
of the group equation(not generalized!) Ω∗Π = 1 in such a way that for everyσ ∈ E
fM(σ)(α(M)) is a reduced word which is graphically equal toβ(fX(σ )(X)), and vice

versa.



86 O. Kharlampovich, A. Myasnikov / Journal of Algebra 290 (2005) 1–203

s of
6. Definitions and elementary properties of liftings

In this section we give necessary definitions for the further discussion of lifting
equations and inequalities into coordinate groups.

Let G be a group and letS(X) = 1 be a system of equations overG. Recall that by
GS we denote the quotient groupG[X]/ncl(S), where ncl(S) is the normal closure ofS
in G[X]. In particular,GR(S) =G[X]/R(S) is the coordinate group defined byS(X)= 1.
The radicalR(S) can be described as follows. Consider a set ofG-homomorphisms

ΦG,S =
{
φ ∈HomG

(
G[S],G) ∣∣ φ(S)= 1

}
.

Then

R(S)=
{⋂

φ∈ΦG,S
kerφ, if ΦG,S 
= ∅,

G[X], otherwise.

Now we put these definitions in a more general framework. LetH andK beG-groups
andM ⊂H . Put

ΦK,M =
{
φ ∈HomG(H,K)

∣∣ φ(M)= 1
}
.

Then the following subgroup is termed theG-radical ofM with respect toK :

RadK(M)=
{⋂

φ∈ΦK,M
kerφ, if ΦK,M 
= ∅,

G[X], otherwise.

Sometimes, to emphasize thatM is a subset ofH , we write RadK(M,H). Clearly, if
K =G, thenR(S)=RadG(S,G[X]).

Let

H ∗K =H/RadK(1).

ThenH ∗K is either aG-group or trivial. IfH ∗K 
= 1, then it isG-separated byK . In the case
K =G we omitK in the notation above and simply writeH ∗. Notice that(

H/ncl(M)
)∗
K
�H/RadK(M),

in particular,(GS)∗ =GR(S).

Lemma 36. Let α :H1→H2 be aG-homomorphism and supposeΦ = {φ :H2→K} be
a separating family ofG-homomorphisms. Then

kerα =
⋂{

ker(α ◦ φ)
∣∣ φ ∈Φ

}
.

Proof. Supposeh ∈H1 andh /∈ ker(α). Thenα(h) 
= 1 in H2. Hence there existsφ ∈ Φ

such thatφ(α(h)) 
= 1. This shows that kerα ⊃⋂{ker(α ◦φ) | φ ∈Φ}. The other inclusion

is obvious. �
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Lemma 37. LetH1, H2, andK beG-groups.

(1) Let α :H1→ H2 be aG-homomorphism and letH2 be G-separated byK . If M ⊂
kerα, thenRadK(M)⊆ kerα.

(2) EveryG-homomorphismφ :H1→H2 gives rise to a unique homomorphism

φ∗ : (H1)
∗
K→ (H2)

∗
K

such thatη2 ◦ φ = φ∗ ◦ η1, whereηi :Hi→H ∗i is the canonical epimorphism.

Proof. (1) We have

RadK(M,H1)=
⋂{

kerφ
∣∣ φ :H1→G K ∧ φ(M)= 1

}
⊆
⋂{

ker(α ◦ β)
∣∣ β :H2→G K

}= kerα.

(2) Letα :H1→ (H2)
∗
K be the composition of the following homomorphisms

H1
φ→H2

η2→ (H2)
∗
K.

Then by assertion (1), RadK(1,H1) ⊆ kerα, thereforeα induces the canonicalG-homo-
morphismφ∗ : (H1)

∗
K→ (H2)

∗
K . �

Lemma 38.

(1) The canonical mapλ :G→GS is an embedding⇔ S(X)= 1 has a solution in som
G-groupH .

(2) The canonical mapµ :G→ GR(S) is an embedding⇔ S(X) = 1 has a solution in
someG-groupH which isG-separated byG.

Proof. (1) If S(x1, . . . , xm)= 1 has a solution(h1, . . . , hm) in someG-groupH , then the
G-homomorphismxi → hi (i = 1, . . . ,m) from G[x1, . . . , xm] into H induces a homo
morphismφ :GS → H . SinceH is a G-group all non-trivial elements fromG are also
non-trivial in the factor-groupGS , thereforeλ :G→GS is an embedding. The converse
obvious.

(2) Let S(x1, . . . , xm) = 1 have a solution(h1, . . . , hm) in someG-groupH which is
G-separated byG. Then there exists the canonicalG-homomorphismα :GS→H defined
as in the proof of the first assertion. HenceR(S) ⊆ kerα by Lemma 37, andα induces
a homomorphism fromGR(S) into H , which is monic onG. ThereforeG embeds into
GR(S). The converse is obvious.�
Now we apply Lemma 37 to coordinate groups of non-empty algebraic sets.
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Lemma 39. Let subsetsS and T from G[X] define non-empty algebraic sets in
group G. Then everyG-homomorphismφ :GS → GT gives rise to aG-homomorphism
φ∗ :GR(S)→GR(T ).

Proof. The result follows from Lemmas 37 and 38.�
Now we are in a position to give the following

Definition 23. Let S(X)= 1 be a system of equations over a groupG which has a solution
in G. We say that a system of equationsT (X,Y )= 1 is compatible withS(X)= 1 overG
if for every solutionU of S(X) = 1 in G the equationT (U,Y ) = 1 also has a solutio
in G, i.e., the algebraic setVG(S) is a projection of the algebraic setVG(S ∪ T ).

The next proposition describes compatibility of two equations in terms of their co
nate groups.

Proposition 2. LetS(X)= 1 be a system of equations over a groupG which has a solution
in G. ThenT (X,Y ) = 1 is compatible withS(X) = 1 over G if and only if GR(S) is
canonically embedded intoGR(S∪T ), and everyG-homomorphismα :GR(S)→G extends
to aG-homomorphismsα′ :GR(S∪T )→G.

Proof. Suppose first thatT (X,Y ) = 1 is compatible withS(X) = 1 overG and suppose
thatVG(S) 
= ∅. The identity mapX→X gives rise to aG-homomorphism

λ :GS→GS∪T

(notice that bothGS andGS∪T areG-groups by Lemma 38), which by Lemma 39 induc
aG-homomorphism

λ∗ :GR(S)→GR(S∪T ).

We claim thatλ∗ is an embedding. To show this we need to prove first the statement
the extensions of homomorphisms. Letα :GR(S)→G be an arbitraryG-homomorphism
It follows thatα(X) is a solution ofS(X)= 1 in G. SinceT (X,Y )= 1 is compatible with
S(X)= 1 overG, there exists a solution, sayβ(Y ), of T (α(X),Y )= 1 in G. The map

X→ α(X), Y → β(Y )

gives rise to aG-homomorphismG[X,Y ] → G, which induces aG-homomorphism
φ :GS∪T →G. By Lemma 39,φ induces aG-homomorphism
φ∗ :GR(S∪T )→G.
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Clearly,φ∗ makes the following diagram to commute.

GR(S)

α

λ∗
GR(S∪T )

φ∗

G

Now to prove thatλ∗ is an embedding, observe thatGR(S) is G-separated byG. Therefore
for every non-trivialh ∈GR(S) there exists aG-homomorphismα :GR(S)→G such that
α(h) 
= 1. But thenφ∗(λ∗(h)) 
= 1 and consequentlyh /∈ kerλ∗. The converse statement
obvious. �

Let S(X)= 1 be a system of equations overG and supposeVG(S) 
= ∅. The canonica
embeddingX→G[X] induces the canonical map

µ :X→GR(S).

We are ready to formulate the main definition.

Definition 24. Let S(X) = 1 be a system of equations overG with VG(S) 
= ∅ and let
µ :X → GR(S) be the canonical map. Let a systemT (X,Y ) = 1 be compatible with
S(X)= 1 overG. We say thatT (X,Y )= 1 admits a lift to a generic point ofS = 1 overG
(or, shortly,S-lift over G) if T (Xµ,Y ) = 1 has a solution inGR(S) (hereY are variables
andXµ are constants fromGR(S)).

Lemma 40. LetT (X,Y )= 1 be compatible withS(X)= 1 overG. If T (X,Y )= 1 admits
an S-lift, then the identity mapY → Y gives rise to a canonicalGR(S)-epimorphism from
GR(S∪T ) onto the coordinate group ofT (Xµ,Y )= 1 overGR(S):

ψ∗ :GR(S∪T )→GR(S)[Y ]/RadGR(S)

(
T
(
Xµ,Y

))
.

Moreover, every solutionU ofT (Xµ,Y )= 1 in GR(S) gives rise to aGR(S)-homomorphism
φU :GR(S∪T )→GR(S), whereφU(Y )=U .

Proof. Observe that the following chain of isomorphisms hold:

GR(S∪T ) �G G[X][Y ]/RadG(S ∪ T )�G G[X][Y ]/RadG
(
RadG

(
S,G[X])∪ T

)
�G

(
G[X][Y ]/ncl

(
RadG

(
S,G[X])∪ T

))∗ �G

(
GR(S)[Y ]/ncl

(
T
(
Xµ,Y

)))∗
.

Denote byGR(S) the canonical image ofGR(S) in (GR(S)[Y ]/ncl(T (Xµ,Y )))∗.
Since RadGR(S)

(T (Xµ,Y )) is a normal subgroup inGR(S)[Y ] containingT (Xµ,Y )

there exists a canonicalG-epimorphism( ( )) ( ( ))

ψ :GR(S)[Y ]/ncl T Xµ,Y →GR(S)[Y ]/RadGR(S)

T Xµ,Y .
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By Lemma 37 the homomorphismψ gives rise to a canonicalG-homomorphism

ψ∗ :
(
GR(S)[Y ]/ncl

(
T
(
Xµ,Y

)))∗ → (
GR(S)[Y ]/RadGR(S)

(
T
(
Xµ,Y

)))∗
.

Notice that the groupGR(S)[Y ]/RadGR(S)
(T (Xµ,Y )) is the coordinate group of the syste

T (Xµ,Y ) = 1 overGR(S) and this system has a solution inGR(S). Therefore this group
is aGR(S)-group and it isGR(S)-separated byGR(S). Now sinceGR(S) is the coordinate
group of S(X) = 1 over G and this system has a solution inG, we see thatGR(S) is
G-separated byG. It follows that the groupGR(S)[Y ]/RadGR(S)

(T (Xµ,Y )) is G-separated
by G. Therefore

GR(S)[Y ]/RadGR(S)

(
T
(
Xµ,Y

))= (GR(S)[Y ]/RadGR(S)

(
T
(
Xµ,Y

)))∗
.

Now we can see that

ψ∗ :GR(S∪T )→GR(S)[Y ]/RadGR(S)

(
T
(
Xµ,Y

))
is aG-homomorphism which maps the subgroupGR(S) from GR(S∪T ) onto the subgroup
GR(S) in GR(S)[Y ]/RadGR(S)

(T (Xµ,Y )).
This shows thatGR(S) �G GR(S) andψ∗ is aGR(S)-homomorphism. IfU is a solution

of T (Xµ,Y )= 1 in GR(S), then there exists aGR(S)-homomorphism

φU :GR(S)[Y ]/RadGR(S)

(
T
(
Xµ,Y

))→GR(S).

such thatφU(Y )=U . Obviously, composition ofφU andψ∗ gives aGR(S)-homomorphism
from GR(S∪T ) into GR(S), as desired. �

The next result characterizes lifts in terms of the coordinate groups of the correspo
equations.

Proposition 3. Let S(X)= 1 be an equation overG which has a solution inG. Then for
an arbitrary equationT (X,Y )= 1 overG the following conditions are equivalent:

(1) T (X,Y )= 1 is compatible withS(X)= 1 andT (X,Y )= 1 admitsS-lift over G;
(2) GR(S) is a retract ofGR(S,T ), i.e.,GR(S) is a subgroup ofGR(S,T ) and there exists a

GR(S)-homomorphismGR(S,T )→GR(S).

Proof. (1) ⇒ (2). By Proposition 2,GR(S) is a subgroup ofGR(S,T ). Moreover,
T (Xµ,Y ) = 1 has a solution inGR(S), so by Lemma 40 there exists aGR(S)-homo-
morphismGR(S,T )→GR(S), i.e.,GR(S) is a retract ofGR(S,T ).

(2) ⇒ (1). If φ :GR(S,T ) → GR(S) is a retract then everyG-homomorphismα :
GR(S) → G extends to aG-homomorphismα ◦ φ : GR(S,T ) → G. It follows from
Proposition 2 thatT (X,Y ) = 1 is compatible withS(X) = 1 andφ gives a solution of

T (Xµ,Y )= 1 in GR(S), as desired. �
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One can ask whether it is possible to lift a system of equations and inequalities
generic point of some equationS = 1? This is the question that we are going to addr
below. We start with very general definitions.

Definition 25. Let S(X)= 1 be an equation over a groupG which has a solution inG. We
say that a formulaΦ(X,Y ) in the languageLA is compatible withS(X) = 1 overG, if
for every solutionā of S(X)= 1 in G there exists a tuplēb overG such that the formula
Φ(ā, b̄) is true inG, i.e., the algebraic setVG(S) is a projection of the truth set of th
formulaΦ(X,Y )∧ (S(X)= 1).

Definition 26. Let a formulaΦ(X,Y ) be compatible withS(X)= 1 overG. We say that
Φ(X,Y ) admits a lift to a generic point ofS = 1 over G (or shortly S-lift over G), if
∃YΦ(Xµ,Y ) is true inGR(S) (hereY are variables andXµ are constants fromGR(S)).

Definition 27. Let S(X) = 1 be an equation overG which has a solution inG, and let
T (X,Y )= 1 be compatible withS(X)= 1. We say that an equationT (X,Y )= 1 admits
a completeS-lift if every formulaT (X,Y )= 1 & W(X,Y ) 
= 1, which is compatible with
S(X)= 1 overG, admits anS-lift.

7. Implicit function theorem: lifting solutions into generic points

Now we are ready to formulate and prove the main results of this paper, Theorems
and 12. LetF(A) be a free non-abelian group.

Theorem 9. Let S(X,A)= 1 be a regular standard quadratic equation overF(A). Every
equationT (X,Y,A)= 1 compatible withS(X,A)= 1 admits a completeS-lift.

We divide the proof of this theorem into two parts: for orientableS(X,A)= 1, and for
a non-orientable one.

7.1. Basic automorphisms of orientable quadratic equations

In this section, for a finitely generated fully residually free groupG we introduce some
particularG-automorphisms of a freeG-groupG[X] which fix a given standard orientab
quadratic word with coefficients inG. Then we describe some cancellation propertie
these automorphisms.

Let G be a group and letS(X)= 1 be a regular standard orientable quadratic equa
overG:

m∏
i=1

z−1
i cizi

n∏
i=1

[xi, yi]d−1= 1, (71)

whereci , d are non-trivial constants fromG, and
X = {xi, yi, zj | i = 1, . . . , n, j = 1, . . . ,m}
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is the set of variables. Observe that ifn= 0, thenm � 3 by definition of a regular quadrat
equation (Definition 6). Sometimes we omitX and write simplyS = 1. Denote by

CS = {c1, . . . , cm, d}

the set of constants which occur in the equationS = 1.
Below we define abasic sequence

Γ = (γ1, γ2, . . . , γK(m,n))

of G-automorphisms of the freeG-groupG[X], each of which fixes the element

S0=
m∏

i=1

z−1
i cizi

n∏
i=1

[xi, yi] ∈G[X].

We assume that eachγ ∈ Γ acts identically on all the generators fromX that are not
mentioned in the description ofγ .

Let m � 3, n= 0. In this caseK(m,0)=m− 1. Put

γi : zi→ zi

(
c
zi

i c
zi+1
i+1

)
, zi+1→ zi+1

(
c
zi

i c
zi+1
i+1

)
, for i = 1, . . . ,m− 1.

Let m= 0, n � 1. In this caseK(0, n)= 4n− 1. Put

γ4i−3 :yi→ xiyi, for i = 1, . . . , n,

γ4i−2 :xi→ yixi, for i = 1, . . . , n,

γ4i−1 :yi→ xiyi, for i = 1, . . . , n,

γ4i : xi→
(
yix
−1
i+1

)−1
xi, yi→ y

yix
−1
i+1

i , xi+1→ x
yix
−1
i+1

i+1 ,

yi+1→
(
yix
−1
i+1

)−1
yi+1, for i = 1, . . . , n− 1.

Let m � 1, n � 1. In this caseK(m,n)=m+ 4n− 1. Put

γi : zi→ zi

(
c
zi

i c
zi+1
i+1

)
, zi+1→ zi+1

(
c
zi

i c
zi+1
i+1

)
, for i = 1, . . . ,m− 1,

γm : zm→ zm

(
czm
m x−1

1

)
, x1→ x

c
zm
m x−1

1
1 , y1→

(
czm
m x−1

1

)−1
y1,

γm+4i−3 :yi→ xiyi, for i = 1, . . . , n,

γm+4i−2 :xi→ yixi, for i = 1, . . . , n,

γm+4i−1 :yi→ xiyi, for i = 1, . . . , n,

γm+4i : xi→
(
yix
−1
i+1

)−1
xi, yi→ y

yix
−1
i+1

i , xi+1→ x
yix
−1
i+1

i+1 ,( )

yi+1→ yix

−1
i+1

−1
yi+1, for i = 1, . . . , n− 1.
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It is easy to check that eachγ ∈ Γ fixes the wordS0 as well as the wordS. This shows
thatγ induces aG-automorphism on the groupGS =G[X]/ncl(S). We denote the induce
automorphism again byγ , so Γ ⊂ AutG(GS). SinceS = 1 is regular,GS = GR(S). It
follows that composition of any product of automorphisms fromΓ and a particular solution
β of S = 1 is again a solution ofS = 1.

Observe, that in the casem 
= 0, n 
= 0 the basic sequence of automorphismsΓ contains
the basic automorphisms from the other two cases. This allows us, without loss o
erality, to formulate some of the results below only for the caseK(m,n) = m+ 4n− 1.
Obvious adjustments provide the proper argument in the other cases. From now
order elements of the setX in the following way

z1 < · · ·< zm < x1 < y1 < · · ·< xn < yn.

For a wordw ∈ F(X) we denote byv(w) the leadingvariable (the highest variable wit
respect to the order introduced above) that occurs inw. For v = v(w) denote byj (v) the
following number

j (v)=




m+ 4i, if v = xi or v = yi andi < n,
m+ 4i − 1, if v = xi or v = yi andi = n,
i, if v = zi andn 
= 0,
m− 1, if v = zm, n= 0.

The following lemma describes the action of powers of basic automorphisms froΓ

onX. The proof is obvious, and we omit it.

Lemma 41. LetΓ = (γ1, . . . , γm+4n−1) be the basic sequence of automorphisms andp be
a positive integer. Then the following holds:

γ
p
i : zi→ zi

(
c
zi

i c
zi+1
i+1

)p
, zi+1→ zi+1

(
c
zi

i c
zi+1
i+1

)p
, for i = 1, . . . ,m− 1,

γ
p
m : zm→ zm

(
czm
m x−1

1

)p
, x1→ x

(c
zm
m x−1

1 )p

1 , y1→
(
czm
m x−1

1

)−p
y1,

γ
p

m+4i−3 :yi→ x
p
i yi, for i = 1, . . . , n,

γ
p

m+4i−2 :xi→ y
p
i xi, for i = 1, . . . , n,

γ
p

m+4i−1 :yi→ x
p
i yi, for i = 1, . . . , n,

γ
p

m+4i : xi→
(
yix
−1
i+1

)−p
xi, yi→ y

(yix
−1
i+1)

p

i , xi+1→ x
(yix

−1
i+1)

p

i+1 ,

yi+1→
(
yix
−1
i+1

)−p
yi+1, for i = 1, . . . , n− 1.

Thep-powers of elements that occur in Lemma 41 play an important part in wha
lows, so we describe them in a separate definition.

Definition 28. Let Γ = (γ1, . . . , γm+4n−1) be the basic sequence of automorphism

S = 1. For everyγ ∈ Γ we define the leading termA(γ ) as follows:
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e

-

A(γi)= c
zi

i c
zi+1
i+1 , for i = 1, . . . ,m− 1,

A(γm)= czm
m x−1

1 ,

A(γm+4i−3)= xi, for i = 1, . . . , n,

A(γm+4i−2)= yi, for i = 1, . . . , n,

A(γm+4i−1)= xi, for i = 1, . . . , n,

A(γm+4i )= yix
−1
i+1, for i = 1, . . . , n− 1.

Now we introduce vector notations for automorphisms of particular type.
Let N be the set of all positive integers andN

k the set of allk-tuples of elements fromN.
For s ∈N andp ∈N

k we say that the tuplep is s-large if every coordinate ofp is greater
thens. Similarly, a subsetP ⊂N

k is s-large if every tuple inP is s-large. We say that th
setP is unboundedif for any s ∈N there exists ans-large tuple inP .

Let δ = (δ1, . . . , δk) be a sequence ofG-automorphisms of the groupG[X], andp =
(p1, . . . , pk) ∈N

k . Then byδp we denote the following automorphism ofG[X]:

δp = δ
p1
1 . . . δ

pk

k .

Notation 42. Let Γ = (γ1, . . . , γK) be the basic sequence of automorphisms forS = 1.
Denote byΓ∞ the infinite periodic sequence with periodΓ , i.e., Γ∞ = {γi}i�1 with
γi+K = γi . For j ∈ N denote byΓj the initial segment ofΓ∞ of length j . Then for a
givenj andp ∈N

j put

φj,p =←−Γ
←−p
j = γ

pj

j γ
pj−1
j−1 . . . γ

p1
1 .

Sometimes we omitp from φj,p and write simplyφj .

Agreement. From now on we fix an arbitrary positive multipleL of the numberK =
K(m,n), a 2-large tuplep ∈N

L, and the automorphismφ = φL,p (as well as all the auto
morphismφj , j � L).

Definition 29. The leading termAj = A(φj ) of the automorphismφj is defined to be the
cyclically reduced form of the word


A(γj )

φj−1, if j � K, j 
=m+ 4i − 1 for anyi = 1, . . . , n,

y
−φj−2
i A(γj )

φj−1y
φj−2
i , if j =m+ 4i − 1 for somei = 1, . . . , n,

A
φsK
r , if j = r + sK, r � K, s ∈N.

Lemma 43. For everyj � L the elementA(φj ) is not a proper power inG[X].

Proof. It is easy to check thatA(γs) from Definition 28 is not a proper power fors =
1, . . . ,K. SinceA(φj ) is the image of someA(γs) under an automorphism ofG[X] it is

not a proper power inG[X]. �
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ed

s of

ations.
ents
group

f

For wordsw,u, v ∈G[X], the notation

w

u v

means thatw = u ◦w′ ◦ v for somew′ ∈G[X], where the length of elements and reduc
form defined as in the free productG ∗ 〈X〉. Similarly, notations

w
u

and w
v

mean thatw = u ◦w′ andw =w′ ◦ v. Sometimes we write

w

u ∗
or w

∗ v

when the corresponding words are irrelevant.
If n is a positive integer andw ∈G[X], then by Subn(w) we denote the set of alln-sub-

words ofw, i.e.,

Subn(w)= {u ∣∣ |u| = n andw =w1 ◦ u ◦w2 for somew1,w2 ∈G[X]}.
Similarly, by SubCn(w) we denote alln-subwords of thecyclic word w. More generally,
if W ⊆G[X], then

Subn(W)=
⋃

w∈W
Subn(w), SubCn(W)=

⋃
w∈W

SubCn(w).

Obviously, the set Subi (w) (SubCi (w)) can be effectively reconstructed from Subn(w)

(SubCn(w)) for i � n.
In the following series of lemmas we write down explicit expressions for image

elements ofX under the automorphism

φK = γ
pK

K . . . γ
p1
1 , K =K(m,n).

These lemmas are very easy and straightforward, though tiresome in terms of not
They provide basic data needed to prove the implicit function theorem. All elem
that occur in the lemmas below can be viewed as elements (words) from the free
F(X ∪CS). In particular, the notations

◦, w

u v
and Subn(W)

correspond to the standard length function onF(X ∪ CS). Furthermore, until the end o

this section we assume that the elementsc1, . . . , cm arepairwise different.
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listed
Lemma 44. Letm 
= 0, K =K(m,n), p = (p1, . . . , pK) be a3-large tuple, and

φK = γ
pK

K . . . γ
p1
1 .

The following statements hold.

(1) All automorphisms fromΓ , except forγi−1, γi (if defined), fix zi , i = 1, . . . ,m. It
follows that

z
φK

i = · · · = z
φi

i (i = 1, . . . ,m− 1).

(2) Let z̃i = z
φi−1
i (i = 2, . . . ,m), z̃1= z1. Then

z̃i = zi ◦ (c
z̃i−1
i−1 ◦ c

zi

i )pi−1

ziz
−1
i−1 cizi

(i = 2, . . . ,m).

(3) The reduced forms of the leading terms of the corresponding automorphisms are
below:

A1= c
z1
1 ◦ c

z2
2

z−1
1 c1 c2z2

(m � 2),

A2=
(
c
z2
2 x−1

1

)φ1 =A
−p1
1 c

z2
2 A

p1
1 x−1

1 (n 
= 0, m= 2),

A2=A
−p1
1 c

z2
2 A

p1
1 c

z3
3 (n 
= 0, m > 2),

SubC3(A1)=
{
z−1

1 c1z1, c1z1z
−1
2 , z1z

−1
2 c2, z

−1
2 c2z2, c2z2z

−1
1 , z2z

−1
1 c1

}
,

Ai = A
−pi−1
i−1

z−1
i c−1

i ci−1zi−1

c
zi

i A
pi−1
i−1

z−1
i−1c

−1
i−1 cizi

c
zi+1
i+1

z−1
i+1 ci+1zi+1

(i = 3, . . . ,m− 1),

SubC3(Ai)= SubC3(Ai−1)
±1

∪ {ci−1zi−1z
−1
i , zi−1z

−1
i ci , z

−1
i cizi , ciziz

−1
i−1, ziz

−1
i−1c

−1
i−1, ciziz

−1
i+1,

ziz
−1
i+1ci+1, z

−1
i+1ci+1zi+1, ci+1zi+1z

−1
i , zi+1z

−1
i c−1

i

}
,

Am =
(
czm
m x−1

1

)φm−1 = A
−pm−1
m−1

z−1
m c−1

m cm−1zm−1

czm
m A

pm−1
m−1

z−1
m−1c

−1
m−1 cmzm

x−1
1 (n 
= 0, m � 3),

SubC3(Am)= SubC3(Am−1)
±1

∪ {cm−1zm−1z
−1
m , zm−1z

−1
m cm, z−1

m−1cmzm, cmzmz−1
m−1, cmzmx−1

1 ,

zmx−1
1 z−1

m ,x−1
1 z−1

m c−1
m

}
.

(4) The reduced forms ofzφi−1
i , z

φi

i are listed below:
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z
φK

1 = z
φ1
1 = c1 z1c

z2
2

z1z
−1
2 c2z2

A
p1−1
1

z−1
1 c1 c2z2

(m � 2),

SubC3
(
z
φK

1

)= {c1z1z
−1
2 , z1z

−1
2 c2, z

−1
2 c2z2, c2z2z

−1
1 , z2z

−1
1 c1, z

−1
1 c1z1

}
,

z
φi−1
i = zi A

pi−1
i−1

z−1
i−1c

−1
i−1 cizi

= z̃i ,

z
φK

i = z
φi

i = cizi A
pi−1
i−1

z−1
i−1c

−1
i−1 cizi

c
zi+1
i+1 A

pi−1
i

z−1
i c−1

i ci+1zi+1

(i = 2, . . . ,m− 1),

Sub3
(
z
φK

i

)= SubC3(Ai−1)∪SubC3(Ai)

∪ {ciziz
−1
i−1, ziz

−1
i−1c

−1
i−1, ciziz

−1
i+1, ziz

−1
i+1ci+1, z

−1
i+1ci+1zi+1,

ci+1zi+1z
−1
i , zi+1z

−1
i c−1

i

}
,

zφK
m = z

φm−1
m = zm A

pm−1
m−1

z−1
m−1c

−1
m−1 cmzm

(n= 0),

Sub3
(
zφK
m

)
(whenn=0)

= SubC3(Am−1)∪
{
zmz−1

m−1c
−1
m−1

}
,

zφK
m = zφm

m = cmzm A
pm−1
m−1

z−1
m−1c

−1
m−1 cmzm

x−1
1 A

pm−1
m

z−1
m c−1

m zmx−1
1

(n 
= 0, m � 2),

Sub3
(
zφK
m

)= Sub3
(
zφK
m

)
(whenn=0)

∪SubC3(Am)

∪ {cmzmx−1
1 , zmx−1

1 z−1
m ,x−1

1 z−1
m c−1

m

}
.

(5) The elementszφK

i have the following properties:

z
φK

i = cizi ẑi (i = 1, . . . ,m− 1),

whereẑi is a word in the alphabet{cz1
1 , . . . , c

zi+1
i+1 } which begins withc−zi−1

i−1 , if i 
= 1,
and withc

z2
2 , if i = 1;

zφK
m = zmẑm (n= 0),

whereẑm is a word in the alphabet{cz1
1 , . . . , c

zm
m };

zφK
m = cmzmẑm (n 
= 0),

whereẑm is a word in the alphabet{cz1
1 , . . . , c

zm
m , x1}.

Moreover, ifm � 3 the word(c
zm
m )±1 occurs inz

φK

i (i =m− 1,m) only as a part of∏m zi ±1
the subword( i=1 ci ) .
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-

Proof. (1) is obvious. We prove (2) by induction. Fori � 2

z̃i = z
φi−1
i = z

γ
pi−1
i−1 φi−2

i .

Therefore, by induction,

z̃i = zi

(
c
z̃i−1
i−1 c

zi

i

)pi−1 = zi ◦
(
c
z̃i−1
i−1 ◦ c

zi

i

)pi−1.

Now we prove (3) and (4) simultaneously. Letm � 2. By the straightforward verifica
tion one has:

A1= c
z1
1 ◦ c

z2
2

z−1
1 z2

,

z
φ1
1 = z

γ
p1
1

1 = z1
(
c
z1
1 c

z2
2

)p1 = c1 ◦ z1 ◦ c
z2
2 ◦A

p1−1
1

c1 z2

.

Denote by cycred(w) the cyclically reduced form ofw.

Ai = cycred
((

c
zi

i c
zi+1
i+1

)φi−1
)= c

z̃i

i ◦ c
zi+1
i+1

z−1
i zi+1

(i � m− 1).

Observe that in the notation above

z̃i = ziA
pi−1
i−1 (i � 2).

This shows that we can rewriteA(φi) as follows:

Ai =A
−pi−1
i−1 ◦ c

zi

i ◦A
pi−1
i−1 ◦ c

zi+1
i+1 ,

beginning withz−1
i and ending withzi+1 (i = 2, . . . ,m− 1);

Am = cycred
(
cz̃m
m x−1

1

)= cz̃m
m x−1

1 =A
−pm−1
m−1 ◦ czm

m ◦A
pm−1
m−1 ◦ x−1

1 (m � 2),

beginning withz−1
m and ending withx−1

1 (n 
= 0);

z
φi−1
i = (zi

(
c
zi−1
i−1 c

zi

i

)pi−1
)φi−2 = zi

(
c
z̃i−1
i−1 c

zi

i

)pi−1 = zi ◦A
pi−1
i−1 ,

beginning withzi and ending withzi ;

z
φi

i =
(
zi

(
c
zi

i c
zi+1
i+1

)pi
)φi−1 = z̃i

(
c
z̃i

i c
zi+1
i+1

)pi = ci ◦ z̃i ◦ c
zi+1
i+1 ◦

(
c
z̃i

i c
zi+1
i+1

)pi−1
= ci ◦ zi ◦A
pi−1
i−1 ◦ c

zi+1
i+1 ◦A

pi−1
i ,
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omor-
beginning withci and ending withzi+1 (i = 2, . . . ,m− 1);

zφm
m =

(
zm(czm

m x−1
1

)pm
)φm−1 = z̃m

(
cz̃m
m x−1

1 )pm = cmz̃mx−1
1

(
cz̃m
m x−1

1

)pm−1

= cm ◦ zm ◦A
pm−1
m−1 ◦ x−1

1 ◦A
pm−1
m (n 
= 0),

beginning withcm and ending withx−1
1 . This proves the lemma.

(5) Direct verification using formulas in (3) and (4).�
In the following two lemmas we describe the reduced expressions of the elemenx

φK

1
andy

φK

1 .

Lemma 45. Letm= 0, K = 4n− 1, p = (p1, . . . , pK) be a3-large tuple, and

φK = γ
pK

K . . . γ
p1
1 .

(1) All automorphisms fromΓ , except forγ2, γ4, fix x1, and all automorphisms fromΓ ,
except forγ1, γ3, γ4, fix y1. It follows that

x
φK

1 = x
φ4
1 , y

φK

1 = y
φ4
1 (n � 2).

(2) Below we list the reduced forms of the leading terms of the corresponding aut
phisms(the words on the right are reduced as written):

A1= x1, A2= x
p1
1 y1=A

p1
1 ◦ y1,

A3= A
p2−1
2

x2
1 x1y1

x
p1+1
1 y1, SubC3(A3)= SubC3(A2)=

{
x3

1, x2
1y1, x1y1x1, y1x

2
1

}
,

A4=
(

A
p2
2

x2
1 x1y1

x1
)p3

x2
1 y1x1

A2

x2
1 x1y1

x−1
2 (n � 2),

SubC3(A4)= SubC3(A2)∪
{
x1y1x

−1
2 , y1x

−1
2 x1, x

−1
2 x2

1

}
(n � 2).

(3) Below we list reduced forms ofx
φj

1 , y
φj

1 for j = 1, . . . ,4:

x
φ1
1 = x1, y

φ1
1 = x

p1
1 y1,

x
φ2
1 = A

p2
2

x2
1 x1y1

x1, y
φ2
1 = x

p1
1 y1,

x
φ3
1 = x

φ2
1 = A

p2
2 x1=(whenn=1) x

φK

1 , Sub3
(
x

φK

1

)
(whenn=1)

= SubC3(A2),
x2
1 x1y1



100 O. Kharlampovich, A. Myasnikov / Journal of Algebra 290 (2005) 1–203
y
φ3
1 =

(
A

p2
2

x2
1 x1y1

x1
)p3

x2
1 x1y1

x
p1
1 y1=(whenn=1) y

φK

1 ,

Sub3
(
y

φK

1

)
(whenn=1)

= SubC3(A2),

x
φ4
1 = x

φK

1 = A
−(p4−1)

4

x2y
−1
1 x−2

1

x2 A−1
2

y−1
1 x−1

1 x−2
1

(
x−1

1 A
−p2
2

y−1
1 x−1

1 x−2
1

)p3−1

x−1
1 y−1

1 x−1
1 x−2

1

(n � 2),

Sub3
(
x

φK

1

)= SubC3(A4)
−1 ∪SubC3(A2)

−1

∪ {x−2
1 x2, x

−1
1 x2y

−1
1 , x2y

−1
1 x−1

1 , x−3
1 , x−2

1 y−1
1 , x−1

1 y−1
1 x−1

1

}
(n � 2),

y
φ4
1 = A

−(p4−1)

4

x2y
−1
1 x−2

1

x2 A
p4
4

x2
1 y1x

−1
2

(n � 2),

Sub3
(
y

φK

1

)= SubC3(A4)
±1 ∪ {x−2

1 x2, x
−1
1 x2x1, x2x

2
1

}
(n � 2).

Proof. (1) follows directly from definitions.
To show (2) observe that

A1=A(γ1)= x1,

x
φ1
1 = x1, y

φ1
1 = x

p1
1 y1=A

p1
1 ◦ y1.

Then

A2= cycred
(
A(γ2)

φ1
)= cycred

(
y

φ1
1

)= x
p1
1 ◦ y1=A

p1
1 ◦ y1,

x
φ2
1 =

(
x

γ
p2
2

1

)γ
p1
1 = (yp2

1 x1
)γ p1

1 = (xp1
1 y1

)p2x1=A
p2
2 ◦ x1,

y
φ2
1 =

(
y

γ
p2
2

1

)γ
p1
1 = y

γ
p1
1

1 = x
p1
1 y1=A2.

Now

A3= cycred
(
y
−φ1
1 A(γ3)

φ2y
φ1
1

)= cycred
((

x
p1
1 y1

)−1
x

φ2
1

(
x

p1
1 y1

))
= cycred

((
x

p1
1 y1

)−1(
x

p1
1 y1

)p2x1
(
x

p1
1 y1

))
= (xp1

1 y1
)p2−1

x
p1+1
1 y1=A

p2−1
2 ◦A

p1+1
1 ◦ y1.

It follows that

x
φ3
1 =

(
x

γ
p3
3

1

)φ2 = x
φ2
1 ,

φ
(

γ
p3)φ2( p )φ ( φ )p φ ( p )p
y 3
1 = y 3

1 x 3
1 y1

2 = x 2
1

3y 2
1 A 2

2 ◦ x1
3 ◦A2.
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Hence

A4= cycred
(
A(γ4)

φ3
)= cycred

((
y1x
−1
2

)φ3
)= cycred

(
y

φ3
1 x
−φ3
2

)
= (Ap2

2 ◦ x1
)p3 ◦A2 ◦ x−1

2 .

Finally:

x
φ4
1 =

(
x

γ
p4
4

1

)φ3 = ((y1x
−1
2

)−p4x1
)φ3 = ((y1x

−1
2

)φ3
)−p4x

φ3
1 =A

−p4
4 A

p2
2 x1

=A
−(p4−1)

4 ◦ x2 ◦A−1
2 ◦

(
x−1

1 ◦A
−p2
2

)p3−1
,

y
φ4
1 =

(
y

γ
p4
4

1

)φ3 =
(
y

(y1x
−1
2 )p4

1

)φ3 = ((y1x
−1
2

)φ3
)−p4y

φ3
1

((
y1x
−1
2

)φ3
)p4

=A
−p4
4 y

φ3
1 A

p4
4 =A

−(p4−1)

4 A−1
4 y

φ3
1 A

p4
4 =A

−(p4−1)

4 ◦ x2 ◦A
p4
4 .

This proves the lemma.�
Lemma 46. Letm 
= 0, n 
= 0, K =m+ 4n− 1, p = (p1, . . . , pK) be a3-large tuple, and

φK = γ
pK

K . . . γ
p1
1 .

(1) All automorphisms fromΓ except forγm, γm+2, γm+4, fix x1; and all automorphisms
fromΓ except forγm, γm+1, γm+3, γm+4, fix y1. It follows that

x
φK

1 = x
φm+4
1 , y

φK

1 = y
φm+4
1 (n � 2).

(2) Below we list the reduced forms of the leading terms of the corresponding aut
phisms(the words on the right are reduced as written):

Am+1= x1, Am+2= y
φm+1
1 = A

−pm
m

x1z
−1
m cmzm

x
pm+1
1 y1,

SubC3(Am+2)= SubC3(Am)−1 ∪ {cmzmx1, zmx2
1, x3

1, x2
1y1, x1y1x1, y1x1z

−1
m

}
,

Am+3= A
pm+2−1
m+2

x1z
−1
m x1y1

A
−pm
m

x1z
−1
m cmzm

x
pm+1+1
1 y1, SubC3(Am+3)= SubC3(Am+2),

Am+4= A
−pm
m

x1z
−1
m cmzm

◦(x
pm+1
1 y1 A

pm+2−1
m+2

x1z
−1
m x1y1

A
−pm
m

x1z
−1
m cmzm

x1
)pm+3

x
pm+1
1 y1x

−1
2 (n � 2),

{ −1 −1 −1 −1}
SubC3(Am+4)= SubC3(Am+2)∪ x1y1x2 , y1x2 x1, x2 x1zm (n � 2).
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s

ma 44:
(3) Below we list reduced forms ofx
φj

1 , y
φj

1 for j = m, . . . ,m+ 4 and their expression
via the leading terms:

x
φm

1 =A
−pm
m ◦ x1 ◦A

pm
m , y

φm

1 =A
−pm
m ◦ y1,

x
φm+1
1 = x

φm

1 , y
φm+1
1 =A

−pm
m ◦ x

pm+1
1 ◦ y1,

x
φm+2
1 =(whenn=1) x

φK

1 = A
pm+2
m+2

x1z
−1
m x1y1

A
−pm
m

x1z
−1
m cmzm

x1 A
pm
m

z−1
m c−1

m zmx−1
1

,

Sub3
(
x

φK

1

)
(whenn=1)

= SubC3(Am+2)∪SubC3(Am)∪ {zmx1z
−1
m ,x1z

−1
m c−1

m

}
,

y
φm+2
1 = y

φm+1
1 ,

x
φm+3
1 = x

φm+2
1 ,

y
φm+3
1 =(whenn=1) y

φK

1 = A
−pm
m

x1z
−1
m cmzm

(
x

pm+1
1 y1 A

pm+2−1
m+2

x1z
−1
m x1y1

A
−pm
m

x1z
−1
m cmzm

x1
)pm+3

x
pm+1
1 y1,

Sub3
(
y

φK

1

)=(whenn=1) Sub3
(
y

φm+3
1

)= SubC3(Am+2),

x
φm+4
1 = x

φK

1 (whenn�2)

= A
−pm+4+1
m+4

x2y
−1
1 zmx−1

1

x2y
−1
1 x
−pm+1
1

◦(x−1
1 A

pm
m

z−1
m c−1

m zmx−1
1

A
−pm+2
m+2

y−1
1 x−1

1 zmx−1
1

y−1
1 x
−pm+1
1

)pm+3−1
A

pm
m

z−1
m c−1

m zmx−1
1

(n�2),

Sub3
(
x

φK

1

)= SubC3(Am+2)
−1 ∪ {zmx−1

1 x2, x
−1
1 x2y

−1
1 , x2y

−1
1 x−1

1

}
(n � 2),

y
φm+4
1 = y

φK

1 (whenn�2)
= A

−(pm+4−1)

m+4

x2y
−1
1 zmx−1

1

x2 A
pm+4
m+4

x1z
−1
m y1x

−1
2

(n � 2),

Sub3
(
y

φK

1

)= SubC3(Am+4)
±1 ∪ {zmx−1

1 x2, x
−1
1 x2x1, x2x1z

−1
m

}
(n � 2).

Proof. Statement (1) follows immediately from definitions of automorphisms ofΓ .
We prove formulas in the second and third statements simultaneously using Lem

x
φm

1 =
(
x

(c
zm
m x−1

1 )pm

1

)φm−1 = x
A(φm)pm

1 =A
−pm
m ◦ x1 ◦A

pm
m ,

beginning withx1 and ending withx−1
1 ;

y
φm

1 =
((

czm
m x−1

1

)−pmy1
)φm−1 =A(φm)−pm ◦ y1,
beginning withx1 and ending withy1. Now
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ing
Am+1= cycred(A
(
γm+1)

φm
)= x

φm

1 =A
−pm
m ◦ x1 ◦A

pm
m , Am+1= x1,

x
φm+1
1 = x

φm

1 ,

y
φm+1
1 =

(
y

γ
pm+1
m+1

1

)φm = (xpm+1
1 y1

)φm = (xφm

1

)pm+1y
φm

1 =A
−pm
m ◦ x

pm+1
1 ◦ y1,

beginning withx1 and ending withy1; moreover, the element that cancels in reduc
A

pm+1
m+1 A

−pm
m y1 is equal toApm

m ;

Am+2= cycred
(
A(γm+2)

φm+1
)= cycred

(
y

φm+1
1

)=A
−pm
m ◦ x

pm+1
1 ◦ y1,

beginning withx1 and ending withy1;

x
φm+2
1 =

(
x

γ
pm+2
m+2

1

)φm+1 = (yφm+1
1

)pm+2x
φm+1
1

=A
pm+2
m+2 ◦A

−pm
m ◦ x1 ◦A

pm
m

=A
−pm
m ◦ (xpm+1

1 ◦ y1 ◦A
pm+2−1
m+2 ◦A

−pm
m ◦ x1

) ◦A
pm
m ,

beginning withx1 and ending withx−1
1 ;

y
φm+2
1 = y

φm+1
1 ,

Am+3= cycred
(
y
−φm+1
1 x

φm+2
1 y

φm+1
1

)=A
pm+2−1
m+2 ◦A

−pm
m ◦ x

pm+1+1
1 ◦ y1,

beginning withx1 and ending withy1;

x
φm+3
1 = x

φm+2
1 ,

y
φm+3
1 = (xφm+2

1

)pm+3y
φm+1
1

=A
−pm
m ◦ (xpm+1

1 ◦ y1 ◦A
pm+2−1
m+2 ◦A

−pm
m ◦ x1

)pm+3 ◦ x
pm+1
1 ◦ y1,

beginning withx1 and ending withy1. Finally, forn � 2,

Am+4= cycred
(
A(γm+4)

φm+3
)= cycred

((
y1x
−1
2

)φm+3
)= y

φm+3
1 x−1

2 = y
φm+3
1 ◦ x−1

2 ,

beginning withx1 and ending withx−1
2 ;

x
φm+4
1 = ((y1x

−1
2

)−pm+4x1
)φm+3 = (x2y

−φm+3
1

)pm+4x
φm+3
1

= (x2y
−φm+1
1

(
x

φm+2
1

)−pm+3
)pm+4x

φm+2
1

= (x2y
−φm+3
1

)pm+4−1 ◦ x2 ◦ y−1
1 ◦ x

−pm+1
1( )
◦ x−1

1 ◦A
pm
m ◦A

−pm+2
m+2 ◦ y−1

1 ◦ x
−pm+1
1

pm+3−1 ◦A
pm
m ,



104 O. Kharlampovich, A. Myasnikov / Journal of Algebra 290 (2005) 1–203

t is

out

omor-
at
beginning withx2 and ending withx−1
1 ; moreover, the element that is cancelled ou

x
φm+2
1 . Similarly,

y
φm+4
1 = (x2y

−φm+3
1

)pm+4y
φm+3
1

(
y

φm+3
1 x−1

2

)pm+4

= (x2y
−φm+3
1

)pm+4−1 ◦ x2 ◦
(
y

φm+3
1 x−1

2

)pm+4 =A
−(pm+4−1)

m+4 ◦ x2 ◦A
pm+4
m+4 ,

beginning withx2 and ending withx−1
2 , moreover, the element that is cancelled

is y
φm+3
1 .
This proves the lemma.�
In the following lemma we describe the reduced expressions of the elementsx

φj

i and

y
φj

i for i � 2.

Lemma 47. Letn � 2, K =K(m,n), p = (p1, . . . , pK) be a3-large tuple, and

φK = γ
pK

K . . . γ
p1
1 .

Then for anyi, n � i � 2, the following holds:

(1) All automorphisms fromΓ , except forγm+4(i−1), γm+4i−2, γm+4i , fix xi , and all auto-
morphisms fromΓ , except forγm+4(i−1), γm+4i−3, γm+4i−1, γm+4i , fix yi . It follows
that

x
φK

i = x
φK−1
i = · · · = x

φm+4i

i ,

y
φK

i = y
φK−1
i = · · · = y

φm+4i

i .

(2) Let ỹi = y
φm+4i−1
i . Then

ỹi = ỹi

xiy
−1
i−1 xiyi

where(for i = 1) we assume thaty0= x−1
1 for m= 0, andy0= zm for m 
= 0.

(3) Below we list the reduced forms of the leading terms of the corresponding aut
phisms. Putqj = pm+4(i−1)+j for j = 0, . . . ,4. In the formulas below we assume th
y0= x−1

1 for m= 0, andy0= zm for m 
= 0.

Am+4i−4= ỹi−1

xi−1y
−1
i−2 xi−1yi−1

◦ x−1
i ,

SubC3(Am+4i−4)= Sub3
(
ỹi−1

)∪ {xi−1yi−1x
−1
i , yi−1x

−1
i xi−1, x

−1
i xi−1y

−1
i−2

}
,

Am+4i−3= xi, Am+4i−2= A
−q0
m+4i−4 x

q1
i yi ,
xiy
−1
i−1 yi−2x

−1
i−1
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SubC3(Am+4i−2)= SubC3(Am+4i−4)

∪ {yi−2x
−1
i−1xi, x

−1
i−1x

2
i , x2

i yi , xiyixi, yixiy
−1
i−1, x

3
i

}
,

Am+4i−1= A
q2−1
m+4i−2

xiy
−1
i−1 xiyi

A
−q0
m+4i−4

xiy
−1
i−1 yi−2x

−1
i−1

x
q1+1
i yi ,

SubC3(Am+4i−1)= SubC3(Am+4i−2).

(4) Below we list the reduced forms of elementsx
φm+4(i−1)+j

i , y
φm+4(i−1)+j

i for j = 0, . . . ,4.

Again, in the formulas below we assume thaty0 = x−1
1 for m = 0, andy0 = zm for

m 
= 0.

x
φm+4i−4
i =A

−q0
m+4i−4 ◦ xi ◦A

q0
m+4i−4, y

φm+4i−4
i =A

−q0
m+4i−4 ◦ yi,

x
φm+4i−3
i = x

φm+4i−4
i , y

φm+4i−3
i =A

−q0
m+4i−4 ◦ x

q1
i ◦ yi,

x
φm+4i−2
i = A

q2
m+4i−2

xiy
−1
i−1 xiyi

A
−q0
m+4i−4

xiy
−1
i−1 yi−2x

−1
i−1

xi A
q0
m+4i−4

xi−1y
−1
i−2 yi−1x

−1
i

,

y
φm+4i−2
i = y

φm+4i−3
i ,

x
φm+4i−1
i = x

φm+4i−2
i =(wheni=n) x

φK

i ,

Sub3
(
x

φK

i

)=(wheni=n) SubC3(Am+4i−2)∪SubC3(Am+4i−4)
±1

∪ {yi−2x
−1
i−1xi, x

−1
i−1xixi−1, xixi−1y

−1
i−2

}
,

y
φm+4i−1
i = ỹi =(wheni=n) y

φK

i

= A
−q0
m+4i−4

xiy
−1
i−1 yi−2x

−1
i−1

(
x

q1
i yi A

q2−1
m+4i−2

xiy
−1
i−1 xiyi

A
−q0
m+4i−4

xiy
−1
i−1 yi−2x

−1
i−1

xi

)q3
x

q1
i yi ,

Sub3
(
ỹi

)= SubC3(Am+4i−2)∪SubC3(Am+4i−4)
−1

∪ {yi−2x
−1
i−1xi, x

−1
i−1x

2
i , x3

i , xiyixi, yixiy
−1
i−1, x

2
i yi

}
x

φm+4i

i =(wheni 
=n) x
φK

i

= A
−q4+1
m+4i

xi+1y
−1
i yi−1x

−1
i

xi+1 ◦ y−1
i x
−q1
i

◦(x−1
i A

q0
m+4i−4

xi−1y
−1
i−2 yi−1x

−1
i

A
−q2+1
m+4i−2

y−1
i x−1

i yi−1x
−1
i

y−1
i x
−q1
i

)q3−1
A

q0
m+4i−4

xi−1y
−1
i−2 yi−1x

−1
i

,

Sub3
(
x

φK

i

)= SubC3(Am+4i )
−1 ∪SubC3(Am+4i−2)

−1 ∪SubC3(Am+4i−4)

∪ {yi−1x
−1
i xi+1, x

−1
i xi+1y

−1
i , xi+1y

−1
i x−1

i , y−1
i x−2

i , x−3
i , x−2

i xi−1,}

x−1
i xi−1y

−1
i−2, yi−1x

−1
i y−1

i , x−1
i y−1

i x−1
i ,
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y
φm+4i

i =(wheni 
=n) y
φK

i

= A
−q4+1
m+4i

xi+1y
−1
i yi−1x

−1
i

xi+1 ỹi

xiy
−1
i−1 xiyi

x−1
i+1 A

q4−1
m+4i

xiy
−1
i−1 yix

−1
i+1

,

Sub3
(
y

φK

i

)
= SubC3(Am+4i )

±1 ∪Sub3
(
ỹi

)
∪ {yi−1x

−1
i xi+1, x

−1
i xi+1xi, xi+1xiy

−1
i−1, xiyix

−1
i+1, yix

−1
i+1xi, x

−1
i+1xiy

−1
i−1

}
.

(5) Aj =




A(γj )
φj−1, if j 
=m+ 4i − 1, m+ 4i − 3

for anyi = 1, . . . , n,
A

pm+4i−4
m+4i−4A(γj )

φj−1A
−pm+4i−4
m+4i−4 , if j =m+ 4i − 3 for somei = 1, . . . , n

(m+ 4i − 4 
= 0),

y
−φj−1
i A(γj )

φj−1y
φj−1
i , if j =m+ 4i − 1 for somei = 1, . . . , n.

Proof. Statement (1) is obvious. We prove statement (2) by induction oni � 2. Notice that
by Lemmas 45 and 46,̃y1= y

φm+3
1 begins withx1z

−1
m and ends withx1y1. Now let i � 2.

Then denoting exponents byqi as in (3), we have

ỹi = y
φm+4i−1
i = (xq3

i yi

)φm+4i−2 = ((yq2
i xi

)q3yi

)φm+4i−3 = (((xq1
i yi

)q2xi

)q3x
q1
i yi

)φm+4i−4.

Before we continue, and to avoid huge formulas, we compute separatelyx
φm+4i−4
i and

y
φm+4i−4
i :

x
φm+4i−4
i =

(
x

(yi−1x
−1
i )q0

i

)φm+4(i−1)−1 = x
(ỹi−1x

−1
i )q0

i = (xi ỹ
−1
i−1)

q0 ◦ xi ◦ (ỹi−1x
−1
i )q0

xiy
−1
i−1 yi−1x

−1
i

,

by induction (by Lemmas 45 and 46 in the casei = 2);

y
φm+4i−4
i = ((yi−1x

−1
i

)−q0yi

)φm+4(i−1)−1 = (ỹi−1x
−1
i

)−q0yi =
(
xi ◦ ỹ−1

i−1

)q0 ◦ yi,

beginning withxiy
−1
i−1 and ending withx−1

i−1yi . It follows that

(
x

q1
i yi

)φm+4i−4 = (xi ỹ
−1
i−1

)q0x
q1
i

(
ỹi−1x

−1
i

)q0
(
xi ỹ
−1
i−1

)q0yi =
(
xi ỹ
−1
i−1

)q0 ◦ x
q1
i ◦ yi,

beginning withxiy
−1
i−1 and ending withxiyi . Now looking at the formula

ỹi =
(((

x
q1
i yi

)q2xi

)q3x
q1
i yi

)φm+4i−4
it is obvious thatỹi begins withxiy
−1
i−1 and ends withxiyi , as required.
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Now we prove statements (3) and (4) simultaneously.

Am+4i−4= cycred
((

yi−1x
−1
i

)φm+4(i−1)−1
)= ỹi−1 ◦ x−1

i ,

beginning withxi−1 and ending withx−1
i . As we have observed in proving (2)

x
φm+4i−4
i = (xi ỹ

−1
i−1

)q0 ◦ xi ◦
(
ỹi−1x

−1
i

)q0 =A
−q0
m+4i−4 ◦ xi ◦A

q0
m+4i−4,

beginning withxi and ending withx−1
i ;

y
φm+4i−4
i = (xi ◦ ỹ−1

i−1

)q0 ◦ yi =A
−q0
m+4i−4 ◦ yi,

beginning withxi and ending withyi . Now

Am+4i−3= cycred
(
x

φm+4i−4
i

)= xi,

beginning withxi and ending withxi ;

x
φm+4i−3
i = x

φm+4i−4
i ,

y
φm+4i−3
i = (xq1

i yi

)φm+4i−4 =A
−q0
m+4i−4x

q1
i A

q0
m+4i−4A(φm+4i−4)

−q0yi

=A
−q0
m+4i−4 ◦ x

q1
i ◦ yi,

beginning withxi and ending withyi .
Now

Am+4i−2= y
φm+4i−3
i ,

x
φm+4i−2
i = (yq2

i xi

)φm+4i−3 =A
q2
m+4i−2 ◦A

−q0
m+4i−4 ◦ xi ◦A

q0
m+4i−4,

beginning withxi and ending withx−1
i . It is also convenient to rewritexφm+4i−2

i (by rewrit-
ing the subwordAm+4i−2) to show its cyclically reduced form:

x
φm+4i−2
i =A

−q0
m+4i−4 ◦

(
x

q1
i ◦ yi ◦A

q2−1
m+4i−2 ◦A

−q0
m+4i−4 ◦ xi

) ◦A
q0
m+4i−4,

y
φm+4i−2
i = y

φm+4i−3
i .

Now we can write down the next set of formulas:

Am+4i−1= cycred
(
y
−φm+4i−3
i x

φm+4i−2
i y

φm+4i−3
i

)
= cycred

(
A−1

m+4i−2A
q2
m+4i−2A

−q0
m+4i−4xiA

q0
m+4i−4Am+4i−2

)

=A

q2−1
m+4i−2 ◦A

−q0
m+4i−4 ◦ x

q1+1
i ◦ yi,
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beginning withxi and ending withyi ;

x
φm+4i−1
i = x

φm+4i−2
i ,

y
φm+4i−1
i = ỹi =

(
x

q3
i yi

)φm+4i−2 = (xφm+4i−2
i

)q3y
φm+4i−2
i

substituting the cyclic decomposition ofx
φm+4i−2
i from above one has

=A
−q0
m+4i−4 ◦

(
x

q1
i ◦ yi ◦A

q2−1
m+4i−2 ◦A

−q0
m+4i−4 ◦ xi

)q3 ◦ x
q1
i ◦ yi,

beginning withxi and ending withyi .
Finally

Am+4i = cycred
((

yix
−1
i+1

)φm+4i−1
)= ỹi ◦ x−1

i+1,

beginning withxi and ending withx−1
i+1;

x
φm+4i

i = ((yix
−1
i+1

)−q4xi

)φm+4i−1 = (ỹix
−1
i+1

)−q4x
φm+4i−1
i =A

−q4+1
m+4i xi+1ỹ

−1
i x

φm+4i−1
i

=A
−q4+1
m+4i ◦ xi+1 ◦

((
x

φm+4i−2
i

)q3−1
y

φm+4i−2
i

)−1
.

Observe that computations similar to that fory
φm+4i−1
i show that

((
x

φm+4i−2
i

)q3−1
y

φm+4i−2
i

)−1

= (A−q0
m+4i−4 ◦

(
x

q1
i ◦ yi ◦A

q2−1
m+4i−2 ◦A

−q0
m+4i−4 ◦ xi

)q3−1 ◦ x
q1
i ◦ yi

)−1
.

Therefore

x
φm+4i

i =A
−q4+1
m+4i ◦ xi+1

◦ (A−q0
m+4i−4 ◦

(
x

q1
i ◦ yi ◦A

q2−1
m+4i−2 ◦A

−q0
m+4i−4 ◦ xi

)q3−1 ◦ x
q1
i ◦ yi

)−1
,

beginning withxi+1 and ending withx−1
i ;

y
φm+4i

i = (y(yix
−1
i+1)

q4

i

)φm+4i−1 = (xi+1ỹ
−1
i

)q4ỹi

(
ỹix
−1
i+1

)q4

=A
−q4+1
m+4i ◦ xi+1 ◦ ỹi ◦ x−1

i+1 ◦A
q4−1
m+4i ,

beginning withxi+1 and ending withx−1
i+1.

(5) If j 
=m+ 4i − 1,m+ 4i − 3, Aj is either(c
z
φj
j

j c
z
φj
j+1

j+1 ) or y
φj

i (j =m+ 4i − 3) or

(yix
−1
i+1)

φj (j =m+ 4i − 1). In all these cases
Aj =A(γj )
φj−1.
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. This

rd

ents

t
can-
The formulas for the other two cases can be found in the proof of statement (2)
finishes the proof of the lemma.�
Lemma 48. Let m � 1, K = K(m,n), p = (p1, . . . , pK) be a 3-large tuple, φK =
γ

pK

K . . . γ
p1
1 , andX±φK = {xφK | x ∈X±1}. Then the following holds:

(1) Sub2
(
X±φK

)=




cj zj , z
−1
j cj , 1� j � m,

zj z
−1
j+1, 1� j � m− 1,

zmx−1
1 , zmx1, if m 
= 0, n 
= 0,

x2
i , xiyi, yixi, 1� i � n,

xi+1y
−1
i , x−1

i xi+1, xi+1xi 1� i � n− 1




±1

;

moreover, the wordz−1
j cj , as well ascj zj , occurs only as a part of the subwo

(z−1
j cj zj )

±1 in xφK (x ∈X±1);

(2) Sub3
(
X±φK

)=




z−1
j cj zj , 1 � j � m,

cj zj z
−1
j+1, zj z

−1
j+1cj+1, 1 � j � m− 1,

zj z
−1
j+1c

−1
j+1, 2 � j � m− 1,

y1x
2
1, m= 0, n= 1,

x−1
2 x2

1, x2x
2
1, m= 0, n � 2,

c−1
m zmx1, m= 1, n 
= 0,

cmzmx−1
1 , zmx−1

1 z−1
m , zmx2

1, zmx−1
1 y−1

1 , m 
= 0, n 
= 0,

cmzmx1, m � 2, n 
= 0,

zmx−1
1 x2, zmx−1

1 x−1
2 , m 
= 0, n � 2,

c−1
1 z1z

−1
2 , m � 2,

x3
i , x2

i yi , xiyixi, 1 � i � n,

x−1
i xi+1xi, yix

−1
i+1xi, xiyix

−1
i+1, 1 � i � n− 1,

x−1
i−1x

2
i , yixiy

−1
i−1, 2 � i � n,

yi−2x
−1
i−1x

−1
i , yi−2x

−1
i−1xi, 3 � i � n




±1

;

(3) for any2-letter worduv ∈ Sub2(X±φK ) one has

Sub2
(
uφK vφK

)⊆ Sub2
(
X±φK

)∪{c2
i

}
, Sub3

(
uφK vφK

)⊆ Sub3
(
X±φK

)∪{c2
i zi

}
.

Proof. (1) and (2) follow by straightforward inspection of the reduced forms of elem
xφK in Lemmas 44–47.

To prove (3) it suffices for every worduv ∈ Sub2(X±φK ) to write down the produc
uφK vφK (using formulas from the lemmas mentioned above), then make all possible
cellations and check whether 3-subwords of the resulting word all lie in Sub3(X

±φK ). Now
we do the checking one by one for all possible words from Sub2(X

±φK ).

(1) Foruv ∈ {cj zj , z

−1
j cj } the checking is obvious and we omit it.
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e “in
rds

ng
(2) Letuv = zj z
−1
j+1. Then there are three cases to consider.

(a) Letj � m− 2, then

(
zj z
−1
j+1

)φK = z
φK

j

∗ cj+1zj+1

z
−φK

j+1

z−1
j+2c

−1
j+2 ∗

;

in this case there is no cancellation inuφK vφK . All 3-subwords ofuφK andvφK are ob-
viously in Sub3(X±φK ). So one needs only to check the new 3-subwords which aris
between”uφK andvφK (below we will check only subwords of this type). These subwo
arecj+1zj+1z

−1
j+2 andzj+1z

−1
j+2c

−1
j+2 which both lie in Sub3(X±φK ).

(b) Let j =m− 1 andn 
= 0. Then

(
zm−1z

−1
m

)φK = z
φK

m−1

∗ cmzm

z
−φK
m

x1z
−1
m ∗

;

again, there is no cancellation in this case and the words “in between” arecmzmx1 and
zmx1z

−1
m , which are in Sub3(X±φK ).

(c) Letj =m−1 andn= 0. Then (below we put· at the place where the correspondi
initial segment ofuφK and the corresponding terminal segment ofvφK meet)

(
zm−1z

−1
m

)φK = z
φK

m−1 · z−φK
m = cm−1zm−1A

pm−2
m−2 czm

m A
pm−1−1
m−1 ·A−pm−1

m−1 z−1
m

(cancellingApm−1−1
m−1 and substituting forA−1

m−1 its expression via the leading terms)

= cm−1zm−1A
pm−2
m−2 czm

m ·
(
c−zm
m A

−pm−2
m−2 c

−zm−1
m−1 A

pm−2
m−2

)
z−1
m

= zm−1 A
pm−2
m−2

z−1
m−2 ∗

z−1
m .

Herez
φK

m−1 is completely cancelled.
(3)(a) Letn= 1. Then

(
zmx−1

1

)φK = cmzmA
pm−1
m−1 x−1

1 A
pm−1
m ·A−pm

m x−1
1 A

pm
m A

pm+2
m+2

= cmzmA
pm−1
m−1 x−1

1 · x1A
−pm−1
m−1 c−zm

m A
pm−1
m−1 x−1

1 A
pm
m A

pm+2
m+2

= zmA
pm−1
m−1 x−1

1 A
pm
m A

pm+2
m+2

zmz−1
m−1

,

andz
φK
m is completely cancelled.
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(b) Letn > 1. Then

(
zmx−1

1

)φK

= cmzmA
pm−1
m−1 x−1

1 A
pm−1
m

×A
−pm
m

(
x−1

1 A
pm
m A

−pm+2+1
m+2 y−1

1 x
−pm+1
1

)−pm+3+1
x

pm+1
1 y1x

−1
2 A

pm+4−1
m+4

= cmzmA
pm−1
m−1 x−1

1 A−1
m

(
x−1

1 A
pm
m A

−pm+2+1
m+2 y−1

1 x
−pm+1
1

)−pm+3+1
x

pm+1
1 y1x

−1
2 A

pm+4−1
m+4

= cmzmA
pm−1
m−1 x−1

1 · x1A
−pm−1
m−1 c−zm

m

×A
pm−1
m−1

(
x−1

1 A
pm
m A

−pm+2+1
m+2 y−1

1 x
−pm+1
1

)−pm+3+1
x

pm+1
1 y1x

−1
2 A

pm+4−1
m+4

= zmA
pm−1
m−1

zmz−1
m−1c

−1
m−1

,

andz
φK
m is completely cancelled.

(4)(a) Letn= 1. Then

(zmx1)
φK = cmzmA

pm−1
m−1 x−1

1 A
pm−1
m ·Apm+2

m+2 A
−pm
m x1A

pm
m = cm zmA

pm−1
m−1 ∗ ∗

zmz−1
m−1c

−1
m−1 ∗

,

andz
φK
m is completely cancelled.

(b) Letn > 1. Then

(zmx1)
φK = z

φK
m

∗ zmx−1
1

x
φK

1

x2y
−1
1 ∗

.

(5)(a) Letn= 1. Then

x
2φK

1 =A
pm+2
m+2 A

−pm
m x1A

pm
m ·Apm+2

m+2 A
−pm
m x1A

pm
m

=A
pm+2
m+2 A

−pm
m x1A

pm
m ·

(
A
−pm
m x

pm+1
1 y1

)
A

pm+2−1
m+2 A

−pm
m x1A

pm
m

=A
pm+2
m+2 A

−pm
m x1

∗ zmx1

· xpm+1
1 y1 ∗ ∗.

(b) Letn > 1. Then

x
2φK

1 = x
φK

1

zmx−1
1

x
φK

1

x2y
−1
1

.

(6)(a) Let 1< i < n. Then
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x
2φK

i =A
−q4+1
m+4i xi+1y

−1
i x
−q1
i

(
x−1A

q0
m+4i−4A

−q2+1
m+4i−2y

−1
i x
−q1
i

)q3−1

× A
q0
m+4i−4

yi−1x
−1
i

· A
−q4+1
m+4i

xi+1y
−1
i

∗ ∗.

(b) x2φK
n =A

q2
m+4n−2A

−q0
m+4n−4xnA

q0
m+4n−4 ·Aq2

m+4n−2A
−q0
m+4n−4xnA

q0
m+4n−4

=A
q2
m+4n−2A

−q0
m+4n−4xnA

q0
m+4n−4

·A−q0
m+4n−4x

q1
n ynA

q2−1
m+4n−2A

−q0
m+4n−4xnA

q0
m+4n−4

=A
q2
m+4n−2 A

−q0
m+4n−4xn

x−1
n−1xn

· xq1
n ∗ ∗.

(7)(a) Letn= 1. Then

(x1y1)
φK =A

pm+2
m+2 A

−pm
m x1 · xpm+1

1 ∗ ∗.
(b) Letn > 1. Then

(x1y1)
φK = x

φK

1

zmx−1
1

y
φK

1

x2y
−1
1

.

(c) Let 1< i < n. Then

(xiyi)
φK = x

φK

i

yi−1x
−1
i

y
φK

i

xi+1y
−1
i

.

(d) Letn > 1. Then

(xnyn)
φK = x

φK
n

x−1
n−1xn

y
φK
n

x2
n

.

(8)(a) Letn= 1. Then

(y1x1)
φK = y

φK

1

x1y1

x
φK

1

x1z
−1
m

.

(b) Letn > 1. Then

(y1x1)
φK =A

−pm+4+1
m+4 x2A

pm+4
m+4 ·A−pm+4+1

m+4 x2y
−1
1 x
−pm+1
1 ◦ ∗ ∗

=A
−pm+4+1
m+4 x2Am+4 · x2y

−1
1 x
−pm+1
1 ◦ ∗ ∗

=A
−pm+4+1
m+4 x2A

−pm
m

(
x

pm+1
1 y1A

pm+2−1
m+2 A

−pm
m x1

)pm+3x
pm+1
1 y1x

−1
2

· x2y
−1
1 x
−pm+1
1 ( )pm+3−1A

pm
m

=A
−pm+4+1
m+4 x2A

−pm
m

(
x

pm+1
1 y1A

pm+2−1
m+2

)
A
−pm
m x1 A

pm
m .
zmx1 z−1
m c−1

m
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(c) (ynxn)
φK = y

φK
n

xnyn

x
φK
n

xny−1
n−1

.

(9)(a) If n= 2, then(x2y
−1
1 )φK =A

q2
m+6A

−1
m+4.

(b) If n > 2, 1< i < n. Then

(
xiy
−1
i−1

)φK = A
−q4+1
m+4i

xi+1y
−1
i yi−1x

−1
i

xi+1 ◦ y−1
i x
−q1
i

◦(x−1
i A

q0
m+4i−4

xi−1y
−1
i−2 yi−1x

−1
i

A
−q2+1
m+4i−2

xi−1y
−1
i−2 yi−1x

−1
i

y−1
i x
−q1
i

)q3−1

◦ A
q0
m+4i−4

xi−1y
−1
i−2 yi−1x

−1
i

·A−q0+1
m+4i−4 ◦ xi ◦ ỹi−1 ◦ x−1

i A
q0−1
m+4i−4

xi−1y
−1
i−2 yi−1x

−1
i

= A
−q4+1
m+4i

xi+1y
−1
i yi−1x

−1
i

xi+1 ◦ y−1
i x
−q1
i

◦(x−1
i A

q0
m+4i−4

xi−1y
−1
i−2 yi−1x

−1
i

A
−q2+1
m+4i−2

xi−1y
−1
i−2 yi−1x

−1
i

y−1
i x
−q1
i

)q3−1

◦ x−1
i A

q0−1
m+4i−4

xi−1y
−1
i−2 yi−1x

−1
i

.

(c)
(
xny
−1
n−1

)φK = A
q2
m+4n−2

xnyn

A−1
m+4n−4

xny−1
n−1

.

(10)(a) Letn= 2, then

(
x−1

1 x2
)φK =A

−pm
m

(
x

pm+1
1 y1A

pm+2−1
m+2 A

−pm
m x1

)pm+3−1
x

pm+1
1 y1x

−1
2

×A
pm+4−1
m+4 A

pm+6
m+6 A

−pm+4
m+4 x2A

pm+4
m+4

=A
−pm
m

(
x

pm+1
1 y1A

pm+2−1
m+2 A

−pm
m x1

)pm+3−1
x

pm+1
1 y1x

−1
2

×A
pm+4−1
m+4

(
A
−pm+4
m+4 x

pm+5
2 y2

)pm+6A
−pm+4
m+4 x2A

pm+4
m+4

=A
−pm
m

(
x

pm+1
1 y1A

pm+2−1
m+2 A

−pm
m x1

)pm+3−1
x

pm+1
1 y1x

−1
2

×A−1
m+4x

pm+5
2 y2

(
A
−pm+4
m+4 x

pm+5
2 y2

)pm+6−1
A
−pm+4
m+4 x2A

pm+4
m+4

= A
−pm
m

cmzm

x−1
1 A

pm
m

x−1
1 z−1

m

A
−pm+2+1
m+2 y−1

1 x
−pm+1
1

( )
×A
pm
m x

pm+5
2 y2 A

−pm+4
m+4 x

pm+5
2 y2

pm+6−1
A
−pm+4
m+4 x2A

pm+4
m+4 .
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(b) If 1 � i < n− 1, then

(
x−1
i xi+1

)φK = x
−φK

i

yix
−1
i+1

x
φK

i+1

xi+2y
−1
i+1

.

(c) Similarly to (10)(a) we get

(
x−1
n−1xn

)φK = A
−pm+4n−8
m+4n−8

yn−3x
−1
n−2

· x−1
n−1A

pm+4n−8
m+4n−8

x−1
n−1xn−2

A
−pm+4n−6−1
m+4n−6 ∗ ∗.

(11)(a) If 1< i < n− 1, then

(xi+1xi)
φK

=A
−q8+1
m+4i+4xi+2y

−1
i+1x

−q5
i+1

(
x−1
i+1A

q4
m+4iA

−q6+1
m+4i+2y

−1
i+1x

−q5
i+1

)q7−1
A

q4
m+4i

×A
−q4+1
m+4i xi+1y

−1
i x
−q1
i

(
x−1
i A

q0
m+4i−4A

−q2+1
m+4i−2y

−1
i x
−q1
i

)q3−1
A

q0
m+4i−4

=A
−q8+1
m+4i+4xi+2y

−1
i+1x

−q5
i+1

(
x−1
i+1A

q4
m+4iA

−q6+1
m+4i+2y

−1
i+1x

−q5
i+1

)q7−1
Am+4i

× xi+1y
−1
i x
−q1
i

(
x−1
i A

q0
m+4i−4A

−q2+1
m+4i−2y

−1
i x
−q1
i

)q3−1
A

q0
m+4i−4

=A
−q8+1
m+4i+4xi+2y

−1
i+1x

−q5
i+1

(
x−1
i+1A

q4
m+4iA

−q6+1
m+4i+2y

−1
i+1x

−q5
i+1

)q7−1

×A
−q0
m+4i−4x

q1
i yiA

q2−1
m+4i−2 A

−q0
m+4i−4xi

x−1
i−1xi

A
q0
m+4i−4

xi−1y
−1
i−2

.

(b) If n > 2, then

(x2x1)
φK = ∗ ∗ A

−q0
m x1

zmx1

A
q0
m

z−1
m c−1

m

.

(c) (xnxn−1)
φK =A

q6
m+4n−2A

−q4
m+4n−4xnA

q4
m+4n−4 ·A−q4+1

m+4n−4

× xny
−1
n−1x

−q1
n−1

(
x−1
n−1A

q0
m+4n−8A

−q2+1
m+4n−6y

−1
n−1x

−q1
n−1

)q3−1
A

q0
m+4n−8

= ∗ ∗ A
−q0
m+4n−8xn−1

x−1
n−2xn−1

· A
q0
m+4n−8

xn−2y
−1
n−3

.

(d) Similarly, if n= 2, then

(x2x1)
φK = ∗ ∗ A

−pm
m x1

zmx1

A
pm
m

z−1
m c−1

m

.

This proves the lemma.�
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ents
Notation. Denote byY the following set of words:

(1) if n 
= 0 and forn= 1, m 
= 1, then

Y = {xi, yi, c
zj

j

∣∣ i = 1, . . . , n, j = 1, . . . ,m
};

(2) if n= 0, denote the elementc
z1
1 . . . c

zm
m ∈ F(X ∪CS) by a new letterd , then

Y = {cz1
1 , . . . , c

zm−1
m−1, d

};
a reduced word in this alphabet is a word that does not contain subwords(c

−z1
1 d)±1

and(dc
−zm
m )±1;

(3) if n= 1, m= 1, then

Y = {A1, x1, y1};

a reduced word in this alphabet is a word that does not contain subwords(A1x1)
±1.

Lemma 49. Let m � 3, n = 0, K = K(m,0). Let p = (p1, . . . , pK) be a3-large tuple,
φK = γ

pK

K . . . γ
p1
1 , andX±φK = {xφK | x ∈X±1}. Then the following holds:

(1) Every element fromXφK can be uniquely presented as a reduced product of elem
and their inverses from the set

X ∪ {c1, . . . , cm−1, d}.

Moreover:
• all elementszφK

i , i 
=m have the formz
φK

i = cizi ẑi , whereẑi is a reduced word in
the alphabetY ,
• z

φK
m = zmẑm, whereẑm is a reduced word in the alphabetY .

When viewing elements fromXφK as elements in

F
(
X ∪ {c1, . . . , cm−1, d}

)
,

the following holds:

(2) Sub2
(
X±φK

)=



cj zj , 1� j � m,

z−1
j cj , zj z

−1
j+1, 1� j � m− 1,

z2d, dz−1
m−1



±1

.

Moreover:
• the wordzmz−1

m−1 occurs only in the beginning ofzφK
m as a part of the subword
zmz−1
m−1c

−1
m−1zm−1,
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ucts

r-

quares

ts

f

e, then
• the wordsz2d , dz−1
m−1 occur only as parts of subwords

(
c
z1
1 c

z2
2

)2
dz−1

m−1c
−1
m−1zm−1cm−1

and(c
z1
1 c

z2
2 )2d .

(3) Sub3
(
X±φK

)=



z−1
j cj zj , cj zj z

−1
j+1, zj z

−1
j+1c

−1
j+1, 1� j � m− 1,

zj z
−1
j+1cj+1, 1� j � m− 2,

c2z2d, z2dz−1
m−1, dz−1

m−1c
−1
m−1



±1

.

Proof. The lemma follows from Lemmas 44 and 48 by replacing all the prod
c
z1
1 . . . c

zm
m in subwords ofX±φK by the letterd . �

Notation. Let m 
= 0, K = K(m,n), p = (p1, . . . , pK) be a 3-large tuple, andφK =
γ

pK

K . . . γ
p1
1 . Let W be the set of words inF(X ∪CS) with the following properties:

(1) if v ∈W then Sub3(v)⊆ Sub3(X±φK ), Sub2(v)⊆ Sub2(X±φK );
(2) every subwordx±2

i of v ∈W is contained in a subwordx±3
i ;

(3) every subwordc±z1
1 of v ∈W is contained in(cz1

1 c
z2
2 )±3 whenm � 2 or in (c

z1
1 x−1

1 )±3

whenm= 1;
(4) every subwordc±zm

m (m � 3) is contained in(
∏m

i=1 c
zi

i )±1;
(5) every subwordc±z2

2 of v ∈W is contained either in(cz1
1 c

z2
2 )±3 or as the central occu

rence ofc±z2
2 in (c

−z2
2 c

−z1
1 )3c

±z2
2 (c

z1
1 c

z2
2 )3 or in (c1z1c

z2
2 (c

z1
1 c

z2
2 )3)±1.

Definition 30. The following words are calledelementary periods:

xi, c
z1
1 c

z2
2 (if m � 2), c

z1
1 x−1

1 (if m= 1).

We call the squares (cubes) of elementary periods or their inverses elementary s
(cubes).

Notation.

(1) Denote byWΓ the set of all subwords of words inW .
(2) Denote byW̄Γ the set of all wordsv ∈WΓ that are freely reduced forms of produc

of elements fromY±1. In this case we say that these elementsv are (group) words in
the alphabetY .

If U is a set of words in alphabetY we denote by Subn,Y (U) the set of subwords o
lengthn of words fromU in alphabetY .

Lemma 50. Let v ∈WΓ . Then the following holds:

(1) If v begins and ends with an elementary square and contains no elementary cub

v belongs to the following set:
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e

n




x2
i−2yi−2x

−1
i−1xixi−1y

−1
i−2x

−2
i−2, x

2
i yixiy

−1
i−1x

−2
i−1, m � 2, n 
= 0,

x2
i−2yi−2x

−1
i−1x

2
i , x2

i−2yi−2x
−1
i−1xiy

−1
i−1x

−2
i−1,

(c
−z2
2 c

−z1
1 )2c

z2
2 (c

z2
1 c

z2
2 )2,

(c
z2
1 c

z2
2 )2c

z3
3 . . . c

zi

i c
−zi−1
i−1 . . . c

−z3
3 (c

−z2
2 c

−z1
1 )2, i � 3,

(c
z2
1 c

z2
2 )2c

z3
3 . . . c

zm
m x1c

−zm
m . . . c

−z3
3 (c

−z2
2 c

−z1
1 )2,

(c
z2
1 c

z2
2 )2c

z3
3 . . . c

zm
m x2

1,

(c
z2
1 c

z2
2 )2c

z3
3 . . . c

zm
m x−1

1 y−1
1 x−2

1 ,

(c
z2
1 c

z2
2 )2c

z3
3 . . . c

zm
m x−1

1 x−1
2 x1c

−zm
m . . . c

−z3
3 (c

−z2
2 c

−z1
1 )2,

(c
z2
1 c

z2
2 )2c

z3
3 . . . c

zm
m x−1

1 x2
2,

(c
z2
1 c

z2
2 )2c

z3
3 . . . c

zm
m x−1

1 x2y
−1
1 x−2

1 ,

(c
z1
1 c

z2
2 )2dc

−zm−1
m−1 . . . (c

−z2
2 c

−z1
1 )2, zmc

−zm−1
m−1 . . . (c

−z2
2 c

−z1
1 )2, m � 3, n= 0,

(c
z2
1 c

z2
2 )2c

z3
3 . . . c

zi

i c
−zi−1
i−1 . . . c

−z3
3 (c

−z2
2 c

−z1
1 )2, i � 3,

(c
−z2
2 c

−z1
1 )2c

z2
2 (c

z2
1 c

z2
2 )2,

x2
1y1(x1c

−z1
1 )2, (c

z1
1 x−1

1 )2x2(x1c
−z1
1 )2, m= 1, n � 2,

(x1c
−z1
1 )2x2

1, x2
1y1x

−1
2 (x1c

−z1
1 )2, x−2

2 (x1c
−z1
1 )2,

x2
i−2yi−2x

−1
i−1xixi−1y

−1
i−2x

−2
i−2, x

2
i yixiy

−1
i−1x

−2
i−1, m= 0, n > 1,

x2
i−2yi−2x

−1
i−1xiy

−1
i−1x

−2
i−1, x

2
1y1x

−1
2 x2

1, x−2
1 x−1

2 x2
1,

A2
1,A
−2
1 x2

1,A−2
1 x1A

2
1, x

2
1y1A

−2
1 , m= 1, n= 1




±1

;

(2) If v does not contain two elementary squares and begins(ends) with an elementary
square, or contains no elementary squares, thenv is a subword of either one of th
words above or of one of the words in{x2

1y1x1, x
2
2y2x2} for m= 0.

Proof. Straightforward verification using the description of the set Sub3(X
±φK ) from

Lemma 48. �
Definition 31. Let Y be an alphabet andE a set of words of length at least 2 inY . We say
that an occurrence of a wordw ∈ Y ∪ E in a wordv is maximalrelative toE if it is not
contained in any other (distinct fromw) occurrence of a word fromE in v.

We say that a set of wordsW in the alphabetY admitsUnique Factorization Property
(UF) with respect toE if every wordw ∈W can be uniquely presented as a product

w = u1 . . . uk

whereui are maximal occurrences of words fromY ∪E. In this event the decompositio
above is calledirreducible.

Lemma 51. Let E be a set of words of length� 2 in an alphabetY . Suppose thatW is a
set of words in the alphabetY such that ifw1w2w3 is a subword of a word fromW and

w1w2,w2w3 ∈E thenw1w2w3 ∈E. ThenW admits(UF) with respect toE.
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m

th
Proof. Obvious. �
Definition 32. Let Y be an alphabet,E a set of words of length at least 2 inY andW a set
of words inY which admits (UF) relative toE. An automorphismφ ∈ AutF(Y ) satisfies
the Nielsen property with respect toW with exceptionsE if for any wordz ∈ Y ∪E there
exists a decomposition

zφ = Lz ◦Mz ◦Rz, (72)

for some wordsLz,Mz,Rz ∈ F(Y ) such that for anyu1, u2 ∈ Y ∪ E with u1u2 ∈
Sub(W) \ E the wordsLu1 ◦Mu1 andMu2 ◦ Ru2 occur as written in the reduced for
of u

φ
1u

φ
2 .

If an automorphismφ satisfies the Nielsen property with respect toW andE, then for
each wordz ∈ Y ∪E there exists a unique decomposition (72) with maximal length ofMz.
In this event we callMz =Mφ,z themiddleof zφ with respect toφ.

Lemma 52. Let W be a set of words in the alphabetY which admits(UF) with respect
to a set of wordsE. If an automorphismφ ∈ AutF(Y ) satisfies the Nielsen property wi
respect toW with exceptionsE then for everyw ∈W if w = u1 . . . uk is the irreducible
decomposition ofw then the wordsMui

occur as written(uncancelled) in the reduced form
of wφ .

Proof. Follows directly from definitions. �
Set

T (m,1)=
{

czs
s (s = 1, . . . ,m),

m∏
i=1

c
zi

i x1

1∏
i=m

c
−zi

i

}±1

, m � 2.

T (m,2)= T (m,1)∪
{

m∏
i=1

c
zi

i x−1
1 x2x1

1∏
i=m

c
−zi

i , y1x
−1
2 x1

1∏
i=m

c
−zi

i ,

m∏
i=1

c
zi

i x−1
1 y−1

1

}±1

;

if n � 3 then put

T (m,n)= T (m,1)∪
{

m∏
i=1

c
zi

i x−1
1 x−1

2 ,

m∏
i=1

c
zi

i x−1
1 y−1

1

}±1

∪ T1(m,n),

where

T1(m,n)= {yn−2x
−1
n−1xnxn−1y

−1
n−2, yr−2x

−1
r−1x

−1
r , yr−1x

−1
r y−1

r ,}

yn−1x

−1
n xn−1y

−1
n−2 (n > r � 2)

±1
.
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Now, let

E(m,n)=
⋃
i�2

Subi
(
T (m,n)

)∩ W̄Γ , E(m,0)= ∅, E(1,1)= ∅.

Lemma 53. Let m 
= 0, n 
= 0, K =K(m,n), p = (p1, . . . , pK) be a3-large tuple. Then
the following holds.

(1) Let w ∈ X ∪ E(m,n), v = v(w) be the leading variable ofw, and j = j (v) (see

notations at the beginning of Section7.1). Then the periodA
pj−1
j occurs inwφK and

each occurrence ofA2
j in wφK is contained in some occurrence ofA

pj−1
j . Moreover,

no squareA2
k occurs inw for k > j .

(2) The automorphismφK satisfies the Nielsen property with respect toW̄Γ with excep-
tionsE(m,n). Moreover, the following conditions hold:
(a) Mxj

=A
−pm+4r−8+1
m+4r−8 xr−1, for j 
= n;

(b) Mxn = x
q1
n ◦ yn ◦A

q2−1
m+4n−2 ◦A

−q0
m+4n−4 ◦ xn;

(c) Myj
= y

φK

j , for j < n;

(d) Myn =
(

x
q1
n yn A

q2−1
m+4n−2

xny−1
n−1 xnyn

A
−q0
m+4n−4

xny−1
n−1 yn−2x

−1
n−1

xn

)q3
x

q1
n yn;

(e) Mw =wφK for anyw ∈E(m,n) except for the following words:
• w1= yr−2x

−1
r−1x

−1
r , 3� r � n− 1, w2= yr−1x

−1
r y−1

r , 2� r � n− 1,

• w3 = yn−2x
−1
n−1xn, w4 = yn−2x

−1
n−1xny

−1
n−1, w5 = yn−2x

−1
n−1xnx

−1
n−1y

−1
n−2, w6 =

yn−2x
−1
n−1xnxn−1, w7 = yn−2x

−1
n−1x

−1
n , w8 = yn−1x

−1
n , w9 = x−1

n−1xn, w10 =
x−1
n−1xny

−1
n−1, w11= x−1

n−1xnxn−1y
−1
n−2.

(f) The only letter that may occur in a word fromWΓ to the left of a subwordw ∈
{w1, . . . ,w8} ending withyi (i = r − 1, r − 2, n − 1, n − 2, i � 1) is xi . The

maximal numberj such thatLw containsA
pj−1
j is j = m+ 4i − 2, andRw1 =

Rw2 = 1.

Proof. We first exhibit the formulas foruφK , whereu ∈⋃i�2 Subi (T1(m,n)).

(1)(a) Leti < n. Then

(
xiy
−1
i−1

)φm+4i

= (xiy
−1
i−1

)φK = A
−q4+1
m+4i

xi+1y
−1
i yi−1x

−1
i

xi+1 ◦ y−1
i x
−q1
i

◦(x−1
i A

q0
m+4i−4

xi−1y
−1
i−2 yi−1x

−1
i

A
−q2+1
m+4i−2

xi−1y
−1
i−2 yi−1x

−1
i

y−1
i x
−q1
i

)q3−1
A

q0
m+4i−4

xi−1y
−1
i−2 yi−1x

−1
i

·A−q0+1
m+4i−4 ◦ xi ◦ ỹi−1 ◦ x−1

i A
q0−1
m+4i−4
xi−1y
−1
i−2 yi−1x

−1
i
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= A
−q4+1
m+4i

xi+1y
−1
i yi−1x

−1
i

xi+1 ◦ y−1
i x
−q1
i

◦(x−1
i A

q0
m+4i−4

xi−1y
−1
i−2 yi−1x

−1
i

A
−q2+1
m+4i−2

xi−1y
−1
i−2 yi−1x

−1
i

y−1
i x
−q1
i

)q3−1 · x−1
i A

q0−1
m+4i−4

xi−1y
−1
i−2 yi−1x

−1
i

.

(b) Let i = n. Then

(
xny
−1
n−1

)φm+4n−1 = (xny
−1
n−1

)φK = A
q2
m+4n−2

xny−1
n−1 xnyn

A−1
m+4n−4

xny−1
n−1 yn−2x

−1
n−1

.

Herey
−φK

n−1 is completely cancelled.
(2)(a) Leti < n− 1. Then

(
xi+1xiy

−1
i−1

)φK

= (xi+1xiy
−1
i−1

)φm+4i+4

=A
−q8+1
m+4i+4 ◦ xi+2 ◦ y−1

i+1 ◦ x
−q5
i+1 ◦

(
x−1
i+1 ◦A

q4
m+4i ◦A

−q6+1
m+4i+2 ◦ y−1

i+1x
−q5
i+1

)q7−1
A
−q0
m+4i−4

◦ x
q1
i yi ◦A

q2−1
m+4i−2 ◦A−1

m+4i−4.

Here(xiy
−1
i−1)

φm+4i+4 was completely cancelled.

(b) Similarly, (xiy
−1
i−1)

φm+4i+3 is completely cancelled in(xi+1xiy
−1
i−1)

φm+4i+3 and

(
xi+1xiy

−1
i−1

)φm+4i+3 =A
q6
m+4i+2 ◦A

−q4
m+4i ◦ xi+1 ◦A

−q0
m+4i−4A

q2−1
m+4i−2 ◦A−1

m+4i−4.

(c)
(
x−1
n xn−1y

−1
n−2

)φm+4n−1 =A
−q4
m+4n−4 ◦ x−1

n ◦A
q4
m+4n−4 ◦A

−q6+1
m+4n−2 ◦ y−1

n ◦ x
−q5
n

◦A
−q0
m+4n−8 ◦ x

q1
n−1 ◦ yn−1 ◦A

q2−1
m+4n−6 ◦A−1

m+4n−8,

and(xn−1y
−1
n−2)

φm+4n−1 is completely cancelled.

(3)(a)(yixiy
−1
i−1)

φm+4i =A
−q4+1
m+4i ◦ xi+1 ◦A−q0

m+4i−4 ◦ xq1
i ◦ yi ◦Aq2−1

m+4i−2 ◦A−1
m+4i−4, and

(xiy
−1
i−1)

φm+4i is completely cancelled.

(b) (ynxny
−1
n−1)

φK = y
φK
n ◦ (xny

−1
n−1)

φK .

(c) (yn−1x
−1
n xn−1y

−1
n−2)

φK = Am+4n−4 ◦ A
−q6+1
m+4n−2 ◦ y−1

n ◦ x
−q5
n ◦ A

−q0
m+4n−8 ◦ x

q1
n−1 ◦

yn−1 ◦A
q2−1
m+4n−6 ◦A−1

m+4n−8, andy
φK

n−1 and(xn−1y
−1
n−2)

φK are completely cancelled.

(4)(a) Letn � 2.

(
x1c
−zm
m

)φm+4i

= (x1c
−zm
m

)φK

= ( A
−q4+1
m+4 x2 ◦ y−1

1 x
−q1
1 ◦ (x−1

1 ◦A
q0
m ◦A

−q2+1
m+2 ◦ y−1

1 ◦ x
−q1
1

)q3−1 ◦A
q0
m

)

x2y
−1
1 c

zm
m x−1

1
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on

f

· (A−q0
m ◦ x−1

1 ◦A
q0−1
m

)
=A

−q4+1
m+4 ◦ x2 ◦ y−1

1 ◦ x
−q1
1 ◦ (x−1

1 ◦A
q0
m ◦A

−q2+1
m+2 ◦ y−1

1 ◦ x
−q1
1

)q3−1 ◦ x−1
1 ◦A

q0−1
m .

Let n= 1.

(
x1z
−cm
m

)φK =A
−pm
m ◦ x

pm+1
1 ◦ y1 ◦A

pm+2−1
m+2 ◦A−1

m ,(
y1x1z

−cm
m

)φK = y
φK

1 ◦ (x1z
−cm
m )φK .

(b) (x1c
−zm
m )φK is completely cancelled inxφK

2 and forn > 2

(
x2x1c

−zm
m

)φK =A
−q8+1
m+8 ◦ x3 ◦ y−1

2 ◦ x
−q5
3 ◦ (x−1

3 ◦A
q4
m+4 ◦A

−q6+1
m+6 ◦ y−1

2 ◦ x
−q5
3

)q7−1

◦A
−q0
m ◦ x

q1
1 ◦ y1 ◦A

q2−1
m+2 ◦A−1

m ,

and forn= 2

(
x2x1c

−zm
m

)φK =A
q6
m+6 ◦A

−q4
m+4 ◦ xi ◦A

−q0
m ◦ x

q1
1 ◦ y1 ◦A

q2−1
m+2 ◦A−1

m .

(c) The cancellation between(x2x1c
−zm
m )φK andc

−zm−1
m−1 is the same as the cancellati

betweenA−1
m andc

−z
φK
m−1

m−1 , namely,

A−1
m c
−z

φK
m−1

m−1 =
(
x1 ◦A

−pm−1
m−1 ◦ c−zm

m ◦A
pm−1
m−1

)
◦ (A−pm−1+1

m−1 ◦ c−zm
m ◦A

−pm−2
m−2 ◦ c

−zm−1
m−1 ◦A

pm−2
m−2 ◦ czm

m ◦A
pm−1−1
m−1

)
= x1A

−1
m−1,

andc
−z

φK
m−1

m−1 is completely cancelled.

(d) The cancellations between(x2x1c
−zm
m )φK (or between (y1x1c

−zm
m )φK ) and∏1

i=m−1 c
−z

φK
i

i are the same as the cancellations betweenA−1
m and

∏1
i=m−1 c

−z
φK
i

i namely,

the product
∏1

i=m−1 c
−z

φK
i

i is completely cancelled and

A−1
m

1∏
i=m−1

c
−z

φK
i

i = x1

1∏
i=m

c
−zi

i .

Similarly one can write expressions foruφK for all u ∈ E(m,n). The first statement o
the lemma now follows from these formulas.

Let us verify the second statement. Supposew ∈ E(m,n) is a maximal subword from

E(m,n) of a wordu fromWΓ . If w is a subword of a word inT (m,n), then eitheru begins
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tween

only

n

with w or w is the leftmost subword of a word inT (m,n). All the words inT1(m,n) begin
with someyj , therefore the only possible letters inu in front of w arex2

j .
We have

x
φK

j x
φK

j wφK = x
φK

j ◦ x
φK

j ◦wφK

if w is a 2-letter word, and

x
φK

j x
φK

j wφK = x
φK

j ◦ x
φK

j wφK

if w is more than a 2-letter word. In this last case there are some cancellations be
x

φK

j andwφK , and the middle ofxj is the non-cancelled part ofxj becausexj as a letter
not belonging toE(m,n) appears only inxn

j .
We still have to consider all letters that can appear to the right ofw, if w is the end

of some word inT1(m,n) or w = yn−1x
−1
n xn−1, w = yn−1x

−1
n . There are the following

possibilities:

(i) w is an end ofyn−2x
−1
n−1xnxn−1y

−1
n−2;

(ii) w is an end ofyr−2x
−1
r−1x

−1
r , r < i;

(iii) w is an end ofyn−2x
−1
n−1y

−1
n−1.

Situation (i) is equivalent to the situation whenw−1 is the beginning of the word
yn−2x

−1
n−1xnxn−1y

−1
n−2, we have considered this case already. In the situation (ii) the

possible word to the right ofw will be left end ofxr−1y
−1
r−2x

−2
r−2 and

wφK x
φK

r−1y
−φK

r−2 x
−2φK

r−2 =wφK ◦ x
φK

r−1y
−φK

r−2 ◦ x
−2φK

r−2 , and wφK x
φK

r−1=wφK ◦ x
φK

r−1.

In the situation (iii) the first two letters to the right ofw arexn−1xn−1, andwφK x
φK

n−1 =
wφK ◦ x

φK

n−1.

There is no cancellation in the words

(
c
zj

j

)φK ◦ (c±zj+1
j+1

)φK ,
(
czm
m

)φK ◦ x
±φK

1 , x
φK

1 ◦ x
φK

1 .

For all the other occurrences ofxi in the words fromWΓ , namely for occurrences i
xn
i , x2

i yi , we have

(
x2
i yi

)φK = x
φK

i ◦ x
φK

i ◦ y
φk

i for i < n.

In the casen= i, the bold subword of the word

φ ( )

x K
n =A

−q0
m+4n−4 ◦ x

q1
n ◦ yn ◦A

q2−1
m+4n−2 ◦A

−q0
m+4n−4 ◦ xn ◦A

q0
m+4n−4
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d

)(d)
is Mxn for φK , and the bold subword in the word

yφK
n = A

−q0
m+4n−4

xny−1
n−1 yn−2x

−1
n−1

(
x

q1
n yn A

q2−1
m+4n−2

xny−1
n−1 xnyn

A
−q0
m+4n−4

xny−1
n−1 yn−2x

−1
n−1

xn

)q3 x
q1
n yn,

is Myn for φK. �
Lemma 54. The following statements hold.

(1) Let u ∈ E(m,n). If B2 occurs as a subword inuφK for some cyclically reduced wor
B (B 
= ci) thenB is a power of a cyclic permutation of a periodAj , j = 1, . . . ,K .

(2) Let u ∈ W̄Γ . If B2 occurs as a subword inuφK for some cyclically reduced wordB
(B 
= ci) thenB is a power of a cyclic permutation of a periodAj , j = 1, . . . ,K .

Proof. (1) follows from the formulas (1)(a)–(4)(d) from Lemma 53.
(2) We may assume thatw does not contain an elementary square. In this casew is a

subword of a word from Lemma 50. Now the result follows from the formulas (1)(a)–(4
from Lemma 53. �
Notation. (1) Denote byWΓ,L the least set of words in the alphabetY that containsW̄Γ ,

is closed under taking subwords, and isφK -invariant.

(2) Let W̄Γ,L be union ofWΓ,L and the set of all initial subwords ofz
φKj

i which are of
the form

c
j
i ◦ zi ◦w, wherew ∈WΓ,L.

Notation. Denote by Exc the following set of words in the alphabetY .

(1) If m > 2, n � 2, then

Exc= {c−z1
1 c

−zi

i c
−zi−1
i−1 , c

−z1
1 x1c

−zm
m , c

−z1
1 xjy

−1
j−1

}
.

(2) If m > 2, n= 1, then

Exc= {c−z1
1 c

−zi

i c
−zi−1
i−1 , c

−z1
1 x1c

−zm
m

}
.

(3) If m= 2, n � 2, then

Exc= {c−z1
1 x1c

−zm
m , c

−z1
1 xjy

−1
j−1

}
.

(4) If m= 2, n= 1, then

{ −z1 −zm
}

Exc= c1 x1cm .
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(5) If m= 1, n � 2, then

Exc= {c−z1
1 xjy

−1
j−1

}
.

(6) If m= 0, n � 2, then

Exc= {y1x1xi, x1xiy
−1
i−1, 2� i � n

}
.

Lemma 55. The following holds:

(1) Sub3,Y (WΓ,L)= Sub3,Y (X±φK )∪Exc;
(2) Let v ∈WΓ,L be a word that begins and ends with an elementary square and

not contain any elementary cubes. Then eitherv ∈ W̄Γ or v = v1v2 for some words
v1, v2 ∈ W̄Γ described below:
(a) for m > 2, n � 2,

v1 ∈
{

v11=
(
c
z1
1 c

z2
2

)2 m∏
i=3

c
zi

i x1x2x1

1∏
i=m

c
−zi

i , v12= x2
1y1x1

1∏
i=m

c
−zi

i

}

and

v2 ∈
{
v2i = c

−zi

i . . . c
−z3
3

(
c
−z2
2 c

−z1
1

)2
, u2,1= x1c

−zm
m . . . c

−z3
3

(
c
−z1
2 c

−z1
1

)2
,

u2,j = xjy
−1
j−1x

2
j−1

};
(b) for m= 2, n � 2,

v1 ∈
{

v11=
(
c
z1
1 c

z2
2

)2
x1x2x1

1∏
i=m

c
−zi

i , v12= x2
1y1x1

1∏
i=m

c
−zi

i

}

and

v2 ∈
{
u2,1= x1

(
c
−z1
2 c

−z1
1

)2
, u2,j = xjy

−1
j−1x

2
j−1

};
(c) for m > 2, n= 1,

v1 ∈
{

v12= x2
1y1x1

1∏
i=m

c
−zi

i

}

and

{ −zi −z3
( −z2 −z1

)2 −zm −z3
( −z1 −z1

)2}

v2 ∈ v2i = ci . . . c3 c2 c1 , u2,1= x1cm . . . c3 c2 c1 ;
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(d) for m= 2, n= 1,

v1 ∈
{

v12= x2
1y1x1

1∏
i=m

c
−zi

i

}

and

v2 ∈
{
u2,1= x1

(
c
−z1
2 c

−z1
1

)2};
(e) for m= 1, n � 2,

v1 ∈
{
v11=

(
c
z1
1 x−1

1

)2
x2x1c

−z1
1 , v12= x2

1y1x1c
−z1
1

}
and

v2 ∈
{
u2,j = xjy

−1
j−1x

2
j−1

};
(3) If v ∈WΓ,L and eitherv does not contain two elementary squares and begins(ends)

with an elementary square, orv contains no elementary squares, then eitherv is a
subword of one of the words from(2) or (for m= 0) v is a subword of one of the word
x2

1y1x1, x2
2y2x2;

(4) AutomorphismφK satisfies Nielsen property with respectWΓ,L with exceptions
E(m,n).

Proof. Let T = Kl. We will consider only the casem � 2, n � 2. We will prove all the
statements of the lemma by simultaneous induction onl. If l = 1, thenT = K and the
lemma is true. Suppose now that

Sub3,Y

(
W̄φT−K

Γ

)= Sub3,Y

(
W̄Γ

)∪Exc.

Formulas in the beginning of the proof of Lemma 53 show that

Sub3,Y

(
E(m,n)±φK

)⊆ Sub3,Y

(
W̄Γ

)
.

By the third statement for Sub(W̄φT−K

Γ ) the automorphismφK satisfies the Nielsen prop
erty with exceptionsE(m,n). Let us verify that new 3-letter subwords do not oc
“between”uφK for u ∈ T1(m,n) and the power of the correspondingxi to the left and
right of it. All the cases are similar to the following:

(
xnxn−1y

−1
n−2

)φK · xφK

n−2 . . . A
−q+1
m+4n−10

∗ yn−3x
−1
n−2

· x−1
n−1 A

q0−1
m+4n−8

xn−2 ∗
.

Words(v1v2)
φK produce the subwords from Exc. Indeed,[(x2x1

∏1
i=m c

−zi

i )]φKj ends

with v12 andv
φK

12 ends withv12. Similarly, vφK

2,j begins withv2,j+1 for j < m and withu2,1
for j =m. And u
φK

2,j begins withu2,j+1 for j < n and withu2,j for j = n.
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This and the second part of Lemma 48 finish the proof.�
According to the definition ofW̄Γ,L, this set contains words which are written in t

alphabetY±1 as well as extra wordsu of the form (c
j
i ziw)±1 or (ziw)±1 whoseY±1-

representation is spoiled at the start or at the end ofu. For thoseu ∈ W̄Γ,L which are written
in the alphabetY±1, Lemma 51 gives a unique representation as the productu1 . . . uk where
ui ∈ Y±1 ∪ E(m,n) and the occurrences ofui are maximal. We call this representati
a canonical decomposition ofu. For u ∈ W̄Γ,L of the form (c

j
i ziw)±1 or (ziw)±1 we

define the canonical decomposition ofu as follows:u = ci . . . ciziu1 . . . uk whereui ∈
Y±1 ∪ E(m,n). Clearly, we can consider the Nielsen property of automorphisms
exceptionsE(m,n) relative to this extended notion of canonical decomposition. Below
Nielsen property is always assumed in this sense.

Lemma 56. The automorphismφK satisfies Nielsen property with respect tōWΓ,L with
exceptionsE(m,n). The setW̄Γ,L is φK -invariant.

Proof. The first statement follows from Lemmas 53 and 55. For the second state
notice that ifcj

i ziw ∈ W̄Γ,L, then

c
c
j
i ziw

i =w−1 ◦ c
zi

i ◦w ∈WΓ,L and c
(c

j
i ziw)φK

i =w−φK ◦ c
z
φK
i

i ◦wφK ∈WΓ,L,

thereforecj
i z

φK

i ◦wφK ∈ W̄Γ,L. �
LetW ∈G[X]. We say that a wordU ∈G[X] occurs in W if W =W1◦U ◦W2 for some

W1,W2 ∈G[X]. An occurrence ofUq in W is calledmaximalwith respect to a propertyP
of words ifUq is not a part of any occurrence ofUr with q < r and which satisfiesP . We
say that an occurrence ofUq in W is t-stableif q � 1 andW =W1 ◦UtUqUt ◦W2, t � 1
(it follows thatU is cyclically reduced). Ift = 1 it is stable. Maximal stable occurrence
Uq will play an important part in what follows. If(U−1)q is a stable occurrence ofU−1

in W then, sometimes, we say thatU−q is a stable occurrence ofU in W . Two given
occurrencesUq andUp in a wordW aredisjoint if they do not have a common lette
as subwords ofW . Observe that if integersp and q have different signs then any tw
occurrences ofAq andAp are disjoint. Also, any two different maximal stable occurren
of powers ofU are disjoint. To explain the main property of stable occurrences of po
of U , we need the following definition. We say that a given occurrence ofUq occurs
correctly in a given occurrence ofUp if |q| � |p| and for these occurrencesUq andUp

one hasUp =Up1 ◦Uq ◦Up1. We say, that two given non-disjoint occurrences ofUq , Up

overlap correctlyin W if their common subword occurs correctly in each of them.
A cyclically reduced wordA from G[X] which is not a proper power and does n

belong toG is calleda period.

Lemma 57. Let A be a period inG[X] andW ∈G[X]. Then any two stable occurrenc

of powers ofA in W are either disjoint or they overlap correctly.
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Proof. Let Aq , Ap (q � p) be two non-disjoint stable occurrences of powers ofA in W . If
they overlap incorrectly thenA2= u ◦A ◦ v for some elementsu,v ∈G[X]. This implies
thatA= u◦v = v ◦u and henceu andv are (non-trivial) powers of some element inG[X].
SinceA is not a proper power it follows thatu= 1 or v = 1—a contradiction. This show
thatAq andAp overlap correctly. �

Let W ∈G[X] andO =O(W,A)= {Aq1, . . . ,Aqk } be a set of pair-wise disjoint stab
occurrences of powers of a periodA in W (listed according to their appearance inW from
the left to the right). ThenO induces anO-decomposition ofW of the following form:

W = B1 ◦Aq1 ◦ · · · ◦Bk ◦Aqk ◦Bk+1. (73)

For example, letP be a property of words (or just a property of occurrences inW )
such that if two powers ofA (two occurrences of powers ofA in W ) satisfyP and over-
lap correctly then their union also satisfiesP . We refer to suchP aspreserving correct
overlappings. In this event, byOP =OP (W,A) we denote the uniquely defined set of
maximal stable occurrences of powers ofA in W which satisfy the propertyP . Notice,
that occurrences inOP are pair-wise disjoint by Lemma 57. Thus, ifP holds on every
power ofA thenOP (W,A)=O(W,A) contains all maximal stable occurrences of po
ers ofA in W . In this case, the decomposition (73) is unique and it is called thecanonical
(stable) A-decomposition ofW .

The following example provides another propertyP that will be in use later. LetN be
a positive integer and letPN be the property ofAq that |q|� N . Obviously,PN preserves
correct overlappings. In this case the setOPN

provides the so-calledcanonicalN -large
A-decompositions ofW which are also uniquely defined.

Definition 33. Let

W = B1 ◦Aq1 ◦ · · · ◦Bk ◦Aqk ◦Bk+1

be the decomposition (73) ofW above. Then the numbers

max
A

(W)=max{qi | i = 1, . . . , k}, min
A

(W)=min{qi | i = 1, . . . , k}

are called, correspondingly, theupperand thelowerA-bounds ofW .

Definition 34. Let A be a period inG[X] andW ∈G[X]. For a positive integerN we say
that theN -largeA-decomposition ofW

W = B1 ◦Aq1 ◦ · · · ◦Bk ◦Aqk ◦Bk+1

hasA-size(l, r) if minA(W) � l and maxA(Bi) � r for everyi = 1, . . . , k.

Let A = {A1,A2, . . .} be a sequence of periods fromG[X]. We say that a wordW ∈

G[X] hasA-rankj (rankA(W)= j ) if W has a stable occurrence of(A±1

j )q (q � 1) and
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j is maximal with this property. In this event,Aj is called theA-leading term(or just the
leading term) of W (notationLTA(W)=Aj or LT(W)=Aj ).

We now fix an arbitrary sequenceA of periods in the groupG[X]. For a periodA=Aj

one can consider canonicalAj -decompositions of a wordW and define the correspondin
Aj -bounds andAj -size. In this case we, sometimes, omitA in the writings and simply
write maxj (W) or minj (W) instead of maxAj

(W), minAj
(W).

In the case when rankA(W) = j the canonicalAj -decomposition ofW is called the
canonicalA-decomposition ofW .

Now we turn to an analog ofO-decompositions ofW with respect to “periods” which
are not necessarily cyclically reduced words. LetU =D−1 ◦A ◦D, whereA is a period.
For a setO = O(W,A) = {Aq1, . . . ,Aqk } as above consider theO-decomposition of a
wordW

W = B1 ◦Aq1 ◦ · · · ◦Bk ◦Aqk ◦Bk+1. (74)

Now it can be rewritten in the form:

W = (B1D)
(
D−1 ◦Aq1 ◦D

)
. . .
(
D−1BkD

)(
D−1 ◦Aqk ◦D

)(
D−1Bk+1

)
.

Let εi, δi = sgn(qi). Since every occurrence ofAqi above is stable,B1 = B̄1 ◦ Aε1,
Bi = (Aδi−1 ◦ B̄i ◦ Aεi ), Bk+1 = Aδk ◦ B̄k+1 for suitable wordsB̄i . This shows that the
decomposition above can be written as

W = (B̄1A
ε1D

)(
D−1Aq1D

)
. . .
(
D−1Aδi−1B̄iA

εi D
)
. . .
(
D−1AqkD

)(
D−1Aδk B̄k+1

)
= (B̄1D

)(
D−1Aε1D

)(
D−1Aq1D

)
. . .
(
D−1Aδi−1D

)(
D−1B̄iD

)(
D−1Aεi D

)
. . .(

D−1AqkD
)(

D−1AδkD
)(

D−1B̄k+1
)

= (B̄1D
)(

Uε1
)(

Uq1
)
. . .
(
Uδk−1

)(
D−1B̄kD

)(
Uεk

)(
Uqk

)(
Uδk

)(
D−1B̄k+1

)
.

Observe, that the cancellation between parentheses in the decomposition above d
exceed the lengthd = |D| of D. Using notationw = u◦d v to indicate that the cancellatio
betweenu andv does not exceed the numberd , we can rewrite the decomposition abo
in the following form:

W = (B̄1D
) ◦d Uε1 ◦d Uq1 ◦d Uδ1 ◦d · · · ◦d Uεk ◦d Uqk ◦d Uδk ◦d

(
D−1B̄k+1

)
,

hence

W =D1 ◦d Uq1 ◦d · · · ◦d Dk ◦d Uqk ◦d Dk+1, (75)

whereD1 = B̄1D, Dk+1 = D−1B̄k+1, Di = D−1B̄iD (2 � i � k), and the occurrence
Uqi are(1, d)-stable. (We similarly define(t, d)-stable occurrences.) We will refer to th
decomposition ofW asU -decomposition with respect toO (to get a rigorous definition o
U -decompositions one has to replace in the definition of theO-decomposition ofW the

periodA by U and◦ by ◦|D|). In the case when anA-decomposition ofW (with respect
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to O) is unique then the correspondingU -decomposition ofW is also unique, and in thi
event one can easily rewriteA-decompositions ofW into U -decomposition and vice vers

We summarize the discussion above in the following lemma.

Lemma 58. Let A ∈ G[X] be a period andU = D−1 ◦ A ◦D ∈ G[X]. Then for a word
W ∈G[X] if

W = B1 ◦Aq1 ◦ · · · ◦Bk ◦Aqk ◦Bk+1

is a stableA-decomposition ofW then

W =D1 ◦d Uq1 ◦d · · · ◦d Dk ◦d Uqk ◦d Dk+1

is a stableU -decomposition ofW , whereDi are defined as in(75). And vice versa.

From now on we fix the following set of leading terms

AL,p = {Aj | j � L, φ = φL,p}

for a given multipleL of K =K(m,n) and a given tuplep.

Definition 35. Let W ∈ G[X] and N be a positive integer. A wordAs is termed the
N -large leading termLTN(W) of the wordW if A

q
s has a stable occurrence inW for

someq � N , ands is maximal with this property. The numbers is called theN -rank ofW
(s = rankN(W), s � 1).

In Lemmas 44–47 we described precisely the leading termsAj for j = 1, . . . ,K . It is
not easy to describe preciselyAj for an arbitraryj > K . So we are not going to do
here, instead, we chose a compromise by introducing a modified versionA∗j of Aj which
is not cyclically reduced, in general, but which is “more cyclically reduced” then the in
wordAj . Namely, letL be a multiple ofK and 1� j � K. Define

A∗L+j =A∗(φL+j )=A
φL

j .

Lemma 59. Let L be a multiple ofK and1 � j � K. Let p = (p1, . . . , pn) be (N + 3)-
large tuple. Then

A∗L+j =R−1 ◦AL+j ◦R

for some wordR ∈ F(X ∪CS) such thatrank(R) � L−K + j + 2 and |R|< |AL+j |.

Proof. First, letL=K. Consider elementary periodsxi =Am+4i−3 andA1= c
z1
1 c

z2
2 . For

i 
= n,
x
2φK

i = x
φk

i ◦ x
φK

i .



130 O. Kharlampovich, A. Myasnikov / Journal of Algebra 290 (2005) 1–203

d,

ry

of

id-

or

y

For i = n,

A∗(φK+m+4n−3)=R−1 ◦AK+m+4n−3 ◦R,

whereR =A
pm+4n−4
m+4i−4, therefore rankN(R)=m+ 4n− 4. For the other elementary perio

(
c
z1
1 c

z2
2

)2φK = (cz1
1 c

z2
2

)φK ◦ (cz1
1 c

z2
2

)φK .

Any otherAj can be written in the formAj = u1 ◦ v1 ◦ u2 ◦ v2 ◦ u3, wherev1, v2 are
the first and the last elementary squares inAj , which are parts of big powers of elementa
periods. The Nielsen property ofφK implies that the wordR for A∗(φK+j ) is the word
that cancels between(v2u3)

φK and(u1v1)
φK . It definitely hasN -large rank� K , because

the element(v2u3u1v1)
φK hasN -large rank� K . To give an exact bound for the rank

R we consider all possibilities forAj :

(1) Ai begins withz−1
i and ends withzi+1, i = 1, . . . ,m− 1;

(2) Am begins withz−1
m and ends withx−1

1 ;
(3) Am+4i−4 begins withxi−1y

−1
i−2x

−2
i−2, if i = 3, . . . , n, and ends withx2

i−1yi−1x
−1
i if

i = 2, . . . , n; if i = 2 it begins withx1
∏1

j=m c
−zj

j (c
−z2
2 c

−z1
1 )2;

(4) Am+4i−2 andAm+4i−1 begin withxiy
−1
i−1x

−2
i−1 and end withx2

i yi if i = 1, . . . , n.

Therefore,AφK

i begins withz−1
i+1 and ends withzi+2, i = 1, . . . ,m−2, and is cyclically

reduced.AφK

m−1 begins withz−1
m and ends withx1, and is cyclically reduced.AφK

m be-

gins with z−1
m and ends withx−1

1 and is cyclically reduced. We have already cons

eredA
φK

m+4i−3.

ElementsAφK

m+4i−4,A
φK

m+4i−2,A
φK

m+4i−1 are not cyclically reduced. By Lemma 53, f
A∗K+m+4i−4, one has

R = (xi−1y
−1
i−2

)φK
(
rank(R)=m+ 4i − 4

);
for A∗K+m+4i−2 andA∗K+m+4i−1,

R = (xiy
−1
i−1

)φK
(
rank(R)=m+ 4i

)
.

This proves the statement of the lemma forL=K .
We can suppose by induction that

A∗L−K+j =R−1 ◦AL−K+j ◦R, and rank(R) � L− 2K + j + 2.

The cancellations betweenAφK

L−K+j andRφK and betweenAφK

L−K+j andA
φK

L−K+j corre-

spond to cancellations in wordsuφK , whereu is a word inWΓ between two elementar

squares. These cancellations are in rank� K , and the statement of the lemma follows.�
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Lemma 60. Let W ∈ F(X ∪ CS) andA = Aj = LTN(W), andA∗ = R−1 ◦ A ◦ R. Then
W can be presented in the form

W = B1 ◦d A∗q1 ◦d B2 ◦d · · · ◦d Bk ◦d A∗qk ◦d Bk+1 (76)

whereA∗qi are maximal stableN -large occurrences ofA∗ in W andd � |R|. This presen-
tation is unique and it is called the canonicalN -largeA∗-decomposition ofW .

Proof. The result follows from existence and uniqueness of the canonicalA-decomposi-
tions. Indeed, if

W = B1 ◦Aq1 ◦B2 ◦ · · · ◦Bk ◦Aqk ◦Bk+1

is the canonicalA-decomposition ofW , then

(B1R)
(
R−1AR

)q1
(
R−1B2R

)
. . .
(
R−1BkR

)(
R−1AR

)qk
(
R−1Bk+1

)
is the canonicalA∗-decomposition ofW . Indeed, since everyAqi is a stable occurrence
then everyBi starts withA (if i 
= 1) and ends withA (if i = k + 1). HenceR−1BiR =
R−1 ◦Bi ◦R.

Conversely if

W = B1A
∗q1B2 . . .BkA

∗qkBk+1

is anA∗-representation ofW then

W = (B1R
−1) ◦Aq1 ◦ (RB2R

−1) ◦ · · · ◦ (RBkR
−1) ◦Aqk ◦ (RBk+1)

is the canonicalA-decomposition forW . �
Letφ be an automorphism ofF(X∪C) which satisfies the Nielsen property with resp

to a setW with exceptionsE. In Definition 32, we have introduced the notationMφ,w for
the middle ofw with respect toφ for w ∈ Y ∪E. We now introduce a similar notation fo
any w ∈ Sub(W) denoting byM̄φ,w the maximal non-cancelled part ofwφ in the words
(uwv)φ for all uwv ∈W with w 
= u−1, v−1. Observe that, in general,̄Mφ,w may be empty
while this cannot hold forMφ,w. If M̄φ,w is non-empty then we representwφ as

wφ = L̄φ,w ◦ M̄φ,w ◦ R̄φ,w.

Lemma 61. LetL= lK , l > 0, p a 3-large tuple.

(1) If E is closed under taking subwords thenM̄φ,w is non-empty whenever the irreducib
decomposition ofw has length at least3.
(2) M̄φL,(A2) is non-empty for an elementary periodA.



132 O. Kharlampovich, A. Myasnikov / Journal of Algebra 290 (2005) 1–203

wers

-

f
ere-

at
(3) The automorphismφL = φL,p has the Nielsen property with respect tōWΓ,L with ex-
ceptionsE(m,n). For w ∈X∪E(m,n) andl > 1, the middleMφL,w can be described
in the following way. Let

MφK,w = f ◦Ar ◦ g ◦Bs ◦ h

whereAr andBs are the first and the last maximal occurrences of elementary po
in MφK,w. ThenMφL,w containsM̄φL−K,(ArgBs) as a subword.

(4) If i < j � L thenA2
j does not occur inAi .

Proof. To prove (1) observe that ifw = u1u2u3, ui ∈ Y ∪E, is the irreducible decompo
sition ofw thenM̄φ,w should containMφ,u2.

The middlesMφK,x of elements fromX and from E(m,n) contain big powers o
someAj , wherej = 1, . . . ,K , and, therefore, big powers of elementary periods. Th
fore, statements (2) and (3) can be proved by the simultaneous induction onl. Notice that
for l = 1 both statements follow from Lemma 56.

The statement (4) follows from Lemmas 44–46.�
Lemma 62. LetL= lK > 0, 1� ir � K , t � 2, p a 3-large tuple,

(1) and

w = u ◦As
r ◦ v

be at-stable occurrence ofAs
r in a wordw ∈ W̄Γ,L. LetA∗r+L =R−1 ◦Ar+L ◦R and

d = |R|. Then

wφL = uφL ◦d
(
A∗r+L

)s ◦d vφL

where the occurrence of(A∗r+L)s is (t − 2, d)-stable.

(2) LetW ∈ W̄Γ,L, andA∗L+r =R−1 ◦AL+r ◦R andd = |R|. If t � 2 and

W =D1 ◦A
q1
r ◦D2 ◦ · · · ◦A

qk
r ◦Dk+1

is a t-stableAr -decomposition ofW then

WφL =D
φL

1 ◦d (A∗L+r )
q1 ◦d D

φL

2 ◦d · · · ◦d (A∗L+r )
qk ◦d D

φL

k+1

is a (t − 2, d)-stableA∗L+r -decomposition ofWφL .

Proof. (1) Clearly, we can assumet = 2 without loss of generality. Suppose first th
Ar is not an elementary period. Then the canonical decomposition ofAr is of length
� 3 and thusM̄φL

(Ar) is non-empty by Lemma 61. This implies thatuφL ends with

M̄φL

(Ar)R̄φL
(Ar), and thus the cancellation betweenuφL and(A∗r+L)r is the same as in
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the productA∗r+L ·A∗r+L. Similarly, the same is the cancellation between(A∗r+L)r andvφL

and the statement of lemma follows.
If Ar is an elementary period, a slightly more careful analysis is needed. We firs

sider the image ofw underφK . If r = 1 one of the imagesA±φK

1 of the periodsA±1
1 in the

occurrence ofAs+4sgn(r) in w (i.e., the first or the last one) may be completely cance
in wφK , but all the others have non-empty non-cancelled contributions inwφK . Then an
easy application of Lemma 61 (withL replaced withL−K) gives the result, and this
the case when only(t − 2, d)-stability can be stated. IfAr is an elementary period of th
form xj , a similar argument applies but with no possibility of completely cancelled pe
A±1

r underφK .
(2) follows from (1). �

Lemma 63. Let Aj1 . . . ,Ajk
, k � 0, be elementary periods,1 � j1, . . . , jk � K . If w ∈

W̄Γ,L and

wφK = w̃0 ◦dj1
A
∗q1
j1+K ◦dj1

w̃1 ◦dj2
· · · ◦djk

A
∗qk

jk+Kw̃k, (77)

whereqi � 5, w̃i does not contain an elementary square, anddji
= |Rji

|, whereA∗ji+K =
R−1

ji
◦Aji+K ◦Rji

(see Lemma59), i = 1, . . . , k, then

w =w0 ◦A
q1
j1
◦w1 ◦ · · · ◦A

qk

jk
◦wk,

wherew
φK

i = w̃i , i = 0, . . . , k.

Proof. (1) Suppose thatw does not contain an elementary square.
In this case eitherw ∈ W̄Γ or w = v1v2 for some wordsv1, v2 ∈ W̄Γ which are de-

scribed in Lemma 55.

Claim 1. If wφK containsBs for some cyclically reduced wordB 
= ci , i = 1, . . . ,m, and
s � 2, thenB is a power of a cyclic permutation of some uniquely defined periodAi ,
i = 1, . . . ,K .

It suffices to consider the cases = 2. Notice that forw ∈ W̄Γ the claim follows from
Lemma 54. Now observe that ifw = v1v2 for v1, v2 ∈ W̄Γ then

wφK = v
φK

1 ◦ v
φK

2

and “illegal” squares do not occur on the boundary betweenv
φK

1 andv
φK

2 (direct inspec-
tion).

Claim 2. wφK does not contain(EφK )2, whereE is an elementary period.

By Claim 1,wφK contains(EφK )2, whereE is an elementary period, if and only ifEφK

is a power of a cyclic permutation of some periodAi , i = 1, . . . ,K . So it suffices to show
thatEφK is not a power of a cyclic permutation of some periodAi , i = 1, . . . ,K . To this

end we list below all the wordsEφK .
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By Lemma 44

A
φK

1 =A
−p1+1
1 c

−z2
2 A

p1
1 A
−p2+1
2 c

−z3
3 A

−p1+1
1 c

z2
2 A

p1−1
1 c

z3
3 A

p2−1
2 (m � 2);

by Lemma 47

x
φK

i = A
q2
m+4i−2

xiy
−1
i−1 xiyi

A
−q0
m+4i−4

xiy
−1
i−1 yi−2x

−1
i−1

xi A
q0
m+4i−4

xi−1y
−1
i−2 yi−1x

−1
i

(i 
= n);

and (direct computation from Lemmas 44 and 47)

(
c
z1
1 x−1

1

)φK = z1x
p2
1 y1A

p3
3 A
−p1
1 x1

(
A
−p1
1 x

p2
1 y1A

p3
3 A
−p1
1 x1

)p4−2
x

p2
1 y1

× x−1
2

(
y

φ4
1 x−1

2

)p5−1
(n > 1),(

c
z1
1 x−1

1

)φK = z1x
−1
1 A

p1
1 A
−p3+1
3 y−1

1 x
−p2
1 A

p1
1 (n= 1).

The claim follows by comparing the formulas above with the corresponding form
for Aj (Lemmas 44–47).

Now Claim 2 implies the lemma since in this case the decomposition (77) for thewφK

is of the formwφK = w̃0 andw =w0, as required.
(2) wφK contains(EφK )2, whereE is an elementary period. By the case (1)w has a

non-trivial decomposition of the form

w =w0 ◦A
q1
j1
◦w1 ◦ · · · ◦A

qk

jk
◦wk,

whereqi � 2, andwi does not have squares of elementary periods. Consider theAr -de-
composition ofw wherer =max{j1, . . . , jk}:

w =D1 ◦A
q1
r ◦ · · · ◦A

qs
r ◦Ds+1,

whereDi does not contain a square of an elementary period. It follows from the ca
that this decomposition is at least 3-large canonical stableAr -decomposition ofw. Indeed,
if E1 and E2 are two distinct elementary periods thenE

sφK

1 does not contain a cycli

cally reduced part ofE2φK

2 as a subword (see the formulas above). So in the cano
3-stableA∗r+K -decomposition ofwφK the powersA∗qi

r+K come from the correspondin
powers ofAr . By Lemma 62

wφK =D
φK

1 ◦d A
∗q1
K+r ◦d · · · ◦A

∗qs

K+r ◦d D
φK

s+1,

is the canonical stableA∗j+K -decomposition ofwφK that contains all the occurrences
powers ofA∗j+K in the decomposition (77). Now by induction on the maximal rank
elementary periods which squares appear in the wordsDi we can finish the proof. �
Lemma 64. Let L= lK > 0, 1 � r � K , A∗r+L = R−1 ◦Ar+L ◦R andd = |R|. Then the
following holds for everyw ∈ W̄Γ,L.
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(1) Suppose there is a decomposition

wφK = ũ ◦f
(
A∗r+K

)s ◦f ṽ,

wheres � 5 and the cancellation betweeñu andA∗r+K (respectively, betweenA∗r+K

and ṽ) is not more thanf which is the maximum of the correspondingd and
length of the part ofA∗r+K before the first stable occurrence of an elementary po
(respectively, after the last stable occurrence of an elementary power). Then

w = u ◦As
r ◦ v, uφK = ũ, vφK = ṽ.

(2) Let

WφL = D̃1 ◦d
(
A∗L+r

)q1 ◦d D̃2 ◦d · · · ◦d
(
A∗L+r

)qk ◦d D̃k+1

be a(1, d)-stable3-large A∗L+r -decomposition ofWφL . ThenW has a stableAr -de-
composition

W =D1 ◦A
q1
r ◦D2 ◦ · · · ◦A

qk

k ◦Dk+1

whereD
φL

i = D̃i .

Proof. (1) If Ar is an elementary period, the statement follows from Lemma 63. Other
representAr asAr = A

q1
j1
◦ w1 ◦ A

q2
j2
◦ w2, whereA

q1
j1

andA
q2
j2

are the first and the las
maximal elementary powers (eachAi begins with an elementary power).

Then

wφK = ũ ◦d
(
A

q1
j1+K ◦d w

φK

1 ◦d A
q2
j2+K ◦d w

φK

2

)s−1 ◦d A
q1
j1+K ◦d w

φK

1 ◦d A
q2
j2+K

◦d w
φK

2 ◦f ṽ.

SinceφK is a monomorphism, by Lemma 63 we obtain

w = u ◦ (Aq1
j1
◦w1 ◦A

q2
j2
◦w2

)s−1 ◦A
q1
j1
◦w1 ◦A

q2
j2
◦w2v,

whereuφK = ũ, vφK = ṽ. We will show thatw2v =w2 ◦ v. Indeed,w2 is eitherczi

i , i � 3,
or yi−1x

−1
i , or yi . If there is a cancellation betweenw andv, thenv must respectively

begin either withc−zi

i , or xi or y−1
i and the image of this letter whenφK is applied tov

must be almost completely cancelled. It follows from Lemma 53 that this does not ha
Thereforew = u ◦As

r ◦ v, and (1) is proved.
(2) For L = K statement (1) implies statement (2). We now use induction onl to

prove (2).
Suppose
wφL = ũ ◦d A∗r+L ◦d ṽ. (78)
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RepresentA∗r+K as

A∗r+K =w0 ◦A
q1
i1
◦w1 ◦A

q2
i2
◦w2,

whereA
s1
i1

andA
s2
i2

are the first and the last maximal occurrences of elementary powe
Then

wφL = ũw
φL−K

0 ◦d
(
A

s1φL−K

i1
◦d w

φL−K

1 ◦d A
s2φL−K

i2
◦d (w2w0)

φL−K
)s−1

◦d A
s1φL−K

i1
◦d w

φL−K

1 ◦d A
s2φL−K

i2
◦d (w2)

φL−K ṽ.

By the assumption of induction

wφK = ûw0 ◦
(
A

s1
i1
◦w1 ◦A

s2
i2
◦ (w2w0)

)s−1 ◦A
s1
i1
◦w1 ◦A

s2
i2
◦ (w2v̂),

whereûφL−K = ũ, v̂φL−K = ṽ. Therefore

wφK = û ◦f A∗sr+K ◦f v̂.

By statement (1),w = u ◦ As
r ◦ v, whereuφK = û, vφK = v̂. Therefore (78) implies tha

w = u ◦As
r ◦ v, whereuφL = ũ, vφL = ṽ. This implies (2) forL. �

Corollary 10.

(1) Let m 
= 0, n 
= 0, K =K(m,n), p = (p1, . . . , pK) be a3-large tuple,L=Kl. Then
for any u ∈ Y ∪ E(m,n) the elementMφL,u containsA

q
j for somej > L − K and

q > pj − 3.
(2) For anyx ∈X if rank(xφL)= j then every occurrence ofA2

j in xφL occurs inside som
occurrence ofAN−3

j .

Proof. (1) follows from the formulas forMu with respect toφK in Lemmas 53 and 62.�
Corollary 11. Let u,v ∈ WΓ,L. If the canceled subword in the productuφK vφK does
not containAl

j for somej � K and l ∈ Z then the canceled subword in the produ
uφK+LvφK+L does not contain the subwordAl

L+j .

Lemma 65. Supposep is an (N + 3)-large tuple,φj = φjp. Let L be a multiple ofK .
Then:

(1) (a) x
φj

i has a canonicalN -large A∗j -decomposition of size(N,2) if either j ≡ m+
4(i − 1) (modK), or j ≡ m+ 4i − 2 (modK), or j ≡m+ 4i (modK). In all
other cases

( φj
)

rank xi < j ;
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(b) y
φj

i has a canonicalN -large A∗j -decomposition of size(N,2) if either j ≡ m+
4(i − 1) (modK), or j ≡m+ 4i − 3 (modK), or j ≡m+ 4i − 1 (modK), or
j ≡m+ 4i (modK). In all other cases

rank
(
y

φj

i

)
< j ;

(c) z
φj

i has a canonicalN -large A∗j -decomposition of size(N,2) if j ≡ i (modK)

and either1� i � m− 1 or i =m andn 
= 0. In all other cases

rank
(
z
φj

i

)
< j ;

(d) if n = 0 then z
φj
m has a canonicalN -large A∗j -decomposition of size(N,2) if

j ≡m− 1 (modK). In all other cases

rank
(
z
φj
m

)
< j.

(2) If j = r +L, 0 < r � K , (w1 . . .wk) ∈ Subk(X±γK ...γr+1) then either(w1 . . .wk)
φj =

(w1 . . .wk)
φj−1, or (w1 . . .wk)

φj has a canonicalN -large A∗j -decomposition. In an
case,(w1 . . .wk)

φj has a canonicalN -large A∗s -decomposition in some ranks, j −
K + 1� s � j.

Proof. (1) ConsideryφL+m+4i

i :

y
φL+m+4i

i = (xφL

i+1y
−φL+m+4i−1
i

)q4−1
x

φL

i+1

(
y

φL+m+4i−1
i x

−φL

i+1

)q4.

In this caseA∗(φL+m+4i )= x
φL+m+4i−1
i+1 y

−φL+m+4i−1
i .

To write a formula forxφL+m+4i

i , denoteỹi−1= y
φL+m+4i−5
i−1 , x̄i = x

φL

i , ȳi = y
φL

i . Then

x
φL+m+4i

i = (x̄i+1y
−φL+m+4i−1
i

)q4−1
x̄i+1(((

x̄i ỹ
−1
i−1

)q0x̄
q1
i ȳi )

q2−1(x̄i ỹ
−1
i−1

)q0x̄
q1+1
i ȳi )

−q3+1ȳ−1
i x̄
−q1
i

(
ỹi−1x̄

−1
i

)q0.

Similarly we considerzφL+i

i .
(2) If in a word(w1 . . .wk)

φj all the powers ofA
pj

j are cancelled (they can only canc
completely and the process of cancellations does not depend onp) then if we consider an
A∗j -decomposition of(w1 . . .wk)

φj , all the powers ofA∗j are also completely cancelle
By construction of the automorphismsγj , this implies that

γ φ φ
(w1 . . .wk) j j−1 = (w1 . . .wk) j−1. �
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7.2. Generic solutions of orientable quadratic equations

Let G be a finitely generated fully residually free group andS = 1 a standard quadrat
orientable equation overG which has a solution inG. In this section we effectively con
struct discriminating sets of solutions ofS = 1 in G. The main tool in this construction
an embedding

λ :GR(S)→G(U,T )

of the coordinate groupGR(S) into a groupG(U,T ) which is obtained fromG by finitely
many extensions of centralizers. There is a nice setΞP (see Section 2.5) of discriminatin
G-homomorphisms fromG(U,T ) ontoG. The restrictions of homomorphisms fromΞP

onto the imageGλ
R(S) of GR(S) in G(U,T ) give a discriminating set ofG-homomorphisms

from Gλ
R(S) into G, i.e., solutions ofS = 1 in G. This idea was introduced in [12] t

describe the radicals of quadratic equations.
It has been shown in [12] that the coordinate groups of non-regular standard qu

equationsS = 1 overG are already extensions of centralizers ofG, so in this case we ca
immediately putG(U,T )=GR(S) and the result follows. Hence we can assume from
beginning thatS = 1 is regular.

Notice, that all regular quadratic equations have solutions in general position, exc
the equation[x1, y1][x2, y2] = 1 (see Section 2.7).

For the equation[x1, y1][x2, y2] = 1 we do the following trick. In this case we view th
coordinate groupGR(S) as the coordinate group of the equation[x1, y1] = [y2, x2] over the
group of constantsG ∗ F(x2, y2). So the commutator[y2, x2] = d is a non-trivial constan
and the new equation is of the form[x, y] = d , where all solutions are in general positio
Therefore, we can assume thatS = 1 is one of the following types (belowd, ci are non-
trivial elements fromG):

n∏
i=1

[xi, yi] = 1, n � 3, (79)

n∏
i=1

[xi, yi]
m∏

i=1

z−1
i cizid = 1, n � 1, m � 0, (80)

m∏
i=1

z−1
i cizid = 1, m � 2, (81)

and it has a solution inG in general position.
Observe, that sinceS = 1 is regular then Nullstellensats holds forS = 1, soR(S) =

ncl(S) andGR(S) =G[X]/ncl(S)=GS .
For a groupH and an elementu ∈ H by H(u, t) we denote the extension of the ce

tralizerCH (u) of u:

〈 ∣ ( )〉

H(u, t)= H, t ∣ t−1xt = x x ∈ CH (u) .



O. Kharlampovich, A. Myasnikov / Journal of Algebra 290 (2005) 1–203 139

g

ce of

nce of

ir
If

G=G1 � G1(u1, t1)=G2 � · · ·� Gn(un, tn)=Gn+1

is a chain of extensions of centralizers of elementsui ∈Gi , then we denote the resultin
groupGn+1 by G(U,T ), whereU = {u1, . . . , un} andT = {t1, . . . , tn}.

Let β :GR(S)→G be a solution of the equationS(X)= 1 in the groupG such that

x
β
i = ai, y

β
i = bi, z

β
i = ei .

Then

d =
m∏

i=1

e−1
i ciei

n∏
i=1

[ai, bi].

Hence we can rewrite the equationS = 1 in the following form (for appropriatem andn):

m∏
i=1

z−1
i cizi

n∏
i=1

[xi, yi] =
m∏

i=1

e−1
i ciei

n∏
i=1

[ai, bi]. (82)

Proposition 4. LetS = 1 be a regular quadratic equation(82) andβ :GR(S)→G a solu-
tion of S = 1 in G in a general position. Then one can effectively construct a sequen
extensions of centralizers

G=G1 � G1(u1, t1)=G2 � · · ·� Gn(un, tn)=G(U,T )

and aG-homomorphismλβ :GR(S)→G(U,T ).

Proof. By induction we define a sequence of extensions of centralizers and a seque
group homomorphisms in the following way.

Case: m �= 0, n = 0. In this event for eachi = 1, . . . ,m− 1 we define by induction a pa
(θi,Hi), consisting of a groupHi and aG-homomorphismθi :G[X]→Hi .

Before we will go into formalities let us explain the idea that lies behind this. Ifz1→
e1, . . . , zm→ em is a solution of an equation

z−1
1 c1z1 . . . z−1

m cmzm = d, (83)

then transformations

ei→ ei

(
c
ei

i c
ei+1
i+1

)q
, ei+1→ ei+1

(
c
ei

i c
ei+1
i+1

)q
, ej → ej (j 
= i, i + 1), (84)

produce a new solution of Eq. (83) for an arbitrary integerq. This solution is composition

of the automorphismγ q

i and the solutione. To avoid collapses under cancellation of the
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periods(c
ei

i c
ei+1
i+1 )q (which is an important part of the construction of the discriminat

set of homomorphismsΞP in Section 2.5) one might want to have numberq as big as
possible, the best way would be to haveq =∞. Since there are no infinite powers inG,
to realize this idea one should go outside the groupG into a bigger group, for example
into an ultrapowerG′ of G, in which a non-standard power, sayt , of the elementcei

i c
ei+1
i+1

exists. It is not hard to see that the subgroup〈G, t〉� G′ is an extension of the centraliz
CG(c

ei

i c
ei+1
i+1 ) of the elementcei

i c
ei+1
i+1 in G. Moreover, in the group〈G, t〉 the transformation

(84) can be described as

ei→ ei t, ei+1→ ei+1t, ej → ej (j 
= i, i + 1), (85)

Now, we are going to construct formally the subgroup〈G, t〉 and the corresponding hom
morphism using (85).

Let H be an arbitrary group andβ :GS → H a homomorphism. Composition of th
canonical projectionG[X]→GS andβ gives a homomorphismβ0 :G[X]→H . Fori = 0
put

H0=H, θ0= β0.

Suppose now, that a groupHi and a homomorphismθi :G[X] →Hi are already defined
In this event we defineHi+1 andθi+1 as follows

Hi+1=
〈
Hi, ri+1

∣∣∣ [CHi

(
c
z
θi
i+1

i+1 c
z
θi
i+2

i+2

)
, ri+1

]
= 1

〉
,

z
θi+1
i+1 = z

θi

i+1ri+1, z
θi+1
i+2 = z

θi

i+2ri+1, z
θi+1
j = z

θi

j (j 
= i + 1, i + 2).

By induction we constructed a series of extensions of centralizers

G=H0 � H1 � · · ·� Hm−1=Hm−1(G)

and a homomorphism

θm−1,β = θm−1 :G[X]→Hm−1(G).

Observe, that

c
z
θi
i+1

i+1 c
z
θi
i+2

i+2 = c
ei+1ri
i+1 c

ei

i+2

so the elementri+1 extends the centralizer of the elementc
ei+1ri
i+1 c

ei

i+2. In particular, the
following equality holds in the groupHm−1(G) for eachi = 0, . . . ,m− 1:

[ ]

ri+1, c

ei+1ri
i+1 c

ei

i+2 = 1 (86)
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(wherer0= 1). Observe also, that

z
θm−1
1 = e1r1, z

θm−1
i = eiri−1ri , z

θm−1
m = emrm−1 (0< i < m). (87)

From (86) and (87) it readily follows that

(
m∏

i=1

z−1
i cizi

)θm−1

=
m∏

i=1

e−1
i ciei , (88)

soθm−1 gives rise to a homomorphism (which we again denote byθm−1 or θβ )

θm−1 :GS→Hm−1(G).

Now we iterate the construction one more time replacingH by Hm−1(G) andβ by θm−1
and put:

Hβ(G)=Hm−1
(
Hm−1(G)

)
, λβ = θθm−1 :GS→Hβ(G).

The groupHβ(G) is union of a chain of extensions of centralizers which starts at
groupH .

If H = G then all the homomorphisms above areG-homomorphisms. Now we ca
write

Hβ(G)=G(U,T )

whereU = {u1, . . . , um−1, ū1, . . . , ūm−1}, T = {r1, . . . , rm−1, r̄1, . . . , r̄m−1} andūi , r̄i are
the corresponding elements when we iterate the construction:

ui+1= c
ei+1ri
i+1 c

ei+2
i+2 , ūi+1= c

ei+1ri ri+1r̄i
i+1 c

ei+2ri+1ri+2
i+2 .

Case: m = 0, n > 0. In this caseS = [x1, y1] . . . [xn, yn]d−1. Similar to the case above w
start with the principal automorphisms. They consist of two Dehn’s twists:

x→ ypx, y→ y, (89)

x→ x, y→ xpy, (90)

which fix the commutator[x, y], and the third transformation which ties two consequ
commutators[xi, yi][xi+1, yi+1]:

xi→
(
yix
−1
i+1

)−q
xi, yi→

(
yix
−1
i+1

)−q
yi

(
yix
−1
i+1

)q
,

xi+1→
(
yix
−1
i+1

)−q
xi+1

(
yix
−1
i+1

)q
, yi+1→

(
yix
−1
i+1

)−q
yi+1. (91)

Now we define by induction oni, for i = 0, . . . ,4n−1, pairs(Gi,αi) of groupsGi and

G-homomorphismsαi :G[X]→Gi . Put
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, put
G0=G, α0= β.

For each commutator[xi, yi] in S = 1 we perform consequently three Dehn’s twists (9
(89), (90) (more precisely, their analogs for an extension of a centralizer) and an ana
the connecting transformation (91) provided the next commutator exists. Namely, su
G4i andα4i have been already defined. Then

G4i+1=
〈
G4i , t4i+1

∣∣ [CG4i

(
x

α4i

i+1

)
, t4i+1

]= 1
〉
,

y
α4i+1
i+1 = t4i+1y

α4i

i+1, sα4i+1 = sα4i (s 
= yi+1).

G4i+2=
〈
G4i+1, t4i+2

∣∣ [CG4i+1

(
y

α4i+1
i+1

)
, t4i+2

]= 1
〉
,

x
α4i+2
i+1 = t4i+2x

α4i+1
i+1 , sα4i+2 = sα4i+1 (s 
= xi+1),

G4i+3=
〈
G4i+2, t4i+3

∣∣ [CG4i+2

(
x

α4i+2
i+1

)
, t4i+3

]= 1
〉
,

y
α4i+3
i+1 = t4i+3y

α4i+2
i+1 , sα4i+3 = sα4i+2 (s 
= yi+1),

G4i+4=
〈
G4i+3, t4i+4

∣∣ [CG4i+3

(
y

α4i+3
i+1 x

−α4i+3
i+2

)
, t4i+4

]= 1
〉
,

x
α4i+4
i+1 = t−1

4i+4x
α4i+3
i+1 , y

α4i+4
i+1 = y

α4i+3t4i+4
i+1 , x

α4i+4
i+2 = x

α4i+3t4i+4
i+2 ,

y
α4i+4
i+2 = t−1

4i+4y
α4i+3
i+2 , sα4i+4 = sα4i+3 (s 
= xi+1, yi+1, xi+2, yi+2).

Thus we have defined groupsGi and mappingsαi for all i = 0, . . . ,4n − 1. As above,
the straightforward verification shows that the mappingα4n−1 gives rise to aG-ho-
momorphismα4n−1 :GS→G4n−1. We repeat now the above construction once more t
with G4n−1 in the place ofG0, α4n−1 in the place ofβ, andt̄j in the place oftj . We denote
the corresponding groups and homomorphisms byḠi andᾱi :GS→ Ḡi .

Put

G(U,T )= Ḡ4n−1, λβ = ᾱ4n−1,

By induction we have constructed aG-homomorphism

λβ :GS→G(U,T ).

Case: m > 0, n > 0. In this case we combine the two previous cases together. To thi
we take the groupHm−1 and the homomorphismθm−1 :G[X]→Hm−1 constructed in the
first case and put them as the input for the construction in the second case. Namely

G0=
〈
Hm−1, rm

∣∣ [CHm−1

(
cz

θm−1
m

m x
−θm−1
1

)
, rm

]= 1
〉
,

and define the homomorphismα0 as follows

zα0
m = z

θm−1
m rm, x

α0
1 = a

rm
1 , y

α0
1 = r−1

m b1,
sα0 = sθm−1 (s ∈X, s 
= zm,x1, y1).
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Now we apply the construction from the second case. Thus we have defined groupsGi and
mappingsαi :G[X]→Gi for all i = 0, . . . ,4n−1. As above, the straightforward verific
tion shows that the mappingα4n−1 gives rise to aG-homomorphismα4n−1 :GS→G4n−1.

We repeat now the above construction once more time withG4n−1 in place of
G0 and α4n−1 in place of β. This results in a groupḠ4n−1 and a homomorphism
ᾱ4n−1 :GS→ Ḡ4n−1.

Put

G(U,T )= Ḡ4n−1, λβ = ᾱ4n−1.

We have constructed aG-homomorphism

λβ :GS→G(U,T ).

We proved the proposition for all three types of Eqs. (79)–(81), as required.�
Proposition 5. LetS = 1 be a regular quadratic equation(2) andβ :GR(S)→G a solution
of S = 1 in G in a general position. Then the homomorphismλβ :GR(S)→G(U,T ) is a
monomorphism.

Proof. In the proof of this proposition we use induction on the atomic rank of the equ
in the same way as in the proof of Theorem 1 in [12].

Since all the intermediate groups are also fully residually free by induction it suffic
prove the following:

(1) n= 1, m= 0; prove thatψ = α3 is an embedding ofGS into G3;
(2) n= 2, m= 0; prove thatψ = α4 is a monomorphism onH = 〈G,x1, y1〉;
(3) n= 1, m= 1; prove thatψ = α3ᾱ0 is a monomorphism onH = 〈G,z1〉;
(4) n= 0, m � 3; prove thatθ2θ̄2 is an embedding ofGS into H̄2.

Now we consider all these cases one by one.
(1) Choose an arbitrary non-trivial elementh ∈GS . It can be written in the form

h= g1v1(x1, y1)g2v2(x1, y1)g3 . . . vn(x1, y1)gn+1,

where 1
= vi(x1, y1) ∈ F(x1, y1) are words inx1, y1, not belonging to the subgrou
〈[x1, y1]〉, and 1
= gi ∈ G, gi /∈ 〈[a, b]〉 (with the exception ofg1 andgn+1, they could
be trivial). Then

hψ = g1v1(t3t1a, t2b)g2v2(t3t1a, t2b)g3 . . . vn(t3t1a, t2b)gn+1. (92)

The groupG(U,T ) is obtained fromG by three HNN extensions (extensions of centra
ers), so every element inG(U,T ) can be rewritten to its reduced form by making finite
many pinches. It is easy to see that the leftmost occurrence of eithert3 or t1 in the product

(92) occurs in the reduced form ofhψ uncancelled.
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(2) x1→ t−1
4 t2a1, y1→ t−1

4 t3t1b1t4, x2→ t−1
4 a2t4, y2→ t−1

4 b2. Choose an arbitrar
non-trivial elementh ∈H =G ∗ F(x1, y1). It can be written in the form

h= g1v1(x1, y1)g2v2(x1, y1)g3 . . . vn(x1, y1)gn+1,

where 1
= vi(x1, y1) ∈ F(x1, y1) are words inx1, y1, and 1
= gi ∈G (with the exception
of g1 andgn+1, they could be trivial). Then

hψ = g1v1
(
t−1
4 t2a, (t3t1b)t4

)
g2v2

(
t−1
4 t2a, (t3t1b)t4

)
g3 . . . vn

(
t−1
4 t2a, (t3t1b)t4

)
gn+1. (93)

The groupG(U,T ) is obtained fromG by four HNN extensions (extensions of central
ers), so every element inG(U,T ) can be rewritten to its reduced form by making finite
many pinches. It is easy to see that the leftmost occurrence of eithert4 or t1 in the product
(93) occurs in the reduced form ofhψ uncancelled.

(3) We have an equation

cz[x, y] = c[a, b], z→ zr1r̄1, x→ (
t2a

r1
)r̄1, y→ r̄−1

1 t3t1r
−1
1 b, and[

r1, ca
−1]= 1,

[
r̄1,
(
cr1a−r1t−1

2

)]= 1.

Here we can always suppose, that[c, a] 
= 1, by changing a solution, hence[r1, r̄1] 
= 1.

The proof for this case is a repetition of the proof of Proposition 11 in [12].
(4) We will consider the case whenm= 3; the general case can be considered simila

We have an equationcz1
1 c

z2
2 c

z3
3 = c1c2c3, and can suppose[ci, ci+1] 
= 1.

We will prove thatψ = θ2θ̄1 is an embedding. The images ofz1, z2, z3 underθ2θ̄1 are
the following:

z1→ c1r1r̄1, z2→ c2r1r2r̄1, z3→ c3r2,

where

[r1, c1c2] = 1,
[
r2, c

r1
2 c3

]= 1,
[
r̄1, c

r1
1 c

r1r2
2

]= 1.

Let w be a reduced word inG ∗ F(zi, i = 1,2,3), which does not have subwordsc
z1
1 .

We will prove that ifwψ = 1 in H̄1, thenw ∈ N, whereN is the normal closure of th
elementcz1

1 c
z2
2 c

z3
3 c−1

3 c−1
2 c−1

1 . We use induction on the number of occurrences ofz±1
1 in w.

The induction basis is obvious, because homomorphismψ is injective on the subgrou
〈F,z2, z3〉.

Notice, that the homomorphismψ is also injective on the subgroupK = 〈z1z
−1
2 , z3,F 〉.

ConsiderH̄1 as an HNN extension by letterr̄1. Supposewψ = 1 in H̄1. Letter r̄1 can
disappear in two cases: (1)w ∈KN, (2) there is a pinch between̄r−1

1 andr̄1 (or between
r̄1 and r̄−1

1 ) in wψ. This pinch corresponds to some elementz−1
1,2uz′1,2 (or z1,2u(z′1,2)

−1),
wherez1,2, z

′
1,2 ∈ {z1, z2}.

In the first casewψ 
= 1, becausew ∈K andw /∈N .
In the second case, if the pinch happens in(z1,2u(z′1,2)

−1)ψ , thenz1,2u(z′1,2)
−1 ∈KN,
therefore it has to be at least one pinch that corresponds to(z−1
1,2uz′1,2)

ψ . We can suppose,



O. Kharlampovich, A. Myasnikov / Journal of Algebra 290 (2005) 1–203 145

e

g
up

-

er

s

up to a cyclic shift ofw, that z−1
1,2 is the first letter,w does not end with somez′′1,2, and

w cannot be represented asz−1
1,2uz′1,2v1z

′′
1,2v2, such thatz′1,2v1 ∈ KN. A pinch can only

happen ifz−1
1,2uz′1,2 ∈ 〈cz1

1 c
z2
2 〉. Therefore, eitherz1,2= z1, or z′1,2= z1, and one can replac

c
z1
1 by c1c2c3c

−z3
3 c

−z2
2 , therefore replacew by w1 such thatw = uw1, whereu is in the

normal closure of the elementc
z1
1 c

z2
2 c

z3
3 c−1

3 c−1
2 c−1

1 , and apply induction. �
The embeddingλβ :GS→G(U,T ) allows one to construct effectively discriminatin

sets of solutions inG of the equationS = 1. Indeed, by the construction above the gro
G(U,T ) is union of the following chain of length 2K = 2K(m,n) of extension of central
izers:

G=H0 � H1 � · · ·� Hm−1 � G0 � G1 � · · ·� G4n−1

= H̄0 � H̄1 � · · ·� H̄m−1= Ḡ0 � · · ·� Ḡ4n−1=G(U,T ).

Now, every 2K-tuplep ∈N
2K determines aG-homomorphism

ξp :G(U,T )→G.

Namely, ifZi is theith term of the chain above thenZi is an extension of the centraliz
of some elementgi ∈ Zi−1 by a stable letterti . TheG-homomorphismξp is defined as
composition

ξp =ψ1 ◦ · · · ◦ψK

of homomorphismsψi :Zi→ Zi−1 which are identical onZi−1 and such thattψi

i = g
pi

i ,
wherepi is theith component ofp.

It follows (see Section 2.5) that for every unbounded set of tuplesP ⊂ N
2K the set of

homomorphisms

ΞP = {ξp | p ∈ P }

G-discriminatesG(U,T ) into G. Therefore (sinceλβ is monic), the family ofG-homo-
morphisms

ΞP,β = {λβξp | ξp ∈ΞP }

G-discriminatesGS into G.
One can give another description of the setΞP,β in terms of the basic automorphism

from the basic sequenceΓ . Observe first that

λβξp = φ2K,pβ,

therefore
ΞP,β = {φ2K,pβ | p ∈ P }.
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We summarize the discussion above as follows.

Theorem 10. Let G be a finitely generated fully residually free group,S = 1 a regular
standard quadratic orientable equation, andΓ its basic sequence of automorphisms. T
for any solutionβ :GS→G in general position, any positive integerJ � 2, and any un-
bounded setP ⊂N

JK the set ofG-homomorphismsΞP,β G-discriminatesGR(S) into G.
Moreover, for any fixed tuplep′ ∈N

tK the family

ΞP,β,p′ = {φtK,p′θ | θ ∈ΞP,β}

G-discriminatesGR(S) into G.

For tuplesf = (f1, . . . , fk) andg = (g1, . . . , gm) denote the tuple

fg = (f1, . . . , fk, g1, . . . , gm).

Similarly, for a set of tuplesP put

f Pg = {fpg | p ∈ P }.

Corollary 12. Let G be a finitely generated fully residually free group,S = 1 a regular
standard quadratic orientable equation,Γ the basic sequence of automorphisms ofS, and
β :GS→G a solution ofS = 1 in general position. SupposeP ⊆ N

2K is unbounded se
andf ∈ N

Ks , g ∈ N
Kr for somer, s ∈ N. Then there exists a numberN such that iff is

N -large ands � 2 then the family

ΦP,β,f,g = {φK(r+s+2),qβ | q ∈ f Pg}

G-discriminatesGR(S) into G.

Proof. By Theorem 10 it suffices to show that iff is N -large for someN then βf =
φ2K,f β is a solution ofS = 1 in general position, i.e., the images of some particular fini
many non-commuting elements fromGR(S) do not commute inG. It has been shown abov
that the set of solutions{φ2K,hβ | h ∈N

2K } is a discriminating set forGR(S). Moreover, for
any finite setM of non-trivial elements fromGR(S) there exists a numberN such that for
anyN -large tupleh ∈N

2K the solutionφ2K,hβ discriminates all elements fromM into G.
Hence the result. �
7.3. Small cancellation solutions of standard orientable equations

Let S(X)= 1 be a standard regular orientable quadratic equation overF written in the
form (82):

m∏
z−1cizi

n∏
[xi, yi] =

m∏
e−1ciei

n∏
[ai, bi].
i=1
i

i=1 i=1
i

i=1
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In this section we construct solutions inF of S(X)= 1 which satisfy certain small cance
lation conditions.

Definition 36. Let S = 1 be a standard regular orientable quadratic equation writte
the form (82). We say that a solutionβ :FS→ F of S = 1 satisfies the small cancellatio
condition(1/λ) with respect to the set̄WΓ (respectivelyW̄Γ,L) if the following conditions
are satisfied:

(1) β is in general position;
(2) for any 2-letter worduv ∈ W̄Γ (respectivelyuv ∈WΓ,L) (in the alphabetY ) the can-

cellation in the worduβvβ does not exceed(1/λ)min{|uβ |, |vβ |} (we assume here an
below thatuβ , vβ are given by their reduced forms inF );

(3) the cancellation in a worduβvβ does not exceed(1/λ)min{|uβ |, |vβ |} providedu, v

satisfy one of the conditions below:
(a) u= zi , v = (z−1

i−1c
−1
i−1zi−1),

(b) u= ci , v = zi ,
(c) u= v = ci

(we assume here thatuβ , vβ are given by their reduced forms inF ).

Notation. For a homomorphismβ :F [X]→ F by Cβ we denote the set of all elements th
cancel inuβvβ whereu, v are as in (2), (3) from Definition 36 and the word that canc
in the product(cz2

2 )β · (dc
−zm−1
m−1 )β .

Lemma 66. Let u, v be cyclically reduced elements ofG ∗H such that|u|, |v|� 2. If for
somem,n > 1 elementsum and vn have a common initial segment of length|u| + |v|,
thenu andv are both powers of the same elementw ∈G ∗H . In particular, if bothu and
v are not proper powers thenu= v.

Proof. The same argument as in the case of free groups.�
Corollary 13. If u,v ∈ F , [u,v] 
= 1, then for anyλ � 0 there existm0, n0 such that for
anym � m0, n � n0 cancellation betweenum andvn is less than(1/λ)max{|um|, |vn|}.

Lemma 67. Let S(X)= 1 be a standard regular orientable quadratic equation written
the form(82):

m∏
i=1

z−1
i cizi

n∏
i=1

[xi, yi] =
m∏

i=1

e−1
i ciei

n∏
i=1

[ai, bi], n � 1,

where all ci are cyclically reduced. Then there exists a solutionβ of this equation tha
satisfies the small cancellation condition with respect toW̄Γ,L. Moreover, for any word
w ∈ W̄Γ,L that does not contain elementary squares, the wordwβ does not contain a cycli

cally reduced part ofA2β

i for any elementary periodAi .
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Proof. We will begin with a solution

β1 : xi→ ai, yi→ bi, zi→ ei

of S = 1 in F in general position. We will show that for anyλ ∈ N there are positive
integersmi , ni , ki , qj and a tuplep = (p1, . . . , pm) such that the mapβ :F [X] → F

defined by

x
β

1 =
(
b̃

n1
1 ã1

)[ã1,b̃1]m1
, y

β

1 =
((

b̃
n1
1 ã1

)k1b̃1
)[ã1,b̃1]m1

,

whereã1= x
φmβ1
1 , b̃1= y

φmβ1
1 ,

x
β
i =

(
b

ni

i ai

)[ai ,bi ]mi
, y

β
i =

((
b

ni

i ai

)ki bi

)[ai ,bi ]mi
, i = 2, . . . , n,

z
β
i = c

qi

i z
φmβ1
i , i = 1, . . . ,m,

is a solution ofS = 1 satisfying the small cancellation condition(1/λ) with respect toW̄Γ .
Moreover, we will show that one can choose the solutionβ1 such thatβ satisfies the sma
cancellation condition with respect tōWΓ,L.

The solutionβ1 is in general position, therefore the neighboring items in the seque

c
e1
1 , . . . , cem

m , [a1, b1], . . . , [an, bn]

do not commute. We have[cei

i , c
ei+1
i+1 ] 
= 1.

There is a homomorphismθβ1 : FS→ F̄ = F(Ū, T̄ ) into the groupF̄ obtained fromF

by a series of extensions of centralizers, such thatβ = θβ1ψp, whereψp : F̄ → F . This ho-
momorphismθβ1 is a monomorphism onF ∗F(z1, . . . , zm) (this follows from the proof of
Theorem 4 in [12], where the same sequence of extensions of centralizers is constr

The set of solutionsψp for different tuplesp and numbersmi,ni, ki, qj is a discrim-
inating family for F̄ . We just have to show that the small cancellation condition forβ is
equivalent to a finite number of inequalities in the groupF̄ .

We havez
β
i = c

qi

i z
φmβ1
i such thatβ1(zi) = ei , andp = (p1, . . . , pm) is a large tuple

DenoteĀj =A
β1
j , j = 1, . . . ,m. Then it follows from Lemma 44 that

z
β
i = c

qi+1
i eiĀ

pi−1
i−1 c

ei+1
i+1 Ā

pi−1
i , wherei = 2, . . . ,m− 1,

zβ
m = c

qm+1
m emĀ

pm−1
m−1 a−1

1 Ā
pm−1
m ,

where

Ā1= c
e1
1 c

e2
2 , Ā2= Ā1(p1)= Ā

−p1
1 c

e2
2 Ā

p1
1 c

e3
3 , . . . ,

Āi = Ā
−pi−1
i−1 c

ei

i Ā
pi−1
i−1 c

ei+1
i+1 , i = 2, . . . ,m− 1,
Ām = Ā
−pm−1
m−1 cemĀ

pm−1
m−1 a−1

1 .
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One can choosep such that[Āi , Āi+1] 
= 1, [Āi−1, c
ei+1
i+1 ] 
= 1, [Āi−1, c

ei

i ] 
= 1 and
[Ām, [a1, b1]] 
= 1, because their pre-images do not commute inF̄ . We need the secon
and third inequality here to make sure thatĀi does not end with a power of̄Ai−1. Alterna-
tively, one can prove by induction oni thatp can be chosen to satisfy these inequalitie

Thenc
z
β
i

i andc
z
β
i+1

i+1 have small cancellation, andcz
β
m

m has small cancellation withx±β

1 ,

y
±β

1 .
Let

x
β
i =

(
b

ni

i ai

)[ai ,bi ]mi
, y

β
i =

((
b

ni

i ai

)ki bi

)[ai ,bi ]mi
, i = 2, . . . , n,

for some positive integersmi,ni, ki, sj which values we will specify in a due course. L
uv ∈ W̄Γ . There are several cases to consider.

(1) uv = xixi . Then

uβvβ = (bni

i ai

)[ai ,bi ]mi (
b

ni

i ai

)[ai ,bi ]mi
.

Observe that the cancellation between(b
ni

i ai) and(b
ni

i ai) is not more then|ai |. Hence the
cancellation inuβvβ is not more then|[ai, bi]mi | + |ai |. We choseni "mi such that

∣∣[ai, bi]mi
∣∣+ |ai |< 1

λ

∣∣(bni

i ai

)[ai ,bi ]mi ∣∣
which is obviously possible. Similar arguments prove the casesuv = xiyi anduv = yixi .

(2) In all other cases the cancellation inuβvβ does not exceed the cancellation b
tween[ai, bi]mi and[ai+1, bi+1]mi+1, hence by Lemma 66 it is not greater than|[ai, bi]| +
|[ai+1, bi+1]|.

Let u= z
β
i , v = c

−z
β
i−1

i−1 . The cancellation is the same as betweenĀ
p2i

2i andĀ
−pi−1
i−1 and,

therefore, small.
Sinceci is cyclically reduced, there is no cancellation betweenci andz

β
i .

The first statement of the lemma is proved.
We now will prove the second statement of the lemma. We have to show th

u = c
zi

i or u = x−1
j and v = c

z1
1 , then the cancellation betweenuβ and vβ is less than

(1/λ)min{|u|, |v|}. We can choose the initial solutione1, . . . , em, a1, b1, . . . , an, bn so that

[
c
e1
1 c

e2
2 , c

e3
3 . . . c

ei

i

] 
= 1 (i � 3),
[
c
e1
1 c

e2
2 , [ai, bi]

] 
= 1 (i = 2, . . . , n) and[
c
e1
1 c

e2
2 , b−1

1 a−1
1 b1

] 
= 1.

Indeed, the equations

[
c
z1
1 c

z2
2 , c

z3
3 . . . c

zi

i

]= 1,
[
c
z1
1 c

z2
2 , [xi, yi]

]= 1 (i = 2, . . . , n) and[ ]

c
z1
1 c

z2
2 , y−1

1 x−1
1 y1 = 1
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are not consequences of the equationS = 1, and, therefore, there is a solution ofS(X)= 1
which does not satisfy any of these equations.

To show thatu= c
z
β
i

i andv = c
z
β
1

1 have small cancellation, we have to show thatp can
be chosen so that[Ā1, Āi] 
= 1 (which is obvious, because the pre-images inḠ do not
commute), and that̄A−1

i does not begin with a power of̄A1. The periodĀ−1
i has form

(c−zi+1
i+1 . . . c

−z3
3 Ā

−p2
1 . . .). It begins with a power ofĀ1 if and only if [Ā1, c

e3
3 . . . c

ei

i ] = 1,
but this equality does not hold.

Similarly one can show, that the cancellation betweenu= x
−β
j andv = c

z
β
1

1 is small. �
Lemma 68. Let S(X) = 1 be a standard regular orientable quadratic equation of
type(81)

m∏
i=1

z−1
i cizi = c

e1
1 . . . cem

m = d,

where allci are cyclically reduced, and

β1 : zi→ ei

a solution ofS = 1 in F in general position. Then for anyλ ∈N there is a positive intege
s and a tuplep = (p1, . . . , pK) such that the mapβ :F [X]→ F defined by

z
β
i = c

qi

i z
φKβ1
i ds,

is a solution ofS = 1 satisfying the small cancellation condition(1/λ) with respect to
W̄Γ,L with one exception whenu= d andv = c

−zm−1
m−1 (in this cased cancels out invβ).

Notice, however, that such worduv occurs only in the productwuv with w = c
z2
2 , in which

case cancellation betweenwβ and dvβ is less thanmin{|wβ |, |dvβ |}. Moreover, for any
word w ∈ W̄Γ,L that does not contain elementary squares, the wordwβ does not contain

a cyclically reduced part ofA2β
i for any elementary periodAi .

Proof. Solutionβ is chosen the same way as in the previous lemma (except for the m
plication byds ) on the elementszi , i 
=m. We do not takes very large, we just need it t
avoid cancellation betweenzβ

2 andd . Therefore the cancellation between

c
z
β
i

i and c
±z

β
i+1

i+1

is small for i < m − 1. Similarly, for u = c
z2
2 , v = d, w = c

−zm−1
m−1 , we can make the

cancellation betweenuβ anddwβ less than min{|uβ |, |dwβ |}. �

Lemma 69. LetU,V ∈WΓ,L such thatUV =U ◦ V andUV ∈WΓ,L.
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(1) Let n 
= 0. If u is the last letter ofU andv is the first letter ofV then the cancellation
betweenUβ andV β is equal to the cancellation betweenuβ andvβ .

(2) Let n = 0. If u1u2 are the last two letters ofU and v1, v2 are the first two letters
of V then the cancellation betweenUβ andV β is equal to the cancellation betwee
(u1u2)

β and(v1v2)
β .

Sinceβ has the small cancellation property with respect toW̄Γ,L, this implies that the
cancellation inUβV β is equal to the cancellation inuβvβ , which is equal to some eleme
in Cβ . This proves the lemma.

Let w ∈ W̄Γ,L,φj = φj,p,W =wφj , andA=Aj .

W = B1 ◦Aq1 ◦ · · · ◦Bk ◦Aqk ◦Bk+1 (94)

the canonicalN -largeA-representation ofW for some positive integerN .
Since the occurrencesAqi above are stable we have

B1= B̄1 ◦Asgn(q1), Bi =Asgn(qi−1) ◦ B̄i ◦Asgn(qi ) (2 � i � k),

Bk+1=Asgn(qk) ◦ B̄k+1.

DenoteAβ = c−1A′c, whereA′ is cyclically reduced, andc ∈ Cβ. Then

B
β

1 = B̄
β

1 c−1(A′)sgn(q1)c, B
β
i = c−1(A′)sgn(qi−1)cB̄

β
i c−1(A′)sgn(qi )c,

B
β

k+1= c−1(A′)sgn(qk)cB̄
β

k+1.

By Lemma 69 we can assume that the cancellation in the words above is small, i.e.,
not exceed a fixed numberσ which is the maximum length of words fromCβ . To get anN -
large canonicalA′-decomposition ofWβ one has to take into account stable occurren
of A′. To this end, putεi = 0 if A′sgn(qi ) occurs in the reduced form of̄Bβ

i c−1(A′)sgn(qi )

as written (the cancellation does not touch it), and putεi = sgn(qi) otherwise. Similarly,
put δi = 0 if A′sgn(qi ) occurs in the reduced form of(A′)sgn(qi )cB̄

β

i+1 as written, and pu
δi = sgn(qi) otherwise.

Now one can rewriteWβ in the following form

Wβ =E1 ◦
(
A′
)q1−ε1−δ1 ◦E2 ◦

(
A′
)q2−ε2−δ2 ◦ · · · ◦ (A′)qk−εk−δk ◦Ek+1, (95)

whereE1= (B
β

1 c−1(A′)ε1), E2= ((A′)δ1cB
β

2 c−1(A′)ε2), Ek+1= ((A′)δk cB
β

k+1).

Observe, thatdi andεi, δi can be effectively computed fromW andβ. It follows that
one can effectively rewriteWβ in the form (95) and the form is unique.

The decomposition (95) ofWβ induces the correspondingA∗-decomposition ofW .
This can be shown by an argument similar to the one in Lemmas 63 and 64, where
been proven thatA∗r+L-decomposition induces the correspondingAr -decomposition. To

see that the argument works we need the last statement in Lemmas 67 (n > 0) and 68
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at
(n = 0) which ensure that the “illegal” elementary squares do not occur because
choice of the solutionβ.

If the canonicalN -largeA∗-decomposition ofW has the form:

D1
(
A∗
)q1D2 . . .Dk

(
A∗
)qkDk+1

then the induced one has the form:

W = (D1A
∗ε1
)
A∗q1−ε1−δ1

(
A∗δ1D2A

∗ε2
)
. . .
(
A∗δk−1DkA

∗εk
)
A∗qk−εk−δk

(
A∗δkDk+1

)
. (96)

We call this decomposition theinducedA∗-decomposition ofW with respect toβ and
write it in the form:

W =D∗1
(
A∗
)q∗1 D∗2 . . .D∗k

(
A∗
)q∗k D∗k+1, (97)

whereD∗i = (A∗)δi−1Di(A
∗)εi , q∗i = qi−εi−δi , and, for uniformity,δ1= 0 andεk+1= 0.

Lemma 70. For given positive integersj , N and a real numberε > 0 there is a constan
C = C(j, ε,N) > 0 such that ifpt+1−pt > C for everyt = 1, . . . , j −1, and a wordW ∈
W̄Γ,L has a canonicalN -large A∗-decomposition(97), then this decomposition satisfi
the following conditions:

(
D∗1
)β =E1 ◦θ

(
cRβ

)
,

(
D∗i
)β = (R−βc−1) ◦θ Ei ◦θ

(
cRβ

)
,(

D∗k+1

)β = (R−βc−1) ◦θ Ek+1, (98)

whereθ < ε|A′|. Moreover, this constantC can be found effectively.

Proof. Applying homomorphismβ to the reducedA∗-decomposition ofW (97) we can
see that

Wβ = ((D∗1)βRβc
)(

A′
)q∗1 (cRβ

(
D∗2
)β

R−βc−1)(A′)q∗2 . . .(
cRβ

(
D∗k
)β

R−βc−1)(A′)q∗k (cRβ
(
D∗k+1

)β)
.

Observe that this decomposition has the same powers ofA′ as the canonicalN -large
A′-decomposition (95). From the uniqueness of such decompositions we deduce th

E1=
(
D∗1
)β

c−1R−β, Ei = cRβ
(
D∗i
)β

R−βc−1, Ek+1= cRβ
(
D∗k+1

)β
.

Putθ = |c| + |Rβ |. Rewriting the equalities above one can get

(
D∗1
)β =E1 ◦θ

(
cRβ

)
,

(
D∗i
)β = (R−βc−1) ◦θ Ei ◦θ

(
cRβ

)
,( ) ( )
D∗k+1
β = R−βc−1 ◦θ Ek+1.
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Indeed, in the decomposition (95) every occurrence(A′)qi−εi−δi is stable henceEi starts
(ends) onA′. The rank ofR is at most rank(A) − K + 2, andβ has small cancellation
Takingpi+1" pi we obtainε|A′|> |c| + |Rβ |. �

Notice, that one can effectively write down the inducedA∗-decomposition ofW with
respect toβ.

We summarize the discussion above in the following statement.

Lemma 71. For given positive integersj , N there is a constantC = C(j,N) such that if
pt+1−pt > C, for everyt = 1, . . . , j−1, then for anyW ∈ W̄Γ,L the following conditions
are equivalent:

(1) decomposition(94) is the canonical(the canonicalN -large) A-decomposition ofW ,
(2) decomposition(95) is the canonical(the canonicalN -large) A′-decomposition ofWβ ,
(3) decomposition(96) is the canonical(the canonicalN -large) A∗-decomposition ofW.

7.4. Implicit function theorem for quadratic equations

In this section we prove Theorem 9 for orientable quadratic equations over a free
F = F(A). Namely, we prove the following statement.

Let S(X,A) = 1 be a regular standard orientable quadratic equation overF . Then
every equationT (X,Y,A) = 1 compatible withS(X,A) = 1 admits an effective com
pleteS-lift.

A special discriminating set of solutionsL and the corresponding cut equationΠ
Below we continue to use notations from the previous sections. Fix a solutionβ of

S(X,A) = 1 which satisfies the cancellation condition(1/λ) (with λ > 10) with respect
to W̄Γ .

Put

x
β
i = ãi , y

β
i = b̃i , z

β
i = c̃i .

Recall that

φj,p = γ
pj

j . . . γ
p1
1 =

←−
Γ

p
j

wherej ∈ N, Γj = (γ1, . . . , γj ) is the initial subsequence of lengthj of the sequence
Γ (∞), andp = (p1, . . . , pj ) ∈N

j . Denote byψj,p the following solution ofS(X)= 1:

ψj,p = φj,pβ.

Sometimes we omitp in φj,p,ψj,p and simply writeφj ,ψj .
Below we continue to use notation:
A=Aj , A∗ =A∗j =A∗(φj )=R−1
j ◦Aj ◦Rj , d = dj = |Rj |.
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Recall thatRj has rank� j −K +2 (Lemma 59). ByA′ we denote the cyclically reduce
form of Aβ (hence of(A∗)β ). Recall that the setCβ was defined right after Definition 36

Let

Φ = {φj,p

∣∣ j ∈N,p ∈N
j
}
.

For an arbitrary subsetL of Φ denote

Lβ = {φβ | φ ∈ L}.

Specifying step by step various subsets ofΦ we will eventually ensure a very particul
choice of a set of solutions ofS(X)= 1 in F .

Let K =K(m,n) andJ ∈ N, J � 3, a sufficiently large positive integer which will b
specified precisely in due course. PutL= JK and defineP1=N

L,

L1= {φL,p | p ∈P1}.

By Theorem 10 the setLβ

1 is a discriminating set of solutions ofS(X) = 1 in F . In fact,
one can replace the setP1 in the definition ofL1 by any unbounded subsetP2 ⊆ P1, so
that the new set is still discriminating. Now we construct by induction a very partic
unbounded subsetP2⊆N

L. Let a ∈N be a natural number andh :N×N→N a function.
Define a tuple

p(0) = (p(0)
1 , . . . , p

(0)
L

)
where

p
(0)
1 = a, p

(0)
j+1= p

(0)
j + h(0, j).

Similarly, if a tuplep(i) = (p
(i)
1 , . . . , p

(i)
L ) is defined then putp(i+1) = (p

(i+1)
1 , . . . , p

(i+1)
L ),

where

p
(i+1)
1 = p

(i)
1 + h(i + 1,0), p

(i+1)
j+1 = p

(i+1)
j + h(i + 1, j).

This defines by induction an infinite set

Pa,h =
{
p(i)

∣∣ i ∈N
}⊆N

L

such that any infinite subset ofPa,h is also unbounded.
From now on fix a recursive monotonically increasing with respect to both varia

functionh (which will be specified in due course) and put
P2=Pa,h, L2= {φL,p | p ∈P2}.
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Proposition 6. Let r � 2 and K(r + 2) � L. Then there exists a numbera0 such that if
a � a0 and the functionh satisfies the condition

h(i + 1, j) > h(i, j) for anyj =Kr + 1, . . . ,K(r + 2), i = 1,2, . . . , (99)

then for any infinite subsetP ⊆P2 the set of solutions

LP
β = {φL,pβ | p ∈P}

is a discriminating set of solutions ofS(X,A)= 1.

Proof. The result follows from Corollary 12. �
Let ψ ∈ Lβ

2 . Denote byUψ the solutionXψ of the equationS(X) = 1 in F . Since
T (X,Y )= 1 is compatible withS(X)= 1 in F the equationT (Uψ,Y )= 1 (in variablesY )
has a solution inF , sayY = Vψ . Set

Λ= {(Uψ,Vψ)
∣∣ψ ∈ Lβ

2

}
.

It follows that every pair(Uψ,Vψ) ∈Λ gives a solution of the system

R(X,Y )= (S(X)= 1 ∧ T (X,Y )= 1
)
.

By Theorem 8 there exists a finite setCE(R) of cut equations which describes all s
lutions of R(X,Y ) = 1 in F , therefore there exists a cut equationΠL3,Λ ∈ CE(R) and
an infinite subsetL3 ⊆ L2 such thatΠL3,Λ describes all solutions of the type(Uψ,Vψ),
whereψ ∈ L3. We state the precise formulation of this result in the following proposi
which, as we have mentioned already, follows from Theorem 8.

Proposition 7. LetL2 andΛ be as above. Then there exists an infinite subsetP3⊆P2 and
the corresponding setL3= {φL,p | p ∈ P3} ⊆ L2, a cut equationΠL3,Λ = (E, fX,fM) ∈
CE(R), and a tuple of wordsQ(M) such that the following conditions hold:

(1) fX(E)⊂X±1;
(2) for everyψ ∈ Lβ

3 there exists a tuple of wordsPψ = Pψ(M) and a solutionαψ :M→
F of ΠL3,Λ with respect toψ :F [X]→ F such that:
• the solutionUψ = Xψ of S(X) = 1 can be presented asUψ = Q(Mαψ ) and the

wordQ(Mαψ ) is reduced as written,
• Vψ = Pψ(Mαψ );

(3) there exists a tuple of wordsP such that for any solution(any group solution) (β,α)

of ΠL3,Λ the pair (U,V ), whereU = Q(Mα) and V = P(Mα), is a solution of
R(X,Y )= 1 in F .

Put

P =P3, L= L3, ΠL =ΠL3,Λ.
By Proposition 6 the setLβ is a discriminating set of solutions ofS(X)= 1 in F .
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The initial cut equationΠφ

Now fix a tuplep ∈ P and the automorphismφ = φL,p ∈ L. Recall, that for everyj � L

the automorphismφj is defined byφj =←−Γ pj

j , wherepj is the initial subsequence ofp of
lengthj . Sometimes we use notationψ = φβ,ψj = φjβ.

Starting with the cut equationΠL we construct a cut equationΠφ = (E, fφ,X,fM)

which is obtained fromΠL by replacing the functionfX :E → F [X] by a new function
fφ,X :E→ F [X], wherefφ,X is the composition offX and the automorphismφ. In other
words, if an intervale ∈ E in ΠL has a labelx ∈X±1 then its label inΠφ is xφ .

Notice, thatΠL andΠφ satisfy the following conditions:

(a) σfXφβ = σfφ,Xβ for everyσ ∈ E;
(b) the solution ofΠL with respect toφβ is also a solution ofΠφ with respect toβ;
(c) any solution (any group solution) ofΠφ with respect toβ is a solution (a group solu

tion) of ΠL with respect toφβ.

The cut equationΠφ has a very particular type. To deal with such cut equations we
the following definitions.

Definition 37. Let Π = (E, fX,fM) be a cut equation. Then the number

length(Π)=max
{∣∣fM(σ)

∣∣ | σ ∈ E}
is called the length ofΠ . We denote it by length(Π) or simply byNΠ .

Notice, by construction, length(Πφ)= length(Πφ′) for everyφ,φ′ ∈ L. Denote

NL = length(Πφ).

Definition 38. A cut equationΠ = (E, fX,fM) is called aΓ -cut equation inrank j

(rank(Π)= j ) and sizel if it satisfies the following conditions.

(1) Let Wσ = fX(σ ) for σ ∈ E andN = (l + 2)NΠ . Then for everyσ ∈ E Wσ ∈ W̄Γ,L

and one of the following conditions holds:
(1.1) Wσ hasN -large rankj and its canonicalN -largeAj -decomposition has siz

(N,2), i.e.,Wσ has the canonicalN -largeAj -decomposition

Wσ = B1 ◦A
q1
j ◦ · · · ◦Bk ◦A

qk

j ◦Bk+1, (100)

with maxj (Bi) � 2 andqi � N;
(1.2) Wσ has rankj and maxj (Wσ ) � 2;
(1.3) Wσ has rank< j .
Moreover, there exists at least one intervalσ ∈ E satisfying the condition (1.1).

(2) There exists a solutionα :F [M]→ F of the cut equationΠ with respect to the homo

morphismβ :F [X]→ F .
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Lemma 72. Let l � 3. The cut equationΠφ is a Γ -cut equation in rankL and sizel,
provided

pL � (l + 2)NΠφ + 3.

Proof. By construction the labels of intervals fromΠφ are precisely the words of the typ
xφL and every such word appears as a label. Observe, that

rank
(
x

φL

i

)
< L for everyi, 1� i � n

(Lemma 65(1)(a)). Similarly,

rank
(
x

φL

i

)
< L for everyi < n and rank

(
yφL
n

)= L

(Lemma 65(1)(b)). Also,

rank
(
z
φL

i

)
< L unlessn= 0 andi =m,

in the latter casezφL
m = L (Lemma 65(1)(c) and (1)(d)). Now consider the labelsy

φL
n and

z
φL
m (in the casen= 0) of rankL. Again, it has been shown in Lemma 65(1) that these la

haveN -largeAL-decompositions of size(N,2), as required in (1.1) of the definition of
Γ -cut equation of rankL and sizel. �
Agreement 1 on PPP . Fix an arbitrary integerl, l � 5. We may assume, choosing the co
stanta to satisfy the condition

a � (l + 2)NΠφ + 3,

that all tuples in the setP are((l + 2)NΠφ + 3)-large. DenoteN = (l + 2)NΠφ .

Now we introduce one technical restriction on the setP , its real meaning will be clari
fied later.

Agreement 2 on PPP . Let r be an arbitrary fixed positive integer withKr � L andq be a
fixed tuple of lengthKr which is an initial segment of some tuple fromP . The choice ofr
andq will be clarified later. We may assume (suitably choosing the functionh) that all
tuples fromP haveq as their initial segment. Indeed, it suffices to defineh(i,0)= 0 and
h(i, j)= h(i + 1, j) for all i ∈N andj = 1, . . . ,Kr .

Agreement 3 on PPP . Let r be the number from Agreement 2. By Proposition 6 there ex
a numbera0 such that for every infinite subset ofP the corresponding set of solutions is

discriminating set. We may assume thata > a0.
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TransformationT ∗ of Γ -cut equations
Now we describe a transformationT ∗ defined onΓ -cut equations and their solution

namely, given aΓ -cut equationΠ and its solutionα (relative to the fixed mapβ :F [X]→
F defined above)T ∗ transformsΠ into a newΓ -cut equationΠ∗ = T ∗(Π) andα into a
solutionα∗ = T ∗(α) of T ∗(Π) relative toβ.

Let Π = (E, fX,fM) be aΓ -cut equation in rankj and sizel. The cut equation

T ∗(Π)= (E∗, f ∗X∗, f ∗M∗)
is defined as follows.

Definition of the setE∗
Forσ ∈ E we denoteWσ = fX(σ ). Put

Ej,N =
{
σ ∈ E ∣∣Wσ satisfies(1.1)

}
.

ThenE = Ej,N ∪ E<j,N whereE<j,N is the complement ofEj,N in E .

Now letσ ∈ Ej,N . Write the wordWβ
σ in its canonicalA′ decomposition:

Wβ
σ =E1 ◦A′q1 ◦E2 ◦ · · · ◦Ek ◦A′qk ◦Ek+1 (101)

where|qi |� 1, Ei 
= 1 for 2� i � k.
Consider the partition

fM(σ)= µ1 . . .µn

of σ . By the condition (2) of the definition ofΓ -cut equations for the solutionβ :F [X]→
F there exists a solutionα :F [M]→ F of the cut equationΠ relative toβ. Hence

Wβ
σ = fM

(
Mα

)
and the element

fM

(
Mα

)= µα
1 . . .µα

n

is reduced as written. It follows that

Wβ
σ =E1 ◦A′q1 ◦E2 ◦ · · · ◦Ek ◦A′qk ◦Ek+1= µα

1 ◦ · · · ◦µα
n. (102)

We say that a variableµi is long if A′±(l+2) occurs inµα
i (i.e., µα

i contains a stable
occurrence ofA′l), otherwise it is calledshort. Observe, that the definition of long (sho
variablesµ ∈M does not depend on a choice ofσ , it depends only on the given homomo
phismα. The graphical equalities (102) (whenσ runs overEj,N ) allow one to effectively
recognize long and short variables inM . Moreover, since for everyσ ∈ E the length of

the wordfM(σ) is bounded by length(Π)=NΠ andN = (l + 2)NΠ , every wordfM(σ)
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Fig. 9. Decomposition (103).

(σ ∈ Ej,N ) contains long variables. Denote byMshort, Mlong the sets of short and lon
variables inM . Thus,M =Mshort∪Mlong is a non-trivial partition ofM .

Now we define the following propertyP = Plong,l of occurrences of powers ofA′ in
W

β
σ : a given stable occurrenceA′q satisfiesP if it occurs in µα for some long variable

µ ∈Mlong andq � l. It is easy to see thatP preserves correct overlappings. Consider
set of stable occurrencesOP which are maximal with respect toP . As we have mentione
already in Section 7.1, occurrences fromOP are pair-wise disjoint and this set is unique
defined. Moreover,Wβ

σ admits the uniqueA′-decomposition relative to the setOP :

Wβ
σ =D1 ◦

(
A′
)q1 ◦D2 ◦ · · · ◦Dk ◦

(
A′
)qk ◦Dk+1, (103)

whereDi 
= 1 for i = 2, . . . , k. See Fig. 9.
Denote byk(σ ) the number of non-trivial elements amongD1, . . . ,Dk+1.
According to Lemma 71 theA′-decomposition (103) gives rise to the unique associ

A-decomposition ofWσ and hence the unique associatedA∗-decomposition ofWσ .
Now with a givenσ ∈ Ej,N we associate a finite set of new intervalsEσ (of the equation

T ∗(Π)):

Eσ = {δ1, . . . , δk(σ )}

and put

E∗ = E<j,N ∪
⋃

σ∈Ej,N

Eσ .

Definition of the setM∗
Let µ ∈Mlong and

µα = u1 ◦
(
A′
)s1 ◦ u2 ◦ · · · ◦ ut ◦

(
A′
)st ◦ ut+1 (104)

be the canonicall-largeA′-decomposition ofµα . Notice that ifµ occurs infM(σ) (hence
µα occurs inW

β
σ ) then this decomposition (104) is precisely theA′-decomposition ofµα

induced onµα (as a subword ofWβ
σ ) from theA′-decomposition (103) ofWβ

σ relative

to OP .
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Denote byt (µ) the number of non-trivial elements amongu1, . . . , ut+1 (clearly,ui 
= 1
for 2� i � t).

We associate with each long variableµ a sequence of new variables (in the equat
T ∗(Π)) Sµ = {ν1, . . . , νt (µ)}. Observe, since the decomposition (104) ofµα is unique, the
setSµ is well defined (in particular, it does not depend on intervalsσ ).

It is convenient to define here two functionsνleft andνright on the setMlong: if µ ∈Mlong
then

νleft(µ)= ν1, νright(µ)= νt(µ).

Now we define a new set of variableM∗ as follows:

M∗ =Mshort∪
⋃

µ∈Mlong

Sµ.

Definition of the labelling functionf ∗X∗
PutX∗ =X. We define the labelling functionf ∗X∗ :E∗ → F [X] as follows.
Let δ ∈ E∗. If δ ∈ E<j,N , then put

f ∗X∗(δ)= fX(δ).

Let nowδ = δi ∈Eσ for someσ ∈ Ej,N . Then there are three cases to consider.
(a) δ corresponds to the consecutive occurrences of powersA′qj−1 andA′qj in theA′-

decomposition (103) ofWβ
σ relative toOP . Herej = i or j = i−1 with respect to whethe

D1= 1 orD1 
= 1.
As we have mentioned before, according to Lemma 71 theA′-decomposition (103

gives rise to the unique associatedA∗-decomposition ofWσ :

Wσ =D∗1 ◦d
(
A∗
)q∗1 ◦d D∗2 ◦ · · · ◦d D∗k ◦d

(
A∗
)q∗k ◦d D∗k+1. (105)

Now put

f ∗X(δi)=D∗j ∈ F [X]
wherej = i if D1= 1 andj = i − 1 if D1 
= 1. See Fig. 10.

The other two cases are treated similarly to case (a).
(b) δ corresponds to the interval from the beginning ofσ to the firstA′ powerA′q1 in

the decomposition (103) ofWβ
σ . Put

f ∗X(δ)=D∗1.

(c) δ corresponds to the interval from the last occurrence of a powerA′qk of A′ in the
decomposition (103) ofWβ

σ to the end of the interval. Put

∗ ∗
fX(δ)=Dk+1.
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Fig. 10. Definingf ∗
X∗ .

Definition of the functionf ∗M∗
Now we define the functionf ∗ :E∗ → F [M∗].
Let δ ∈ E∗. If δ ∈ E<j,N , then put

f ∗M∗(δ)= fM(δ)

(observe that all variables infM(δ) are short, hence they belong toM∗).
Let δ = δi ∈Eσ for someσ ∈ Ej,N . Again, there are three cases to consider.
(a) δ corresponds to the consecutive occurrences of powersA′qs andA′qs+1 in theA′-

decomposition (103) ofWβ
σ relative toOP . Let the stable occurrenceA′qs occur inµα

i for
a long variableµi , and the stable occurrenceA′qs+1 occur inµα

j for a long variableµj .
Observe that

Ds = right(µi) ◦µα
i+1 ◦ · · · ◦µα

j−1 ◦ left(µj ),

for some elements right(µi), left(µj ) ∈ F .
Now put

f ∗M∗(δ)= νi,rightµi+1 . . .µj−1νj,left.

See Fig. 11.

The other two cases are treated similarly to case (a).
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Fig. 11. Definingf ∗
M∗ , case (a).

(b) δ corresponds to the interval from the beginning ofσ to the firstA′ powerA′q1 in
the decomposition (103) ofWβ

σ . Put

f ∗M∗(δ)= µ1 . . .µj−1νj,left.

(c) δ corresponds to the interval from the last occurrence of a powerA′qk of A′ in the
decomposition (103) ofWβ

σ to the end of the interval.
DenoteΠ∗ = (E∗, f ∗X∗, f ∗M∗).
Now we apply an auxiliary transformationT ′ to the cut equationΠ∗ as follows. The

resulting cut equation will be

T ′
(
Π∗

)= (Ẽ, f̃X, f̃M

)
,

with the same setsX∗ andM∗, and wheref̃X∗, f̃M∗ are defined as follows. The transfo
mationT ′ can be applied only in the following two situations.

(1) Suppose there are two intervalsσ,γ ∈ E∗ such that

f ∗M∗(σ )= µ ∈M∗±1, f ∗M∗(γ )= u ◦µ ∈ F
[
M∗

]
,

for someu ∈ F [M∗] andf ∗X∗(σ )= (A∗)k , f ∗X∗(γ )=w ◦ (A∗)k . Then put

f̃X∗(γ )=w, f̃M∗(γ )= u,

f̃X∗(δ)= f ∗X∗(δ), f̃M∗(δ)= f ∗M∗(δ) (δ 
= γ ).

(2) Suppose there are two intervalsσ,γ ∈ E∗ such that

f ∗M∗(σ )= µ ∈M∗±1, f ∗M∗(γ )= ν ◦µ ∈ F
[
M∗

]
,

andf ∗X∗(γ )= (A∗)k ◦ f ∗X∗(σ ). Then put

f̃X∗(γ )= (A∗)k, f̃M∗(γ )= ν,
f̃X∗(δ)= f ∗X∗(δ), f̃M∗(δ)= f ∗M∗(δ) (δ 
= γ ).
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We apply the transformationT ′ consecutively toΠ∗ until it is applicable. Notice, sinc
T ′ decreases the length of the elementf ∗M∗(γ ) it can only be applied a finite number
times, says, so (T ′)s(Π∗) = (T ′)s+1(Π∗). Observe also, that the resulting cut equat
(T ′)s(Π∗) does not depend on a particular sequence of applications of the transform
T ′ to Π∗. This implies that the cut equationT ∗(Π)= (T ′)s(Π∗) is well defined.

Claim 1. The homomorphismα∗ :F [M∗]→ F defined as(in the notations above):

α∗(µ)= α(µ) (µ ∈Mshort),

α∗(νi,right)=R−βc−1right(µi) (νi ∈ Sµ for µ ∈Mlong),

α∗(νi,left)= left(µi)cR
β

is a solution of the cut equationT ∗(Π) with respect toβ :F [X]→ F .

Proof. The statement follows directly from the construction.�
Agreement 4 on PPP . We assume (by choosing the functionh properly, i.e.,h(i, j) >

C(L,N +3), see Lemma 70) that every tuplep ∈ P satisfies the conditions of Lemma 7
so Claim 1 holds for everyp ∈ P .

Definition 39. Let w ∈ W̄Γ,L. Let 1� i � K . A cut of ranki of w is a decomposition
w = u ◦ v where eitheru ends withA±2

i or v begins withA±2
i . In this event we say thatu

andv are obtained by a cut (in ranki) from w.

Definition 40. Given a 3-large tuplep ∈N
L, for any 0� j � L we define by induction (on

L− j ) a set ofpatterns of rankj which are certain words inF(X ∪C).

(1) Patterns of rankL are precisely the letters from the alphabetX±1.
(2) Now supposej =Ks + r , where 0� r < K andKs < L. We representp as

p = p′qp′′ where
∣∣p′∣∣=Ks, |q| =K,

∣∣p′′∣∣= L−Ks −K. (106)

Then a pattern of rankj is either a word of the formuφK,q whereu is a pattern of
rank Ks + K , or a subword ofuφK,q formed by one or two cuts of ranks> r (see
Definition 39).

Remark 8. w ∈ W̄Γ,L for any patternw of any rankj � L.

Claim 2. Let φL = φL,p, wherep ∈ N
L such thatpt � (l + 2)NΠ + 3 for t = 1, . . . ,L,
and l � 3. DenoteΠL =ΠφL
.
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(1) For j � L the cut equationΠL−j = (T ∗)j (ΠL) is well defined and it is aΓ -cut equa-
tion of rank� L− j and sizel. In particular, the sequenceΣL,p of Γ -cut equations

ΣL,p :ΠL
T ∗→ΠL−1

T ∗→ · · · T ∗→Πj → ·· · (107)

is well defined.
(2) Let j =Ks + r , where0 � r < K , L=K(s + i), andp′ be from the representatio

(106). DenoteφKs = φKs,p′ . Then the following are true:
(a) for any intervalσ of Πj there is a patternw of rankj such thatfX(σ )=wφKs ;
(b) if j =Ks (r = 0) then for every intervalσ of the cut equationΠj the patternw,

wherefX(σ )=wφKs , does not containN -large powers of elementary periods.

Proof. Let j =Ks + r , 0� r < K , L=K(s + i). We prove the claim by induction oni
andm=K − r for i > 0.

Casei = 0. In this casej = L, so the labels of the intervals ofΠL are of the form
xφL, x ∈X, and the claim is obvious.

Casei = 1. We use induction onm = 1, . . . ,K − 1 to prove that for every intervalσ
from the cut equation

ΠL−m =
(
E (L−m), f

(L−m)
X ,f

(L−m)
M

)
the labelf (L−m)

X (σ ) is of the formuφL−K for some patternu ∈ Sub(XφK ).
Let m = 1. In this casej = L− 1. For everyx ∈ X±1 one can represent the eleme

xφL as a product of elements of the typeyφL−K , y ∈X±1 (so the elementxφL is a word in
the alphabetXφL−K ). Indeed,

xφL = (xφK
)φL−K =wφL−K ,

wherew = xφK is a word inX. By Lemma 64 there is a precise correspondence betw
stableA∗L-decompositions of

xφL =wφL−K =D
φL−K

1 ◦d A
∗q1
L ◦d D

φL−K

2 ◦d · · · ◦d D
φL−K

k ◦d A
∗qk

L ◦D
φL−K

k+1

and stableAK -decompositions ofw

w =D1 ◦AK
q1 ◦D2 ◦ · · · ◦Dk ◦A

qk

K ◦Dk+1.

By construction, application of the transformationT ∗ to ΠL removes powers

A
∗qs

L =A
qsφL−K

K

which are subwords of the wordwφL−K written in the alphabetXφL−K . By construction the

wordsD

φL−K
s are the labels of the new intervals of the equationΠL−1. Notice, thatDs are
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subwords ofw = xφK which obtained fromw by one or two cuts in rankL. HenceDs are
patterns in rankL− 1, as required in (2)(a).

Now we show thatΠL−1 is a Γ -cut equation in rank� L − 1 and sizel. By (2)(a)
and Remark 8,fX(σ ) ∈ W̄Γ,L for every intervalσ ∈ΠL−1. Thus the initial part of the firs
condition from the definition ofΓ -cut equations is satisfied. To show (1) it suffices to sh
that (1.1) in rankL does not hold forΠL−1. Letδ ∈ EL−1. By the construction(A′)l+2 does
not occur inµα for anyµ ∈ML−1. Therefore the maximal power ofA′ that can occur in
fM(δ)α is bounded from above by(l+ 1)|fM(δ)| which is less then(l+ 2) length(ΠL−1).
Hence there are no intervals inΠL−1 which satisfy the condition (1.1) from the definitio
of Γ -cut equations. It follows that the rank ofΠL−1 is at mostL− 1, as required. Lett be
the rank ofΠL−1. For an intervalδ ∈ΠL−1 if the conditions (1.1) and (1.3) forfX(δ) and
the rankt are not satisfied, then the condition (1.2) is satisfied. Indeed, it is obvious
the definition of patterns that eitherfX(δ) has a non-trivialN -large decomposition in ran
t or maxt (fX(δ)) � 2. Finally, it has been shown in Claim 1 thatT ∗(Π) has a solutionα∗
relative toβ. This proves the condition (2) in the definition of theΓ -cut equation. Henc
ΠL−1 is aΓ -cut equation of rank att � j − 1 and sizel.

Suppose now by induction onm that for an intervalσ of the cut equationΠj (for
m= L− j )

f
(j)
X (σ )= uφL−K for someu ∈ Sub

(
X±φK

)
.

Then eitherσ does not change underT ∗ or f
(j)
X (σ ) has a stable(l + 2)-large A∗j -de-

composition in rankj = r + (L−K) associated with long variables inf (j)
M (σ ):

uφL−K = D̄
φL−K

1 ◦d A
∗q1
j ◦d D̄

φL−K

2 ◦d · · · ◦d D̄
φL−K

k ◦d A
∗qk

j ◦ D̄
φL−K

k+1 ,

andσ is an interval inΠj . By Lemma 64, in this case there is a stableAr -decomposition
of u:

u= D̄1 ◦A
q1
r ◦ D̄2 ◦ · · · ◦ D̄k ◦A

qk
r ◦ D̄k+1.

The application of the transformationT ∗ to Πj removes powers

A
∗qs

j =A
qsφL−K
r

(
sinceAj

∗ =A
φL−K
r

)
which are subwords of the worduφL−K written in the alphabetXφL−K . By construction the
wordsD̄

φL−K
s are the labels of the new intervals of the equationΠj−1, so they have the re

quired form. This proves statement (2)(a) form+1. Statement (1) now follows from (2)(a
(the argument is the same as in rankL− 1). By induction the claim holds form=K , so
the labelf (L−K)

X (σ ) of an intervalσ in ΠL−K is of the formuφL−K , for some patternu,
whereu ∈ Sub(X±φK ). Notice that Sub(X±φK )⊆WΓ,L which proves statement (2) (an

therefore, statement (1)) of the claim fori = 1.
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Suppose, by induction, that labels of intervals in the cut equationΠL−Ki have form
wφL−Ki , w is a pattern inW̄Γ,L. We can rewrite each label in the formvφL−K(i+1) , where
v =wφK ∈ W̄Γ,L. Similarly to casei = 1 we can construct theT ∗-sequence

ΠL−Ki→ ·· ·→ΠL−K(i+1)

where each application of the transformationT ∗ removes subwords in the alphab
XφL−K(i+1) . The argument above shows that the labels of the new intervals in all cut
tionsΠL−Ki−1), . . . ,ΠL−K(i+1) are of the required formvφL−K(i+1) , for patternsv where
v ∈ W̄Γ,L. Following the proof it is easy to see that in labels of intervals inΠL−K(i+1) the
word v does not containN -large powers ofeφL−K(i+1) for an elementary periode. �
Claim 3. LetP ⊆N

L be an infinite set ofL-tuples and forp ∈ P let

ΣL,p :Π(p)
L

T ∗→Π
(p)

L−1
T ∗→ · · · T ∗→Π

(p)
j → ·· ·

be the sequence(107)of cut equationsΠ(p)
j = (Ej,p, f

j,p
X ,f

j,p
M ). Suppose that for a give

j > 2K the followingP-uniformity property U(P, j) (consisting of three conditions)
holds:

(1) Ej,p = Ej,q for everyp,q ∈P , we denote this set byEj ;
(2) f

j,p
M = f

j,q
M for everyp,q ∈P;

(3) for anyσ ∈ Ej there exists a patternwσ of rankj such that for anyp ∈ P

f
j,p
X (σ )=w

φKl,p′
σ

wherep′ is the initial segment ofp of lengthKl, wherej =Kl + r and0< r � K .

Then there exists an infinite subsetP ′ of P such that theP ′-uniformity condition
U(P ′, j − 1) holds forj − 1.

Proof. Follows from the construction.�
Agreement 5 on PPP . We assume, in addition to all the agreements above, that for th
P the uniformity conditionU(P, j) holds for everyj > 2K . Indeed, by Claim 3 we ca
adjustP consecutively for eachj > 2K .

Claim 4. LetΠ = (E, fX,fM) be aΓ -cut equation in rankj � 1 from the sequence(107).
Then for every variableµ ∈M there exists a wordMµ(MT (Π),X

φj−1,F ) such that the
following equality holds in the groupF

( ∗ )

µα =Mµ Mα

T (Π),X
φj−1 β

.
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Moreover, there exists an infinite subsetP ′ ⊆ P such that the wordsMµ(MT (Π),X)

depend only on exponentss1, . . . , st of the canonicall-large decomposition(104) of the
wordsµα .

Proof. The claim follows from the construction. Indeed, in constructingT ∗(Π) we cut out
leading periods of the type(A′j )s from µα (see (104)). It follows that to getµα back from
Mα∗

T (Π) one needs to put the exponents(A′j )s back. Notice, that

Aj =A(γj )
φj−1.

Therefore,

(Aj )
s =A(γj )

φj−1β.

Recall thatA′j is the cyclic reduced form ofAβ
j , so

(
A′j
)s = uA(γj )

φj−1βv

for some constantsu,v ∈ Cβ ⊆ F . To see existence of the subsetP ′ ⊆ P observe that the
length of the wordsfM(σ) does not depend onp, so there are only finitely many ways
cut out the leading periods(A′j )s from µα . This proves the claim. �
Agreement 6 on PPP . We assume (replacingP with a suitable infinite subset) that eve
tuplep ∈ P satisfies the conditions of Claim 4. Thus, for everyΠ =Πi from the sequenc
(107) with a solutionα (relative toβ) the solutionα∗ satisfies the conclusion of Claim 4

Definition 41. We define a new transformationT which is a modified version ofT ∗.
Namely,T transforms cut equations and their solutionsα precisely as the transforma
tion T ∗, but it also transforms the set of tuplesP producing an infinite subsetP∗ ⊆ P
which satisfies Agreements 1–6.

Now we define a sequence

ΠL
T→ΠL−1

T→ ·· · T→Π1 (108)

of N -largeΓ -cut equations, whereΠL =Πφ , andΠi−1= T (Πi). From now on we fix the
sequence (108) and refer to it as theT -sequence.

Definition 42. LetΠ = (E, fX,fM) be a cut equation. For a positive integern by kn(Π) we
denote the number of intervalsσ ∈ E such that|fM(σ)| = n. The following finite sequenc
of integers

Comp(Π)= (k2(Π), k3(Π), . . . , klength(Π)(Π)
)

is called thecomplexityof Π .
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We well-order complexities of cut equations in the (right) shortlex order: ifΠ andΠ ′
are two cut equations then Comp(Π) < Comp(Π ′) if and only if length(Π) < length(Π ′)
or length(Π)= length(Π ′) and there exists 1� i � length(Π) such thatkj (Π)= kj (Π

′)
for all j > i but ki(Π) < ki(Π

′).
Observe that intervalsσ ∈ E with |fM(σ)| = 1 have no input into the complexity of

cut equationΠ = (E, fX,fM). In particular, equations with|fM(σ)| = 1 for everyσ ∈ E
have the minimal possible complexity among equations of a given length. We will
Comp(Π)= 0 in the case whenki(Π)= 0 for everyi = 2, . . . , length(Π).

Claim 5. LetΠ = (E, fX,fM). Then the following holds:

(1) length(T (Π)) � length(Π);
(2) Comp(T (Π)) � Comp(Π).

Proof. By straightforward verification. Indeed, ifσ ∈ E<j then fM(σ) = f ∗M∗(σ ). If
σ ∈ Ej andδi ∈Eσ then

f ∗M∗(δi)= µ∗i1µi1+1 . . .µ∗i1+r(i),

whereµi1µi1+1 . . .µi1+r(i) is a subword ofµ1 . . .µn and hence|f ∗M∗(δi)| � |fM(σ)|, as
required. �

We need a few definitions related to the sequence (108). Denote byMj the set of vari-
ables in the equationΠj . Variables fromΠL are calledinitial variables. A variableµ from
Mj is calledessentialif it occurs in somefMj

(σ ) with |fMj
(σ )|� 2, such occurrence o

µ is calledessential. By nµ,j we denote the total number of all essential occurrencesµ
in Πj . Then

S(Πj )=
NΠj∑
i=2

iki(Πj )=
∑

µ∈Mj

nµ,j

is the total number of all essential occurrences of variables fromMj in Πj .

Claim 6. If 1� j � L thenS(Πj ) � 2S(ΠL).

Proof. Recall, that every variableµ in Mj either belongs toMj+1 or it is replaced inMj+1
by the setSµ of new variables (see definition of the functionf ∗M∗ above). We refer to vari
ables fromSµ as tochildrenof µ. A given occurrence ofµ in somefMj+1(σ ), σ ∈ Ej+1,
is called aside occurrenceif it is either the first variable or the last variable (or bo
in fMj+1(σ ). Now we formulate several properties of variables from the sequence
which come directly from the construction. Letµ ∈Mj . Then the following conditions
hold:

(1) Every child ofµ occurs only as a side variable inΠj+1;
(2) Every side variableµ has at most one essential child, sayµ∗. Moreover, in this even
nµ∗,j+1 � nµ,j ;
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(3) Every initial variableµ has at most two essential children, sayµleft andµright. More-
over, in this casenµleft,j+1+ nµright,j+1 � 2nµ.

Now the claim follows from the properties listed above. Indeed, every initial variable
Πj doubles, at most, the number of essential occurrences of its children in the next eq
Πj+1, but all other variables (not the initial ones) do not increase this number.�

Denote by width(Π) thewidthof Π which is defined as

width(Π)=max
i

ki(Π).

Claim 7. For every1� j � L width(Πj ) � 2S(ΠL).

Proof. It follows directly from Claim 6. �
Denote byκ(Π) the number of all(length(Π) − 1)-tuples of non-negative intege

which are bounded by 2S(ΠL).

Claim 8. Comp(ΠL)=Comp(ΠL).

Proof. The complexity Comp(ΠL) depends only on the functionfM in ΠL. Recall that
ΠL =Πφ is obtained from the cut equationΠL by changing only the labelling functio
fX, soΠL andΠL have the same functionsfM , hence the same complexities.�

We say that a sequence

ΠL
T→ΠL−1

T→ ·· ·

has 3K-stabilizationatK(r + 2), where 2� r � L/K , if

Comp(ΠK(r+2))= · · · =Comp(ΠK(r−1)).

In this event we denote

K0=K(r + 2), K1=K(r + 1), K2=Kr, K3=K(r − 1).

For the cut equationΠK1 by Mveryshort we denote the subset of variables fromM(ΠK1)

which occur unchanged inΠK2 and are short inΠK2.

Claim 9. For a givenΓ -cut equationΠ and a positive integerr0 � 2 if L � Kr0 +
κ(Π)4K then for somer � r0 either the sequence(108)has3K-stabilization atK(r + 2)
or Comp(ΠK(r+1))= 0.
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Proof. Indeed, the claim follows by the “pigeon hole” principle from Claims 5 and 7
the fact that there are not more thanκ(Π) distinct complexities which are less or equal
Comp(Π). �

Now we define a special set of solutions of the equationS(X) = 1. Let L = 4K +
κ(Π)4K , p be a fixedN -large tuple fromN

L−4K , q be an arbitrary fixedN -large tuple
from N

2K , andp∗ be an arbitraryN -large tuple fromN
2K . In fact, we needN -largeness

of p∗ andq only to formally satisfy the conditions of the claims above. Put

Bp,q,β =
{
φL−4K,pφ2K,p∗φ2K,qβ

∣∣ p∗ ∈N
2K
}
.

It follows from Theorem 10 thatBp,q,β is a discriminating family of solutions o
S(X) = 1. Denoteβq = φ2K,q ◦ β. Thenβq is a solution ofS(X) = 1 in general posi-
tion and

Bq,β =
{
φ2K,p∗βq

∣∣ p∗ ∈N
2K
}

is also a discriminating family by Theorem 10.
Let

B = {ψK1 = φK(r−2),p′φ2K,p∗φ2K,qβ
∣∣ p∗ ∈N

2K
}
,

wherep′ is a beginning ofp.

Proposition 8. LetL= 2K + κ(Π)4K andφL ∈ Bp,q,β . Suppose the sequence

ΠL
T→ΠL−1

T→ ·· ·
of cut equations(108)has3K-stabilization atK(r + 2), r � 2. Then the set of variable
M of the cut equationΠK(r+1) can be partitioned into three disjoint subsets

M =Mveryshort∪Mfree∪Museless

for which the following holds:

(1) there exists a finite system of equations∆(Mveryshort)= 1 overF which has a solution
in F ;

(2) for everyµ ∈Muselessthere exists a wordVµ ∈ F [X ∪Mfree∪Mveryshort] which does
not depend on tuplesp∗ andq;

(3) for every solutionδ ∈ B, for every mapαfree:Mfree→ F , and every solution
αs :F [Mveryshort] → F of the system∆(Mveryshort) = 1 the mapα :F [M] → F de-
fined by

µα =



µαfree, if µ ∈Mfree,

µαs , if µ ∈Mveryshort,

Vµ(Xδ,M
αfree
free ,M

αs

veryshort), if µ ∈Museless
is a group solution ofΠK(r+1) with respect toβ.
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Proof. Below we describe (in a series of Claims 10–21) some properties of partitio
intervals of cut equations from the sequence (108):

ΠK1

T→ΠK1−1
T→ ·· · T→ΠK2.

Fix an arbitrary integers such thatK1 � s � K2.

Claim 10. LetfM(σ)= µ1 . . .µk be a partition of an intervalσ of ranks in Πs . Then:

(1) the variablesµ2, . . . ,µk−1 are very short;
(2) eitherµ1 or µk , or both, are long variables.

Proof. Indeed, if any of the variablesµ2, . . . ,µk−1 is long then the intervalσ of Πs is
replaced inT (Πs) by a set of intervalsEσ such that|fM(δ)|< |fM(σ)| for everyδ ∈Eσ .
This implies that complexity ofT (Πs) is smaller than ofΠs—contradiction. On the othe
hand, sinceσ is a partition of ranks some variables must be long—hence the result.�

Let fM(σ)= µ1 . . .µk be a partition of an intervalσ of ranks in Πs . Then the variable
µ1 andµk are calledside variables.

Claim 11. LetfM(σ)= µ1 . . .µk be a partition of an intervalσ of ranks in Πs . Then this
partition will induce a partition of the formµ′1µ2 . . .µk−1µ

′
k of some interval in ranks−1

in Πs−1 such that ifµ1 is short in ranks thenµ′1 = µ1, if µ1 is long inΠs thenµ′1 is a
new variable which does not appear in the previous ranks. Similar conditions hold foµk .

Proof. Indeed, this follows from the construction of the transformationT . �
Claim 12. Letσ1 andσ2 be two intervals of rankss in Πs such thatfX(σ1)= fX(σ2) and

fM(σ1)= µ1ν2 . . . νk, fM(σ2)= µ1λ2 . . . λl .

Then for any solutionα of Πs one has

να
k = ν−α

k−1 . . . ν−α
2 λ−α

2 . . . λ−α
l−1λ

−α
l ,

i.e.,να
k can be expressed viaλα

l and a product of images of short variables.

Claim 13. LetfM(σ)= µ1 . . .µk be a partition of an intervalσ of ranks in Πs . Then for
anyu ∈X ∪E(m,n) the wordµα

2 . . .µα
k−1 does not contain a subword of the type

c1
(
M

φK1
u

)β
c2,

wherec1, c2 ∈ Cβ , andM
φK1
u is the middle ofu with respect toφK1.

Proof. By Corollary 10 every wordM
φK1
u contains a big power (greater than(l + 2)NΠs )

φ

of a period in rank strictly greater thanK2. Therefore, if(M K1

u )β occurs in the word
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k−1 then some of the variablesµ2, . . . ,µk−1 are not short in some rank great
thanK2-contradiction. �
Claim 14. Letσ be an interval inΠK1. ThenfX(σ )=Wσ can be written in the form

Wσ =wφK1 ,

and the following holds:

(1) the word w can be uniquely written asw = v1 . . . ve, where v1, . . . ve ∈ X±1 ∪
E(m,n)±1, andvivi+1 /∈E(m,n)±1;

(2) w is either a subword of a word from the list in Lemma50 or there existsi such that
vi = x2x1

∏1
s=m c

−zs
s and v1 . . . vi , vi+1 . . . ve are subwords of words from the list

Lemma50; in addition,(vivi+1)
φK = v

φK

i ◦ v
φK

i+1;
(3) if w is a subword of a word from the list in Lemma50, then at most for two indicesi,

j elementsvi , vj belong toE(m,n)±1, and, in this casej = i + 1.

Proof. The fact thatWσ can be written in such a form follows from Claim 2. Indeed,
Claim 2,Wσ =wφK1 , wherew ∈WΓ,L, therefore it is either a subword of a word from t
list in Lemma 50 or contains a subword from the set Exc from statement (3) of Lemm
It can contain only one such subword, because two such subwords of a word fromX±φL

are separated by big (unbounded) powers of elementary periods.
The uniqueness ofw in the first statement follows from the fact thatφK1 is an automor-

phism. Obviously,w does not depend onp.
Property (3) follows from the comparison of the setE(m,n) with the list from

Lemma 50. �
Claim 15. Let ΠK1 = (E, fX,fM) andµ ∈M be a long variable(in rank K1) such that
fM(δ) 
= µ for anyδ ∈ E . If µ occurs as the left variable infM(σ) for someδ ∈ E then it
does not occur as the right variable infM(δ) for any δ ∈ E (however,µ−1 can occur as
the right variable). Similarly, If µ occurs as the right variable infM(σ) then it does no
occur as the right variable in anyfM(δ).

Proof. Supposeµ is a long variable such thatfM(σ)= µµ2 . . . andfM(δ)= . . .µsµ for
some intervalsσ, δ from ΠK1. By Claim 14,Wσ = wφK1 for somew = v1 . . . ve, where
v1, . . . ve ∈ X±1 ∪ E(m,n)±1, andvivi+1 /∈ E(m,n)±1. We divide the proof into thre
cases.

(1) Let v1 
= zi, y
−1
n . ThenWσ begins with a big power of some periodA∗j , j > K2

(see Lemmas 44–47), thereforeµ1 begins with a big power ofA∗βj . It follows that in the
rankj the transformationT decreases the complexity of the current cut equation. Ind
whenT transformsµ andσ it produces a new set of variablesSµ = {ν1, . . . , νt (µ)} and
a new set of intervalsEσ = {σ1, . . . , σk(σ )} such thatf ∗X(σ1) = A∗kj for somek � 1 and
f ∗M(σ1) = ν1. Simultaneously, whenT transformsδ it produces (among other things)

new set of intervalsEδ = {δ1, . . . , δk(δ)} such thatf ∗X(δk(δ)−1) ends onA∗kj andf ∗M(δk(δ)−1)



O. Kharlampovich, A. Myasnikov / Journal of Algebra 290 (2005) 1–203 173

e

-
e
f

ter

s
w

n-
ends onν1. Now the transformationT ′ (part 1) applies toσ1 andδk(δ)−1 and decreases th
complexity of the cut equation—contradiction.

(2) Let vleft = zi . Thenµα begins withz
β
i = c

qi

i z
φmβ1
i (see Lemma 67) for some suffi

ciently largeqi . This implies thatcqi

i occurs infM(δ)α = fX(δ)β somewhere inside (sinc
fM(δ) 
= µ). On the other hand,fX(δ) ∈ W̄Γ,L, soc

qi

i can occur only at the beginning o
fX(δ)β (see Lemmas 55 and 50)—contradiction.

(3) Let vleft = y−1
n . ThenWδ = . . . x−1

n ◦ y−1
n . In this case, similar to the case (1), af

application ofT ∗ to the current cut equation in the rankK2+m+ 4n− 4 one can apply
the transformationT ′ (part 2) which decreases the complexity—contradiction.

This proves the claim. �
Our next goal is to transform further the cut equationΠK1 to the form where all interval

are labeled by elementsxφK1 , x ∈ (X ∪E(m,n))±1. To this end we introduce several ne
transformations ofΓ -cut equations.

Let Π = (E, fX,fM) be a Γ -cut equation in rankK1 and sizel with a solution
α :F [M]→ F relative toβ :F [X]→ F . Let σ ∈ E and

Wσ = (v1 . . . ve)
φK1 , e � 2,

be the canonical decomposition ofWσ . For i,1� i < e, put

vσ,i,left = v1 . . . vi, vσ,i,right= vi+1 . . . ve.

Let, as usual,

fM(σ)= µ1 . . .µk.

We start with atransformationT1,left. Forσ ∈ E and 1� i < e denote byθ the boundary

betweenv
φK1β

σ,i,left andv
φK1β

σ,i,right in the reduced form of the productv
φK1β

σ,i,leftv
φK1β

σ,i,right. Suppose
now that there existσ andi such that the following two conditions hold:

(C1) µα
1 almost contains the beginning of the wordv

φK1β

σ,i,left till the boundaryθ (up to a very
short end of it), i.e., there are elementsu1, u2, u3, u4 ∈ F such that

v
φK1β

σ,i,left = u1 ◦ u2 ◦ u3, v
φK1β

i+1 = u−1
3 ◦ u4, u1u2u4= u1 ◦ u2 ◦ u4,

andµα
1 begins withu1, andu2 is very short (does not containA±l

K2
) or trivial.

(C2) the boundaryθ does not lie insideµα
1.

In this event the transformationT1,left is applicable toΠ as described below. We co
sider three cases with respect to the location ofθ onfM(σ).

(1) θ is insideµα
k (see Fig. 12). In this case we perform the following.

φ φ

(a) Replace the intervalσ by two new intervalsσ1, σ2 with the labelsv K1

σ,i,left, v
K1

σ,i,right.
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Fig. 12.T1, case (1).

(b) PutfM(σ1)= µ1 . . .µk−1λν, fM(σ2)= ν−1µ′k, whereλ is a new very short variable
ν is a new variable.

(c) Replace everywhereµk by λµ′k . This finishes the description of the cut equat
T1,left(Π).

(d) Define a solutionα∗ (with respect toβ) of T1,left(Π) in the natural way. Namely
α∗(µ) = α(µ) for all variablesµ which came unchanged fromΠ . The values
λα∗ ,µ′α

∗
k , να∗ are defined in the natural way, that isµ′α

∗
k is the whole end part o

µα
k after the boundaryθ ,

(
ν−1µ′k

)α∗ = v
φK1β

σ,i,right, λα∗ = µα
k

(
µ′αk

)−1
.

(2) θ is on the boundary betweenµα
j andµα

j+1 for somej . In this case we perform th
following.

(a) We split the intervalσ into two new intervalsσ1 andσ2 with labelsv
φK1
σ,i,left andv

φK1
σ,i,right.

(b) We introduce a new variableλ and putfM(σ1)= µ1 . . .µjλ, fM(σ2)= λ−1µj+1 . . .µk .
(c) Defineλα∗ naturally.

(3) The boundaryθ is contained insideµα
i for somei (2 � i � r − 1). In this case we

do the following.

(a) We split the intervalσ into two intervalsσ1 and σ2 with labelsv
φK1
left and v

φK1
σ,i,right,

respectively.
(b) Then we introduce three new variablesµ′j , µ′′j , λ, whereµ′j , µ′′j are “very short”, and

add equationµj = µ′jµ′′j to the system∆veryshort.

(c) We definefM(σ1)= µ1 . . .µ′j λ, fM(σ2)= λ−1µ′′jµi+1 . . .µk .

(d) Define values ofα∗ on the new variables naturally. Namely, putλα∗ to be equal to the

terminal segment ofv
φK1β

left that cancels in the productv
φK1β

left v
φK1β

σ,i,right. Now the values

µ′α∗j andµ′′α∗j are defined to satisfy the equalities

β α∗ β α∗
fX(σ1) = fM(σ1) , fX(σ2) = fM(σ2) .
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We described the transformationT1,left. The transformationT1,right is defined similarly.
We denote both of them byT1.

Now we describe atransformationT2,left.
Suppose again that a cut equationΠ satisfies (C1). Assume in addition that for theseσ

andi the following condition holds:

(C3) the boundaryθ lies insideµα
1.

Assume also that one of the following three conditions holds:

(C4) there are no intervalsδ 
= σ in Π such thatfM(δ) begins withµ1 or ends onµ−1
1 ;

(C5) vσ,i,left 
= xn (i.e., eitheri > 1 or i = 1 butv1 
= xn) and for everyδ ∈ E in Π if fM(δ)

begins withµ1 (or ends onµ−1
1 ) then the canonical decomposition offX(δ) begins

with v
φK1
σ,i,left (ends withv

−φK1
σ,i,left);

(C6) vσ,i,left = xn (i = 1 andv1= xn) and for everyδ ∈ E if fM(δ) begins withµ1 (ends

with µ−1
i ) then the canonical decomposition offX(δ) begins withx

φK1
n or with y

φK1
n

(ends withx
−φK1
n or y

−φK1
n ).

In this event the transformationT2,left is applicable toΠ as described below.
(C4) Suppose the condition (C4) holds. In this case we do the following.

(a) Replaceσ by two new intervalsσ1, σ2 with the labelsv
φK1
σ,i,left, v

φK1
σ,i,right.

(b) Replaceµ1 with two new variablesµ′1,µ′′1 and put fM(σ1) = µ′1, fM(σ2) =
µ′′1µ2 . . .µk.

(c) Define(µ′1)α
∗

and(µ′′1)α
∗

such thatfM(σ1)
α∗ = v

φK1β

σ,i,left andfM(σ2)
α∗ = v

φK1β

σ,i,right.

(C5) Supposevσ,i,left 
= xn. Then do the following.

(a) Transformσ as described in (C4).
(b) If for some intervalδ 
= σ the wordfM(δ) begins withµ1 then replaceµ1 in fM(δ)

by the variableµ′′1 and replacefX(δ) by v
−φK1
σ,i,leftfX(δ). Similarly transform intervalsδ

that end withµ−1
1 .

(C6) Supposevσ,i,left = xn. Then do the following.

(a) Transformσ as described in (C4).
(b) If for someδ the wordfM(δ) begins withµ1 andfX(δ) does not begin withyn then

transformδ as described in case (C5).
(c) Leave all other intervals unchanged.

We described the transformationT2,left. The transformationT2,right is defined similarly. We
denote both of them byT2.

Suppose now thatΠ =ΠK1. Observe that the transformationsT1 andT2 preserve the

properties described in Claims 5–8 above. Moreover, for the homomorphismβ :F [X] →
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F we have constructed a solutionα∗ :F [M] → F of Tn(ΠK1) (n = 2,3) such that the
initial solutionα can be reconstructed fromα∗ and the equationsΠ andTn(Π). Notice also
that the length of the elementsWσ ′ corresponding to new intervalsσ are shorter than th
length of the wordsWσ of the original intervalsσ from whichσ ′ were obtained. Notice als
that the transformationsT1, T2 preserves the property of intervals formulated in Claim

Claim 16. Let Π be a cut equation which satisfies the conclusion of Claim10. Supposeσ
is an interval inΠ such thatWσ satisfies the conclusion of Claim14. If for somei

(v1 . . . ve)
φK = (v1 . . . vi)

φK ◦ (vi+1 . . . ve)
φK

then eitherT1 or T2 is applicable to givenσ andi.

Proof. By Corollary 61 the automorphismφK1 satisfies the Nielsen property with respe
to W̄Γ with exceptionsE(m,n). By Corollary 12, equality

(v1 . . . ve)
φK = (v1 . . . vi)

φK ◦ (vi+1 . . . ve)
φK

implies that the element that is cancelled between(v1 . . . vi)
φKβ and (vi+1 . . . ve)

φKβ is
short in rankK2. Therefore eitherµα

1 almost contains(v1 . . . vi)
φKβ or µα

k almost contains
(vi+1 . . . ve)

φKβ . Supposeµα
1 almost contains(v1 . . . vi)

φKβ . Either we can applyT1,left, or
the boundaryθ belongs toµα

1. One can verify using formulas from Lemmas 44–47 and
directly that in this case one of the conditions (C4)–(C6) is satisfied, and, thereforeT2,left
can be applied. �
Lemma 73. Given a cut equationΠK1 one can effectively find a finite sequence of trans
mationsQ1, . . . ,Qs whereQi ∈ {T1, T2} such that for every intervalσ of the cut equation
Π ′K1
=Qs . . .Q1(ΠK1) the labelfX(σ ) is of the formuφK1 , whereu ∈X±1 ∪E(m,n).

Moreover, there exists an infinite subsetP ′ of the solution setP of ΠK1 such that this
sequence is the same for any solution inP ′.

Proof. Let σ be an interval of the equationΠK1. By Claim 14 the wordWσ can be
uniquely written in the canonical decomposition form

Wσ =wφK1 = (v1 . . . ve)
φK1 ,

so that the conditions (1)–(3) of Claim 14 are satisfied.
It follows from the construction ofΠK1 that eitherw is a subword of a word betwee

two elementary squaresx 
= ci or begins and (or) ends with some power� 2 of an ele-
mentary period. Ifu is an elementary period,u2φK = uφK ◦ uφK , exceptu= xn, when the
middle is exhibited in the proof of Lemma 53. Therefore, by Claim 16, we can appT1
andT2 and cutσ into subintervalsσi such that for anyi fX(σi) does not contain power
� 2 of elementary periods. All possible values ofuφK for u ∈E(m,n)±1 are shown in the
proof of Lemma 53. ApplyingT1 andT2 as in Claim 16 we can split intervals (and th
labels) into parts with labels of the formxφK1 , x ∈ (X∪E(m,n)), except for the following

cases:
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(1) w = uv, whereu is x2
i , i < n, v ∈Em,n, andv has at least three letters,

(2) w = x2
n−2yn−2x

−1
n−1xnxn−1y

−1
n−2x

2
n−2,

(3) w = x2
n−1yn−1x

−1
n xn−1y

−1
n−2x

−2
n−2,

(4) yr−1x
−1
r y−1

r , r < n,

(5) w = uv, whereu= (c
z1
1 c

z2
2 )2, v ∈E(m,n), andv is one of the following:

v =
m∏

t=1

c
zt
t x±1

1 , v =
m∏

t=1

c
zt
t x±1

1

1∏
t=m

c
−zt
t , v =

m∏
t=1

c
zt
t x1

1∏
t=m

c
−zt
t

(
c
z1
1 c

z2
2

)−2
,

(6) w = uv, whereu= (c
z1
1 c

z2
2 )2, v ∈E(m,n), andv is one of the following:

v =
m∏

t=1

c
zt
t x−1

1 x−1
2 or v =

m∏
t=1

c
zt
t x−1

1 y−1
1 .

(7) w = ziv.

Consider the first case. IffM(σ)= µ1 . . .µk, andµα
1 almost contains

x
φK1
i

(
A∗m+4i+K2

)−pm+4i+K2+1
x

φK2β

i+1

(which is a non-cancelled initial peace ofx
2φK1β

i up to a very short part of it), then eith

T1,left or T2,left is applicable and we splitσ into two intervalsσ1 andσ2 with labelsx
2φK1
i

andvφK1 .
Supposeµα

1 does not contain

x
φK1
i

(
A∗m+4i+K2

)−pm+4i+K2+1
x

φK2β

i+1

up to a very short part. Thenµα
k contains the non-cancelled left endE of vφK+1β, and

µα
k E−1 is not very short. In this caseT2,right is applicable.
We can similarly consider all cases (2)–(6).
(7) Letterzi can appear only in the beginning ofw (if z−1

i appears at the end ofw, we

can replacew by w−1) If w = zi t1 . . . ts is the canonical decomposition, thentk = c
±zj

j for

eachk. If µα
1 is longer than the non-cancelled part of(c

p
i zi)

β , or the difference betwee
µα

1 and(c
p
i zi)

β is very short, we can splitσ into two parts,σ1 with labelfX(σ1)= zφK1

andσ2 with labelfX(σ2)= (t1 . . . ts)
φK1 .

If the difference betweenµα
1 and(c

p
i zi)

β is not very short, andµα
1 is shorter than the

non-cancelled part of(cp
i zi)

β , then there is no intervalδ with f (δ) 
= f (σ ) such thatfM(δ)

andfM(σ) end withµk, and we can splitσ into two parts usingT1, T2 and splittingµk.

We have considered all possible cases.�

Denote the resulting cut equation byΠ ′K1

.
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Corollary 14. The intervals ofΠ ′K1
are labelled by elementsuφK1 , where forn= 1

u ∈
{

zi, xi, yi,
∏

czs
s , x1

1∏
t=m

c
−zt
t ,

}
,

for n= 2

u ∈
{

zi, xi, yi,
∏

czs
s , y1x1

1∏
t=m

c
−zt
t , y1x1,

m∏
t=1

c
zt
t x1

1∏
t=m

c
−zt
t

m∏
t=1

c
zt
t x−1

1 x±1
2 ,

m∏
t=1

c
zt
t x−1

1 x2x1,

m∏
t=1

c
zt
t x−1

1 x2x1

1∏
t=m

c
−zt
t , x−1

1 x2x1

1∏
t=m

c
−zt
t ,

x2x1

1∏
t=m

c
−zt
t , x−1

1 x2, x2x1

}
,

and forn � 3,

u ∈
{

zi, xi, yi, c
zs
s , y1x1

3∏
t=m

c
−zt
t ,

m∏
t=1

c
zt
t x−1

1 x−1
2 , yrxr , x1

1∏
t=m

c
−zt
t , yr−2x

−1
r−1x

−1
r ,

yr−2x
−1
r−1, x

−1
r−1x

−1
r , yr−1x

−1
r , r < n;x−1

n−1xnxn−1, yn−2x
−1
n−1xnxn−1y

−1
n−2,

yn−2x
−1
n−1x

±1
n , x−1

n−1xn, xnxn−1, yn−1x
−1
n xn−1y

−1
n−2, yn−1x

−1
n , yr−1x

−1
r y−1

r

}
.

Proof. Direct inspection from Lemma 73.�
Below we supposen > 0.
We still want to reduce the variety of possible labels of intervals inΠ ′K1

. We cannot
applyT1, T2 to some of the intervals labelled byxφK1 , x ∈X ∪E(m,n), because there ar
some cases whenxφK1 is completely cancelled inyφK1 , x, y ∈ (X ∪E(m,n))±1.

We will change the basis ofF(X ∪ CS), and then apply transformationsT1, T2 to the
labels written in the new basis. Replace, first, the basis(X ∪ CS) by a new basis̄X ∪ CS

obtained by replacing each variablexs by us = xsy
−1
s−1 for s > 1, and replacingx1 by

u1= x1c
−zm
m :

X̄ = {u1= x1c
−zm
m ,u2= x2y

−1
1 , . . . , un = xny

−1
n−1, y1, . . . , yn, z1, . . . , zm

}
.

Consider the casen � 3. Then the labels of the intervals will be rewritten asuφK1 , where
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otice,
ts
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t

ct
u ∈
{

zi, uiyi−1, yi,
∏
s

czs
s , y1u1

1∏
j=n−1

c
−zj

j , u−1
1 y−1

1 u−1
2 , yruryr−1, ur , u−1

r−1y
−1
r−1u

−1
r ,

uryr−1ur−1yr−2, u2y1u1

1∏
j=n−1

c
−zj

j , r < n;

y−1
n−2u

−1
n−1unyn−1un−1yn−2, u

−1
n−1unyn−1un−1, u

−1
n−1unyn−1,

u−1
n−1y

−1
n−1u

−1
n , y−1

n−2u
−1
n−1unyn−1, unyn−1un−1yn−2, u

−1
n un−1, un

}
.

In the casesn = 1,2 some of the labels above do not appear, some coincide. N
that xφK

n = u
φK
n ◦ y

φK

n−1, and that the first letter ofyφK

n−1 is not cancelled in the produc

(yn−1xn−1y
−1
n−2)

φK , (yn−1xn−1)
φK (see Lemma 46). Therefore, applying transformati

similar to T1 andT2 to the cut equationΠ ′K1
with labels written in the basis̄X, we can

split all the intervals with labels containing(unyn−1)
φK1 into two parts and obtain a cu

equation with the same properties and intervals labelled byuφK1 , where

u ∈
{

zi, uiyi−1, yi,
∏
s

czs
s , y1u1

1∏
j=n−1

c
−zj

j , u−1
1 y−1

1 u−1
2 , yruryr−1, ur , u

−1
r−1y

−1
r−1u

−1
r ,

uryr−1ur−1yr−2, u2y1u1

1∏
j=n−1

c
−zj

j , r < n;

y−1
n−2u

−1
n−1un, yn−1un−1yn−2, u

−1
n−1un, yn−1un−1, un

}
.

Consider fori < n the expression for

(yiui)
φK =A

−pm+4i+1
m+4i ◦ xi+1 ◦A

−pm+4i−4
m+4i−4 ◦ xpm+4i−3 ◦ yi ◦A

pm+4i−2−1
m+4i−2 ◦ xi ◦ ỹ−1

i−1.

Formula (3)(a) from Lemma 53 shows thatu
φK

i is completely cancelled in the produ

y
φK

i u
φK

i . This implies thatyφK

i = v
φK

i ◦ u
−φK

i .
Consider also the product

y
−φK

i−1 u
−φK

i

= (A−pm+4i−4+1
m+4i−4 ◦ xi ◦ ỹi−1 ◦ x−1

i A
pm+4i−4−1
m+4i−4

)
× (A−pm+4i−4+1

m+4i−4 xi ◦
(
x

pm+4i−3
i yi−1 . . . ∗ )pm+4i−1−1

x
pm+4i−3
i yix

−1
i+1A

pm+4i−1
m+4i

)
,

where the non-cancelled part is made bold.
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Notice, that(yr−1ur−1)
φK y

φK

r−2 = (yr−1ur−1)
φK ◦ y

φK

r−2, becauseuφK

r−1 is completely

cancelled in the productyφK

i u
φK

i .
Therefore, we can again apply the transformations similar toT1 andT2 and split the

intervals into the ones with labelsuφK1 , where

u ∈
{

zs, yi, ui,
∏
s

czs
s , yrur , y1u1

1∏
j=m−1

c
−zj

j , u−1
n−1un = ūn,

1� i � n, 1� j � m, 1� r < n

}
.

Now we change the basis̄X with a new basisX̂ replacingyr,1 < r < n, by a new
variablevr = yrur , y1u1

∏1
j=m−1 c

−zj

j by v1, andun−1un by ūn:

X̂ =
{

z1, . . . , zm,u1, . . . , un−1, ūn = un−1un, v1= y1u1

1∏
j=m−1

c
−zj

j ,

v2= y2u2, . . . , vn = ynun, yn

}
.

Theny
φK
r = v

φK
r ◦ u

−φK
r , andy

φK

1 = v
φK

1 ◦ c
z
φK
1

1 ◦ c
z
φK
m−1

m−1 ◦ u
−φK

1 (if n 
= 1). Formula

(2)(c) shows thatuφK
n = u

φK

n−1 ◦ (u−1
n−1un)

φK .

Apply transformations similar toT1 andT2 to the intervals with labels written in th
new basisX̂ and obtain intervals with labelsuφK1 , where

u ∈ X̂ ∪ {czm
m

}
.

Denote the resulting cut equation bȳΠK1 = (Ē, fX̄, fM̄). Let α be the corresponding so
lution of Π̄K1 with respect toβ.

Denote byM̄side the set of long variables in̄ΠK1, thenM̄ = M̄veryshort∪ M̄side.
Define a binary relation∼left on M̄±1

side as follows. Forµ1,µ
′
1 ∈ M̄±1

side putµ1∼left µ′1 if
and only if there exist two intervalsσ,σ ′ ∈ Ē with fX̄(σ )= fX̄(σ ′) such that

fM̄(σ )= µ1µ2 . . .µr , fM̄

(
σ ′
)= µ′1µ′2 . . .µ′r ′

and eitherµr = µ′
r ′ or µr,µ

′
r ′ ∈Mveryshort. Observe that ifµ1∼left µ

′
1 then

µ1= µ′1λ1 . . . λt
for someλ1, . . . , λt ∈M±1
veryshort. Notice, thatµ∼left µ.
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Similarly, we define a binary relation∼right on M̄±1
side. Forµr,µ

′
r ′ ∈ M̄±1

side put µr ∼right

µ′
r ′ if and only if there exist two intervalsσ,σ ′ ∈ Ē with fX̄(σ )= fX̄(σ ′) such that

fM̄(σ )= µ1µ2 . . .µr , fM̄

(
σ ′
)= µ′1µ′2 . . .µ′r ′

and eitherµ1= µ′1 or µ1,µ
′
1 ∈Mveryshort. Again, if µr ∼right µ

′
r ′ then

µr = λ1 . . . λtµ
′
r ′

for someλ1, . . . , λt ∈M±1
veryshort.

Denote by∼ the transitive closure of{(
µ,µ′

) ∣∣ µ∼left µ′
}∪ {(µ,µ′

) ∣∣ µ∼right µ
′}∪ {(µ,µ−1) ∣∣ µ ∈ M̄±1

side

}
.

Clearly,∼ is an equivalence relation on̄M±1
side. Moreover,µ∼ µ′ if and only if there exists

a sequence of variables

µ= µ0,µ1, . . . ,µk = µ′ (109)

from M̄±1
side such that eitherµi−1= µi , or µi−1= µ−1

i , or µi−1∼left µi , or µi−1∼right µi

for i = 1, . . . , k. Observe that ifµi−1 andµi from (109) are side variables of “differen
sides” (one is on the left, and the other is on the right) thenµi = µ−1

i−1. This implies that
replacing in the sequence (109) some elementsµi with their inverses one can get a ne
sequence

µ= ν0, ν1, . . . , νk =
(
µ′
)ε (110)

for someε ∈ {1,−1} whereνi−1 ∼ νi and all the variablesνi are of the same side.
follows that ifµ is a left-side variable andµ∼ µ′ then(

µ′
)ε = µλ1 . . . λt (111)

for someλj ∈M±1
veryshort.

It follows from (111) that for a variableν ∈ M̄±1
side all variables from the equivalenc

class[ν] of ν can be expressed viaν and very short variables fromMveryshort. So if we fix
a system of representativesR of M̄±1

side relative to∼ then all other variables from̄Mside can
be expressed as in (111) via variables fromR and very short variables.

This allows one to introduce a new transformationT3 of cut equations. Namely, we fi
a set of representativesR such that for everyν ∈ R the elementνα has minimal length
among all the variables in this class. Now, using (111) replace every variableν in every
word fM(σ) of a cut equationΠ by its expression via the corresponding representa
variable fromR and a product of very short variables.

Now we repeatedly apply the transformationT3 till the equivalence relations∼left and
∼right become trivial. This process stops in finitely many steps since the non-trivial

tions decrease the number of side variables.
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Denote the resulting equation again byΠ̄K1.
Now we introduce an equivalence relation on partitions ofΠ̄K1. Two partitionsfM(σ)

andfM(δ) are equivalent (fM(σ)∼ fM(δ)) if fX(σ )= fX(δ) and either the left side var
ables or the right side variables offM(σ) andfM(δ) are equal. Observe, thatfX(σ ) =
fX(δ) impliesfM(σ)α = fM(δ)α , so in this case the partitionsfM(σ) andfM(δ) cannot
begin withµ andµ−1 correspondingly. It follows that iffM(σ)∼ fM(δ) then the left side
variables and, correspondingly, the right side variables offM(σ) andfM(δ) (if they ex-
ist) are equal. Therefore, the relation∼ is, indeed, an equivalence relation on the se
partitions ofΠ̄K1.

If an equivalence class of partitions contains two distinct elementsfM(σ) andfM(δ)

then the equality

fM(σ)α = fM(δ)α

implies the corresponding equation on the variablesM̄veryshort, which is obtained by delet
ing all side variables (which are equal) fromfM(σ) andfM(δ) and equalizing the resultin
words in very short variables.

Denote by∆(M̄veryshort)= 1 this system.
Now we describe a transformationT4. Fix a set of representativesRp of partitions of

Π̄K1 with respect to the equivalence relation∼. For a given class of equivalent partitio
we take as a representative an intervalσ with fM(σ)= µleft . . .µright.

Below we say that: a wordw ∈ F [X] is very shortif the reduced form ofwβ does not
contain(A′j )3 for anyj � K2; a wordv ∈ F is very shortif it does not contain(A′j )3 for
anyj � K2; we also say thatµα almost containsuβ for some wordu in the alphabetX if
µα contains a subword which is the reduced form off1u

βf2 for somef1, f2 ∈ Cβ .

Principal variables. A long variableµleft orµright for an intervalσ of Π̄K1 with fM(σ)=
µleft . . .µright is calledprincipal in σ in the following cases.

(1) Let fX(σ ) = ui (i 
= n), whereui = xiy
−1
i−1 for i > 1 andu1 = x1c

−zm
m for m 
= 0.

Then (see Lemma 53)

u
φK1
i =A

∗−q4+1
K2+m+4ix

φK2
i+1y

−φK2
i x

−q1φK2
i

× (x−φK2
i A

∗q0
K2+m+4i−4A

∗(−q2+1)

K2+m+4i−2y
φK2
i x

−q1φK2
i

)q3−1
A
∗q0
K2+m+4i−4.

The variableµright is principal in σ if and only if µα
right almost contains a cyclicall

reduced part of

(
x
−ψK2
i A

∗q0β

K2+m+4i−4A
∗(−q2+1)β

m+4i−2 y
ψK2
i x

−q1ψK2
i

)q
= (xq1

i yi

)ψK2
(
A
∗β
K2+m+4i−1

)−q(
y−1
i x
−q1
i

)ψK2 ,

for someq > 2. Now, the variableµleft is principal in σ if and only if µright is not principal

in σ .
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(2) LetfX(σ )= vi , wherevi = yiui (i 
= 1, n) andv1= y1u1
∏1

j=m−1 c
−zj

j . Then (see
formula (3)(a) from Lemma 53)

v
φK1
i =A

∗(−q4+1)

K2+m+4ix
φK2
i+1A

∗(−q0)

K2+m+4i−4x
q1φK2
i y

φK2
i A

∗(q2−1)

K2+m+4i−2A
∗−1
K2+m+4i−4, i 
= 1,

and

v
φK1
1 =A

∗(−q4+1)

K2+m+4 x
φK2
2 A

∗(−q0)

K2+2mx
q1φK2
1 y

φK2
1 A

∗(q2−1)

K2+m+1x1

1∏
j=n

c
−zj

j .

A side variableµright (µleft) is principal in σ if and only if µα
right (correspondingly,µα

left)

almost contains(Aβ

K2+m+4i )
−q, for someq > 2. In this case both variablesµα

left, µα
right

could be simultaneously principal.
(3) LetfX(σ )= ūn = un−1un. Then (by formula (3)(c)) from Lemma 53)

ū
φK1
n =A∗K2+m+4n−8A

−q2+1
K2+m+4n−6

(
y−1
n−1x

−q1
n

)φK1A
∗q0
K2+m+4n−8

(
x

q5
n yn

)φK1

×A
∗q6−1
K2+m+4n−2A

∗−1
K2+m+4n−4.

A side variableµright (µleft) is principal in σ if µα
right (correspondingly,µα

left) almost

contains(Aβ

K2+m+4n−2)
q, for someq > 2. In this case both variablesµα

left, µα
right could be

simultaneously principal.
(4) LetfX(σ )= yn. Then (by Lemma 47)

y
φK1
n =A

∗q0β

K2+m+4n−4A
∗q3β
K1

x
q1ψK2
n y

ψK2
1 .

The variableµright (µleft) is principal in σ if µα
right (correspondingly,µα

left) almost con-

tains(A
β
K1

)q , for someq such that 2q > pK1 − 2. In this case both variablesµα
left, µα

right
could be simultaneously principal.

(5) LetfX(σ )= zj , j = 1, . . . ,m− 1. Then (by Lemma 44)

z
φK1
j = cj z

φK2
j A

∗βpj−1
K2+j−1c

z
φK2
j+1

j+1 A
∗βpj−1
K2+j .

A variableµleft (µright) is principal if µα
right (correspondingly,µα

left) almost contains

(A
β
K2+j )

q, for some|q|> 2. Both left and right side variables can be simultaneously p
cipal.

(6) LetfX(σ )= zm. Then (by Lemma 44)

φ φ −φ

z

K1
m = cK2

m z
K2

m A
∗pm−1
K2+m−1x

K2
1 A

∗pm−1
K2+m .
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In this caseµleft is principal in σ if and only if µleft is long (i.e., it is not very short)
and we defineµright to be always non-principal. Observe that ifµleft is very short then

µα
right= f z

φK1β
m for a very shortf ∈ F.

Let fX(σ )= z−1
m cmzm. Then (by Lemma 44)

fX(σ )φK1 =A
∗−pm+1
K2+m x

φK2
1 A

∗pm

K2+m.

The variableµleft is principal in σ if and only if the following two conditions hold:µα
left

almost contains(Aβ
K2+m)q, for someq with |q|> 2;

µ−1
left 
= f z

φK1β
m for a very shortf ∈ F.

Similarly, the variableµright is principal in σ if and only if the following two conditions
hold:µα

right almost contains(Aβ
K2+m)q, for someq with |q|> 2;

µα
right 
= f z

φK1β
m for a very shortf ∈ F.

Observe, that in this case the variablesµleft andµright can be simultaneously princip
in σ and non-principal inσ . The latter happens if and only if

µα
right= f1z

φK1β
m and µα

left = z
−φK1β
m f2

for some very short elementsf1, f2 ∈ F . Therefore, if bothµleft and µright are non-

principal then they can be expressed in terms ofz
φK1
m and very short variables.

Claim 17. For every intervalσ of Π̄K1 its partition fM(σ) has at least one principa
variable, unless this intervalσ and its partitionfM(σ) are of those two particular type
described in case(6).

Proof. Let fM(σ)= µleftν1 . . . νkµright, whereν1 . . . νk are very short variables. Suppo
Ar+K2 is the oldest period such thatfX(σ ) hasN -largeAr+K2-decomposition.

If r 
= 1 then (see Lemmas 44–47)Ar+K2 contains someN -large exponent ofAr−1+K2.
Thereforeνα

1 . . . να
k does not containA′r+K2

, hence eitherµleft or µright almost contains

A
βq
r+K2

, where|q|> 2. This finishes all the cases except for the case (1). In case (1) a
ilar argument shows thatνα

1 . . . να
k does not containA′r−1+K2

, so one of the side variable
is principal.

If r = 1, thenA1+K2 contains someN -large exponent ofA2+K3. Again,να
1 . . . να

k does
not containA′1+K2

, because the complexity of the cut equationΠK1 does not changed i

ranks fromK0 to K3. Now, an argument similar to the one above finishes the proof.�
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Claim 18. If both side variables of a partitionfM(σ) of an intervalσ from Π̄K1 are non-
principal, then they are non-principal in every partition of an interval from̄ΠK1.

Proof. It follows directly from the description of the side variablesµleft andµright in the
case (6) of the definition of principal variables. Indeed, ifµleft andµright are both non-
principal, then (see case (6)) each of them is either very short, or it is equal to

f1z
φK1β
m f2

for some very shortf1, f2 ∈ F . Clearly, neither of them could be principal in other pa
tions. �
Claim 19. Letn 
= 0. Then a side variable can be principal only in one class of equiva
partitions of intervals fromΠ̄K1.

Proof. Let fM(σ)= µleftν1 . . . νkµright, whereν1 . . . νk are very short variables. Suppo
Ar+K2 is the oldest period such thatfX(σ ) hasN -largeAr+K2-decomposition.

In every case from the definition of principal variables (except for case (1)) a prin
variable inσ almost contains a cube(A′r+K2

)3. In case (1) the principal variable almo
contains(A′r−1+K2

)3, moreover, ifµleft is the principal variable thenµα
left contains anN -

large exponent of(A′r+K2
).

We consider only the situation when the partitionfM(σ) satisfies case (1), all othe
cases can be done similarly.

Clearly, if fX(σ ) = ui then a principal variable inσ does not appear as a princip
variable in the partition of any other intervalδ with fX(δ) 
= ui , fX(δ) 
= vi . Suppose
that a principal variable inσ appears as a principal variable of the partition ofδ with
fX(δ) = ui . Then partitionsfM(σ) andfM(δ) are equivalent, as required. Suppose n
that a principal variableµ in σ appears as a principal variable of the partition ofδ with
fX(δ)= vi . If µ= µright then it cannot appear as the right principal variable, sayλright, of
fM(δ). Indeed,µα

right ends (see case (1) above) with almost all of the word(A
∗q0
K2+m+4i−4)

β

(except, perhaps, for a short initial segment of it). But the write principal variableλright
should end (see case (2) above) with almost all of the wordA∗−1

K2+m+4i−4 (except, perhaps
for a short initial segment of it), soµright 
= λright. Similarly, if the left side variableλleft
of fM(δ) is principal inδ thenµright 
= λleft. Suppose now thatµ= µleft, thenµright is not
principle inσ , so it is not true thatµright almost contains the cube of the cyclically reduc
part of

x
−ψK2
i A

∗q0β

K2+m+4i−4A
∗(−q2+1)β

m+4i−2 y
ψK2
i x

−q1ψK2
i .

Thenµleft is very long, so it is easy to see that it does not appear in the partition ofδ as a
principle variable. This finishes the case (1).�

For the cut equation̄ΠK1 we construct a finite graphΓ = (V ,E). Every vertex fromV
is marked by variables from̄M±1
side and letters from the alphabet{P,N}. Every edge from
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E is colored either as red or blue. The graphΓ is constructed as follows. Every partitio
fM(σ)= µ1 . . .µk of Π̄K1 gives two verticesvσ,left andvσ,right into Γ , so

V =
⋃
σ

{vσ,left, vσ,right}.

We markvσ,left by µ1 andvσ,right by µk . Now we mark the vertexvσ,left by a letterP or
letterN if µ1 is correspondingly principal or non-principal inσ . Similarly, we markvσ,right
by P or N if µk is principal or non-principal inσ .

For everyσ the verticesvσ,left andvσ,right are connected by arededge. Also, we connec
by ablueedge every pair of vertices which are marked by variablesµ,ν providedµ= ν

or µ= ν−1. This describes the graphΓ .
Below we construct a new graph∆ which is obtained fromΓ by deleting some blue

edges according to the following procedure. LetB be a maximal connected blue comp
nent ofΓ , i.e., a connected component of the graph obtained fromΓ by deleting all red
edges. Notice, thatB is a complete graph, so every two vertices inB are connected by
blue edge. Fix a vertexv in B and consider the star-subgraph StarB of B generated by al
edges adjacent tov. If B contains a vertex marked byP then we choosev with labelP ,
otherwisev is an arbitrary vertex ofB. Now, replaceB in Γ by the graph StarB , i.e., delete
all edges inB which are not adjacent tov. Repeat this procedure for every maximal b
componentB of Γ . Suppose that the blue component corresponds to long bases of c
that are non-principal and equal to

f1z
φK1
m f2

for very shortf1, f2. In this case, we remove all the blue edges that produce cycles
red edge fromΓ connecting non-principalµleft andµright is added to the component (
such a red edge exists).

Denote the resulting graph by∆.
In the next claim we describe connected components of the graph∆.

Claim 20. LetC be a connected component of∆. Then one of the following holds.

(1) There is a vertex inC marked by a variable which does not occur as a princi
variable in any partition ofΠ̄K1. In particular, any component which satisfies one
the following conditions has such a vertex:
(a) there is a vertex inC marked by a variable which is a short variable in som

partition of Π̄K1;
(b) there is a red edge inC with both endpoints marked byN (it corresponds to a

partition described in case(6) above).
(2) Both endpoints of every red edge inC are marked byP . In this caseC is an isolated

vertex.
(3) There is a vertex inC marked by a variableµ andN and if µ occurs as a label of an
endpoint of some red edge inC then the other endpoint of this edge is marked byP .
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Proof. Let C be a connected component of∆. Observe first, that ifµ is a short variable
in Π̄K1 thenµ is not principle inσ for any intervalσ from Π̄K1, so there is no vertex i
C marked by bothµ andP . Also, it follows from Claim 18 that if there is a red edgee

in C with both endpoints marked byN , then the variables assigned to endpoints ofe are
non-principle in any intervalσ of Π̄K1. This proves the part “in particular” of (1).

Now assume that the componentC does not satisfy any of the conditions (1), (2). W
need to show thatC has type (3). It follows that every variable which occurs as a label
vertex inC is long and it labels, at least, one vertex inC with labelP . Moreover, there are
non-principle occurrences of variables inC.

We summarize some properties ofC below.

• There are no blue edges in∆ between vertices with labelsN andN (by construction).
• There are no blue edges between vertices labelled byP andP (Claim 19).
• There are no red edges inC between vertices labelled byN andN (otherwise (1)

would hold).
• Any reduced path in∆ consists of edges of alternating color (by construction).

We claim thatC is a tree. Letp = e1 . . . ek be a simple loop inC (every vertex inp has
degree 2 and the terminal vertex ofek is equal to the starting point ofe1).

We show first thatp does not have red edges with endpoints labelled byP and P .
Indeed, suppose there exists such an edge inp. Taking cyclic permutation ofp we may
assume thate1 is a red edge with labelsP andP . Thene2 goes from a vertex with labe
P to a vertex with labelN . Hence the next red edgee3 goes fromN to P , etc. This shows
that every blue edge alongp goes fromP to N . Hence the last edgeek which must be blue
goes fromP to N—contradiction, since all the labels ofe1 areP .

It follows that both colors of edges and labels of vertices inp alternate. We may assum
now thatp starts with a vertex with labelN and the first edgee1 is red. It follows that
the end point ofe1 is labelled byN and all blue edges go fromN to P . Let ei be a
blue edge fromvi to vi+1. Then the variableµi assign to the vertexvi is principal in the
partition associated with the red edgeei−1, and the variableµi+1 = µ±1

i associated with
vi+1 is a non-principal side variable in the partitionfM(σ) associated with the red edg
ei+1. Therefore, the side variableµi+2 associated with the end vertexvi+2 is a principal
side variable in the partitionfM(σ) associated withei+1. It follows from the definition
of principal variables that the length ofµα

i+2 is much longer than the length ofµα
i+1,

unless the variableµi is described in the case (1). However, in the latter case the var
µi+2 cannot occur in any other partitionfM(δ) for δ 
= σ . This shows that there no blu
edges in∆ with endpoints labelled by suchµi+2. This implies thatvi+2 has degree on
in ∆—contradiction wit the choice ofp. This shows that there are no vertices labelled
such variables described in case (1). Notice also, that the length of variables (undeα) is
preserved along blue edges:|µα

i+1| = |(µ±1
i )α| = |µα

i |. Therefore,

∣∣µα
i

∣∣= ∣∣µα
i+1

∣∣< ∣∣µα
i+2

∣∣ for everyi.

It follows that going alongp the length of|µα
i | increases, sop cannot be a loop. Thi
implies thatC is a tree.
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Now we are ready to show that the componentC has type (3) from Claim 20. Letµ1 be
a variable assigned to some vertexv1 in C with labelN . If µ1 satisfies the condition (3
from Claim 20 then we are done. Otherwise,µ1 occurs as a label of one ofP -endpoints,
sayv2 of a red edgee2 in C such that the other endpoint ofe2, sayv3 is non-principal. Let
µ3 be the label ofv3. Thusv1 is connected tov2 by a blue edge andv2 is connected tov3
by a red edge. Ifµ3 does not satisfy the condition (3) from Claim 20 then we can re
the process (withµ3 in place ofµ1). The graphC is finite, so in finitely many steps eithe
we will find a variable that satisfies (3) or we will construct a closed reduced pathC.
SinceC is a tree the latter does not happen, thereforeC satisfies (3), as required.�
Claim 21. The graph∆ is a forest, i.e., it is union of trees.

Proof. Let C be a connected component of∆. If C has type (3) then it is a tree, as has be
shown in Claim 20. IfC of the type (2) then by Claim 20C is an isolated vertex—henc
a tree. IfC is of the type (1) thenC is a tree because each interval corresponding to
component has exactly one principal variable (except some particular intervals of ty
that do not have principal variables at all and do not produce cycles), and the sam
variable cannot be principal in two different intervals. Although the same argument
(3) also works here. �

Now we define the setsM̄useless, M̄free and assign values to variables from̄M =
M̄useless∪ M̄free∪ M̄veryshort. To do this we use the structure of connected compon
of ∆. Observe first, that all occurrences of a given variable fromM̄sidesare located in the
same connected component.

Denote byM̄free subset ofM̄ which consists of variables of the following types:

(1) variables which do not occur as principal in any partition of(Π̄K1);
(2) one (but not the other) of the variablesµ andν if they are both principal side variable

of a partition of the type (20) and such thatν 
= µ−1.

Denote byM̄useless= M̄side− M̄free.

Claim 22. For everyµ ∈ M̄uselessthere exists a wordVµ ∈ F [X ∪ M̄free∪ M̄veryshort] such
that for every mapαfree: M̄free→ F , and every solutionαs :F [M̄veryshort]→ F of the sys-
tem∆(M̄veryshort)= 1 the mapα :F [M̄]→ F defined by

µα =



µαfree, if µ ∈ M̄free,

µαs , if µ ∈ M̄veryshort,

V̄µ(Xδ, M̄
αfree
free , M̄

αs

veryshort), if µ ∈ M̄useless

is a group solution ofΠ̄K1 with respect toβ.

Proof. The claim follows from Claims 20 and 21. Indeed, take as values of short vari
an arbitrary solutionαs of the system∆(M̄veryshort)= 1. This system is obviously consi

tent, and we fix its solution. Consider connected components of type (1) in Claim 20. Ifµ
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is a principal variable for someσ in such a component, we expressµα in terms of values
of very short variablesM̄veryshort and elementstψK1 , t ∈ X, that correspond to labels o
the intervals. This expression does not depend onαs,β and tuplesq,p∗. For connected
components of∆ of types (2) and (3) we express valuesµα for µ ∈Muselessin terms of
valuesνα , ν ∈Mfree andtψK1 corresponding to the labels of the intervals.�

We can now finish the proof of Proposition 8. Observe, thatMveryshort⊆ M̄veryshort. If
λ is an additional very short variable fromM∗veryshortthat appears when transformationT1

or T2 is performed,λα can be expressed in termsMα
veryshort. Also, if a variableλ belongs

to M̄free and does not belong toM , then there exists a variableµ ∈M , such thatµα =
uψK1λα, whereu ∈ F(X,CS), and we can placeµ into Mfree.

Observe, that the argument above is based only on the tuplep, it does not depend o
the tuplesp∗ andq. Hence the wordsVµ do not depend onp∗ andq.

The proposition is proved forn 
= 0. If n= 0, partitions of the intervals with labelsz
φK1
n−1

andz
φK1
n can have equivalent principal right variables, but in this case the left variable

be different and do not appear in other non-equivalent partitions. The connected com
of ∆ containing these partitions will have only four vertices one blue edge.

In the casen = 0 we transform equationΠK1 applying transformationT1 to the form
when the intervals are labelled byuφK1 , where

u ∈ {z1, . . . , zm, c
zm−1
m−1, zmc

−zm−1
m−1

}
.

If µleft is very short for the intervalδ labelled by(zmc
−zm−1
m−1 )φK1 , we can applyT2 to δ,

and split it into intervals with labels

z
φK1
m and c

−z
φK1
m−1

m−1 .

Indeed, even if we had to replaceµright by the product of two variables, the first of the
would be very short.

If µleft is not very short for the intervalδ labelled by

(
zmc
−zm−1
m−1

)φK1 = cmz
φK2
m A

∗pm−1−1
m−1 ,

we do not split the interval, andµleft will be considered as the principal variable for it.
µleft is not very short for the intervalδ labelled by

z
φK1
m = z

φK2
m A

∗pm−1
m−1 ,

it is a principal variable, otherwiseµright is principal.
If an intervalδ is labelled by

( ) φK2

c
zm−1
m−1

φK1 =A
∗−pm−1+1
m−1 c−zm

m A
∗pm−1
m−1 ,
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we considerµright principal if µα
right ends with

(
c−z

φK2
m

m A
∗pm−2
m−1

)β

,

and the difference is not very short. Ifµα
left is almostz−φkβ

m andµα
right is almostzφkβ

m , we
do not call any of the side variables principal. In all other casesµleft is principal.

Definition of the principal variable in the interval with labelz
φK1
i , i = 1, . . . ,m− 2, is

the same as in (5) forn 
= 0.

A variable can be principal only in one class of equivalent partitions. All the rest o
proof is the same as forn > 0. �

Now we continue the proof of Theorem 9. LetL= 2K + κ(Π)4K and

Πφ =ΠL→ΠL−1→ ·· ·

be the sequence ofΓ -cut equations (108). For aΓ -cut equationΠj from (108) byMj and
αj we denote the corresponding set of variables and the solution relative toβ.

By Claim 9 in the sequence (108) either there is 3K-stabilization atK(r + 2) or
Comp(ΠK(r+1))= 0.

Case 1. Suppose there is 3K-stabilization atK(r + 2) in the sequence (108).
By Proposition 8 the set of variablesMK(r+1) of the cut equationΠK(r+1) can be parti-

tioned into three subsets

MK(r+1) =Mveryshort∪Mfree∪Museless

such that there exists a finite consistent system of equations∆(Mveryshort)= 1 overF and
wordsVµ ∈ F [X,Mfree,Mveryshort], whereµ ∈Museless, such that for every solutionδ ∈ B,
for every mapαfree:Mfree→ F , and every solutionαshort:F [Mveryshort]→ F of the system
∆(Mveryshort)= 1 the mapαK(r+1) :F [M]→ F defined by

µαK(r+1) =



µαfree, if µ ∈Mfree,

µαshort, if µ ∈Mveryshort,

Vµ(Xδ,M
αfree
free ,M

αs

veryshort), if µ ∈Museless

is a group solution ofΠK(r+1) with respect toβ. Moreover, the wordsVµ do not depend
on tuplesp∗ andq.

By Claim 4 if Π = (E, fX,fM) is aΓ -cut equation andµ ∈M then there exists a wor
Mµ(MT (Π),X) in the free groupF [MT (Π) ∪X] such that

µαΠ =Mµ

(
M

αT (Π)

T (Π) ,XφK(r+1)
)β

,

whereαΠ andαT (Π) are the corresponding solutions ofΠ andT (Π) relative toβ.
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Now, going along the sequence (108) fromΠK(r+1) back to the cut equationΠL and
using repeatedly the remark above for eachµ ∈ML we obtain a word

M′
µ,L

(
MK(r+1),X

φK(r+1)
)=M′

µ,L

(
Museless,Mfree,Mveryshort,X

φK(r+1)
)

such that

µαL =M′
µ,L

(
M

αK(r+1)

K(r+1),X
φK(r+1)

)β
.

Let δ = φK(r+1) ∈ B and put

Mµ,L

(
XφK(r+1)

)=M′
µ,L

(
Vµ

(
XφK(r+1) ,M

αfree
free ,M

αshort
veryshort

)
,M

αfree
free ,M

αshort
veryshort,X

φK(r+1)
)
.

Then for everyµ ∈ML

µαL =Mµ,L

(
XφK(r+1)

)β
.

If we denote byML(X) a tuple of words

ML(X)= (Mµ1,L(X), . . . ,Mµ|ML|,L(X)
)
,

whereµ1, . . . ,µ|ML| is some fixed ordering ofML then

M
αL

L =ML

(
XφK(r+1)

)β
.

Observe, that the wordsMµ,L(X), henceML(X) (whereXφK(r+1) is replaced byX) are
the same for everyφL ∈ Bp,q .

It follows from property (c) of the cut equationΠφ that the solutionαL of Πφ with
respect toβ gives rise to a group solution of the original cut equationΠL with respect to
φL ◦ β.

Now, property (c) of the initial cut equationΠL = (E, fX,fML
) insures that for every

φL ∈ Bp,q the pair(UφLβ,VφLβ) defined by

UφLβ =Q
(
M

αL

L

)=Q
(
ML

(
XφK(r+1)

))β
,

VφLβ = P
(
M

αL

L

)= P
(
ML

(
XφK(r+1)

))β
is a solution of the systemS(X)= 1∧ T (X,Y )= 1.

We claim that

Y(X)= P
(
ML(X)

)
is a solution of the equationT (X,Y ) = 1 in FR(S). By Theorem 10Bp,q,β is a discrimi-
nating family of solutions for the groupFR(S). Since

T
(
X,Y(X)

)φβ = T
(
Xφβ,Y

(
Xφβ

))= T
(
Xφβ,ML

(
Xφβ

))= T (UφLβ,VφLβ)= 1
for anyφβ ∈ Bp,q,β we deduce thatT (X,Yp,q(X))= 1 in FR(S).
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Now we need to show thatT (X,Y )= 1 admits a completeS-lift. Let W(X,Y ) 
= 1 be
an inequality such thatT (X,Y )= 1∧W(X,Y ) 
= 1 is compatible withS(X)= 1. In this
event, one may assume (repeating the argument from the beginning of this section)
set

Λ= {(Uψ,Vψ)
∣∣ψ ∈ L2

}
is such that every pair(Uψ,Vψ) ∈Λ satisfies the formulaT (X,Y )= 1∧W(X,Y ) 
= 1. In
this case,W(X,Yp,q(X)) 
= 1 in FR(S), because its image inF is non-trivial:

W
(
X,Yp,q(X)

)φβ =W(Uψ,Vψ) 
= 1.

HenceT (X,Y )= 1 admits a complete lift into generic point ofS(X)= 1.

Case 2. A similar argument applies when Comp(ΠK(r+2)) = 0. Indeed, in this case fo
every σ ∈ EK(r+2) the wordfMK(r+1)

(σ ) has length one, sofMK(r+1)
(σ ) = µ for some

µ ∈MK(r+2). Now one can replace the wordVµ ∈ F [X ∪Mfree∪Mveryshort] by the label
fXK(r+1)

(σ ) wherefMK(r+1)
(σ )= µ and then repeat the argument.�

7.5. Non-orientable quadratic equations

Consider now the equation

m∏
i=1

z−1
i cizi

n∏
i=1

x2
i = c1 . . . cm

n∏
i=1

a2
i , (112)

whereai , cj give a solution in general position (in all the cases when it exists). We
now prove Theorem 9 for a regular standard non-orientable quadratic equation overF .

LetS(X,A)= 1 be a regular standard non-orientable quadratic equation overF . Then
every equationT (X,Y,A)= 1 compatible withS(X,A)= 1 admits an completeS-lift.

The proof of the theorem is similar to the proof in the orientable case, but the
sequence of automorphisms is different. We will give a sketch of the proof in this sec

It is more convenient to consider a non-orientable equation in the form

S =
m∏

i=1

z−1
i cizi

n∏
i=1

[xi, yi]x2
n+1= c1 . . . cm

n∏
i=1

[ai, bi]a2
n+1, (113)

or

S =
m∏

z−1cizi

n∏
[xi, yi]x2 x2 = c1 . . . cm

n∏
[ai, bi]a2 a2 . (114)
i=1
i

i=1
n+1 n+2

i=1
n+1 n+2
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Without loss of generality we consider Eq. (114). We define a basic sequence

Γ = (γ1, γ2, . . . , γK(m,n))

of G-automorphisms of the freeG-groupG[X] fixing the left side of Eq. (114).
We assume that eachγ ∈ Γ acts identically on all the generators fromX that are not

mentioned in the description ofγ .
Automorphismsγi , i = 1, . . . ,m+ 4n− 1, are the same as in the orientable case.
Let n= 0. In this caseK =K(m,0)=m+ 2. Put

γm : zm→ zm

(
czm
m x2

1

)
, x1→ x

(c
zm
m x2

1)

1 ,

γm+1 : x1→ x1(x1x2), x2→ (x1x2)
−1x2,

γm+2 : x1→ x
(x2

1x2
2)

1 , x2→ x
(x2

1x2
2)

2 .

Let n � 1. In this caseK =K(m,n)=m+ 4n+ 2. Put

γm+4n : xn→ (ynx
2
n+1)

−1xn, yn→ y
(ynx2

n+1)
n , xn+1→ x

(ynx2
n+1)

n+1 ,

γm+4n+1 : xn+1→ xn+1(xn+1xn+2), xn+2→ (xn+1xn+2)
−1xn+2,

γm+4n+2 : xn+1→ x
(x2

n+1x
2
n+2)

n+1 , xn+2→ x
(x2

n+1x
2
n+2)

n+2 .

These automorphisms induce automorphisms onGS which we denote by the same le
ters.

LetΓ = (γ1, . . . , γK) be the basic sequence of automorphisms forS = 1. Denote byΓ∞
the infinite periodic sequence with periodΓ , i.e.,Γ∞ = {γi}i�1 with γi+K = γi . Forj ∈N
denote byΓj the initial segment ofΓ∞ of lengthj . Then for a givenj andp ∈Nj put

φj,p =←−Γ
←−p
j .

Let

ΓP = {φj,p | p ∈ P }.

We can prove the analogue of Theorem 10, namely, that a family of homomorphismΓP β

from GS =GR(S) ontoG, whereβ is a solution in general position, andP is unbounded
is a discriminating family.

The rest of the proof is the same as in the orientable case.

7.6. Implicit function theorem: NTQ systems

Definition 43. Let G be a group with a generating setA. A system of equationsS = 1 is
called triangular quasiquadratic(shortly, TQ) if it can be partitioned into the followin

subsystems
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S1(X1,X2, . . . ,Xn,A) = 1,

S2(X2, . . . ,Xn,A) = 1,

. . .

Sn(Xn,A) = 1

where for eachi one of the following holds:

(1) Si is quadratic in variablesXi;
(2) Si = {[y, z] = 1, [y,u] = 1 | y, z ∈Xi} whereu is a group word inXi+1∪· · ·∪Xn∪A

such that its canonical image inGi+1 defined below is not a proper power; in this ca
we say thatSi = 1 corresponds to an extension of a centralizer;

(3) Si = {[y, z] = 1 | y, z ∈Xi};
(4) Si is the empty equation.

DefineGi = GR(Si ,...,Sn) for i = 1, . . . , n and putGn+1 = G. The TQ systemS = 1
is callednon-degenerate(shortly, NTQ) if each systemSi = 1, whereXi+1, . . . ,Xn are
viewed as the corresponding constants fromGi+1 (under the canonical mapsXj →Gi+1,
j = i + 1, . . . , n, has a solution inGi+1. The coordinate group of an NTQ system is cal
anNTQ group.

An NTQ systemS = 1 is calledregular if for eachi the systemSi = 1 is either of the
type (1) or (4), and in the former case the quadratic equationSi = 1 is in standard form an
regular (see Definition 6).

One of the results to be proved in this section is the following.

Theorem 11. Let U(X,A)= 1 be a regular NTQ-system. Every equationV (X,Y,A)= 1
compatible withU = 1 admits a completeU -lift.

Proof. We use induction on the numbern of levels in the systemU = 1. We construct a
solution treeTsol(V (X,Y,A)∧U(X,Y )) with parametersX =X1∪· · ·∪Xn. In the termi-
nal vertices of the tree there are generalized equationsΩv1, . . . ,Ωvk

which are equivalen
to cut equationsΠv1, . . . ,Πvk

.
If S1(X1, . . . ,Xn)= 1 is an empty equation, we can take Merzljakov’s words (see

orem 4) as values of variables fromX1, expressY as functions inX1 and a solution of
someW(Y1,X2, . . . ,Xn)= 1 such that for any solution of the system

S2(X2, . . . ,Xn,A) = 1,

. . .

Sn(Xn,A) = 1
equationW = 1 has a solution.
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Suppose, now thatS1(X1, . . . ,Xn)= 1 is a regular quadratic equation. LetΓ be a basic
sequence of automorphisms for the equationS1(X1, . . . ,Xn,A)= 1. Recall that

φj,p = γ
pj

j . . . γ
p1
1 =

←−
Γ

p
j ,

wherej ∈ N, Γj = (γ1, . . . , γj ) is the initial subsequence of lengthj of the sequence
Γ (∞), andp = (p1, . . . , pj ) ∈N

j . Denote byψj,p the following solution ofS1(X1)= 1:

ψj,p = φj,pα,

whereα is a composition of a solution ofS1= 1 in G2 and a solution from a generic fami
of solutions of the system

S2(X2, . . . ,Xn,A) = 1,

. . .

Sn(Xn,A) = 1

in F(A). We can always suppose thatα satisfies a small cancellation condition with resp
to Γ.

Set

Φ = {φj,p

∣∣ j ∈N, p ∈N
j
}

and letLα be an infinite subset ofΦα satisfying one of the cut equations above. With
loss of generality we can suppose it satisfiesΠ1. By Proposition 8 we can express variab
from Y as functions of the set ofΓ -words inX1, coefficients, variablesMfree and variables
Mveryshort, satisfying the system of equations∆(Mveryshort) The system∆(Mveryshort) can
be turned into a generalized equation with parametersX2 ∪ · · · ∪ Xn, such that for any
solution of the system

S2(X2, . . . ,Xn,A) = 1,

. . .

Sn(Xn,A) = 1

the system∆(Mveryshort) has a solution. Therefore, by induction, variables(Mveryshort) can
be found as elements ofG2, and variablesY as elements ofG1. �
Lemma 74. All stabilizing automorphisms(see[9]) of the left side of the equation
c
z1
1 c

z2
2 (c1c2)

−1= 1 (115)
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have the formz
φ
1 = ck

1z1(c
z1
1 c

z2
2 )n, z

φ
2 = cm

2 z2(c
z1
1 c

z2
2 )n. All stabilizing automorphisms o

the left side of the equation

x2cz
(
a2c

)−1= 1 (116)

have the formxφ = x(x2cz)n , zφ = ckz(x2cz)n. All stabilizing automorphisms of the le
side of the equation

x2
1x2

2

(
a2

1a2
2

)−1= 1 (117)

have the formx
φ
1 = (x1(x1x2)

m)(x
2
1x2

2)n , x
φ
2 = ((x1x2)

−mx2)
(x2

1x2
2)n .

Proof. The computation of the automorphisms can be done by utilizing the Magnus
ware system. �

If a quadratic equationS(X)= 1 has only commutative solutions then the radicalR(S)

of S(X) can be described (up to a linear change of variables) as follows (see [12]):

Rad(S)= ncl
{[xi, xj ], [xi, b]

∣∣ i, j = 1, . . . , k
}
,

whereb is an element (perhaps, trivial) fromF . Observe, that ifb is not trivial thenb is
not a proper power inF . This shows thatS(X)= 1 is equivalent to the system

Ucom(X)= {[xi, xj ] = 1, [xi, b] = 1
∣∣ i, j = 1, . . . , k

}
. (118)

The systemUcom(X) = 1 is equivalent to a single equation, which we also denote
Ucom(X)= 1. The coordinate groupH = FR(Ucom) of the systemUcom= 1, as well as of
the corresponding equation, isF -isomorphic to the free extension of the centralizerCF (b)

of rankn. We need the following notation to deal withH . For a setX andb ∈ F by A(X)

andA(X,b) we denote free abelian groups with basisX andX ∪ {b}, correspondingly
Now, H � F ∗b=b A(X,b). In particular, in the case whenb= 1 we haveH = F ∗A(X).

Lemma 75. LetF = F(A) be a non-abelian free group andV (X,Y,A)= 1, W(X,Y,A)=
1 be equations overF . If a formula

Φ = ∀X(Ucom(X)= 1 → ∃Y (V (X,Y,A)= 1 ∧ W(X,Y,A) 
= 1
))

is true in F then there exists a finite number of〈F 〉-embeddingsφk :F ∗b=b A(X,b)→
F ∗b=b A(X,b) (k ∈K) such that:

(1) every formula

Φk = ∃Y
(
V
(
Xφk ,Y,A

)= 1 ∧ W
(
Xφk ,Y,A

) 
= 1
)

holds in the coordinate groupH = F ∗b=b A(X,b);
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(2) for any solutionλ :H → F there exists anF -homomorphismλ∗ :H → F such that
λ= φkλ

∗ for somek ∈K .

Proof. We construct a set of initial parameterized generalized equationsGE(S) =
{Ω1, . . . ,Ωr} for V (X,Y,A) = 1 with respect to the set of parametersX. For each
Ω ∈ GE(S) in Section 5.6 we constructed the finite treeTsol(Ω) with respect to para
metersX. Observe, that non-active part[jv0, ρv0] in the root equationΩ =Ωv0 of the tree
Tsol(Ω) is partitioned into a disjoint union of closed sections corresponding toX-bases
and constant bases (this follows from the construction of the initial equations in th
GE(S)). We label every closed sectionσ corresponding to a variablex ∈ X±1 by x, and
every constant section corresponding to a constanta by a. Due to our construction of th
treeTsol(Ω) moving along a brunchB from the initial vertexv0 to a terminal vertexv
we transfer all the bases from the non-parametric part into parametric part until, e
ally, in Ωv the whole interval consists of the parametric part. For a terminal vertexv in
Tsol(Ω) equationΩv is periodized (see Section 5.4). We can consider the correspo
periodic structureP and the subgroup̃Z2. Denote the cycles generating this subgroup
z1, . . . , zm. Let xi = bki andzi = bsi . All xi ’s are cycles, therefore the corresponding s
tem of equations can be written as a system of linear equations with integer coeffici
variables{k1, . . . , kn} and variables{s1, . . . , sm}:

ki =
m∑

j=1

αij sj + βi, i = 1, . . . , n. (119)

We can always supposem � n and at least for one equationΩv m= n, because other
wise the solution set of the irreducible systemUcom= 1 would be represented as a uni
of a finite number of proper subvarieties.

We will show now that all the tuples(k1, . . . , kn) that correspond to some system (11
with m < n (the dimension of the subgroupHv generated bȳk− β̄ = k1−β1, . . . , kn−βn

in this case is less thann), appear also in the union of systems (119) withm = n. Such
systems have form̄k− β̄q ∈Hq , q runs through some finite setQ, and whereHq is a sub-
group of finite index inZn = 〈s1〉× · · ·× 〈sn〉. We use induction onn. If for some terminal
vertexv, the system (119) hasm < n, we can suppose without loss of generality that the
of tuplesH satisfying this system is defined by the equationskr = · · · = kn = 0. Consider
just the casekn = 0. We will show that all the tuples̄k0 = (k1, . . . , kn−1,0) appear in the
systems (119) constructed for the other terminal vertices withn=m. First, if Nq is the in-
dex of the subgroupHq, Nqk̄ ∈Hq for each tuplēk. LetN be the least common multiple o
N1, . . . ,NQ. If a tuple(k1, . . . , kn−1, tN) for somet belongs toβ̄q +Hq for someq, then
(k1, . . . , kn−1,0) ∈ β̄q +Hq , because(0, . . . ,0, tN) ∈Hq . Consider the setK of all tuples
(k1, . . . , kn−1,0) such that(k1, . . . , kn−1, tN) /∈ β̄q +Hq for anyq = 1, . . . ,Q andt ∈ Z.
The set{(k1, . . . , kn−1, tN) | (k1, . . . , kn−1,0) ∈ K, t ∈ Z} cannot be a discriminating s
for Ucom= 1. Therefore it satisfies some proper equation. Changing variablesk1, . . . , kn−1
we can suppose that for an irreducible component the equation has formkn−1 = 0. The
contradiction arises from the fact that we cannot obtain a discriminating set forUcom= 1

which does not belong tōβq +Hq for anyq = 1, . . . ,Q.
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Embeddingsφk are given by the systems (119) withn = m for generalized equation
Ωv for all terminal verticesv. �

There are two more important generalizations of the implicit function theorem, one
arbitrary NTQ-systems, and another—for arbitrary systems. We need a few more
tions to explain this. LetU(X1, . . . ,Xn,A)= 1 be an NTQ-system:

S1(X1,X2, . . . ,Xn,A) = 1,

S2(X2, . . . ,Xn,A) = 1,

. . .

Sn(Xn,A) = 1

andGi =GR(Si ,...,Sn), Gn+1= F(A).
A Gi+1-automorphismσ of Gi is called acanonical automorphismif the following

holds:

(1) if Si is quadratic in variablesXi thenσ is induced by aGi+1-automorphism of the
groupGi+1[Xi] which fixesSi;

(2) if Si = {[y, z] = 1, [y,u] = 1 | y, z ∈ Xi} whereu is a group word inXi+1 ∪ · · · ∪
Xn∪A, thenGi =Gi+1∗u=u Ab(Xi∪{u}), where Ab(Xi∪{u}) is a free abelian grou
with basisXi ∪ {u}, and in this eventσ extends an automorphism of Ab(Xi ∪ {u})
(which fixesu);

(3) if Si = {[y, z] = 1 | y, z ∈Xi} thenGi =Gi+1 ∗ Ab(Xi), and in this eventσ extends
an automorphism of Ab(Xi);

(4) if Si is the empty equation thenGi =Gi+1[Xi], and in this caseσ is just the identity
automorphism ofGi .

Let πi be a fixedGi+1[Yi]-homomorphism

πi :Gi[Yi]→Gi+1[Yi+1],

where∅ = Y1 ⊆ Y2 ⊆ · · · ⊆ Yn ⊆ Yn+1 is an ascending chain of finite sets of paramet
andGn+1 = F(A). Since the systemU = 1 is non-degenerate such homomorphismsπi

exist. We assume also that ifSi(Xi) = 1 is a standard quadratic equation (the case
above) which has a non-commutative solution inGi+1, thenXπi is a non-commutative
solution ofSi(Xi)= 1 in Gi+1[Yi+1].

A fundamental sequence(or a fundamental set) of solutions of the systemU(X1, . . . ,

Xn,A) = 1 in F(A) with respect to the fixed homomorphismsπ1, . . . , πn is a set of all
solutions ofU = 1 in F(A) of the form
σ1π1 · · ·σnπnτ,
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whereσi is Yi -automorphism ofGi[Yi] induced by a canonical automorphism ofGi , andτ

is anF(A)-homomorphismτ :F(A∪Yn+1)→ F(A). Solutions from a given fundament
set ofU are calledfundamentalsolutions.

Below we describe two useful constructions. The first one is anormalizationconstruc-
tion which allows one to rewrite effectively an NTQ-systemU(X)= 1 into a normalized
NTQ-systemU∗ = 1. Suppose we have an NTQ-systemU(X)= 1 together with a funda
mental sequence of solutions which we denoteV̄ (U).

Starting from the bottom we replace each non-regular quadratic equationSi = 1 which
has a non-commutative solution by a system of equations effectively constructed
lows.

(1) If Si = 1 is in the form

c
xi1
1 c

xi2
2 = c1c2,

where[c1, c2] 
= 1, then we replace it by a system

{
xi1= z1c1z3, xi2= z2c2z3, [z1, c1] = 1, [z2, c2] = 1, [z3, c1c2] = 1

}
.

(2) If Si = 1 is in the form

x2
i1c

xi2 = a2c,

where[a, c] 
= 1, we replace it by a system

{
xi1= az1, xi2= z2cz1, [z2, c] = 1,

[
z1, a

2c
]= 1

}
.

(3) If Si = 1 is in the form

x2
i1x

2
i2= a2

1a2
2

then we replace it by the system

{
xi1= (a1z1)

z2, xi2=
(
z−1

1 a2
)z2, [z1, a1a2] = 1,

[
z2, a

2
1a2

2

]= 1
}
.

The normalization construction effectively provides an NTQ-systemU∗ = 1 such that
each fundamental can be obtained from a solution ofU∗ = 1. We refer to this system a
to the normalized system ofU corresponding to the fundamental sequence. Similarly
coordinate group of the normalized system is called thenormalizedcoordinate group o
U = 1.

Lemma 76. Let U(X)= 1 be an NTQ-system, andU∗ = 1 be the normalized system co
responding to the fundamental sequenceV̄ (U). Then the following holds:
(1) The coordinate groupFR(U) canonically embeds intoFR(U∗);
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(2) The systemU∗ = 1 is an NTQ-system of the type

S1(X1,X2, . . . ,Xn,A) = 1,

S2(X2, . . . ,Xn,A) = 1,

. . .

Sn(Xn,A) = 1

in which everySi = 1 is either a regular quadratic equation or an empty equation
a system of the type

Ucom(X,b)= {[xi, xj ] = 1, [xi, b] = 1
∣∣ i, j = 1, . . . , k

}
whereb ∈Gi+1.

(3) Every solutionX0 of U(X)= 1 that belongs to the fundamental sequenceV̄ (U) can
be obtained from a solution of the systemU∗ = 1.

Proof. Statement (1) follows from the normal forms of elements in free constructio
from the fact that applying standard automorphismsφL to a non-commuting solution (i
particular, to a basic one) one obtains a discriminating set of solutions (see Sectio
Statements (2) and (3) are obvious from the normalization construction.�
Definition 44. A family of solutionsΨ of a regular NTQ-systemU(X,A) = 1 is called
genericif for any equationV (X,Y,A)= 1 the following is true: if for any solution from
Ψ there exists a solution ofV (Xψ,Y,A)= 1, thenV = 1 admits a completeU -lift.

A family of solutionsΘ of a regular quadratic equationS(X) = 1 over a groupG is
calledgenericif for any equationV (X,Y,A) = 1 with coefficients inG the following is
true: if for any solutionθ ∈Θ there exists a solution ofV (Xθ ,Y,A)= 1 in G, thenV = 1
admits a completeS-lift.

A family of solutionsΨ of an NTQ-systemU(X,A) = 1 is calledgeneric if Ψ =
Ψ1 . . .Ψn, whereΨi is a generic family of solutions ofSi = 1 overGi+1 if Si = 1 is a
regular quadratic system, andΨi is a discriminating family forSi = 1 if it is a system of
the typeUcom.

The second construction is acorrecting extension of centralizersof a normalized NTQ-
systemU(X) = 1 relative to an equationW(X,Y,A) = 1, whereY is a tuple of new
variables. LetU(X)= 1 be an NTQ-system in the normalized form:

S1(X1,X2, . . . ,Xn,A) = 1,

S2(X2, . . . ,Xn,A) = 1,

. . .
Sn(Xn,A) = 1.
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So everySi = 1 is either a regular quadratic equation or an empty equation or a syst
the type

Ucom(X,b)= {[xi, xj ] = 1, [xi, b] = 1
∣∣ i, j = 1, . . . , k

}
whereb ∈ Gi+1. Again, starting from the bottom we find the first equationSi(Xi) = 1
which is in the formUcom(X)= 1 and replace it with a new centralizer extending sys
Ūcom(X)= 1 as follows.

We constructTsol for the systemW(X,Y )= 1∧U(X)= 1 with parametersXi, . . . ,Xn.
We obtain generalized equations corresponding to final vertices. Each of them c
of a periodic structure onXi and generalized equation onXi+1 . . .Xn. We can suppos
that for the periodic structure the set of cyclesC(2) is empty. Some of the generalize
equations have a solution over the extension of the groupGi . This extension is given
by the relationsŪcom(Xi) = 1, Si+1(Xi+1, . . . ,Xn) = 1, . . . , Sn(Xn) = 1, so that there is
an embeddingφk :A(X,b)→ A(X,b). The others provide a proper (abelian) equat
Ej(Xi) = 1 on Xi . The argument above shows that replacing each centralizer ex
ing systemSi(Xi) = 1 which is in the formUcom(Xi) = 1 by a new system of the typ
Ūcom(Xi) = 1 we eventually rewrite the systemU(X) = 1 into finitely many new one
Ū1(X) = 1, . . . , Ūm(X) = 1. We denote this set of NTQ-systems byCW(U). For every
NTQ-systemŪm(X) = 1 ∈ CW(U) the embeddingsφk described above give rise to em
beddingsφ̄ :FR(U)→ FR(Ū). Finally, combining normalization and correcting extens
of centralizers (relative toW = 1) starting with an NTQ-systemU = 1 and a fundamenta
sequence of its solutions̄V (U) we can obtain a finite set

NCW(U)= CW

(
U∗
)

which comes equipped with a finite set of embeddingsθi :FR(U) → FR(Ūi )
for each

Ūi ∈ NCW(U). These embeddings are calledcorrecting normalizing embeddings. The
construction implies the following result.

Theorem 12 (Parametrization theorem). Let U(X,A) = 1 be an NTQ-system with a fun
damental sequence of solutionsV̄ (U). Suppose a formula

Φ = ∀X(U(X)= 1 → ∃Y (W(X,Y,A)= 1 ∧ W1(X,Y,A) 
= 1
))

is true inF . Then for everyŪi ∈NCW(U) the formula

∃Y (W (
Xθi , Y,A

)= 1 ∧ W1
(
Xθi , Y,A

) 
= 1
)

is true in the groupGR(Ūi )
for every correcting normalizing embeddingθi :FR(U) →

FR(Ūi )
. This formula can be effectively verified and solutionY can be effectively found.

Furthermore, for every fundamental solutionφ :FR(U)→ F there exists a fundament
solutionψ of one of the systems̄Ui = 1, whereŪi ∈NCW(U) such thatφ = θiψ.

As a corollary of this theorem and results from Section 5 we obtain the following t

rems.
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Theorem 13. LetU(X,A)= 1 be an NTQ-system and̄V (U) a fundamental set of solution
of U = 1 in F = F(A). If a formula

Φ = ∀X(U(X)= 1 → ∃Y (W(X,Y,A)= 1 ∧ W1(X,Y,A) 
= 1
))

is true in F then one can effectively find finitely many NTQ systemsU1 = 1, . . . ,Uk = 1
and embeddingsθi :FR(U)→ FR(Ui) such that the formula

∃Y (W (
Xθi , Y,A

)= 1 ∧ W1
(
Xθi , Y,A

) 
= 1
)

is true in each groupFR(Ui). Furthermore, for every solutionφ :FR(U)→ F of U = 1
from V̄ (U) there existsi ∈ {1, . . . , k} and a fundamental solutionψ :FR(Ui)→ F such
thatφ = θiψ .

Theorem 14. LetS(X)= 1 be an arbitrary system of equations overF . If a formula

Φ = ∀X∃Y (S(X)= 1 → (
W(X,Y,A)= 1 ∧ W1(X,Y,A) 
= 1

))
is true in F then one can effectively find finitely many NTQ systemsU1 = 1, . . . ,Uk = 1
andF -homomorphismsθi :FR(S)→ FR(Ui) such that the formula

∃Y (W (
Xθi , Y,A

)= 1 ∧ W1
(
Xθi , Y,A

) 
= 1
)

is true in each groupFR(Ui). Furthermore, for every solutionφ :FR(S)→ F of S = 1 there
existsi ∈ {1, . . . , k} and a fundamental solutionψ :FR(Ui)→ F such thatφ = θiψ .
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