
Tickling Java with a Feather

Tristan O.R. Allwood1 Susan Eisenbach2

Department of Computing
Imperial College

London
United Kingdom

Abstract

Fragments of mainstream programming languages are formalised in order to show desirable prop-
erties of their static semantics. We ask if said formalisms could also be used to define a test suite
for the mainstream programming language in question, and what the utility of such a suite would
be.
In this work, we present our findings from testing Java with Featherweight Java (FJ). We take the
syntax and binding structure of FJ to define an instance space of non-isomorphic test programs
and implementations of FJ type checkers to provide oracles for our tests, to ensure the mainstream
implementation conforms with the expectations of FJ. Using these, we evaluate (using code coverage
techniques) how much of the Sun OpenJDK javac can be tested by FJ.

Keywords: Featherweight Java, Tests, Semantics, Oracles

1 Introduction

Writing compilers and type checkers is hard. In addition to the sheer quan-
tity of code, the implementation may be complicated by the desire to produce
code that is efficient and fast. The languages compilers are processing are
ever-increasingly complicated, with sophisticated type rules, and many possi-
ble obscure corner cases. There are also complications with possibly several
intermediate representations being used inside the compiler, each with their
own invariants and properties.

1 Email: tristan.allwood@imperial.ac.uk
2 Email: s.eisenbach@imperial.ac.uk

Electronic Notes in Theoretical Computer Science 238 (2009) 3–16

1571-0661 © 2009 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.09.037
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82184048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tristan.allwood@imperial.ac.uk
mailto:s.eisenbach@imperial.ac.uk
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


Creating tests for a new language compiler is time consuming. The test
cases need generating, and an oracle consulted to determine if it should be a
passing or failing test. If it is a human oracle, it is possible that they could
be wrong. Test cases are then also limited by human imagination, obscure
corner cases could be overlooked. If the test cases are being generated by the
compiler writer; it is possible that they could be biased or influenced by their
own assumptions about the implementation or their interpretation of what
the language should do.

There is an issue of maintaining or upgrading the tests if the language
evolves. The validity of some old tests may change if the language semantics
are altered during development, and a human oracle has to find and check
all possible tests that are affected. This is as-well as finding new tests for
interactions with existing language features and any new ones added.

Many programming languages have been given a formal presentation; ei-
ther in their entirety, or for a semantically meaningful core subset. This for-
malism is used to prove desirable properties of the semantics of the language,
both static and dynamic. However, the language is only proved safe in theory
- we still rely on a correct implementation of the compiler of the language.

This work asks whether the formal presentation of the theory could also
be used both as input to generate test programs and to be an oracle for them.
They can then be executed by the implementation of the full language to see
if it conforms with the theory. We want to evaluate how useful these test
programs would be in practice.

To start answering the question, we present here an investigation into
using the theory of Featherweight Java [10] to create tests for the type checker
component of the OpenJDK Java compiler [14]. We proceed as follows;

In Section 2 we briefly summarise Featherweight Java, and discuss features
and omissions that become interesting later in the paper. We then describe
how we take the grammar component of FJ and use it to generate test pro-
grams in Section 3. We also describe how we use knowledge of name binding
to prune some isomorphic programs from the search space of those generated.
In Section 4 we describe how we use implementations of FJ type checkers as
our oracles to determine whether the test program is one that javac should
accept or reject. We also discuss the presence of FJ programs that FJ rejects
but that javac will accept. With the test programs generated and their ex-
pectation provided, we describe the set up used to test the OpenJDK Java
compiler in Section 5. The results from the experiment are presented in Sec-
tion 6. Finally we put this work in context in Section 7 before concluding and
looking to the future in Section 8.

T.O.R. Allwood, S. Eisenbach / Electronic Notes in Theoretical Computer Science 238 (2009) 3–164



2 Featherweight Java

CL ::= class declarations:

class C extends C {C̄ f̄; K M̄}
K ::= constructor declarations:

C(C̄ f̄) {super(f̄); this.f̄=f̄;}
M ::= method declarations:

C m(C̄ x̄){return t;}
t ::= terms:

x variable

t.f field access

t.m(t̄) method invocation

new C(t̄) object creation

(C) t cast

Fig. 1. Syntax of Featherweight Java

For this experiment we have chosen to use Featherweight Java [10] as our
formalised fragment, and Java as our target testing platform. FJ is one of
the most studied formalisms of Java and has been used as a starting point for
research into many extensions of Java ([12], [3], [5], [17]) including Generic
Java in the original paper.

FJ is designed to be a minimal calculus for Java. The authors omitted as
many features as possible while still retaining the core Java typing rules. This
included omitting assignment, making FJ a purely functional calculus.

FJ has its own syntax (Fig. 1) which is a restricted subset of Java - all
syntactically valid FJ programs are syntactically valid Java programs. An FJ
program as presented in [10] consists of a list of FJ class declarations followed
by an expression that is taken as the code for the main method. Here we omit
that expression and treat a program simply as a list of class declarations.

Classes declare a superclass, a number (possibly zero) fields, a constructor,
and zero or more methods.

Constructors accept arguments to initialize their fields with. FJ requires
the arguments to both have the same names as their respective field names,
and also to be in a strict order that matches the field layouts of the classes’

T.O.R. Allwood, S. Eisenbach / Electronic Notes in Theoretical Computer Science 238 (2009) 3–16 5



superclass prefixing that of the current class.

Methods accept arguments (arguments are not allowed to be named this),
and have an expression as their method body. Expressions can be a variable
reference, a field lookup, a method invocation, an object creation or a casting
operation.

There are many features of Java that are not in the FJ abstraction, for
example assignment, field shadowing, covariant return types in overridden
methods, method overloading, interfaces, enumerated types, nested class dec-
larations, and many others. As we discuss in Section 4, some of these missing
features mean that there are FJ programs that FJ fails to type check that full
Java would accept. However, all FJ programs that FJ can type are valid Java
programs.

3 Defining Tests

FJ provides a grammar that describes syntactically valid FJ programs. The
test programs we generate are all instances of that grammar. We instantiate
the grammar by walking it using a bounded, depth-first exploration algorithm.
We use structural constraints limiting the maximum number of classes, the
number of fields and methods per class, and the complexity (sum of all pro-
duction rules used) of expressions in each method and the number of variables
used in a method, to ensure the depth first exploration does not explore an
infinite space.

We use a depth first exploration scheme as it does not suffer the memory
explosion problem a breadth first search would suffer. The high branching
factor in the grammar means that even at small depths of the tree there would
be a lot of programs in the breadth-first ’to visit’ queue. This queue would
grow exponentially (as opposed to the depth first stack experiencing linear
growth) with each production in the grammar that has a choice of values that
is visited. However we can emulate a quasi-breadth first walk through the
instance space of programs by using iterative deepening. Since we can alter
the constraints that bound the depth first walker, we can start it with small
constraints, and iteratively grow them until the size of the search space ceases
to be tractable for it to explore completely.

The grammar of FJ also makes reference to potentially infinite domains for
class names, variable names, etc. For the depth first exploration algorithm to
function effectively, it requires a bounded domain for each of these infinite do-
mains. The simple solution to this is to create constraints for the number (and
names) of valid class/method/field/arguments, and whenever (for example) a
class name is required in a program, n copies of the program are produced,

T.O.R. Allwood, S. Eisenbach / Electronic Notes in Theoretical Computer Science 238 (2009) 3–166



each using a different substitution from the n available class names.

This approach has the effect of specifying many programs that are isomor-
phic or α-equivalent to each other. For example:

P1:

class C1 extends Object { C2 { super(); } }

class C2 extends Object { C1 { super(); } }

and

P2:

class C2 extends Object { C1 { super(); } }

class C1 extends Object { C2 { super(); } }

If we can assume that the internal representation of names in the Java
compiler doesn’t try to inspect their values (except to compare them to each
other and some built-in values such as Object or this using library methods),
then we can prune away many of the isomorphic programs. To do this, we
augment FJ with a notion of binding.

We make the non-grammar domains in FJ be populated by some default
values (Object or this), and then other values are bound from some site in
the program. For example a new class name is bound globally (across the
whole program, before and after the site) when a class C1 extends C2 {
... } production is instantiated. The new class name invented becomes
the value for C1. Field and method declarations both globally bind new field
and method names respectively. Method declarations also bind new variables
from their argument list locally, so they are only visible to the method’s code
expression.

Because class, method and field names bind globally, the names can be
forward referenced inside earlier definitions. For example in P1 above, the
constructor return type C2 is a forward reference to the next class declara-
tion. To be able to know which globally bound names will be available, the
generation algorithm proceeds in two phases.

First a skeleton is generated that describes the top level structure of the
program and consequently the numbers of global binding sites. The skele-
ton specifies the number of classes, and for each class, the number of fields
and methods that it has. This then specifies the domains of class, method
and field names. The skeleton is then instantiated using the remaining bind-
ing constraints to specify the number of arguments methods have, and how
complex method expressions can be (for example see Fig. 2).

As is expected, the size of the instance space of programs still grows ex-
ponentially. The actual sizes for the search space under different constraints
is presented in our results in Section 6.

T.O.R. Allwood, S. Eisenbach / Electronic Notes in Theoretical Computer Science 238 (2009) 3–16 7



class {

field;

method;

}

class { }

=⇒

class C1 extends Object {

C1() { super(); }

C2 f1;

C1 m() { return new C2(); }

}

class C2 extends C1 {

C2() { super(); }

}

class C1 extends C1 {

C1(Object f1) {

super();

this.f1 = f1;

}

Object f1;

Object m() { return this; }

}

class C2 extends Object {

Object() { super(); }

}

Fig. 2. An example skeleton and two of its possible instantiations

The current generation scheme could be improved in some ways. If we
assumed that the relative order of some declarations (e.g. class and method
declarations) were of no significance to the compiler we will test, then a further
class of isomorphic programs could be pruned.

The current design also precludes generating tests featuring references to
unbound names. This means we do not have tests that (for example) check
all class names that are used are defined somewhere. We are currently investi-
gating how to do this in a way that does not generate α-equivalent programs,
and the trade-offs of allowing just a single undefined name or many distinct
undefined names.

4 Classifying Tests

The generated FJ programs by themselves are not very useful, as they are just
programs. For them to become tests, they need associating with an expected
result for running the test against javac. The expected result is provided by

T.O.R. Allwood, S. Eisenbach / Electronic Notes in Theoretical Computer Science 238 (2009) 3–168



an oracle, in this case we have used an implementation of FJ’s type checker
[1].

To help ensure our oracle is correct, we have used our generated test pro-
grams to check that it gives the same outputs as another implementation of
FJ. Given the Java compiler we have chosen to test, we also expect that the
implementation of javac is actually correct - so the oracle should agree with
it in most cases (which it does). However there are some cases where the FJ
oracle and javac do not agree.

To be as exhaustive as possible, we want to generate both positive and
negative test programs for javac; i.e. tests that we expect to type check and
tests we expect to be rejected. However we have had to be careful. FJ type
checking rules on FJ programs are sound w.r.t. Java. If FJ statically accepts
a program, we expect Java to accept it. However there are FJ programs that
FJ statically rejects that Java will accept. For example, Java supports co-
variant returns in overridden methods and does not require non-final instance
fields to be initialized in constructors, whereas FJ would reject programs that
contained these features. There are also some classes of program where the
reason FJ rejects the program is strong enough to say Java should reject it
too. For example creating cycles detected in the class hierarchy or trying to
declare a class named Object are always errors in both FJ and Java programs.

When applying the oracle to the test programs, we check whether the test
program type checked or not. If it failed to type check we only pass it to
javac if it was rejected for a reason we would expect javac to reject it for
(e.g. there was a cycle in the class hierarchy). In this way, we are only testing
javac (or, in the experiment run here, collecting coverage on) with programs
that we can check javac agrees with our expectations.

5 Experiment

We have a driver program that generates the FJ programs in a given search
space, counts them, applies the oracle to them and counts the number that
type checked (for interest). It then counts the number of programs we can
actually use as tests to the Java implementation and filters out those we can’t.

This driver communicates with a small server Java program we have wrapped
around the OpenJDK Java compiler [14]. The server receives programs and in-
vokes the compiler using the Java 6.0 JavaCompiler API [13]. This allows the
compiler to receive and process the test programs entirely in memory without
needing to round-trip to the file system to write out the source files, which
gives huge performance gains. Any javac compile errors are caught using
Java’s exception (try/catch) mechanism. Finally the result of attempting

T.O.R. Allwood, S. Eisenbach / Electronic Notes in Theoretical Computer Science 238 (2009) 3–16 9



to compile the program is communicated back to the driver program, which
checks the results conform to the expectation from the oracle.

The use of this server program also aids greatly with collecting code cov-
erage results for a test suite (all the tests in a particular search space). We
instrumented the Open JDK compiler jar using the code coverage tool EMMA
[9], and ensured the server invokes this. As the server is only invoked once
and kept running during the testing of an entire suite, we do not need to do a
post processing step of combining individual test code coverages together to
find out the coverage of a suite.

We also ran all the test suites against a Java implementation of the FJ type
checker using a similar server idiom, and collected the corresponding coverage
results.

We ran the experiment for various test-space configurations. All the run-
times were less than 30 minutes on a dual core 3.20GHz P4, 2GB ram, Linux
2.6.22-1-amd64, x86 64. Due to the exponential nature of the growth of the
instance spaces, configurations that did not complete within this time are
unlikely to be completely explorable in a tractable amount of time.

6 Results and Evaluation

In Table 1 we present the code coverage results obtained using our test suites
against the OpenJDK javac and one of our implementations of Featherweight
Java. The full code coverage output is obtainable from [1]. Each column
presents the results from using one particular test suite.

The TestSuites are parameterised by the maximum number of classes, the
maximum number of methods each class may have, the maximum number of
fields each class may have, the maximum number of variables each method may
be parameterised by, and the maximum number of expression production rules
that may be used in each method. If a test suite is parameterised by values
that are all equal or greater than the corresponding values in a second suite,
then it will contain all the test programs that the second one has. We refer
to test suites by their parameter configurations; e.g. 11104 in the rightmost
column is the test suite defined by 0-1 classes, 0-1 methods per class, 0-1 fields
per class, 0 parameters to each method and 0-4 grammar productions used in
expressions in each method.

The configuration space size gives how many test programs are generated
under the constraints of that test suite. We also present the number of pro-
grams in the test suite that pass the FJ type checker. The number of usable
programs identifies how many programs in the search space will be used to
collect code coverage results. The programs filtered out are ones which we

T.O.R. Allwood, S. Eisenbach / Electronic Notes in Theoretical Computer Science 238 (2009) 3–1610



TestSuite 00000 10000 11001 10100 11011 20000 11012 11111 11112 11103 21001 12111 11113 11104

Configuration
space size 1 9 57 201 281 333 1641 7001 47529 62025 54813 238201 360137 542361

Number of
type safe
programs

1 2 7 4 20 5 57 46 171 186 251 658 633 675

Number of us-
able programs 1 9 57 157 281 333 1553 6141 41957 50037 54813 217757 317509 437735

UP that TC
(%) 100.00 22.22 12.28 2.55 7.12 1.50 3.67 0.75 0.41 0.37 0.46 0.30 0.20 0.15

Javac (%) 12.27 23.36 25.16 25.49 25.81 23.44 27.13 27.07 28.04 27.97 25.25 27.07 28.09 27.97

code (%) 19.04 28.93 31.87 30.81 32.10 29.03 35.96 32.97 36.28 36.33 31.98 32.97 36.33 36.33

comp (%) 6.21 22.28 25.21 26.45 26.37 22.44 28.46 28.77 30.37 30.48 25.36 28.79 30.48 30.49

FJ (%) 6.17 18.38 28.44 25.95 30.46 19.18 35.67 36.56 42.67 43.85 29.25 37.23 44.65 44.43

model (%) 1.64 25.37 54.02 34.84 57.62 25.78 72.95 66.68 86.93 83.89 57.30 66.68 87.46 83.89

passes (%) 3.60 17.77 41.08 44.96 54.53 17.77 65.76 71.29 86.12 84.03 41.08 71.29 87.12 84.03

typecheck (%) 15.61 31.46 62.56 31.46 62.56 35.79 82.13 62.56 87.56 88.17 64.45 64.39 91.22 88.17

Table 1: Code coverage of OpenJDK javac and FJ

T.O
.R

.A
llw

ood,S.E
isenbach

/E
lectronic

N
otes

in
T

heoreticalC
om

puter
Science

238
(2009)

3–16
11



cannot use as tests because FJ rejects them when Java might accept them, for
example they may fail FJ because a method overrides with a covariant return
type, which Java supports.

We note that the percentage of usable programs that actually type check
(UP that TC ), and observe that as the space of syntactically correct programs
expand, the percentage of those programs that are type correct drops to less
than 0.2%.

The final lines gives the percent of executable lines that were executed by
the Java and FJ compiler while processing the test suite. We present results
for the entire compilers in question, and also local results for the packages
within the compiler source that are more focused on type checking. The javac
implementation is 26163 executable lines of Java, and the FJ implementation
is 4990 executable lines of Java.

Test suite 00000 (the first column) gives the results for running the empty
program through the type checkers. This establishes a baseline percentage
we get “for free” with both compilers. The code executed here is the core
path through the compiler, including the amount of work done by any static
initializers.

Some trends are apparent in the results. For example, the change in code
coverage when moving from test suite 10000 to 20000 shows a relatively low
increase in the code coverage of Java, but a slightly larger jump in FJ. This is
due in part to the number of new concepts or conditions being tested in the
second case (e.g. possibly a user defined cyclic class hierarchy) being low in
terms of all the concepts in Java, but less insignificant in the face of FJ.

Comparing the results of test suite 11103 with 11113 and 11104 is also
telling. Despite the latter two test suites being over 6 times bigger than
the former, the coverage of javac is only negligibly larger. An expression
complexity of 3 is large enough for all expression productions to be used in
some way. Increasing the limit from 3 to 4 with almost no change in the
type checking code of both FJ and javac show how the recursive nature of
the implementations of the type checkers can be tested mainly by lots of
small examples. However there is a small code increase outside of the type
check packages which is due to the parser now handling more complicated
expressions. They also demonstrate that adding method arguments to method
definitions is also negligible in the context of javac, but a more meaningful
to the much simpler FJ, which gains about 3% coverage increase.

It would be nice if our tests could achieve 100% test coverage of FJ. How-
ever there are several reasons why this could not be achieved in this experi-
ment. The best coverage of all of the FJ implementation was just below 45%,
while the packages relating to type checking where 80% - 90% covered in the

T.O.R. Allwood, S. Eisenbach / Electronic Notes in Theoretical Computer Science 238 (2009) 3–1612



larger tests. The FJ implementation featured a parser written in pure Java,
and since all the programs being provided to it are syntactically correct, a large
proportion of that code was not exercised. We also collected coverage for the
same tests that we provided to javac, which means the programs that were
not usable and filtered out where also not used to collect FJ code coverage. To
further explore this, we re-ran test-suite 11103 against our FJ implementation
without filtering out programs and the code coverage was 0.5% higher.

7 Related Work

The idea of generating data structures for testing purposes has been well ex-
plored in the literature. In the context of Haskell, the testing frameworks
QuickCheck [7], SmallCheck [15] and Lazy SmallCheck [11] all generate in-
stances of data structures as inputs for test predicates. QuickCheck generates
the data structures randomly, whereas SmallCheck performs a structural walk
of the data structure instance space. Lazy SmallCheck takes advantage of lazi-
ness in Haskell to only generate the parts of the test data that get evaluated
by the user test predicate. Unforced parts of the data structure represent
variations that can be pruned from the exploration space. Although none of
these libraries are designed to handle data structures with binding patterns in
them (which our FJ programs feature), Lazy SmallCheck’s way of pruning the
search space does seem like an appealing method of making the instance space
more tractable. If we can determine that an FJ program will fail to type check
due to a given declaration in the first class, we could prune away all variations
of the rest of the code that will fail to type check for the same reason. While
this removes a lot of test cases from the suite, it would in theory focus the
test generation on more interesting tests, and would allow larger configuration
parameter spaces to be explored.

In [6], the authors present their work on looking for counter-examples to
predicates, in the context of programming language meta-theory. They use
α-Prolog, which is a variant of Prolog extended with the concept of “fresh”
(unbound) names. This gives them a tool which allows them to talk about
binding and uses a depth-first pruning search. Although in their case they
are looking for counter examples (since the test is in the same language as
the generation), it could be possible to alter their approach to generate search
spaces, which could implicitly have our non-name-isomorphic pruning tech-
nique applied.

Model checkers and automated test generators use the small scope hypoth-
esis) to justify why testing most (or all) inputs in some small bounded domain
can give confidence in the reliability of an implementation. In [2] the authors

T.O.R. Allwood, S. Eisenbach / Electronic Notes in Theoretical Computer Science 238 (2009) 3–16 13



attempt to evaluate the accuracy of the small scope hypothesis in the context
of Java libraries. They use a tool (Korat [4]) that generates non-isomorphic
Java programs of bounded size matching a predicate, and check implementa-
tions of several library data structures (LinkedList, HashSet, TreeMap, etc),
using standard metrics of statement coverage and mutant killing 3 to see how
much of the space of the implementation they have tested in the bounded
size of inputs. The results of the experiment show that even with low bounds
set on the inputs, very high (generally near 100%) mutant killing ratios are
achieved, and over 80% statement coverage is achieved. We achieve similar
results in the type checking packages of our FJ implementation. While we do
not achieve these levels of coverage on the Java compiler (nor would we expect
to), we do show that lots of small, simple tests can cover a non-trivial amount
of the code base.

In [8] the authors instantiate Java programs and test the refactoring en-
gines of two popular IDEs. Instead of enumerating all possible programs,
they provide an API to specify constraints on the programs generated, and
perform a bounded search upon that space. Oracles for their tests are provided
by heuristics (e.g. the transformed source code compiles, inverting an applied
refactoring returns the source code to it’s starting point) and by conformance
testing the refactoring results between the two IDEs.

Automated test generation in the context of Java has also been attempted
in [16] for checking runtime semantics. Here the focus has been on testing
conformance of JVM’s to the J2SE JVM. The standard Java JVM was used
as test oracle, and programs are randomly generated within a bounded size.

8 Conclusion and Future Work

Using large numbers of very small and simple Featherweight Java programs, we
can achieve a test coverage of around 80% - 90% of an FJ type checker. Adding
the programs that were filtered out because they were possibly correct Java
programs but incorrect FJ programs hardly increases the code coverage at all.
This may be because the constraints keeping the problem “small scope” and
hence tractable are too limiting; for example none of our tests create method
calls featuring two arguments. Achieving a near-100% code coverage for FJ
type checking is a future goal, that requires a more structured approach to
generating tests that doesn’t have the explosion in the state space we currently
experience.

3 Mutant killing is where the library code under test is automatically mutated to introduce
subtle bugs and then seeing what percentage of the mutants survive - i.e. they go undetected
as bugs.

T.O.R. Allwood, S. Eisenbach / Electronic Notes in Theoretical Computer Science 238 (2009) 3–1614



The same tests run on the OpenJDK javac correspond to exercising 25%
- 30% of the code base of a full, industrial strength Java implementation. The
results indicate that the recursive nature of expressions, and the associated
recursive implementation in compilers, means that testing using lots of small
expressions can be effective.

Currently we use an implementation of Featherweight Java as our oracle.
This has the circular problem that we require our oracle to be correct in order
to make assertions about the tests that it is classifying. In this work we used
two implementations of Featherweight Java and use them to test each other.
Some further work would be to look at ways of automatically deriving an
oracle for the simpler language based upon it’s type rules.

In future we would like to investigate alternative and new ways specifying
the search space to explore, perhaps abandoning total search space coverage
for test suites which are disjoint but composable. This would enable us to cover
more base-cases in the compiler without creating tests for language features
which are implemented orthogonally and thus creating every permutation of
the interaction doesn’t test anything new.

References

[1] Tristan Allwood and Susan Eisenbach. JavaFeather, code coverage output and FJ
implementations. http://www.doc.ic.ac.uk/~tora/JavaFeather/.

[2] Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov. Evaluating the
”small scope hypothesis”.

[3] Lorenzo Bettini, Sara Capecchi, and Betti Venneri. Featherweight Java with multi-methods.
In Vasco Amaral, Luis Marcelino, Lúıs Veiga, and H. Conrad Cunningham, editors, PPPJ,
volume 272 of ACM International Conference Proceeding Series, pages 83–92. ACM, 2007.

[4] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: automated testing
based on Java predicates. In International Symposium on Software Testing and Analysis
(ISSTA ’02), pages 123–133, July 2002.

[5] Nicholas Cameron, Erik Ernst, and Sophia Drossopoulou. Towards an Existential Types Model
for Java Wildcards. In Formal Techniques for Java-like Programs (FTfJP) 2007, July 2007.

[6] J. Cheney and A. Momigliano. Mechanized metatheory model-checking. In 9th International
ACM SIGPLAN Symposium on Principles and Practice of Declarative Programming, 2007.

[7] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random testing of Haskell
programs. In ICFP, pages 268–279, 2000.

[8] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated testing of refactoring
engines. In ESEC-FSE ’07: Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of software
engineering, pages 185–194, New York, NY, USA, 2007. ACM.

[9] Vlad Roubtsov et. al. EMMA: a free Java code coverage tool. http://emma.sourceforge.
net/index.html.

T.O.R. Allwood, S. Eisenbach / Electronic Notes in Theoretical Computer Science 238 (2009) 3–16 15

http://www.doc.ic.ac.uk/~tora/JavaFeather/
http://emma.sourceforge.net/index.html
http://emma.sourceforge.net/index.html


[10] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. In Loren Meissner, editor, Proceedings of the 1999 ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages & Applications
(OOPSLA‘99), pages 132–146, N. Y., 1999.

[11] Fredrik Lindblad, Matthew Naylor, and Colin Runciman. Lazy SmallCheck: A library
for demand-driven testing of Haskell programs. http://www-users.cs.york.ac.uk/~mfn/
lazysmallcheck/index.html.

[12] Luigi Liquori and Arnaud Spiwack. FeatherTrait: A modest extension of Featherweight Java.
ACM Transactions on Programming Languages and Systems (TOPLAS), 2007. To appear.

[13] Sun Microsystems. JavaCompiler interface. http://java.sun.com/javase/6/docs/api/
javax/tools/JavaCompiler.html.

[14] Sun Microsystems. OpenJDK. openjdk.java.net.

[15] Colin Runciman. SmallCheck: another lightweight testing library in Haskell. http://www.cs.
york.ac.uk/fp/darcs/smallcheck/.

[16] Takahide Yoshikawa, Kouya Shimura, and Toshihiro Ozawa. Random program generator for
Java JIT compiler test system. In QSIC, page 20. IEEE Computer Society, 2003.

[17] T. Zhao, J. Palsberg, and J. Vitek. Lightweight confinement for Featherweight Java, 2003.

T.O.R. Allwood, S. Eisenbach / Electronic Notes in Theoretical Computer Science 238 (2009) 3–1616

http://www-users.cs.york.ac.uk/~mfn/lazysmallcheck/index.html
http://www-users.cs.york.ac.uk/~mfn/lazysmallcheck/index.html
http://java.sun.com/javase/6/docs/api/javax/tools/JavaCompiler.html
http://java.sun.com/javase/6/docs/api/javax/tools/JavaCompiler.html
openjdk.java.net
http://www.cs.york.ac.uk/fp/darcs/smallcheck/
http://www.cs.york.ac.uk/fp/darcs/smallcheck/

	Introduction
	Featherweight Java
	Defining Tests
	Classifying Tests
	Experiment
	Results and Evaluation
	Related Work
	Conclusion and Future Work
	References

