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5-HTTLPR polymorphisms mediate different levels of inhibitory control.
More impulsive behavior in healthy carriers of the low expressive genotype.
These initial observations will allow extensions to patient populations.
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a b s t r a c t

Serotoninergic transmission is reliably implicated in inhibitory control processes. The aim of this study
was to test the hypothesis if serotonin transporter polymorphisms mediate inhibitory control in healthy
people. 141 healthy subjects, carefully screened for previous and current psychopathology, were geno-
typed for the 5-HTTLPR and rs25531 polymorphisms. Inhibitory control was ascertained with the Stop
vailable online 17 October 2014

eywords:
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nhibitory control

Signal Task (SST) from the Cambridge Neuropsychological Test Automated Battery (CANTAB). The triallelic
gene model, reclassified and presented in a biallelic functional model, revealed a dose-dependent gene
effect on SST performance with Individuals carrying the low expressive allele had inferior inhibitory con-
trol compared to high expressive carriers. This directly implicates serotonin transporter polymorphisms
(5-HTTLPR plus rs25531) in response inhibition in healthy subjects.

© 2014 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC
. Introduction

Impulsivity can be understood as arising from impairment in
nhibitory control [1]. Impaired serotonin (5-HT) function [2] has
een shown to contribute to the neurobiology of impaired execu-
ive control processes [3] and impulsive behaviors [4]. However, the
enetic contribution of these behavioral processes is incompletely
nderstood.

The 5-HT-transporter-linked polymorphic region (5-HTTLPR) in

he promoter region of the human 5-HT transporter (5-HTT) gene
SLC6A4) results in two main alleles or variants [5]; the short (S) and
ong (L), comprising 14 and 16 copies of a 20–23 nucleotide repeat
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cassettes, respectively. A functional triallelic 5-HTTLPR polymor-
phism include an additional single nucleotide polymorphism A > G
SNP (rs25531) in the first of two 22-bp imperfect repeats that define
the 16-repeat L allele. The 5-HTTLPR L allele combined with the
major allele A in rs25531 (LA) is associated with higher expression
of the transporter protein compared to the LG allele and the short
S allele [6], resulting in altered 5-HT tone and neurotransmission.

Few studies have directly studied the potential role of the
5-HTTLPR polymorphisms and inhibitory control in healthy sub-
jects under laboratory conditions and results so far are conflicting.
Whereas some studies found no association between 5-HTTLPR
variants and measures of inhibitory control and impulsivity [7,8],
others reported that the short allele of the 5-HTTLPR may medi-

ate impairments in impulse control [9,10]. Operationalization of
inhibitory control varies across studies, with three of the four stud-
ies using variants of continuous performance/go-no go tasks, and
another study applying the Stop Signal Task [8], which requires

en access article under the CC BY-NC-ND license (http://creativecommons.

dx.doi.org/10.1016/j.neulet.2014.10.006
http://www.sciencedirect.com/science/journal/03043940
http://www.elsevier.com/locate/neulet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neulet.2014.10.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:n.i.landro@psykologi.uio.no
dx.doi.org/10.1016/j.neulet.2014.10.006
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


1 ence L

t
t
a
G
i
t

H
p
p
c

2

f
p
r
c
s
n
I
D
D
r
b
S
e
d
t
w
b
t
s
S
t
p

2

t
e
o
D
u
1
l
e
t
d
4
t
d
B
t
a
d
L

2

r
a

10 N.I. Landrø et al. / Neurosci

he cancelation of a motor response that has already been ini-
iated [11]. The Stop Signal Task offers significant psychometric
dvantages over conventional Continuous Performance, or Go/No
o Task, since the difficulty of stopping can be adjusted for each

ndividual by manipulating the delay between the Go stimulus and
he stop signal.

The aim of this study was to test the potential role of the 5-
TTLPR polymorphism in mediating inhibitory control in healthy
eople, specifically if carriers of the low expressive 5-HT trans-
orter variant (5-HTTLPR S and LG) exhibit less effective inhibitory
ontrol relative to carriers of the high expressive variant (LA).

. Methods

157 healthy subjects (105 females, 52 males) were recruited
rom the general public using advertisements in a local newspa-
er in Oslo. Mean age of the cohort was 36.4 years (SD = 13.1),
anging from 19 to 64 years of age. After giving written informed
onsent, the participants provided information about their medical
tatus and underwent psychiatric evaluation including the Diag-
ostic Interview for Genetic Studies [12], the Structural Clinical

nterview for DSM-IV, Axis I and II disorders (SCID I and SCID II).
epression and anxiety symptoms were assessed using the Beck
epression Inventory [13] and the Beck Anxiety Inventory [14],

espectively. The SCID interviews were administered and recorded
y trained clinicians and were subjected to consensus diagnoses.
ubjects fulfilling the criteria of any psychiatric diagnosis were
xcluded, including subjects with current/ongoing drug abuse or
ependency. Other exclusion criteria were head trauma during
he last year with loss of consciousness greater than 30 min as
ell as other neurological disorders. Education level was classified

y means of the International Standard Classification of Educa-
ion [15]. General cognitive functioning was estimated from scaled
cores of two subtests from the WAIS-III, Picture Completion and
imilarities [16]. The subjects were given a $ 50 gift certificate for
heir participation. The Regional Ethics Committee approved the
roject.

.1. Genotyping

The biallelic 5-HTTLPR polymorphism, located in the regula-
ory region of the 5-HT transporter gene (SLC6A4), was genotyped
ssentially as described in detail elsewhere [17,18]. A real-time flu-
rescence Light Cycler instrument was used to amplify genomic
NA by polymerase chain reaction (PCR) in a final volume of 20 �L
sing Light Cycler Faststart DNA SYBR Green kit (Roche cat no.
2239264001) with specific primers (0.5 �M) [17] generating a

ong (L) 419 base pair (bp) or a short (S) 375 bp PCR product. Differ-
nces in product length depend on the variable number of a 22 bp
andem repeat (VNTR) sequence in the promoter region. Cycle con-
itions were initiated by 10 min denaturation (95 ◦C) followed by
5 cycles at 95 ◦C (10 s), 66 ◦C (10 s) and 72 ◦C (10 s). For the detec-
ion of the additional A > G SNP (rs25531), the PCR fragments were
igested with 1 U MspI restriction enzyme (New England Biolabs,
everly, Massachusetts) for 2 h at 37 ◦C. The PCR fragments contain
wo obligatory MspI sites, whereas the A > G substitution creates
n additional MspI site. The PCR reaction followed by restriction
igestion and gel electrophoreses provides classification of the S,
A and LG alleles.

.2. Inhibitory control measure (the Stop Signal Task; SST)
The Stop Signal Task was selected from the Cambridge Neu-
opsychological Test Automated Battery [19]. Trained research
ssistants administered the SST. This task measures the ability to
etters 584 (2015) 109–112

inhibit an already-initiated motor response [11]. In a subset of tri-
als (i.e. 25%), an auditory beep occurs (the “stop signal”) to indicate
that the response should be withheld on that particular trial. A pro-
cedure is applied to track the participants’ performance, by varying
the stop signal delay (SSD) parameter after successful and unsuc-
cessful stop attempts. Over time, this tracking procedure stabilizes
the probability of successful inhibition around 0.5 for each subject.
The Stop signal reaction time (SSRT), calculated by subtracting the
SSD50 from the median Go RT, is the main outcome variable. Thus,
the SSRT reflects the effectiveness in the ability to inhibit a prepo-
tent response. The total number of Go discrimination errors (i.e. a
right button press to a left-facing arrow) was also registered.

Sixteen subjects failed to achieve convergence, either through
too high (≤60%) or too low (≤40%) levels of successful inhibition.
These staircase failures may arise through strategic slowing of the
go reaction time, or through inconsistent performance or excessive
distraction. They invalidate an assumption of the horse race model
that Go-and stop-related processes are independent [11]. Thus, the
final group for analysis was a total of 141 participants (94 females,
47 males).

3. Statistical analyses

One-way ANOVAs were conducted to explore possible group
differences in age, education level (ISCED) and general cognitive
functioning (sub-tests Similarities and Picture Completion from
WAIS-III), as well as symptoms related to depression (BDI) and
anxiety (BAI). A one-way ANOVA was conducted to predict Stop Sig-
nal Task performance from 5-HTTLPR genotype combined with the
A > G SNP (rs25531). Polynomial contrast was performed to test the
dose effects across genotypes. Levene’s test of homogeneity con-
firmed that the groups were not significantly different in variance,
thus validating use of the F test. Finally, a linear regression model
was conducted to explore the amount of unique variance explained
by genotype after taking variance explained by group differences
(from the ANOVAs) into account.

4. Results

The triallelic classification was reclassified into a functional
model, based on the 5-HTTLPR-directed level of transcriptional
activity of the transporter gene as follows: LG/S, LG/LG and S/S geno-
types were classified as SS’ (low leveled RNA transcription); LA/S
and LA/LG genotypes were classified as LS’ (intermediate leveled);
and LA/LA genotype was classified as LL’ (high leveled) [20].

The genotype distribution was LALA 22.9%, LGLA 10.2%, LAS 39.5%,
LGLG 0.6%, SLG 7.6% and SS 19.1%. The genotype distribution was in
Hardy-Weinberg equilibrium (x2 = 0, df = 1; p = 0.99). The genotype
distribution after exclusion (n = 141) was LALA 24.1%, LGLA 9.9%, LAS
41.1%, LGLG 0.7%, SLG 7.8% and SS 16.3%.

There was a significant difference between the genotype groups
in education level (F(2, 138) = 4.168, p = 0.017, �2 = 0.057) and a
trending toward significant difference in age (F(2, 138) = 3.006,
p = 0.053, �2 = 0.042). There were no statistically significant dif-
ferences between 5-HTTLPR sub-groups on BDI, BAI, or the two
subtests from WAIS. Education level and age was therefore added
in the final regression model. There was no statistical significant
sex by genotype interactions for any of the SST variables. Because
of this, the analyses were collapsed across gender.

There was a statistically significant effect of 5-HTTLPR plus A > G
SNP on the SSRT variable (F(2, 138) = 3.518, p = 0.032, �2 = 0.049).

Polynomial contrast measure revealed a linear effect of the num-
ber of low expressive alleles (CE = 21.6, p = 0.009) (Fig. 1). SSRT
was predicted by 5-HTTLPR genotype (Beta = 0.195, p = 0.022), but
not by age (Beta = 0.157, p = 0.65) or education level (Beta = −0.030,
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ig. 1. Mean stop signal reaction time in milliseconds. Number of low expressive
lleles: LL’ (high leveled RNA transcription), LS’ (intermedium leveled) and SS’ (low
eveled). Error bars = 95% CI.

= 0.724). The overall model explained about seven percent of the
otal variance (R2 = 0.072).

There were no statistically significant differences across the
enotype groups on Go Reaction Time (F(2, 138)) = 0.969, p = 0.382)
nd number of Go Discrimination Errors (F(2, 138) = 0.178),
= 0.837). The Go Reaction Times (means and standard deviations)

or the three genotype groups were: LL: 404.0 (93.2), LS: 390.6
80.2), SS: 396.9 (96.2). Number of Go Discrimination Errors were:
L: 4.5 (5.8), LS: 5.3 (6.3), SS: 6.4 (7.0).

There were no significant differences between the genotype
roups on Go reaction time or Go Errors, or any SST measure
ased on the original biallelic gene model (ignoring the A > G
s25531SNP).

. Discussion

The main finding was that 5-HTTLPR polymorphisms predict
esponse inhibition in healthy subjects. Healthy subjects carrying
he high expressive allele exhibited significantly faster inhibition of
prepotent response as compared to the low expressive genotype.
his suggests more impulsive behavior in carriers of the low expres-
ive genotype. There were no differences between the groups with
espect to the basic Go reaction time or number of Go Discrim-
nation Errors, indicating that the genotype effect on response
nhibition does not reflect general cognitive slowing or deficit in
asic discrimination ability. Furthermore, the association between
he 5-HT transporter and the specific ability to inhibit a prepotent
esponse was observed in the context of no differences between

he genotype subgroups on indicators of general cognitive abilities
r in self-reported depressive mood or anxiety symptoms (Table 1).

Both the biallelic- and triallelic 5-HTTLPR model are often
ichotomized in dominant gene models, i.e. carriers of the

able 1
emographic, psychometric and clinical data for genotype sub-groups. Values rep-

esent mean and standard deviation. The p-values refer to the results from one-way
NOVAs.

LL (n = 34) LS (n = 72) SS (n = 35) p Value

Age 32.4 (11.7) 34.0 (12.0) 39.2 (13.5) 0.053
Education level (ISCED) 4.7 (0.7) 4.6 (0.8) 5.1 (0.9) 0.017
Similarities (scaled) 11.3 (2.6) 11.4 (3.4) 11.5 (3.0) 0.990
Picture completion (scaled) 13.1 (2.8) 13.5 (3.3) 12.5 (3.3) 0.305
Beck depression inventory 2.6 (2.3) 3.2 (5.0) 4.1 (6.0) 0.418
Beck anxiety inventory 2.3 (2.3) 2.5 (3.4) 2.1 (2.2) 0.768
etters 584 (2015) 109–112 111

heterozygous LS variant are pooled with the homozygous SS vari-
ants However, the rationale for dichotomizing genotypes in a
recessive-dominant model based on the triallelic functional gene
model, suggested by Hu and collegues [6], is not well founded, as
no firm conclusions can be drawn about the functional proper-
ties of the triallelic gene model [21–24]. Several studies support
a functional dominant – recessive effect for the biallelic gene
model but these findings have also been inconclusive [21,25–28].
Therefore, our data add important novel information suggesting a
dose-dependent effect for the 5-HTTLPR variants on impulsivity.

Our results are in line with work showing that healthy carriers
of the long 5-HTTLPR allele exhibit significantly better performance
on measures of impulsivity as compared to short allele carriers
[9,10]. Short allele carriers also showed impaired post error and
post-conflict behavioral adjustment, as compared to long allele
carriers, on a modified flanker task [29]. 5-HT influences affec-
tive decision making [30] and three studies reported reduced Iowa
Gambling Task performance among short allele 5-HTTLPR carriers
[31–33]. There are, however, studies including other executive con-
trol tasks reporting opposite results. Three studies, none taking the
triallelic model into consideration, found that short allele carriers
outperformed their long allele counterparts. Strobel and collegues
[34] found that SS and LS variants showed higher efficiency of cog-
nitive control processes compared to LL allele carriers. Borg and
collegues [35] applied the Wisconsin Card Sorting Test (WCST) and
found that short allele carriers had fewer perseverative errors and
they needed fewer cards to complete the task. Although typically
described as a set shifting task, WCST is complex and the authors
state that their study does not resolve which of all component parts
of WCST performance the 5-HTTLPR influences. In a recent study
on working memory, also in healthy subjects, it was found that
short allele carriers performed better than long allele carriers. How-
ever, this was a change detection task reflecting primarily storage
capacity in working memory and not really cognitive control [36].

Although there are exceptions, most studies reporting less effec-
tive cognitive control in short allele as compared to long allele
5-HTTLPR carriers have taken the triallelic model into consider-
ation. Studies reporting no gene effects or the opposite pattern, i.e.
better performance on cognitive control tasks in short versus long
allele carriers, have in most cases based the analyses on the bial-
lelic model. It seems unlikely that a variation with respect to gene
model is the only explanation for discrepant findings when link-
ing 5-HTTLPR and cognitive control. An intriguing idea, and which
may be relevant in this context, is that the 5-HTTLPR short allele
in general increases sensitivity to the environment, indicating that
this gene variant may not be a vulnerability genotype as much as
a plasticity genotype [37–39]. Increased neural plasticity or behav-
ioral malleability might implicate that carriers with the short allele
polymorphism will benefit more than long allele carriers from tasks
with systematic feedback. Thus, this might be a possible explana-
tion for the reported finding of better Wisconsin Card Sorting Test
performance in short allele carriers, where the subject receives
continuous feedback [35]. In our study, based on the Stop Signal
Task, the subjects receive no such feedback. Similarly, in the Iowa
Gambling Task there is no contingency with respect to what is the
“correct” response.

These initial observations will allow extensions to patient
populations. Understanding how genetic variation within key
transmitter systems contribute to functional component of the
phenotypic expression of substance use [40] and mood and anxiety
disorders [41] may provide insight into mechanisms that may drive
the development, maintenance, and treatment of these disorders.
Animal models are also making an increasing contribution to our
understanding of response inhibition and impulsivity and should
be integrated with human studies in the future. A study that used
Stop Signal Task behavioral paradigm in mouse has shown that
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anipulation of the serotonergic system can have major effects
n inhibition [42].

. Conclusions

Healthy individuals carrying the low expressive 5-HT trans-
orter polymorphisms (5-HTTLPR plus rs25531) exhibit less ability
o inhibit a prepotent response as compared to high expressive
arriers. This suggests a direct role of the low expressive 5-HT
ransporter polymorphism in regulating impulsive behavior traits
n healthy people.
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