
J. LOGIC PROGRAMMING 1987:4:259-262 259

A GENERALIZATION OF THE DIFFERENTIAL
APPROACH TO RECURSIVE QUERY EVALUATION

I. BALBIN AND K. RAMAMOHANARAO

D The differential (or seminaive) approach to query evaluation in function
free., recursively defined, Horn clauses was recently proposed as an im-
provement to the naive bottom-up evaluation strategy. In this paper, we
extend the approach to efficiently accommodate n recursively defined
predicates in the body of a Horn clause. a

1. INTRODUCTION

The differential (or seminaive) approach to query evaluation is described in [2], [3], (51.
Focusing on the naive bottom-up method of evaluation, the approach eliminates
some of the obviously redundant joins. However, “the problem is not solved in its
entirety and only a number of transformations are known” [4]. In this paper, we
extend the differential approach to include nonlinear rules with n recursively
defined predicates in the body.

2. PRELIMINAFUES

2.1. A Naive Execution Model

The idea of translating a recursive clause or view into an iterative equivalent is not
new (see [6], for example). Termination is assured due to the finiteness of the
database, and when the clauses are defined using only positive literals, their
monotonicity ensures the computation of the least fixed point [l].

For the case of nonhierarchical databases, the problem of looping becomes an
issue. The solution proposed in [7], with respect to their active connection graphs,

Address correspondence to I. Balbin or K. Ramamohanarao, Department of Computer Science,
University of Melbourne, Parkville, Victoria 3052, Australia.

Received 23 June 1986; accepted 12 January 1987

THE JOURNAL OF LOGIC PROGRAMMING

OElsevier Science Publishing Co., Inc., 1987

52 Vanderbilt Ave., New York, NY 10017 0743-1066/87/$3.50

260 I. BALBM AND K. RAMAMOHANAIUO

amounts to checking whether all tuples generated at each iteration of the loop are
new. If this is not the case, the process is halted. For example, consider the iterative
program corresponding to the following database which computes the transitive
closure of p:

Example 1 (Transitive closure of p),

4x9 Y> +p(x Y>

s(x, Y> *l&K z> A s(z Y>

It can be viewed as computing

Si(X, Y) =p(K Y),

s,(X,Y)=s,(X,Y)+As,(X,Y),

s~+~(X,Y)=S~(X,Y)+AS~(X,Y) for j>O,

A~j(X,Y)=P(X,Z)w~j(Z,Y),

where p(X, Y) is a shorthand for {(X, Y)Ip(X, Y) is proved}, and, for any
predicate s(X, Y), sj(X, Y) is defined as the set of s tuples which have been proved
at the completion of the jth iteration; w is the usual join operator, and + is the set
union. Asj is then the set of (possibly) new 8 tuples which have been formed by
evaluating the join between p and sj.

This type of program, whilst attractive in the sense that it does not go into an
infinite loop, is fraught with some serious inefficiencies which are addressed by the
differential approach.

3. THE DIFFERENTIAL APPROACH

3.1. Linear Horn Clauses

Using the method of [5],[3], at iteration j, rather than evaluating Asj by forming
the join between p(X, Z) and sj(Z, Y), we compute

Asj(X, Y) =p(X, Z) w 6sj_,(Z, Y)

where

SSj_i(X, Y) = A+-,(X, Y) - Sj-i(X, Y)

and, - denotes set difference. Thus, 6 depicts the new tuples generated at that
iteration.

3.2. Extension to Nonlinear Horn Clauses

Ignoring variables, consider a recursive rule

s+cAaAw

where

c+-c1Ac2A~~~ AC”’

DIFFERENTIAL APPROACH 261

and the ck, k = 1,. .., m, are nonrecursively defined predicates; and a and w are
recursively.defined.

We write cajwj to represent the set of all ground instances for which c A a A w is
true at the jth iteration, that is, c w aj w wj.

Now, for j 2 0

‘j+l =sj+4sj,

where

6sj = cajwj - sj.

60

Replacing aj by its equivalent differential definition

aj=a. ,-I+ 8aj-1>

we obtain

asi= [c(aj_l+Saj_Jwj] -s,.

Since w distributes over +, this simplifies to

&sj = (c Gaj_lwj + caj_lwj) - sj.

Similarly, by replacing the second occurrence of wj with its equivalent differential
definition

wj=w. j-i+ 8wj-1,

we have

SSj= [CsUj_l Wj+ CUj_l(Wj_1+6Wj_l)] -Sj.

Since caj_lwj_l c sj, then

6Sj= (CGUj_,Wj+CUj_1~Wj_1) -Sj. (1)

Equivalently, we can also derive

SSj=(CGWj_lUj+cwj_l6Uj_l)-Sj. (11)

In general, when the rule contains 2 1 recursive predicates in the conjunction, the
following theorem generalizes Equations (I) and (II) above.

Theorem. If

s+cAa’ Aa2A ... Au”,

where c is a derived predicate and the a’, i = 1,. . . , n, are recursively defined
predicates, then

sj+&sj=sj+c[Sa~_,a,2 .*a a~+a~_,6aj_,aj e-0 a;

+ *mm +af_la;_l **~Sain-_~ajn+af_,a~_l ... a;:; aa;_ J .

PROOF. The derivation steps used to derive Equation (I) are followed for the proof.
0

262 I. BALBIN AND K. RAMAMOHANARAO

The equation

“S/ = (c[&.r_,a; . * * ai” + a,!_,Sa$,a~ ’ * * a;

+ . . . +Qj?<, *** sui”_&l; + a;_,& . . * u;~;su;_l]) - sj (III)

follows immediately from the theorem. The analysis culminating in Equation (III)
clearly demonstrates that by using the differential approach only repeated computa-
tions are excluded in the join. Additionally, since we have proved the equivalence
between both the naive and differential equations, the least fixed point semantics is
preserved. It is important to note that, in computing 6sj using equation (III), only
the &r_, and a;._,, i = l,..., n, need be retained during the computation.

It is a pleasure to acknowledge the careful reading and comments of Michael Maher and Tsong Yueh
Chen. Thanks also to the referees for their constructive remarks.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

Aho, A. V. and UIIman, J. D., University of Data Retrieval Languages, in Proceedings of
the 6th ACM Symposium on Principles of Programming Languages, San Antonio, Tex., Jan.
1979, pp. 110-120.
BaIbin, I. and Ramamohanarao, K., A Differential Approach to Query Optimisation in
Recursive Deductive Databases, Technical Report 86/7, Dept. of Computer Science,
Univ. of Melbourne, Apr. 1986.
BanciIhon, F., Naive Evaluation of Recursively Defined Relations, in Proceedings of the
Islamadora Conference on Database and AI, 1985.

Bancilhon, F. and Ramakrishnan, R., An Amateur’s Introduction to Recursive Query
Processing Strategies, Proceedings of ACM SIGMOD Conference, 1986.

Bayer, R., Query Evaluation and Recursion in Deductive Database Systems, Technical
Report, TUM-18503, Institut fur Informatik, Technische Univ. Miichen, Feb. 1985.

Henschen, L. J. and Naqvi, S. A., On Compiling Queries in Recursive First-Order
Databases, J. Assoc: Comput. Mach. 31(1):47-85 (Jan. 1984).
McKay, D. P. and Shapiro, S. C., Using Active Connection Graphs for Reasoning with
Recursive Rules, in Proceedings of the Seventh IJCAI, 1981, pp. 368-374.

