OBJECTIVES: Bacterial lysates reduce acute exacerbations for patients with chronic obstructive pulmonary disease. This study aimed to conduct a cost-benefit analysis of bacterial lysates from a payer perspective through the results from a Meta-analysis and a Delphi panel survey in China. METHODS: A cost-benefit analysis was to project the 12-month health benefits and costs associated with the treatment with bacterial lysates for an early short-term nutritional intervention to prevent atopic dermatitis (AD) in high-risk Singaporean infants. METHODS: A Markov model was developed to simulate, from birth through age 6, the incidence of AD and its ensuing burden in cohorts of high-risk infants fed with pHF-W or CMF during the first 4 months of life. Epidemiologic and clinical data were derived from the German Infant Nutritional Intervention (GINI) trial. AD treatment patterns and outcomes were based on expert opinion. Key modeled outcomes included reductions in AD risk, time spent after an AD diagnosis, days with AD symptoms, quality-adjusted life years (QALYs), and direct/indirect costs (in 2013 Singapore $). A 3% annual discount rate was used. Multivariate probabilistic sensitivity analysis was used to generate 95% probabilistic confidence intervals (CI) around the modeled outcomes. RESULTS: Compared with CMF instead of pHF-W resulted in reductions of (i) 14-percentage points (95% CI: 3%, 24%) in the 6-year risk of AD, (ii) 8.25 months (95% CI: 5.00, 11.61) in the time spent post-AD diagnosis, and (iii) 14.6 days (95% CI: 8.9, 20.3) with AD symptoms; and in an increase of 0.022 QALYs (95% CI: 0.008, 0.074). Estimated AD-related discounted cost (all per child) when feeding 95% CI: 8.9, 20.3) with AD symptoms; and in an increase of 0.022 QALYs (95% CI: 0.008, 0.074). Estimated AD-related discounted cost when comparing best supportive care therapy, OM-85 is a dominant therapy for the clinical management of chronic bronchitis and rhinosinusitis. One way sensitivity analyses were performed and the ICER result was demonstrated to be robust. CONCLUSIONS: Based on its clinical efficacy in preventing acute exacerbations of chronic bronchitis and rhinosinusitis, OM-85, when compared with standard care therapy, proved to be a better therapeutic option (better clinical efficacy and lower overall costs) in Chinese population for the clinical management of chronic bronchitis and rhinosinusitis.

RESULTS: The quality of included studies is weaken the conclusion. There remains a need to improve the quality of included studies. More adverse reaction in 2 studies and It is poor than Yanhuning injection, but less cost-effectiveness of Xiyanping injection is poor than Tanreqing injection and have less reported in the literature. We aim to describe the costs and recruitment methods associated with successful enrollment of patients who are unmotivated to quit. One way sensitivity analysis using a tornado diagram was conducted. All costs are reported in 2012 dollar values. RESULTS: A total of 774 persons were screened for participation, and 115 were ultimately enrolled in the study. Overall cost of recruitment totaled $16,931.94 (direct costs=$12,252.50; activity-based time costs=$4,679.43), translating to $21.88 per recruitment contact and $66.40 per currently enrolled participant. The most successful recruitment methods were newspaper advertisements and word-of-mouth. Financial incentives also motivated many to participate. CONCLUSIONS: We are the first to report the cost of recruiting smokers with low motivation to quit and shed light on this unique challenge. Study results may be used by recruitment makers, researchers, and clinicians seeking to enroll for unmotivated smokers. This economic analysis can serve as a guide to determine the budget for actively enrolling these patients in future trials and suggests the most efficient means to do so.

RESPIRATORY-RELATED DISORDERS – Patient-Reported Outcomes & Patient Preference Studies

OBJECTIVES: To demonstrate the health economic impact of OM-85, a bacterial lysate preparation in China.

RESULTS: For patients with COPD, treatments with bacterial lysates can improve patient outcomes and reduce costs.