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Abstract

A new family of numerically efficient full-memory variable metric or quasi-Newton methods for unconstrained
minimization is given, which give simple possibility to derive related limited-memorymethods. Global convergence
of the methods can be established for convex sufficiently smooth functions. Numerical experience by comparison
with standard methods is encouraging.
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1. Introduction

Basic optimization methods can be realized in various ways which differ in direction determination
and step-size selection. For unconstrained minimization of medium-size problems, variable metric (VM)
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methods (see[5,10]) are most popular because of their stability and efficiency. Starting with an initial
pointx1 ∈ RN , they generate a sequencexk ∈ RN , by the processxk+1 = xk + tkdk, k�1, where

dk = −Hkgk (1)

is a direction vector,tk is a step-size andHk is a symmetric positive definite matrix.
We will assume that the problem functionf : RN → R is differentiable and denotefk = f (xk),

gk = ∇f (xk), sk = xk+1− xk = tkdk andyk = gk+1− gk, k�1. We will investigate line-search methods
with the step-sizetk >0 chosen in such a way that

fk+1 − fk��1tkg
T
k dk, gTk+1dk��2g

T
k dk, (2)

k�1, where 0< �1<1/2 and�1< �2<1.
Important property of the line-search method is the global convergence defined by relation

lim inf
k→∞ |gk| = 0. (3)

The following theorem, see[5,10], characterizes the global convergence of the line-search method.

Theorem 1.1. Let the objective functionf : RN → R be bounded from below and have bounded
second-order derivatives. Consider the line-search method satisfying(2). If

∞∑
k=1

cos2 �k�
∞∑
k=1

(gTk dk)
2

gTk gkd
T
k dk

= ∞ (4)

andgTk dk <0, k�1, then(3) holds.

Our work was motivated by an effort to develop efficient methods for large-scale unconstrained opti-
mization. Standard VM methods use dense matrices which are updated in every iteration. This is unsuit-
able and often impossible, when the number of variables is large. Therefore, matrix-free methods have
been developed, which eliminate this insufficiency. Conjugate gradient methods form a simplest class of
such methods, but their rate of convergence is usually rather slow in comparison with variable metric
methods and also the final accuracy obtained is not always quite sufficient. Therefore, new principles
based on variable metric updates were sought. The limited-memory BFGS method[13] was the first one
which uses variable metric updates in the vector form (the so called Strang formula). Later a compact
form utilizing small-size matrices was proposed in[3]. These methods usem>N pairs of vectorssi ,
yi , k − m�i�k − 1, in kth iteration and construct matrixHk by m variable matric updates from the
scaled unit matrix. Therefore, information obtained in iterations with indices lower thank − m is com-
pletely lost. Limited-memory methods of this type were later modified and improved, e.g., in papers
[8] and[1].
Recently a different principle based on reduced Hessian matrices was introduced in[7]. In this case,

only m vectorssi , k − m�i�k − 1, are saved and the approximation of the inverse Hessian ma-
trix has the formHk = Zk(Z

T
k BkZk)

−1ZTk , whereZk is a matrix whose orthonormal columns form a
basis in the subspace spanned by vectorssi , k − m�i�k − 1, and whereZTk BkZk is an approxima-
tion of the small-size reduced Hessian matrix, which is updated by variable metric updates. Since the
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number of columns ofZk is limited, the oldest column is usually discarded inkth iteration. Thus a
part of information is again lost. Moreover, matrixHk, which can be written in the formHk = UkU

T
k ,

whereUk is a rectangular matrix, is singular. Thus the case whendk is small or almost perpendicu-
lar to gk can occur after discarding columns fromZk. For this reason, we decided to use matrix of
the formHk = �kI + UkU

T
k , where�k >0 andUk is a rectangular matrix withm columns, which

is updated in every iteration in such a way that no information is discarded. The choice of parame-
ter �k is of course crucial (see Section 2.2). We call these methods the shifted limited-memory VM
methods.
Since these methods need a suitable starting matrixUm, we have developed full-memory shifted VM

methods as alternative to the well-known standard Broyden class of VM methods, see e.g.[5], which
increase number of columns ofUk by 1 in every update. In Section 2 we describe particular methods of
this type and give a numerical comparison with the standard VM methods.
Section3 is devoted to the shifted limited-memoryVMmethods.Wegivedescriptionof particularmeth-

ods, including variationally-derived methods and numerical results, which confirm their
efficiency and stability. In Section 4 we establish global convergence of our methods forf uniformly
convex and describe a simple way allowing to develop globally convergent methods in the nonconvex
case.

2. Shifted variable metric methods

Variable metric methods, see[5,10], use symmetric positive definite matricesHk orBk = H−1
k , k�1;

usuallyH1 = I andHk+1 is obtained fromHk by a rank-two VM update to satisfy the quasi-Newton
conditionHk+1yk = sk.
In shifted VM methods, matricesHk have the form

Hk = �kI + Ak, (5)

k�1, where�k >0 andAk are symmetric positive semidefinite matrices; usuallyA1=0 andmatrixAk+1
is obtained fromAk by a rank-twoVM update to satisfy the shifted quasi-Newton condition; we consider
it usually in the form

Ak+1yk = �ks̃k, s̃k = sk − �k+1yk, (6)

where parameter�k >0 represents analogy of nonquadratic correction, see[2,10], but since it is used
with matricesAk instead ofHk, its influence and methods of calculation are quite different. Note that
neither using of this correction parameter in a standard way (with matricesHk), nor standard scaling, see
[10,14], improved our results substantially and we do not use them in this paper. If�k = 1, relations (5),
(6) obviously imply that matrixHk+1 satisfies the quasi-Newton conditionHk+1yk = sk. Note that we
use non-unit values of�k in our numerical experiments only for variationally-derived limited-memory
methods (see Section 3.2).
To simplify the notation we often omit indexkand replace indexk+1 by symbol+. In the subsequent

analysis we use the following notation:

a = yTHy, ā = yTAy, â = yTy, b = sTy, b̄ = sTBAy, b̃ = s̃Ty, c̄ = sTBABs.
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In this section we concentrate on the shifted analogy of the Broyden class, see[5,10]. Using the same
argumentation as in standard VM methods, we consider the shifted VM update forb̃ >0 (which implies
s̃ �= 0, y �= 0) in the form

A+ = A + �
s̃ s̃T

b̃
− AyyTA

ā
+ �

ā

(
ā

b̃
s̃ − Ay

)(
ā

b̃
s̃ − Ay

)T
, (7)

(if ā = 0, i.e.Ay = 0 by ā = |A1/2y|2, we simply omit the last two terms, because their limit value
is zero forAy = lim�→0 �q, ā = lim�→0 �qTy, qTy �= 0; in this case the update is independent of
�), where� is a free parameter (verification ofA+y = �s̃ for this update is straightforward). There are
two important special cases. For� = 0 we obtain the shifted DFP update, for� = 1 the shifted BFGS
update

AsDFP+ = A + �
s̃ s̃T

b̃
− AyyTA

ā
, AsBFGS+ = A +

(
� + ā

b̃

)
s̃ s̃T

b̃
− s̃yTA + Ays̃T

b̃
. (8)

2.1. Basic properties

Theorem 2.1. Let A be positive semidefinite, ��0 and�+â < b. Then matrixA+ given by(7) is positive
semidefinite.

Proof. Sinceb̃= s̃Ty = b− �+â >0 by (6), the positive semidefiniteness of matrixA+ follows from (7)
for ā = 0, otherwise from the quasi-product form of (7)

A+ =
(
I −

(√
�

b̃
s̃ + 1− √

�

ā
Ay

)
yT
)
A

(
I − y

(√
�

b̃
s̃ + 1− √

�

ā
Ay

)T)
+ �

s̃ s̃T

b̃
, (9)

which can be readily verified, using straightforward arrangements and comparing corresponding
terms. �

Note that for� = 0 we can write matrixA+ in the product form

AsDFP+ =
(
I −

(
±
√

�ā/b̃s̃ + Ay

)
yT

ā

)
A

(
I − y

ā

(
±
√

�ā/b̃s̃ + Ay

)T)
. (10)

From now on we will suppose that��0 andb̃ >0. In view of Theorem 2.1, the shift parameter�+
should satisfy inequality 0< �+ <b/â. Therefore, it is advantageous to introduce relative shift parameter
� = �+â/b ∈ (0,1) and by (6) we can write

�+ = �b/â, b̃ = s̃Ty = b − �+â = b(1− �). (11)

2.2. Determination of the shift parameter

Determination of the shift parameter� (or �+) is a crucial part of the shifted VM method because the
choice of�+ influences the lowest eigenvalue of matrixH+. Therefore� should not be close to zero when
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matrixA is not sufficiently positive definite. On the other hand,‖A+‖ can increase explosively when�
tends to unit (see below).
In the simplest shift parameter determination strategy the value of� remains the same in all iterations.

The values from the interval

0.20���0.25, (12)

(e.g., the choice� = 0.22) appear to be suitable in this case. If��1/2, then the convergence is usually
lost, see Section 2.4 (the shifted DFP method is an exception). In spite of the fact that we do not know all
causes of this phenomenon, our following restricted analysis of the shifted BFGSmethod withA=UUT,
whereU is a rectangular matrix, gives a useful formula for determination of parameter�.

Lemma 2.1. Denoting� = �/(1− �), 	 = �
√
1− b2/(â|s|2), V = I − syT/b andṼ = I − s̃yT/b̃, there

holds‖Ṽ − V ‖/‖V ‖ = 	.Moreover, let vectoru ∈ RN , yTu �= 0,be scaled to satisfyyTu = b. Then

	 − (1+ 	)|u − s|/|u|� |Ṽ u|/|u|�	 + (1+ 	)|u − s|/|u|. (13)

Proof. One has̃s = s − �(b/â)y andb̃ = (1− �)b by (6) and (11) and thus

Ṽ − V = (1− �)s − s + �(b/â)y

(1− �)b
yT = −�[s − (b/â)y]

(1− �)b
yT = − �

b

(
s − b

â
y

)
yT.

Observing thatb2� â|s|2 by the Schwarz inequality and that�2|s − (b/â)y|2= �2(|s|2− b2/â)= 	2|s|2,
this implies

‖Ṽ − V ‖2 = ‖(Ṽ − V )T(Ṽ − V )‖ = (�/b)2|s − (b/â)y|2‖yyT‖ = 	2|s|2â/b2.
Matrix V TV has one zero eigenvalue,N − 2 unit eigenvalues and Tr(V TV ) = N − 2+ |s|2â/b2. Thus
‖V ‖2 = |s|2â/b2, which yields the first assertion.
Let yTu = b. By (6) and (11) we get̃V u = u − s̃/(1− �) = u − s − �[s − (b/â)y]. Since we have

�|s − (b/â)y| = 	|s|, the rest follows from inequalities:
|Ṽ u|�	|s| + |u − s|�	(|u| + |u − s|) + |u − s| = 	|u| + (1+ 	)|u − s|,
|Ṽ u|�	|s| − |u − s|�	(|u| − |u − s|) − |u − s| = 	|u| − (1+ 	)|u − s|. �

Now we turn back to the shift parameter determination. Value‖Ṽ − V ‖/‖V ‖, equal to	 by Lemma
2.1, represents a relative deviation ofṼ fromV. The shifted BFGS updateA+ = Ṽ UUTṼ T + �s̃ s̃T/b̃,
see (9), multiplies columns ofU by Ṽ . In the BFGS update, see[10], which can be written in the form
H+ = VHV T + ssT/b, multiplication byV instead ofṼ is performed. Thus in caseA ≈ H and if‖A‖
is great compared to‖�s̃ s̃T/b̃ − ssT/b‖, if we want to have the shifted BFGS and the BFGS update not
too different,	 should not be great.
When we chose� close to unity in our numerical experiments, we often found a strongly dominant

column ofU (usually the first one), whose norm increased steadily. Denotingu the dominant column,
ū = (b/uTy)u for uTy �= 0, we haves ≈ �u for some� ∈ R by (1), thuss ≈ ū and by (13) we get
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|Ṽ u|/|u| = |Ṽ ū|/|ū| ≈ 	. Therefore for	>1 we can expect exponential growth of the norm of this
column and probably also convergence loss. We can reason similarly in case of a cluster of domi-
nant linearly dependent columns ofU. Setting	 = 1, we obtain�1 = 1/(1+ √

1− b2/(â|s|2)). This
value can serve as a reasonable maximum of� and should be multiplied by coefficient�>0 with the
properties

• if UTy = 0 then� = 1 becausẽVU = U and it is not necessary to decrease�,
• if ā = |UTy|2>0 then�<1 to moderate possible convergence loss.
The choice� = √

1− ā/a = √
�â/a represents a simple possibility how to satisfy these conditions.

Moreover, this value of� satisfies conditions for global convergence of the shifted BFGS method (see
Theorem 4.2). Multiplying�1 by �, we obtain finally

� =√
1− ā/a

/(
1+

√
1− b2/(â|s|2)

)
. (14)

In the first iteration, this value of� has the following interesting property.

Theorem 2.2. Let A = 0. Then matrixH+ = �+I + A+ with value(14),whereA+ is given by(7), is
optimally conditioned.

Proof. If A = 0, thusā = 0, formula (7) (where we omit the last two terms) givesH+ = �+I + �s̃ s̃T/b̃,
which yieldsH−1+ = (1/�+)[I − �s̃ s̃T/(�+b̃ + �|s̃|2)]. Thus‖H+‖ = �+ + �|s̃|2/b̃, ‖H−1+ ‖ = 1/�+ and

+�‖H+‖‖H−1+ ‖ = 1 + �|s̃|2/(�+b̃). By (6), (11) and denoting again� = �/(1 − �),
we obtain


+ − 1

�
= |s̃|2

�(1− �)b2/â
= â

�b2

∣∣∣∣s − �(b/â)y

1− �

∣∣∣∣
2

= â

�b2

∣∣∣∣s(1+ �) − �
b

â
y

∣∣∣∣
2

= â

�b2

(
|s|2(1+ �)2 − b2

â
(�2 + 2�)

)
= â

�b2
|s|2 + (� + 2)

(
â

b2
|s|2 − 1

)
,

which gives the equation for the local minimum of function
+(�)

(â/b2)|s|2(1− 1/�2) = 1

with the positive root� = 1/
√
1− b2/(â|s|2). By ā = 0, this corresponds to (14).�

Formula (14) gives good results with update (7) without any corrections, with the exception of the first
5 to 10 iterations, when it should be corrected, e.g., in the following way:

� =min

(
max

(√
1− ā/a

/(
1+

√
1− b2/(â|s|2)

)
,0.2

)
,0.8

)
, (15)

because our reasoning leading to (14) was simplified and the shifted VM methods effectivity is very
sensitive to the shift parameter determination in the first iterations.
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2.3. The shifted DFP method

Starting withA = 0, (8) givesAsDFP+ = �s̃ s̃T/b̃. The following theorem shows that this form ofA+,
which needs no matrix storage, is typical for the shifted DFP method.

Theorem 2.3. LetA = uuT, uTy �= 0.ThenAsDFP+ = �s̃ s̃T/b̃.

Proof. SinceAy = (uTy)u, we obtain from (8)

AsDFP+ = uuT + �
s̃ s̃T

b̃
− (uTy)2

uuT

(uTy)2
= �

s̃ s̃T

b̃
. �

This result can be generalized for rank-two matrixA.

Theorem 2.4. LetA = u1u
T
1 + u2u

T
2, v2 = āABs − b̄Ay, �̄�āc̄ − b̄2 �= 0.Then

AsDFP+ = �
s̃ s̃T

b̃
+ v2v

T
2

ā�̄
. (16)

Proof. It follows from the Schwarz inequality that�̄�0, thus�̄ �= 0 impliesā �= 0. Denoting�i = uTi y,
i = uTi Bs, i = 1,2, we obtainAy = �1u1 + �2u2, ā = �21 + �22 and similar relations forABs, b̄ andc̄.
Therefore

�̄ = (�21 + �22)(
2
1 + 22) − (�11 + �22)

2 = (�21 − �12)
2,

v2 = (�21 + �22)(1u1 + 2u2) − (�11 + �22)(�1u1 + �2u2)

= (�21 − �12)(�2u1 − �1u2).

SinceAsDFP+ − �s̃ s̃T/b̃ = A − (1/ā)AyyTA by (8), we have

ā(AsDFP+ − �s̃ s̃T/b̃) = (�21 + �22)(u1u
T
1 + u2u

T
2) − (�1u1 + �2u2)(�1u1 + �2u2)

T

= (�2u1 − �1u2)(�2u1 − �1u2)
T = v2v

T
2/�̄. �

The product form (10) shows that forā �= 0 the rank of the updated matrix cannot increase. Thus this
method does not accumulate information from previous iterations sufficiently, which probably causes its
less efficiency.

2.4. Computational experiments

The shiftedVMmethods were tested using a collection of 92 relatively difficult problems with optional
dimensionchosen from[12],whichcanbedownloaded from thewebpagehttp://www.cs.cas.cz/
∼ luksan/test.html as TEST28. The results of our experiments are given in two tables, where NIT
is the total number of iterations (over all 92 problems), NFV the total number of function (or gradient)
evaluations and ‘Fail’ denotes the number of problems which were not solved successfully (usually NFV
reached its limit). We have used dimensionsN = 50, 200 and the final precision‖g(x )‖∞�10−6.

http://www.cs.cas.cz/~luksan/test.html
http://www.cs.cas.cz/~luksan/test.html
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Table 1
N = 50

� NIT NFV Fail Time

0.22 12222 13929 — 0.91
0.32 12617 15540 1 0.97
0.42 12874 18256 2 1.08
0.48 15994 28264 3 1.52
0.50 31118 65567 12 3.39
0.52 24947 102302 45 6.00

Table 2

Method N = 50 N = 200

NIT NFV Fail Time NIT NFV Fail Time

SBFGS 11449 12465 — 0.92 29864 34768 1 10.75
SDFP 46010 48579 9 3.30 81279 87624 19 27.38
SBC2 10997 12616 — 0.76 31651 38346 3 11.42
SHOS 13814 14716 — 0.92 36167 40660 3 12.41

BFGS 15170 16824 1 1.14 34725 38456 3 11.92
DFP/1 79873 84546 36 4.25 124040 136144 33 52.06
DFP/2 15560 36345 2 1.45 33524 76279 4 16.99
BC2 12566 14949 1 0.92 29072 34793 3 10.08
HOS 18529 19571 1 1.06 40453 42783 3 13.13

Table 1demonstrates an influence of the constant parameter� on the efficiency of the shifted BFGS
method (the value 0.22 is in range (12)). We see that the convergence is lost when��1/2. In the next
table we use choice (14) of the shift parameter� with corrections (15) in the first six iterations.
The first five rows ofTable 2contain results for the following shifted VM methods: the shifted BFGS

method (SBFGS,� = 1), the shifted DFP method (SDFP,� = 0) and method (7) with� = 2 (SBC2) and
� = b/(a + b) (SHOS, shifted analogy of Hoshino self-dual method, see[10]).
For comparison, the last five rows of the table contain results for various standard VM methods:

the BFGS method with scaling in the first iteration (BFGS, see[15]), the DFP method without scal-
ing (DFP/1), the DFP method without scaling with the strong Wolfe line-search conditions, where the
second inequality in (2) is replaced by|gTk+1dk|��2|gTk dk| with �2 = 0.1 (DFP/2), method from the
Broyden class with� = 2 (BC2) and Hoshino self-dual method (HOS), both with scaling in the first
iteration.
This table demonstrates the high efficiency of the shifted BFGS method. It is more efficient than

the standard BFGS method with usual scaling strategies (other scaling strategies that can improve
the efficiency of standard VM methods are introduced in[10]). Moreover, the modified shifted DFP
method can give much more better results than the shifted DFP method and the shifted DFP method is
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much more efficient than the standard DFP method with usual scaling strategies and usual line-search
methods.

3. Limited-memory methods

All methods investigated in this section belong to shifted VM methods. They satisfy (5)–(6) and (11)
with (positive semidefinite) matrixAk = UkU

T
k , whereUk, k�1, is a rectangular matrix. Thus we store

and update only matrixUk. We again often omit indexk and replace indexk + 1 by symbol+.
The shiftedVMmethods presented in Section 2, particularly in the quasi-product form (9), are ideal as

starting methods. SettingU+ = (

√
1/b̃s̃) in the first iteration, every update (9) modifiesU and adds one

column
√
1/b̃s̃ toU+. Thus in this section we will assume that the starting iterations have been executed

and that matrixU hasm�1 columns in all iterations.
We say that the method is of typei when the rank of matrixU+ −U is i, i�1. The type 1 methods are

simpler, but the type 2methods appear to be more efficient in practice. The shifted DFPmethod (10) is an
example of type 1 method. Better results were obtained with type 1 update formulasU+ = U + p(Bs +
ϑy)TU = (I + ϑpyT + psTB)U for suitablep ∈ RN andϑ ∈ R. To have more free parameters, we will
investigate the following basic form of update:

U+ = (I + p1y
T + p2s

TB)U, p1 ∈ RN, p2 ∈ RN . (17)

3.1. Methods based on general expression of the basic update

Many update formulas can be constructed by comparison of basic update (17) with the shifted Broyden
class. To make this, it is useful to express update (17) in the form similar to (7). From (17) we have

A+ = A + p1y
TA + AypT1 + p2s

TBA + ABspT2 + āp1p
T
1 + b̄(p1p

T
2 + p2p

T
1 ) + c̄p2p

T
2 . (18)

Denoting�1 = 1+ pT1y, �2 = pT2y, the quasi-Newton condition (6) gives

(ā�1 + b̄�2)p1 + (b̄�1 + c̄�2)p2 + �1Ay + �2ABs = �s̃, (19)

ā�21 + 2b̄�1�2 + c̄�22 = �b̃. (20)

We will use the following notation (note that the Schwarz inequality implies�̄�0):

�̄ = āc̄ − b̄2, v1 = c̄Ay − b̄ABs, v2 = āABs − b̄Ay, q1 = �̄p1 + v1, q2 = �̄p2 + v2

and identitiesvT1y = �̄, vT2y = 0 and

qTi y = �̄�i , i = 1,2, ā(v1v
T
1 + �̄ABssTBA) = c̄(v2v

T
2 + �̄AyyTA). (21)

Lemma 3.1. Let �̄ = 0.Thenv1 = v2 = q1 = q2 = 0.

Proof. VectorsAy,ABsare proportional by assumption and the same proportionality is betweenā, b̄ and
also between̄b, c̄, which gives the desired assertion.�
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We still assumẽb>0, thus at least one of valuesā, c̄ must be nonzero by (20) and�̄�0. First we will
suppose that̄a �= 0 and that vectorsp1 andp2 are chosen such thatā�1+ b̄�2 �= 0. Our approach is based
on the following result.

Lemma 3.2. Let p̃ = āp1 + b̄p2, �1 = ā�1 + b̄�2, ā�1 �= 0 and let(19)hold. Then

�21 = �āb̃ − �̄�22, q2q
T
2 + �̄(p̃ + Ay)(p̃ + Ay)T = q̂2q̂

T
2 + ��̄(ā/b̃)s̃s̃T,

where

q̂2 = [q2 − (qT2 y/b̃)s̃]/(|�1|�2), �2 = 1/
√

�āb̃. (22)

Proof. The first relation readily follows from (20), which is implied by (19). One has

�1(p̃ + Ay) = (ā�1 + b̄�2)(āp1 + b̄p2 + Ay) = ā(�s̃ − �2(b̄p1 + c̄p2 + ABs))

+ b̄�2(āp1 + b̄p2 + Ay) = �ās̃ − �2�̄p2 − �2v2 = �ās̃ − �2q2

= �ās̃ − �2(|�1|�2q̂2 + (�̄�2/b̃)s̃) = |�1|(|�1|s̃/b̃ − �2�2q̂2) (23)

by (19), (22) andqT2 y = �̄�2, thusp̃ + Ay = ±(|�1|s̃/b̃ − �2�2q̂2) and

�̄(p̃ + Ay)(p̃ + Ay)T + q2q
T
2 = �̄(|�1|s̃/b̃ − �2�2q̂2)(|�1|s̃/b̃ − �2�2q̂2)

T

+ (�̄�2s̃/b̃ + |�1|�2q̂2)(�̄�2s̃/b̃ + |�1|�2q̂2)T

= ��̄(ā/b̃)s̃s̃T + q̂2q̂
T
2 . �

Before utilizing this lemma, we rewrite (18) in the following way:

ā(A+ − A) = p̃yTA + Ayp̃T + p2v
T
2 + v2p

T
2 + p̃p̃T + �̄p2p

T
2

=p2v
T
2 + v2p

T
2 + (p̃ + Ay)(p̃ + Ay)T − AyyTA + �̄p2p

T
2 . (24)

Since�̄(p2vT2 + v2p
T
2 ) + �̄

2
p2p

T
2 = q2q

T
2 − v2v

T
2 , we can use Lemma 3.2 to obtainā�̄(A+ − A) =

(�ā�̄/b̃)s̃s̃T − �̄AyyTA+ q̂2q̂
T
2 − v2v

T
2 . Sinceq̂2= q2 for �2= 0, we can assume (without any change of

A+) that�2 = 0 is chosen, which satisfies the condition�1 �= 0 by (20), and the update formula can be
written in the form

A+ = A + �
s̃ s̃T

b̃
− AyyTA

ā
+ q2q

T
2 − v2v

T
2

ā�̄
, qT2 y = 0 (25)

for �̄ �= 0. If �̄ = 0, one hasv2 = q2 = q̂2 = 0 by Lemma 3.1, thus̃p + Ay = �1s̃/b̃ by (23) and (24)
givesā(A+ − A) = (�21/b̃

2)s̃s̃T − AyyTA, therefore we getA+ = A + �s̃ s̃T/b̃ − AyyTA/ā (which is
the shifted DFP update (8)) for any choice ofp2.
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Proceeding similarly for̄c �= 0 (e.g., when̄a = 0), we derive the following formula:

A+ = A + �
s̃ s̃T

b̃
− ABssTBA

c̄
+ q1q

T
1 − v1v

T
1

c̄�̄
, qT1 y = 0 (26)

for �̄ �= 0 andA+ = A + �s̃ s̃T/b̃ − ABssTBA/c̄ for �̄ = 0 (and anyp1); this update satisfies the shifted
quasi-Newton condition by Lemma 3.1. By (21), update (26) can be forāc̄ �= 0 written (note thatq1
satisfyingqT1 y = 0 cannot be proportional toq2, qT2 y = 0, for �̄ �= 0 by (21), since�1, �2 cannot be equal
to zero simultaneously by (20))

A+ = A + �
s̃ s̃T

b̃
− AyyTA

ā
+ q1q

T
1

c̄�̄
− v2v

T
2

ā�̄
, qT1 y = 0. (27)

Update formulas (25), (27) can be significantly simplified in casem�2, usingTheorem2.4. Combining
(8) and (16) with (25) and (27), we obtain the general form of type 1 or type 2 update for limited memory
methods withm�2 andāc̄ �= 0

A+ = �
s̃ s̃T

b̃
+ q2q

T
2

ā�̄
or A+ = �

s̃ s̃T

b̃
+ q1q

T
1

c̄�̄
. (28)

For example, the choiceq2= 0 orq2= v2 in the first formula gives the shifted DFP update form = 1 or
m= 2. This interesting formulas need not store anyVMmatrix, similarly as conjugate gradient methods,
but can be more efficient.
To construct limited-memory update, we can proceed in the following way. If�̄ �= 0 (thus alsōac̄ �= 0

by �̄�0) we choose vector parameterq2 satisfyingqT2 y = 0, i.e. �2 = 0. Then�1 = ±
√

�b̃/ā holds

by (20), (19) has the form�1(āp1 + b̄p2 + Ay) = �s̃ and thus we can calculatep1 andp2, using the
formulas

p2 = (q2 − v2)/�̄, p1 =
(√

�ā/b̃s̃ − Ay − b̄p2

)/
ā. (29)

If �̄ = 0, the choice ofq2 or q1 is irrelevant; in view of (25), (26) we will suppose from now on that
instead of any limited-memory method we use either the shifted DFP method (10) forā �= 0, or update
A+ = A + �s̃ s̃T/b̃ − ABssTBA/c̄ in the similar form

U+ = U − (1/c̄)

(
±
√

�c̄/b̃s̃ + ABs

)
sTBU (30)

otherwise. In other methods we will suppose�̄ �= 0, thusāc̄ �= 0.
We give two methods based on expression (25); some others can be found in[16].

3.1.1. SSBC—simple method based on the shifted Broyden class
Surprisingly, we obtained very good results when we chose simplyq2 = ŵ, where

ŵ =
√

��̄

(
ā

b̃
s̃ − Ay

)
. (31)

Then we have the shifted Broyden update (7) with adding term−v2v
T
2/(ā�̄).
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3.1.2. DSBC—method with direction vector after the shifted Broyden class
Sinced+ = −H+g+ = −H+y −H+g = −s +H+Bd by (1) and byH+y = s (here we suppose� =1),

it suffices to compare valueH+Bs, which is

�+Bs + �
s̃TBs

b̃
s̃ + qT2Bs

ā�̄
q2 (32)

by vT2Bs = �̄ for update (25) and

�+Bs + �
s̃TBs

b̃
s̃ + 1

ā
v2 + �

ā

(
ā

b̃
s̃TBs − b̄

)(
ā

b̃
s̃ − Ay

)
(33)

for update (7). Comparing (32) with (33), we obtain

qT2Bs

�̄
q2 = v2 + �

(
ā

b̃
s̃TBs − b̄

)(
ā

b̃
s̃ − Ay

)
, (34)

which implies

qT2Bs

�̄
= ±

√
1+ �

�̄

(
ā

b̃
s̃TBs − b̄

)2
. (35)

Combining (34) with (35), we can calculateq2 for given� (obviouslyqT2 y = 0) and thenp2 andp1,
using (29).

3.2. Variationally-derived limited-memory methods

Standard VM methods can be obtained by solving a certain variational problem—we find an update
with the smallest correction of VM matrix in the sense of some norm (see[10]). Using the product
form of the update, we can extend this approach to limited-memory methods to derive a very efficient
class of methods. First we give the following general theorem, where the shifted quasi-Newton condition
U+UT+y = A+y = �s̃ is equivalently replaced by (the first two conditions imply the third one)

UT+y = z, U+z = �s̃, zTz = �b̃. (36)

Theorem 3.1. Let T be a symmetric positive definite matrix, z ∈ Rm and denoteU the set ofN × m

matrices. Then the unique solution to

min{�(U+) : U+ ∈ U} s.t. (36), �(U+) = yTTy‖T −1/2(U+ − U)‖2F , (37)

(Frobenius matrix norm) is

U+ = U − Ty

yTTy
yTU +

(
�s̃ − Uz + yTUz

yTTy
Ty

)
zT

zTz
(38)

and for this solution the value of�(U+) is

�(U+) = |UTy − z|2 + yTTy

zTz
vTT −1v, v = �s̃ − Uz − �b̃ − yTUz

yTTy
Ty. (39)
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Proof. SettingU+ = (u+
1 , . . . , u

+
m), define Lagrangian functionL = L(U+, e1, e2) as

L = 1

2
�(U+) + eT1 (U

T+y − z) + eT2 (U+z − �s̃)

= − eT1z − �eT2 s̃ +
m∑
i=1

[
yTTy

2
(u+

i − ui)
TT −1(u+

i − ui) + e1iy
Tu+

i + zie
T
2u

+
i

]
.

A local minimizerU+ satisfies the equations�L/�u+
i = 0, i = 1, . . . , m, which givesyTTyT −1(u+

i −
ui) + e1iy + zie2 = 0, i = 1, . . . , m, yielding

U+ = U − Ty

yTTy
eT1 − T e2

yTTy
zT. (40)

Using the first condition in (36), we havee1 = UTy − (1+ yTT e2/y
TTy)z.

Substituting thise1 to (40), we obtainU+ =U −TyyTU/yTTy + ēzT with some vector̄e. The second
condition in (36) yields

ē = 1

zTz

(
�s̃ − Uz + yTUz

yTTy
Ty

)
(41)

and (38) follows. MatrixU+ obtained in this way minimizes� in view of convexity of Frobenius norm.
Furthermore, we get

ē − Ty

yTTy
= 1

zTz

(
�s̃ − Uz − zTz − yTUz

yTTy
Ty

)
= v

zTz
(42)

by (36) and (39), thus by (38) andvTy = 0

�(U+)
yTTy

=
∥∥∥∥T −1/2

(
Ty

yTTy
yTU − ēzT

)∥∥∥∥
2

F

=
∥∥∥∥T −1/2

(
Ty

yTTy
(UTy − z)T − v

zTz
zT
)∥∥∥∥

2

F

=Tr
(
(UTy − z)(UTy − z)T

yTTy
+ vTT −1v

(zTz)2
zzT

)
= |UTy − z|2

yTTy
+ vTT −1v

zTz
. �

The choice of matrixT, when vectorsTy, �s̃ − Uz, are linearly dependent, represents an important
special case, since thenv = 0 (thus the value of�(U+) reaches its minimum on the set of symmetric
positive definite matricesT), which impliesē=Ty/yTTy = (�s̃ −Uz)/(�b̃−yTUz) by (42) and in view
of (41), update (38) can be written in the form

U+ = U − �s̃ − Uz

�b̃ − yTUz
(UTy − z)T. (43)

General form of variationally-derived update (38) can be rewritten, using (36):

U+ = s̃zT

b̃
+
(
I − TyyT

yTTy

)
U

(
I − zzT

zTz

)
. (44)
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SincezT(I − zzT/zTz) = 0 and(I − zzT/zTz)2 = I − zzT/zTz, this yields

A+ = �
s̃ s̃T

b̃
+
(
I − TyyT

yTTy

)
U

(
I − zzT

zTz

)
UT

(
I − yyTT

yTTy

)
(45)

byA+ = U+UT+. This expression, which can be easily compared with the quasi-product form (9) of the
shifted Broyden class update (which we get forTy = (

√
�/b̃)s̃ + ((1− √

�)/ā)Ay andUzproportional
to Ty), shows the meaning of parametersz, Ty.
UsingTheorem3.1 for the standard Broyden class (see[10]), we can easily derive the newproduct form

of these updates. To do it, we setH = SST and replaceU, s̃, b̃ byS, s, b. Then forTy = (
√

�/b)s + ((1−√
�)/a)Hy, z= �bSTBTy, ��0,� ∈ R, update (38) will be replaced byS+ = S − TyyTS + (�/zTz)szT

by proportionality ofSz, Ty and we have

S+ = S − Ty(STy)T + �s(STBTy)T (46)

by zTz = �b, which is the product form of updates from the Broyden class for��0:

Theorem3.2. Every update(46)withTy=(
√

�/b)s+((1−√
�)/a)Hy, ��0,�2=�ab/[b2+�(ac−b2)]

belongs to the Broyden class generated by the parameter�.

Proof. Wecanutilize Lemma2.2 in[17] or use straightforward arrangements and compare corresponding
terms. �

The following two methods are based on this comparison with the BFGS update (� = 1). Note that
neither update (48) nor (49) need not calculate vectorAy. Thesemethods were implemented in subroutine
PLIP, see[9], which can be downloaded fromwww.cs.cas.cz/∼luksan/subroutines.html.

3.2.1. VAR1—type 1 variationally-derived method
By analogy with the product form of the BFGS update (� = 1, z = �STBs), we set

z = ϑUTBs, ϑ = ±
√

�b̃/c̄, (47)

by zTz = �b̃. Then (43) gives

U+ = U − �s̃ − ϑABs

�b̃ − ϑb̄
(y − ϑBs)TU , (48)

which gives the best results for the choice sgn(ϑb̄) = −1 (compare with Theorem 4.5).

3.2.2. VAR2—type 2 variationally-derived method
With zgiven by (47) and with the simple choiceTy = s̃, (38) leads to type 2 method

U+ = U − s̃

b̃
yTU +

[(
�

ϑ
+ b̄

b̃

)
s̃ − ABs

]
sTBU

c̄
. (49)

Efficiency of both these methods significantly depends on the value of the correction parameter�. The
recommended value is�(1) = �/(� + �+), which is suitable for the most of problems. Very good results

http://www.cs.cas.cz/~luksan/subroutines.html
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were also obtained with the choices:�(2) = 4
√

�2�(1)/2, �(3) = �, �(4) = √
��, where� = �/(1− �), �

is a relative shift parameter and� = √
�â/a is the damping factor of�, see Section 2.2. Note that for

choice� = � equalityyTA+y = �+yTy holds by (6) and (11), i.e. this value balances the both parts of
yTH+y = �+yTy + yTA+y.

3.3. Computational experiments

Our new limited-memoryVMmethods were tested, using the collection of relatively difficult problems
with optional dimension chosen from[12] (Test 28, some problems are dense) and collection of problems
for general sparse and partially separable unconstrained optimization from[11] (Test 14, usually well-
conditionedproblems).Wehaveusedm=10,20 forN=1000andm=5,10 forN=5000, thefinal precision
‖g(x )‖∞�10−6, �=1 for the corresponding shifted Broyden class (methods SSBC and DSBC) and the
choice of the shift parameter� after (15) (the recommended value). For starting iterates we use the shifted
BFGS method.
Results of our experiments are given in three tables, where NIT is the total number of iterations (over

all problems), NFV the total number of function and also gradient evaluations, ‘Fail’ denotes the number
of problems which were not solved successfully (usually NFV reached its limit) and ‘Time’ is the total
computational time. The first four rows of tables give results formethods SSBC, DSBC,VAR1 andVAR2.
In case variationally-derived methods we used� = �(2) for method VAR1 and� = �(1) for method VAR2
in Table 3(see Section 2.3) and� = �(1) in Tables 4and5.
For comparison, the last four rowscontain results for the following limited-memorymethods: LBFGS—

theNocedalmethod based on theStrang formula, see[13], BNS—themethod after[3], RH—the reduced-
Hessian method described in[7] and CG—the conjugate gradient method (Hestenes and Stiefel version),
see[6]; this method often stopped before the requested precision was achieved. Note that methods
BNS and LBFGS store 2m vectors while method CG stores no additional vectors. From our numerical
experiments we may state that variationally derived methods VAR1 and especially VAR2 are usually
better than methods SSBC and DSBC.
For a better demonstration of both the efficiency and the reliability, we compare selected optimization

methods by using performance profiles introduced in[4]. The performance profile�M(�) is defined by

Table 3
(Test 28,N = 1000, 80 problems)

Method m = 10 m = 20

NIT NFV Fail Time NIT NFV Fail Time

SSBC 97991 100990 — 46.3 95012 98314 — 62.2
DSBC 105976 109096 — 51.6 103383 106328 — 66.2

VAR1 95495 99541 — 42.6 95327 98775 — 51.8
VAR2 91585 95304 — 41.8 84671 87964 — 48.6

LBFGS 92800 98921 — 37.6 86899 92294 — 44.7
BNS 91234 95532 — 40.9 93397 97704 — 56.7
RH 91160 113314 — 40.4 101251 122853 — 56.1
CG 108770 223626 4 59.6
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Table 4
(Test 14,N = 1000, 22 problems)

Method m = 10 m = 20

NIT NFV Fail Time NIT NFV Fail Time

SSBC 20095 20312 — 12.22 17936 18142 — 12.66
DSBC 21874 22150 — 13.33 18428 18677 — 13.49

VAR1 19260 19660 — 10.42 17162 17472 — 10.77
VAR2 18430 18693 — 10.20 16499 16735 — 11.00

LBFGS 20337 21383 — 11.00 18578 19590 — 11.40
BNS 21017 22097 — 12.36 19625 20613 — 14.41
RH 21892 33442 — 18.63 21526 33134 — 24.16
CG 20003 40034 — 12.12

Table 5
(Test 14,N = 5000, 20 problems)

Method m = 5 m = 10

NIT NFV Fail Time NIT NFV Fail Time

SSBC 109342 109917 2 6:11.1 88063 88468 — 6:04.7
DSBC 104763 105646 1 5:27.3 93295 93929 — 6:13.4

VAR1 97057 98888 — 4:43.0 68561 69811 — 3:57.6
VAR2 87713 89500 — 4:21.8 67360 68637 — 3:54.1

LBFGS 106345 109387 2 4:38.1 82311 84446 — 4:27.7
BNS 104569 107467 2 5:07.1 85681 87827 — 4:55.3
RH 97037 155691 4 6:58.6 86402 137572 2 6:24.1
CG 57056 192346 4 7:49.3

the formula

�M(�) = number of problems where log2(�P,M)��

total number of problems

with ��0, where�P,M is the performance ratio of the time (or the number of function evaluations)
required to solve problemP by methodM to the lowest time (or the number of function evaluations)
required to solve problemP. The ratio�P,M is set to infinity (or some large number) if methodM fails to
solve problemP. The value of�M(�) at� = 0 gives the percentage of test problems for which the method
M is the best and the value for� large enough is the percentage of test problems that methodM can solve.
The relative efficiency and reliability of each method can be directly seen from the performance profiles:
the higher is the particular curve the better is the correspondingmethod. The following figures (Figs. 1–3)
reveal the performance profiles for methods VAR2, LBFGS and RH graphically. These figures are based
on results used in the left parts of the previous tables.
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Fig. 1. (Test 28,N = 1000,m = 10, 80 problems).
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Fig. 2. (Test 14,N = 1000,m = 10, 22 problems).
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Fig. 3. (Test 14,N = 5000,m = 5, 20 problems).
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4. Global convergence

In this section we establish global convergence of methods from the shifted Broyden class with� ∈
[0,1] and our limited-memory methods forf uniformly convex. At the end we describe a simple way
allowing us to assure global convergence in the nonconvex case.

Assumption 4.1. Theobjective functionf : RN → R is bounded frombelowanduniformly convexwith
bounded second-order derivatives (i.e., 0<G��(G(x))��(G(x))�G<∞, x ∈ RN , where�(G(x))

and�(G(x)) are the lowest and the greatest eigenvalues of the Hessian matrixG(x)).

Assumption 4.2. Parameters�k and�k of the shifted VM method are uniformly positive and bounded,
in the sense that 0< ���k��, 0< ���k��<1, k�1.

Lemma 4.1. Let the objective function satisfy Assumption4.1and parameter� satisfy Assumption4.2.
Thenâ/b ∈ [G,G] andb/|s̃|2>b/|s|2�G.

Proof. SettingGI = ∫ 1
0 G(x + �s)d�, q = G

1/2
I s, we obtainy = g+ − g = GIs and thus

â

b
= yTy

sTy
= qTGIq

qTq
=
∫ 1

0

qTG(x + �s)q

qTq
d� ∈ [G,G]

by Assumption 4.1. Similarly,b/|s|2 = sTGIs/s
Ts = ∫ 1

0 sTG(x + �s)s/sTs d��G and |s̃|2 = |s −
(�b/â)y|2 = |s|2 − �(2− �)b2/â < |s|2 by (6), (11) and Assumption 4.2.�

4.1. Shifted Broyden class and modified shifted DFP method

Theorem 4.1. Consider any shifted variable metric method satisfying(5) and (6). Let the objective
function satisfy Assumption4.1 and parameter� satisfy Assumption4.2,with the line-search method
fulfilling (1) and(2). If there is a constant0<C<∞ that

TrAk+1�TrAk + C, k�1, (50)

then(3) holds.

Proof. Sinceâ/b ∈ [G,G] by Lemma 4.1, Assumption 4.2 implies�k+1 ∈ [�, �], k�1, by (11), where
� = �/G and� = �/G. Using (50), one has

‖Hk+1‖��k+1 + ‖Ak+1‖�� + TrAk+1�� + TrA1 + Ck�C̃(k + 1), k�1,

whereC̃ =max(� + TrA1, C). By (1) and (5), this gives

cos2 �k�
(gTk dk)

2

gTk gkd
T
k dk

= gTk (�kI + Ak)gk

gTk gk

gTk Hkgk

gTk H
2
k gk

��k
1

‖Hk‖ �
�

C̃k
, k�1.

Thus
∑∞

k=1 cos2 �k = ∞ and (3) follows from Theorem 1.1.�
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Corollary 4.1. Let the objective function satisfy Assumption4.1and parameters� and� satisfy Assump-
tion 4.2.Suppose that the line-search method fulfils(1) and (2). Then(3) holds for the shifted variable
metric method(7)with � ∈ [0, �/(� + ā/b̃)].
Proof. Consider update

A+ = A + 2�
s̃ s̃T

b̃
− (�s̃ + Ay)(�s̃ + Ay)T

ā + b̃�
, (51)

which belongs to the shifted Broyden class (7) with� = �/(� + ā/b̃) and represents the shifted analogy
of Hoshino self-dual method, see[10]. Since

TrA+�TrA + 2�|s̃|2/b̃�TrA + 2�/[(1− �)G] (52)

by Lemma 4.1 and Assumption 4.2, method (51) is globally convergent by Theorem 4.1. By (7), (52)
obviously holds also for methods from the shifted Broyden class with���/(� + ā/b̃). �

Now we establish global convergence of all methods from the shifted Broyden class with� ∈ [0,1],
using additional assumption�2��â/a, which corresponds to the choice of coefficient� for the shift
parameter� (see Section 2.2) and which is satisfied for� given by (14). Note that this assumption
can be significantly weakened, see Lemma 4.4. DenoteH̃+ = �I + A+. The following lemma plays
basic role.

Lemma 4.2. Consider the shifted variable metric method(7)with � ∈ [0,1]. Then

detH̃+
detH

�
s̃TBs̃

b̃

(
� + �â

b̃

)
. (53)

Proof. It suffices to prove the desired inequality for� = 1 by (7) and the identity det(H̃+ − uuT)= (1−
uTH̃−1+ u)detH̃+. The shifted BFGS update (8) can be rewrittenA+ = A + [(�s̃ − Ay)(�s̃ − Ay)T −
AyyTA]/(b̃�), where� = � + ā/b̃, or

H̃+ = H 1/2

(
I + B1/2(�s̃ − Ay)(�s̃ − Ay)TB1/2 − B1/2AyyTAB1/2

b̃�

)
H 1/2.

Since

det(I + (u − v)(u − v)T − vvT) = (1+ |u − v|2)(1− |v|2) + ((u − v)Tv)2

= |u|2 + (1− uTv)2 − |u|2|v|2,
we obtain

detH̃+
detH

= �
s̃TBs̃

b̃
+
(
1− s̃TBAy

b̃

)2
− s̃TBs̃yTABAy

b̃2
.



384 J. Vlček, L. Lukšan / Journal of Computational and Applied Mathematics 186 (2006) 365–390

Observing that̃sTBAy = b̃ − �s̃TBy andyTABAy = ā − �â + �2yTBy, we find

detH̃+
detH

= �
s̃TBs̃

b̃
+ �2(s̃TBy)2

b̃2
− s̃TBs̃yTABAy

b̃2

=
(

� + �â

b̃

)
s̃TBs̃

b̃
+ �2

(s̃TBy)2 − s̃TBs̃yTBy

b̃2
�
(

� + �â

b̃

)
s̃TBs̃

b̃

by the Schwarz inequality.�

Lemma 4.3. Consider any shifted variable metric method satisfying(5) and(6).Then

detH+/detH̃+ <(1+ �+/�)N . (54)

Proof. Denoting�̃1, . . . , �̃N theeigenvaluesof̃H+, wehavẽ�i ��, i=1, . . . , N in viewofH̃+=�I+A+.
SinceH+ = H̃+ + (�+ − �)I , we obtain

detH+/detH̃+ = (1+ (�+ − �)/�̃1) · · · (1+ (�+ − �)/�̃N)< (1+ �+/�)N . �

Lemma 4.4. Consider any shifted variable metric method satisfying(5) and(6). If there is a constant C
that�2�C�âc/b2, e.g., if �2�C�â/a, thens̃TBs̃�c(1+ √

C)2.

Proof. We havec/b2�1/a by the Schwarz inequality. Assumption�2�C�âc/b2 implies�2+ =�2(b/â)2

�C�c/â. Observing that�yTBy/yTy��‖B‖�1 by (5), we have�2+yTBy�cC�yTBy/â�cC. Since
s̃ = s − �+y, we get by the Schwarz inequality

s̃TBs̃ = c − 2�+sTBy + �2+yTBy�
(√

c + �+
√
yTBy

)2
�c
(
1+ √

C
)2

. �

Lemma 4.5. Consider any shifted variable metric method satisfying(5)and(6)and Assumption4.2.Let
the objective function satisfy Assumption4.1.Then�+ ∈ [�, �]�[�/G, �/G]. Moreover, if � = �, then

�+/��G/G and s̃TBs̃�2c + 2�bG/G.

Proof. Sinceâ/b ∈ [G,G] by Lemma4.1 and�+=�b/â by (11), we deduce�+ ∈ [�/G, �/G]. Let�=�.

Thenwe have�+/���+G/��G/G. Using inequalities̃sTBs̃�(
√
c+�+

√
yTBy)2and�yTBy�yTy, see

the proof of Lemma 4.4, we obtain

s̃TBs̃�
(√

c + �+
√
yTBy

)2
�2(c + �2+yTBy)�2c + 2�2+â/��2c + 2�bG/G. �

Theorem 4.2. Consider the shifted variable metric method(7) satisfying Assumption4.2with � suffi-
ciently small and suppose that the line-search method fulfils(1)and(2).Let the objective function satisfy
Assumption4.1.If � ∈ [0,1] and�2��â/a or � = � (e.g., if �2> �â/a), then(3) holds.
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Proof. Combining Lemmas 4.2 and 4.3, we find detH+/detH < �s̃TBs̃/b̃, where� = (� + �â/b̃)(1+
�+/�). Observing that detH ��N ��N by (5), we get

C1�
�N

detH2
�
detHk+2
detH2

=
k+1∏
i=2

detHi+1
detHi

<

k+1∏
i=2

�i
s̃Ti Bi s̃i

b̃i
�
(
1

k

k+1∑
i=2

�i
s̃Ti Bi s̃i

b̃i

)k

, (55)

k�1,C1>0. Since always̃sTBs̃�4c+2�bG/G by Lemma 4.4 withC=1 and Lemma 4.5,̃b=b(1−�)

by (11) and since�/(1− �)�C2(1+ �+/�) with C2= (�+ �G)/(1− �)2 by Lemma 4.1 and Lemma 4.5,
we obtain from (55)

kC
1/k
1 <

k+1∑
i=2

s̃Ti Bi s̃i

bi

�i
1− �i

�4C2
k+1∑
i=2

ci

bi

(
1+ �i+1

�i

)
+ 2C2�

G

G

k+1∑
i=2
�i=�

(
1+ �i+1

�i

)
,

k�1. Using Lemma 4.5, we get

4C2

(
1+ �

�

)
k+1∑
i=2

ci

bi
> k[C1/k1 − �C3], C3 = 2C2

G

G

(
1+ G

G

)
, (56)

k�1. Let� be chosen in such a way that�<1/C3. Observing thatC
1/k
1

k→1, (56) implies
∑k+1

i=2 ci/bi
k→ ∞. SincegTHg��gTg��gTg by (5), we obtain fork�1

k+1∑
i=2

cos2 �i�
k+1∑
i=2

(gTi di)
2

gTi gid
T
i di

=
k+1∑
i=2

gTi di

gTi gi

tig
T
i si

sTi si
=

k+1∑
i=2

gTi Higi

gTi gi

bi

sTi si

ci

bi
��G

k+1∑
i=2

ci

bi

by (1) and Lemma 4.1. Thus
∑∞

i=1 cos2 �i = ∞ and (3) follows from Theorem 1.1.�

We recall that assumption�2��â/a corresponds to the choice of coefficient� for the shift parameter
� (see Section 2.2).
The bound 1/C3 does not give a realistic estimate for�, e.g., since the number of cases when�2> �â/a

can be negligible.We tested various choices of� and found that methods in Section 2 give the best results
with the choice (14) without any corrections (with the exception of initial iterations), while in case of
methods in Section 3 (their global convergence properties are also based on Theorem 4.2) better results
were obtained with corrections (15) in every iteration, i.e. with� = 0.2.

4.2. Limited-memory methods

We utilize expressions (25) and (27) obtained in Section 3.1. The following basic assertion holds.

Theorem 4.3. Denoteŵ=
√

��̄((ā/b̃)s̃ −Ay) and consider the shifted variable metric method(25)with
q2=�ŵ+v2 (or method(27)withq1

√
ā/c̄=�ŵ+v2),satisfying Assumption4.2with� sufficiently small

and suppose that the line-search method fulfils(1) and(2).Let the objective function satisfy Assumption
4.1.If �2 + 2�1, � ∈ [0,1] and�2��â/a or � = �, then(3) holds.
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Proof. If �̄ �= 0, we can obviously restrict to update (25) and write by assumption

q2q
T
2 − v2v

T
2 = �2ŵŵT + �ŵvT2 + �v2ŵ

T + (2 − 1)v2v
T
2 . (57)

First suppose that2<1. Denoting�′ = ��2/(1− 2)���1, (57) yields

q2q
T
2 − v2v

T
2

ā�̄
= �′

ā

(
ā

b̃
s̃ − Ay

)(
ā

b̃
s̃ − Ay

)T
− uuT, u = (1− 2)v2 − �ŵ√

ā�̄(1− 2)
,

by ā�̄uuT = (1 − 2)v2vT2 − �v2ŵT − �ŵvT2 + (�′/�)2ŵŵT. Therefore (25) represents update
(7) with adding term−uuT. Without this adding term, this update satisfies assumptions of Lemma
4.2 and inequality (53) holds by identity det(H̃+ − uuT) = (1 − uTH̃−1+ u)detH̃+. If 2 = 1, con-
dition �2 + 2�1 implies � = 0 and (25) represents the shifted DFP method, which also satisfies
assumptions of Lemma 4.2. Thus (53) holds and the desired result follows as in the proof of
Theorem 4.2.
Obviously, the casē� = 0 does not violate global convergency, since we use either the shifted DFP

method (see Section 3.1) forā �= 0, or updateA+ = A + �s̃ s̃T/b̃ − ABssTBA/c̄ i.e. the shifted DFP
method (8) with adding term−ABssTBA/c̄ otherwise. This is also relevant to all methods in this
section. �

Corollary 4.2. Let the objective function satisfy Assumption4.1 and �2��â/a or � = � and suppose
that the line-search method fulfils(1) and(2).For methods SSBC and DSBC(see Section3.1),satisfying
Assumption4.2with � sufficiently small, (3)holds.

Proof. We have� = 1,  = 0 for the first method. For the second method, we obtain

� = ±ŵTBs

/√
�̄
2 + (ŵTBs)2 ,  = ±�̄

/√
�̄
2 + (ŵTBs)2 ,

by (34) and (35), thus�2 + 2 = 1 for both these methods and we use Theorem 4.3.�

Nowwe concentrate on update (38) with the choice (47), which is type 2methodwithp1=−Ty/yTTy.
ThuspT1y = −1, yieldingqT1 y = −�̄ + vT1y = 0. Therefore we can express this update in the form (27)
and use the following theorem.

Theorem 4.4. Let�>0.Consider update(38)with the choice(47)and with

Ty = s̃ + 1ABs + 2Ay. (58)

If

(ā2 + b̃)2� āc̄21 + b̃2/� (59)

holds, then the assumption�2 + 2�1 of Theorem4.3 is satisfied.
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Proof. Fromp1 = −Ty/yTTy and (58) we obtain

q1 = �̄p1 + v1 = −�̄
s̃ − (b̃/ā)Ay + 1ABs + (2 + b̃/ā)Ay

b̃ + b̄1 + ā2
+ c̄Ay − b̄ABs

= −�̄b̃/ā

b̃ + 1b̄ + 2ā

(
ā

b̃
s̃ − Ay

)
+
( −�̄1

b̃ + b̄1 + ā2
− b̄

)
ABs −

(
�̄(2 + b̃/ā)

b̃ + b̄1 + ā2
− c̄

)
Ay

= −b̃
√

�̄

ā
√

�(b̃ + b̄1 + ā2)
ŵ − b̄b̃/ā + c̄1 + b̄2

b̃ + b̄1 + ā2
v2�

√
c̄

ā
(�ŵ + v2),

using identities

�̄1 + b̄(b̃ + b̄1 + ā2) = (b̄b̃/ā + c̄1 + b̄2)ā,

− �̄(2 + b̃/ā) + c̄(b̃ + b̄1 + ā2) = (b̄b̃/ā + c̄1 + b̄2)b̄.

Thus we have

�2 + 2 = �̄b̃2/� + [b̄(ā2 + b̃) + āc̄1]2
āc̄(ā2 + b̃ + b̄1)

2

= �̄b̃2/� + b̄2(ā2 + b̃)2 + 2āb̄c̄1(ā2 + b̃) + ā2c̄221
āc̄(ā2 + b̃)2 + 2āb̄c̄1(ā2 + b̃) + āb̄2c̄21

= 1− �̄[(ā2 + b̃)2 − āc̄21 − b̃2/�]/[āc̄(ā2 + b̃ + b̄1)
2]�1

by (59) and�̄�0. �

Corollary 4.3. Consider the shifted variable metric method(49)satisfying Assumption4.2with � suffi-
ciently small and suppose that the line-search method fulfils(1)and(2).Let the objective function satisfy
Assumption4.1.If �2��â/a or � = �, then(3) holds.

Proof. Choosing1= 2= 0 in (58), (59) gives��1 and it suffices to use Theorem 4.3 with� = 1. �

This approach cannot be used for method (48), which uses2 = 0 and21 = b̃/(c̄�) by (47). Then
condition (59) isb̃ − b̃/�� ā/�, which cannot be satisfied in general. Fortunately, similar assertion as
Lemma 4.2 holds. Denote agaiñH+ = �I + A+.

Lemma 4.6. Let �̄ �= 0.Consider the shifted variable metric method(48) in the form

U+ = U − pqTU, p = s̃ − (ϑ/�)ABs, q = (y − ϑBs)/pTy, (60)

with ϑ2��b̃/c̄ andϑb̄�0.Then

detH̃+/detH �(�â + �b̃)pTBp/b̃2. (61)
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Proof. Update (60) can be writtenA+ = A − AqpT − pqTA + qTAqppT, or

H̃+ = H 1/2

(
I + B1/2(qTAqp − Aq)(qTAqp − Aq)TB1/2 − B1/2AqqTAB1/2

qTAq

)
H 1/2,

whereqTAq >0 by ā − 2ϑb̄+ ϑ2c̄= (ϑc̄− b̄)2+ �̄>0. Since det(I + (u− v)(u− v)T − vvT)= |u|2+
(1− uTv)2 − |u|2|v|2 (see the proof of Lemma 4.2), we obtain

detH̃+/detH = qTAqpTBp + (1− pTBAq)2 − pTBpqTABAq.

Observing thatqTABAq=qTAq−�qTq+�2qTBq and1−pTBAq=1−pTq+�pTBq=(ϑ/pTy)pTBs+
�pTBq, we find by the Schwarz inequality and (60)

detH̃+/detH = pTBp[�qTq − �2qTBq] + [pTB((ϑ/pTy)s + �q)]2

�pTBp[�qTq − �2qTBq + ((ϑ/pTy)s + �q)TB((ϑ/pTy)s + �q)]
= [�|y − ϑBs|2 + ϑ2c + 2�ϑsTB(y − ϑBs)]pTBp/(pTy)2

= (�â + ϑ2c − �ϑ2|Bs|2) p
TBp

(pTy)2
= (�â + ϑ2c̄)

pTBp

(b̃ − ϑb̄/�)2

�(�â + ϑ2c̄)pTBp/b̃2�(�â + �b̃)pTBp/b̃2

and by assumptions.�

Lemma 4.7. Consider the shifted variable metric method(60),satisfying|ϑ|�C̃ for some0<C̃ <∞.
ThenpTBp�2s̃TBs̃ + 2c(C̃/�)2.

Proof. Observing that�sTB3s/sTB2s��‖B‖�1, we getsTBABABs = c − 2�sTB2s + �2sTB3s�c −
�sTB2s�c and therefore

pTBp = |B1/2(s̃ − (ϑ/�)ABs)|2�2[s̃TBs̃ + (ϑ/�)2c]�2s̃TBs̃ + 2c(C̃/�)2. �

Theorem 4.5. Consider the shifted variable metric method(48) satisfying Assumption4.2with � suffi-
ciently small and suppose that the line-search method fulfils(1)and(2).Let the objective function satisfy

Assumption4.1.If ϑk = −sgnb̄kmin[C̃,

√
�kb̃k/c̄k], k�1, for some0<C̃ <∞ and�2��â/a or � = �,

(3) holds.

Proof. Using Lemmas 4.6, 4.3, 4.4, 4.5 and 4.7, we can proceed in the similar way as in the proof of
Theorem 4.2. �
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4.3. Nonconvex case

Modifying the direction vector, we can assure global convergence in the nonconvex case.

Theorem 4.6. Let the objective functionf : RN → R be bounded from below and have bounded
second-order derivatives. Consider the line-search method satisfying(2)with

dk = −Hkgk − �k|Hkgk|gk, (62)

whereHk is symmetric positive definite, k�1. If �k��>0, k�1, then(3) holds.

Proof. Assume, for contradiction purposes, that (3) does not hold. Then we can suppose|gk|�� for some
�>0 andgkHkgk >0, k�1, by positive definiteness ofHk. Omitting indexk, we have from (62) by the
Schwarz inequality

dT d� |Hg|2 + 2�|Hg|2|g| + �2|Hg|2|g|2 = (1+ �|g|)2|Hg|2

and−gTd > �|Hg||g|2. Thus−gTd/(|g||d|)> �|g|/(1+ �|g|)���/(1+ ��), since function�/(1+ �) is
increasing. Using Theorem 1.1, we have a contradiction.�

We tested choice (62) with�k = �, k�1, using Test 28 from[12], and found that numerical results
were very similar for��10−6.

5. Conclusions

In this contribution, we describe and analyze a family of shifted variable metric methods and prove
their global convergence. These methods, originally developed to generate starting matrices for limited-
memory methods, are competitive with the best implementations of the standard variable metric methods
as demonstrated in Section 2.4.
Furthermore, we present four new limited-memory methods closely related to the shifted variable

metric family and prove their global convergence. Our numerical experiments reported in Section 3.3
demonstrate their efficiency in comparison with the known methods for large-scale optimization.
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