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Abstract

For odd primes we prove some structure theorems for finitep-groupsG, such thatG′′ �= 1 and
|G′/G′′| = p3. Building on results of Blackburn and Hall, it is shown thatγ3(G) is a maximal
subgroup ofG′, the groupG has a central decomposition into two simpler subgroups, and, more
G′ has one of two isomorphism types.
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1. Introduction

It is well known that in a finitep-groupG the conditionG′′ �= 1 implies that|G′/G′′| �
p3; see, for example, Huppert [10, III.7.10]. In this article we prove a number of re
about groups in which equality holds; that is, we assume thatG′′ �= 1 and|G′/G′′| = p3.
Such groups have already been investigated by, among others, N. Blackburn and
Blackburn [3] proved that the condition|G′/G′′| = p3 implies thatG′′ is abelian generate
by two elements and it is nearly homocyclic. In the same article he also published a
which he attributed to Hall, that for odd primes the same condition implies that|G′′| � p.
Here we mostly considerp-groups for oddp, and our main results are concerned with s
groups.
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Let G be a finitep-group andγi(G) the ith term of the lower central series, so th
γ1(G) = G, γ2(G) = G′, etc. If G′′ �= 1 then we have the following chain of norm
subgroups:

G>G′ = γ2(G) > γ3(G) > γ4(G)�G′′ > 1. (1)

If, in addition, we assume that|G′/G′′| = p3, then it easily follows that the order o
G′/γ3(G) is at mostp2. The result of this simple argument is improved by the follow
theorem.

Theorem 1.1. Letp � 3 andG be a finitep-group, such that|G′/G′′| = p3 andG′′ �= 1.
Then|G′/γ3(G)| = p andG′′ = γ5(G).

The proof of this result is given in Section 3. Our second theorem, whose proo
Section 4, is thatG can be written as a central product of two simpler subgroups.

Theorem 1.2. Letp � 3 andG be a finitep-group, such that|G′/G′′| = p3 andG′′ �= 1.
ThenG can be factorised asG=HU , where

(i) H is a normal subgroup ofG generated by at most5 generators;
(ii) γi(H)= γi(G) for all i � 2;
(iii) U is a normal subgroup ofG, such thatU ′ � γ5(G);
(iv) H andU centralise each other.

An example is given after the proof of this theorem to show that the number “5”
general, best possible, and that there are, in some cases, other central decompositiG

in which the subgroups can have different isomorphism types.
Our proofs are based on commutator calculus. To simplify notation, we write

commutators according to the left-normed convention; for example[a, b, c] = [[a, b], c].
We use the well-known commutator identities that can be found in most group t
textbooks (see, for instance, Huppert [10, III.1.2–III.1.3]). In addition to these, we nee
collection formula, which is proved as Lemma VIII.1.1 by Huppert and Blackburn [
We mainly use this result in the simplest case when it can be stated as

[
xp, y

] ≡ [x, y]p mod
(
N ′)pγp(N) whereN = 〈

x, [x, y]〉.

The Hall–Witt identity will occur in a lesser known form which can be found in Magn
Karrass and Solitar [13] on p. 290:

[
x, y, zx

][
z, x, yz

][
y, z, xy

] = [
x, y, z[z, x]][z, x, y[y, z]][y, z, x[x, y]] = 1.

We often manipulate generating sets of groups. In order to avoid cumber
repetitions, we introduce a piece of notation. LetG be a group,g a symbol referring to
a group element, andx an element inG. After the occurrence of the expressionx ❀ g, the
nameg will refer to the elementx. For example, letG be the cyclic group of order tw
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and letg denote its non-identity element. If we perform the replacementg2 ❀ g, then the
symbolg will refer to the identity element ofG.

One can naturally ask whether it is possible for a fixed prime to give a classific
of groups which satisfy the conditions of the previous two theorems. It is concei
that Blackburn’s [2] description of groups of maximal class with orderp6 and degree o
commutativity 0 is a good starting point. However, increasing the number of gene
and allowing the abelian factor to have exponent higher thanp led to complications which
could not be resolved within the research presented here.

Our results can also be viewed in a wider context. It was first shown by Ha
Theorem 2.57] that the conditionsi � 1 andG(i+1) �= 1 imply that|G(i)/G(i+1)| � p2i+1,
and |G| � p2i+1+i+1 (see also Huppert [10, III.7.10 and III.7.11]). The lower bound
the order ofG has recently been improved by Mann [12] and the author [15]. B
of these improvements are, however, minor, and the order of the smallestp-groupG
such thatG(i+1) �= 1 is still unknown; the smallest known examples were constructe
Evans-Riley, Newman, and the author [5]. Ifp � 3 then we also do not know how sha
Hall’s lower bound is for|G(i)/G(i+1)|. As the example of the Sylow 2-subgroup of t
symmetric group with degree 2i+2 shows, this result is best possible forp = 2; it is not
known otherwise. Our research was originally motivated by these questions, and it is
that a more detailed understanding of groups with a small second derived quotient w
us a hint of the solution to some of the above problems. Some partial results can be
in the author’s PhD thesis [15].

Our results are inspired by Lie algebra calculations, and it is possible to prove so
them using the Lie ring method. In fact, Theorem 1.1 can be proved by first verifyin
corresponding result for Lie algebras and then using the Lie ring associated with the
central series. This approach would lead to some interesting new results for Lie alg
which are beyond the scope of the present article.

The paper is structured as follows. In Section 2 we prove a lemma which
generalisation of Blackburn’s Theorem 1.3 [2]. A consequence of this result is th
can often restrict our interest to groups which are generated by two or three eleme
Sections 3 and 4 we prove Theorems 1.1 and 1.2, respectively. In Section 5 we char
the commutator subgroup ofG, and show that it has one of two isomorphism types.

2. A general lemma and some consequences

We have seen in the introduction that in a finitep-groupG, the conditions|G′/G′′| = p3

andG′′ �= 1 imply thatG′/γ3(G) has order at mostp2. The aim of this section is to sho
thatG has a subgroupH with a small generating set, such that, apart from the first te
the lower central series ofH coincides with the lower central series ofG. This result
generalises Blackburn’s Theorem 1.3 [2] and Slattery’s Lemma 2.1 [16].

Lemma 2.1. LetG be a nilpotent group andH a subgroup ofG, such thatG′ =H ′γ3(G).
Thenγi(G)= γi(H) for all i � 2. Moreover,H is a normal subgroup ofG.
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Proof. First we prove by induction oni that γi(G) = γi(H)γi+1(G) for all i � 2. By
the conditions of the lemma, this is true fori = 2. Suppose that our claim holds f
some i − 1 � 2, and let us show that it holds fori as well. As it is obvious tha
γi(H)γi+1(G) � γi(G), we only have to prove thatγi(G) � γi(H)γi+1(G). Using the
induction hypothesis and III.1.10(a) of Huppert [10], we compute

γi(G) = [
γi−1(G),G

] = [
γi−1(H)γi(G),G

] = [
γi−1(H),G

][
γi(G),G

]

= [
γi−1(H),G

]
γi+1(G).

Therefore it is enough to prove that[γi−1(H),G] � γi(H)γi+1(G). First we note tha
γi(G)� γi(H)γi+1(G)� γi+1(G), and henceγi(H)γi+1(G) is a normal subgroup ofG.
Using the induction hypothesis we obtain

[
G,γi−2(H),H

]
�

[
γi−1(G),H

] = [
γi−1(H)γi(G),H

]

= [
γi−1(H),H

][
γi(G),H

]
� γi(H)γi+1(G)

and

[
H,G,γi−2(H)

]
�

[
G′, γi−2(H)

] = [
H ′γ3(G), γi−2(H)

]

= [
H ′, γi−2(H)

][
γ3(G), γi−2(H)

]
� γi(H)γi+1(G).

Using the Three Subgroups Lemma (see [10, III.1.10(b)]), we obtain

[
γi−1(H),G

] = [
γi−2(H),H,G

]
� γi(H)γi+1(G),

and hence our statement is correct.
Let us prove thatγi(G) = γi(H) for all i � 2. If the nilpotency class ofG is c, that is

γc+1(G) = 1, thenγc+1(G) = γc+1(H) = 1. If γi+1(G) = γi+1(H) for somei, such that
3 � i + 1 � c+ 1, then, by the result of the previous paragraph,

γi(G)= γi(H)γi+1(G)= γi(H)γi+1(H)= γi(H).

Using induction, we obtainγi(G) = γi(H) for all i � 2. The normality ofH is an easy
consequence of the fact thatG′ =H ′ �H . ✷
Corollary 2.2. LetG be a finitep-group.

(i) If G′/γ3(G) is cyclic of orderp, thenG has a2-generator normal subgroupH , such
thatγi(G)= γi(H) for all i � 2.

(ii) If G′/γ3(G) is elementary abelian of orderp2, thenG has a3-generator normal
subgroupH , such thatγi(G)= γi(H) for all i � 2.
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Proof. (i) Suppose thatG′/γ3(G)= 〈[a, b]γ3(G)〉 for somea, b ∈G, and setH = 〈a, b〉.
As we haveH ′γ3(G)=G′, Lemma 2.1 implies thatH is a normal subgroup andγi(G)=
γi(H) for all i � 2.

(ii) Suppose thatG′/γ3(G) is elementary abelian of orderp2, and suppose tha
G′/γ3(G)= 〈[a, b]γ3(G), [c, d]γ3(G)〉 for somea, b, c, d ∈G. Select a subgroupH in G

as follows. If[a, c], [a, d], [b, c], [b, d] are all inγ3(G) then letH = 〈a, bc, d〉. Otherwise
suppose without loss of generality that[a, c] ≡ [a, b]α[c, d]β modγ3(G) for someα andβ ,
such that 0� α,β � p − 1, and at least one ofα and β is non-zero. Ifα �= 0, then
setH = 〈a, c, d〉, otherwise setH = 〈a, b, c〉. It is easy to see thatH ′γ3(G) = G′, and
so, using Lemma 2.1, we obtain thatH is a normal subgroup andγi(G) = γi(H) for all
i � 2. ✷

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1.
Suppose first thatG is a finitep-group, such that|G′/G′′| = p3 andG′′ �= 1. If the

quotientG′/γ3(G) is cyclic, then Lemma 2.1 of Blackburn [2] implies that

G′′ = [
G′,G′] = [

G′, γ3(G)
]
� γ5(G), (2)

and there is a chain

G>G′ = γ2(G) > γ3(G) > γ4(G) > γ5(G)�G′′ > 1 (3)

of normal subgroups. In particular, if|G′/γ3(G)| = p, then (2) and (3) imply thatG′′ =
γ5(G); similarly if |G′/γ3(G)| = p2, then (2) implies thatG′/γ3(G) must be elementar
abelian.

Now assume that|G′/γ3(G)| = p2; we show that this can only happen whenp = 2.
By Corollary 2.2, there is a 3-generator subgroupH of G, such thatγi(G)= γi(H) for all
i � 2. After replacingG byH , we may assume without loss of generality thatG= 〈a, b, c〉
for somea, b, c ∈ G. Moreover, from (1) it follows thatG′′ = γ4(G), and hence we ma
suppose thatG has nilpotency class 4. AsG′/γ3(G) is elementary abelian of orderp2, we
have that there are someα, β , andγ not all zero, such that 0� α,β, γ � p − 1 and

[a, b]α[a, c]β[b, c]γ ≡ 1 modγ3(G).

If α = β = 0, then[b, c]γ ≡ 1 modγ3(G), that is [b, c] ∈ γ3(G). If α = 0 andβ �= 0,
then we obtain[aβbγ , c] ≡ 1 modγ3(G). If we replaceaβbγ ❀ a, then we obtain tha
in the new generating set[a, c] ∈ γ3(G). Similarly, if α �= 0 andβ = 0, then we replace
a−αcγ ❀ a, and obtain that after the substitution[a, b] ∈ γ3(G). If α �= 0, andβ �= 0,
then we replaceaβ/αbγ/α ❀ a and bcβ/α ❀ b. Then it is easy to see that in the ne
generating set[a, b] ∈ γ3(G). After possibly reordering the generators, we may supp
without loss of generality thatG is generated by three elementsa, b, andc, such that
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G′/γ3(G) = 〈[a, b]γ3(G), [a, c]γ3(G)〉, and moreover[b, c] ∈ γ3(G). Note that in this
case[a, b, c] ≡ [a, c, b] modγ4(G) also holds. ThenG′′ �= 1 andγ5(G)= 1 imply that

[[a, b], [a, c]]= [a, b, a, c][a, b, c, a]−1 �= 1

and

[[a, c], [a, b]]= [a, c, a, b][a, c, b, a]−1 �= 1.

If [a, b, a] ∈ γ4(G), then [a, b, a, c] ∈ γ5(G), and hence[a, b, a, c] = 1. Similarly
[a, b, c] ∈ γ4(G), implies that [a, b, c, a] = 1; therefore at least one of the eleme
[a, b, a] and[a, b, c] does not lie inγ4(G). Similarly, at least one of[a, c, a] and[a, b, c]
must also lie outsideγ4(G).

First we assume that[a, b, c] ∈ γ4(G). In this case we must have[a, c, a] /∈ γ4(G)

and [a, b, a] /∈ γ4(G). As γ3(G)/γ4(G) is cyclic of orderp, there is someα, such
that 0� α � p − 1 and[a, bcα, a] ≡ 1 modγ4(G), and we carry out the replaceme
bcα ❀ b. In the new generating set[b, c] ∈ γ3(G) still holds, and, in addition, we obtai
[a, b, a] ∈ γ4(G).

So without loss of generality we may assume that[a, b, a] ∈ γ4(G) and [a, b, c] /∈
γ4(G). In this case[a, b, c, a] = [a, c, b, a] �= 1, in other wordsa /∈ CG(γ3(G)). On
the other hand,[a, b, b, a] = [a, b, a, b], and hence[a, b, b, a] = 1. If [a, b, b] /∈ γ4(G),
then γ3(G) = 〈[a, b, b], γ4(G)〉, and soa ∈ CG(γ3(G)), which is impossible; therefor
[a, b, b] ∈ γ4(G). If [a, c, a] /∈ γ4(G) then there is someα �= 0, such that[a, c, abα] ∈
γ4(G); in this case we letabα ❀ a and obtain[a, c, a] ∈ γ4(G). In the new generating se
[b, c] ∈ γ3(G) and[a, b, a], [a, b, b]∈ γ4(G) still hold. Then

1 = [[a, b], a, c][[a, c], [a, b]][c, [a, b], a]

= [a, b, a, c][a, c, a, b][a, b, c, a]−1[a, b, c, a]−1 = [a, b, c, a]−2,

that is,[a, b, c, a]2 = 1, and hencep = 2. This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

In the previous section we proved Theorem 1.1, and hence we know that
groupG the conditions of Theorem 1.2 imply that|G′/γ3(G)| = p. Thus, according
to Corollary 2.2,G has a 2-generator subgroupH , such that for alli � 2 we have
γi(G) = γi(H). We use this subgroup to obtain the desired factorisation. First we
that we can choose a generating set which satisfies some extra conditions.

Lemma 4.1. LetG be a2-generator, finitep-group, such that|G′/G′′| = p3, |G′/γ3(G)| =
p, andG′′ �= 1. Then generatorsa andb ofG can be chosen, such that the following ho:

(i) γ2(G)/γ3(G)= 〈[b, a]γ3(G)〉;
(ii) γ3(G)/γ4(G)= 〈[b, a, a]γ4(G)〉 and[b, a, b] ∈ γ4(G);
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(iii) γ4(G)/γ5(G)= 〈[b, a, a, a]γ5(G)〉 and[b, a, a, b] ∈ γ5(G);
(iv) γ5(G)/γ6(G)= 〈[b, a, a, a, b]γ6(G)〉 and[b, a, a, a, a] ∈ γ6(G).

Proof. We may suppose without loss of generality thatG has class 5. As noticed i
the introduction, our conditions imply that the factorsG′/γ3(G), γ3(G)/γ4(G), and
γ4(G)/γ5(G) are cyclic with orderp. Using the argument presented by Blackburn
in Lemma 2.9, we can choose the generating set{a, b}, so that properties (i)–(iii) hold. I
follows from (2) and (3) thatG′′ = γ5(G), andG′′ = 〈[[b, a, a], [b, a]]〉. As the elemen
[[b, a, a], [b, a]] is central and has orderp, we have|γ5(G)| = p, and using Blackburn’s
argument on p. 89, the set{a, b} can be chosen so that the additional property (iv) a
holds. ✷
Lemma 4.2. Let p � 3 andG be a finitep-group, such that|G′/G′′| = p3 andG′′ �= 1.
ThenG has a minimal generating set{a, b,u1, u2, . . . , ur }, such that

(i) H = 〈a, b〉 is a normal subgroup ofG, such thatγi(H)= γi(G) for all i � 2; further,
a andb are as in Lemma4.1;

(ii) [a,ui] ∈ γ5(G) for all ui;
(iii) [b,ui] ∈ γ4(G) for all ui;
(iv) [ui, uj ] ∈ γ5(G) for all ui anduj .

In particular,u1, . . . , ur ∈ CG(G
′).

Proof. First recall Hall’s theorem that|G′′| = p, and so (3) implies thatG has class 5
Selecta, b ∈G, such that the subgroupH = 〈a, b〉 and its generators are as in Lemma 4
It is easy to see thata, b are linearly independent modulo the Frattini subgroup ofG.
Therefore they can be viewed as elements of a minimal generating set{a, b,u1, . . . , ur}.
Now suppose that for eachi ∈ {1, . . . , r}, [ui, a] ≡ [b, a]αi and [ui, b] ≡ [b, a]βi
moduloγ3(G) with someαi,βi ∈ {0, . . . , p − 1}. Then[uib−αi aβi , b] ∈ γ3(G) and also
[uib−αi aβi , a] ∈ γ3(G). If we perform the replacementuib−αi aβi ❀ ui , then it is easy to
see that{a, b,u1, . . . , ur} is also a minimal generating set forG and

[a,ui], [b,ui] ∈ γ3(G) for all i ∈ {1, . . . , r}.
Now suppose that for alli ∈ {1, . . . , r} we have

[ui, a] ≡ [b, a, a]αi [b, a, a, a]βi modγ5(G)

for someαi,βi ∈ {0, . . . , p − 1}. Then computing moduloγ5(G) we obtain

[
ui[b, a]−αi [b, a, a]−βi , a

]

= [
ui[b, a]−αi , a

][
ui [b, a]−αi , a, [b, a, a]−βi

][[b, a, a]−βi , a]

≡ [ui, a]
[
ui, a, [b, a]−αi

][[b, a]−αi , a][[b, a, a]−βi , a]

≡ [ui, a][b, a, a]−αi[b, a, a, a]−βi ≡ 1.
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If we replaceui[b, a]−αi [b, a, a]−βi ❀ ui , then[ui, a] ∈ γ5(G). Since the images of th
ui over the Frattini subgroup did not change, the set{a, b,u1, . . . , ur } is still a minimal
generating system forG. We show that this generating set satisfies the properties req
by the lemma.

We claim that[ui, b] ∈ γ4(G) for all i ∈ {1, . . . , r}. To prove this we observe that

1 = [
b, a,ui[ui, b]

][
ui, b, a[a,ui]

][
a,ui, b[b, a]

] = [
b, a, [ui, b]

][b, a,ui][ui, b, a],

and thus

[b, a,ui] = [ui, b, a]−1[b, a, [ui, b]
]−1 = [[b,ui]−1, a

]−1[[ui, b], [b, a]
]

= [b,ui, a]
[[ui, b], [b, a]

]
. (4)

In particular,[b, a,ui] ∈ γ4(G). Now consider

1 = [[b, a], a,ui
[
ui, [b, a]

]][
ui, [b, a], a[a,ui]

][
a,ui, [b, a][b, a, a]

]= [b, a, a,ui].

We can obtain similarly[b, a, a, a,ui] = 1. As[ui, b] ∈ γ3(G), [ui, b] ≡ [b, a, a]εi modulo
γ4(G) for someεi ∈ {0, . . . , p − 1}. The Hall–Witt identity implies that

1 = [[b, a], ui, b
[
b, [b, a]]][b, [b, a], ui[ui, b]

][
ui, b, [b, a][b, a,ui]

]

= [[b, a], ui, b
][[ui, b], [b, a]

]
.

Using (4) we get[b, a,ui, b] = [b, a, a, a, b]−εi. Moreover,

[[ui, b], [b, a]
] = [[b, a, a]εi , [b, a]] = [b, a, a, a, b]−εi,

and thus[b, a, a, a, b]−2εi = 1, from which it follows thatεi = 0, that is[ui, b] ∈ γ4(G).
We now prove thatu1, . . . , ur ∈ CG(G

′). We have already seen that[b, a, a], [b, a, a, a]
are centralised by theui , so it suffices to prove that[b, a,ui] = 1 for all i ∈ {1, . . . , r}. This
is clear because

1 = [
b, a,ui[ui, b]

][
ui, b, a[a,ui]

][
a,ui, b[b, a]

] = [b, a,ui].

It remains to show that[ui, uj ] lies in γ5(G) for all i, j ∈ {1, . . . , r}. It easily follows
using the Hall–Witt identity that[ui, uj , a] = 1 and[ui, uj , b] = 1, therefore[ui, uj ] ∈
Z(H)∩H ′ = γ5(H)= γ5(G). The proof is complete. ✷
Proof of Theorem 1.2. Choose a generating set{a, b,u1, u2, . . . , ur } for G as in the
previous lemma. In the first stage of the proof we show that this generating set c
modified so that, in addition to the properties required by Lemma 4.2, one of the follo
holds:

(a) u1, . . . , ur ∈ CG(a); or



C. Schneider / Journal of Algebra 266 (2003) 539–551 547

st one

out

hat
uct

If

ng set
that

s

case
set
(b) u2, . . . , ur ∈ CG(〈a,u1〉).

If u1, . . . , ur ∈ CG(a) then (a) holds and we are done. Suppose that there is at lea
ui which does not centralisea. Without loss of generality we may assume that[u1, a] =
[b, a, a, a, b]. If [ui, a] = [b, a, a, a, b]αi for somei ∈ {2, . . . , r}, then letuiu

−αi
1 ❀ ui . In

this way we obtain a generating set{a, b,u1, . . . , ur }, such that[u1, a] = [b, a, a, a, b] and
〈u2, . . . , ur 〉 � CG(a).

If u2, . . . , ur centraliseu1, then (b) holds and we are done. We assume with
loss of generality that[u2, u1] = [b, a, a, a, b]. If [ui, u1] = [b, a, a, a, b]βi for some
i ∈ {3, . . . , r}, then letuiu

−βi
2 ❀ ui . In this way we obtain a generating set, such t

u2, . . . , ur centralisea, andu3, . . . , ur centraliseu1. Repeating this process, we constr
a generating set{a, b,u1, . . . , uk, . . . , ur }, such that

1. [u1, a] = [b, a, a, a, b];
2. u2, . . . , ur centralisea;
3. [ui+1, ui] = [b, a, a, a, b] for all i ∈ {1, . . . , k − 1};
4. [uk+1, uk] = 1;
5. ui+2, . . . , ur centraliseui for all i ∈ {1, . . . , k}.

Now if k is even then substituteau2u4 · · ·uk ❀ a. After this change property (a) holds.
k is odd then replaceu1u3 · · ·uk ❀ u1; in this case property (b) holds.

We continue with the second stage of the proof. Suppose that the generati
{a, b,u1, . . . , ur} is as in Lemma 4.2 and, in addition, property (a) holds. First assume
all theui centraliseb moduloγ5(G). If [ui, b] = [b, a, a, a, b]γi for somei ∈ {1, . . . , r} and
γi ∈ {0, . . . , p− 1}, then letui[b, a, a, a]−γi ❀ ui . ThenH = 〈a, b〉 andU = 〈u1, . . . , ur〉
satisfy the assertions of the theorem.

Suppose that some of theui do not centraliseb moduloγ5(G), and assume without los
of generality that[u1, b] = [b, a, a, a][b, a, a, a, b]γ1. Performu1[b, a, a, a]−γ1 ❀ u1 to
obtain[u1, b] = [b, a, a, a]. If [ui, b] ≡ [b, a, a, a]γi modγ5(G) with somei ∈ {2, . . . , r},
then substituteuiu

−γi
1 ❀ ui . After this there is someδi , such that 0� δi � p − 1 and

[ui, b] = [b, a, a, a, b]δi ; then replaceui[b, a, a, a]−δi ❀ ui . This way we obtain[u1, b] =
[b, a, a, a] and, moreover,〈u2, . . . , ur〉 � CG(b). If u2, . . . , ur centraliseu1, then choose
H = 〈a, b,u1〉 andU = 〈u2, u3, . . . , ur 〉 and we are done. Suppose that this is not the
and[u2, u1] = [b, a, a, a, b]. Then, as in the first part of the proof, select a generating
{a, b,u1, . . . , uk, . . . , ur}, such that the following additional properties hold:

1. [u1, b] = [b, a, a, a];
2. u2, . . . , ur centraliseb;
3. [ui+1, ui] = [b, a, a, a, b] for all i ∈ {1, . . . , k − 1};
4. [uk+1, uk] = 1;
5. ui+2, . . . , ur centraliseui for all i ∈ {1, . . . , k}.

If k is even then set

H = 〈a, b,u1u3 · · ·uk−1, u2u4 · · ·uk〉
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U = 〈u2, u3, . . . , uk−1, uk+1, . . . , ur 〉.

If k is odd then letH = 〈a, b,u1u3 · · ·uk〉 andU = 〈u2, u3, . . . , ur 〉. In both cases th
subgroupsH andU are as required.

In the case of property (b), we consider the groupG1 = 〈a, b,u2, . . . , ur 〉 and choose
subgroupsH1 andU1 according to the process described in the previous paragraph.
note thatH1 andU1 satisfies the prescribed conditions. MoreoverH1 can be generated b
at most four elements. ForG we can choose the subgroupsH = 〈H1, u1〉 andU =U1. ✷

The following example shows that the number “5” in Theorem 1.2 is the best pos
This construction can be generalised, and it is not difficult to see that similar exa
exist for allp.

Example 4.3. Consider the pro-5-groupG given by the pro-5-presentation

{
a, b,u1, u2, u3 | a5, b5, u5

1, u
5
2, u

5
3, [b, a, b], [b, a, a, a, a], [b, a, a, a, b][a,u1], [a,u2],

[a,u3], [b,u1], [b, a, a, a][b,u2], [b,u3], [u1, u2], [u1, u3],
[b, a, a, a, b][u2, u3]

}
.

Then, using the ANUp-Quotient Program [9,14], it is easy to see thatG is a finite 5-group
andγ5(G)=G′′ �= 1. Suppose thatG=HU is a factorisation ofG as in the theorem. The
U centralisesH , and in particular,U � CG(G

′). Using a computer algebra system, su
asGAP [6] or MAGMA [1], it is easy to compute thatCG(G

′) = 〈u1, u2, u3, [b, a, a, a]〉,
and that no subgroup ofG generated by less than 5 generators can be taken forH in
Theorem 1.2.

In Theorem 1.2 the subgroupU satisfies|U ′| � p. The non-abelianp-groups with this
property were classified by S.R. Blackburn [4]. Unfortunately, the isomorphism typesH

andU are not uniquely determined by the isomorphism type ofG. The following example
illustrates this fact.

Example 4.4. Letp � 5 and letG denote the pro-p-group given by the pro-p-presentation

{
a, b,u1, u2, u3 | ap, bp,up3

1 , u
p2

2 , u
p2

3 , [b, a, b], [b, a, a, a, a], [b, a, a, a, b][a,u1],
[a,u2], [b,u1], [b,u2], [u1, u2], [u3, a], [u3, b], [u3, u1],
[b, a, a, a, b][u3, u2]

}
.

ThenG has the obvious factorisationG=H1U1, whereH1 = 〈a, b,u1〉 andU1 = 〈u2, u3〉.
The groupG also admits a factorisationG = H2U2, whereH2 = 〈au3, b,u1〉 andU2 =
〈u1u

−1
2 , u3〉. It is easy to see thatH1 �∼=H2 andU1 �∼=U2.
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5. A characterisation of the derived subgroup

The following lemma was already known to Burnside. Its proof is an easy exercis
can also be found in Huppert [10, III.7.8].

Lemma 5.1. In a finitep-groupG, if Z(G′) is cyclic then so isG′.

Suppose thatG is a p-group for some oddp, such that|G′/G′′| = p3 andG′′ �= 1.
As |G′′| = p, the subgroupG′ has orderp4 and its derived subgroupG′′ is cyclic with
orderp. By the previous lemmaZ(G′) cannot be cyclic. The following result gives mo
information on the structure ofG′.

Lemma 5.2. The quotientG′/G′′ is elementary abelian.

Proof. Recall that Hall’s theorem implies thatγ6(G) = 1. Using Corollary 2.2, assum
thatG is generated by two elementsa andb which are chosen as in Lemma 4.1. Th
G′/G′′ is generated by the images of[b, a], [b, a, a] and[b, a, a, a]. Since the centre o
G′ is 〈[b, a, a, a],G′′〉, we must have[b, a, a, a]p = 1 by Lemma 5.1.

Suppose that[b, a]p �≡ 1 mod γ4(G). Then [b, a]pγ4(G) generates the quotie
γ3(G)/γ4(G) and in particular[[b, a]p, [b, a]] �= 1, which is clearly impossible. Suppo
now that[b, a]p �≡ 1 modγ5(G). Then

[[b, a]p, b] ≡ [b, a, b]p = 1 mod
(
N ′)pγp(N),

whereN = 〈[b, a], [b, a, b]〉. This yields[[b, a]p, b] = 1, which is a contradiction. Now
suppose that[b, a, a]p �≡ 1 modγ5(G). Then

[[b, a, a]p, b] ≡ [b, a, a, b]p = 1 mod
(
N ′)pγp(N),

whereN = 〈[b, a, a], [b, a, a, b]〉. Again, this leads to a contradiction.✷
Our last main result is a characterisation ofG′. For odd primes letXp3 andYp3 denote

the non-abelianp-groups of orderp3 and exponentp andp2, respectively. The symbo
Cp denotes the cyclic group of orderp.

Theorem 5.3. If p � 3 andG is a finitep-group, such that|G′/G′′| = p3 andG′′ �= 1,
thenG′ is isomorphic toXp3 ×Cp or to Yp3 ×Cp .

Proof. Recall that by Hall’s theorem|G′| = p4. Forp � 5 the list of groups with orderp4

can be found in Huppert [10, III.12.6]. Forp = 3 one can find this list as part ofGAP [6]
or MAGMA [1]. It is easy to see that the only groups which satisfy the conditions onG′ are
Xp3 ×Cp andYp3 ×Cp . ✷
Example 5.4. Let G be a group of maximal class of orderp6 for p � 5 with degree
of commutativity 0. Then|G′/G′′| = p3 and by Theorem 3.2 of Blackburn [2]G′ ∼=
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Xp3 × Cp . An example for such a group is the pro-p-group described by the pro-p-
presentation

G= {
a, b | ap, bp, [b, a, b], [b, a, a, a, a]}.

If p = 3 then the pro-3-group described by the pro-3-presentation

{
a, b | a9, b9, [a, b]3, [b, a, b], [b, a, a, a, a]}

containsX27 × C3 as derived subgroup. This can easily be checked using thep-Quotient
Program [9,14].

Example 5.5. If p � 3 andG denotes the pro-p-group given by the pro-p-presentation

{
a, b | ap2

, bp
2
, [b, a]p = [b, a, a, a, b], [b, a, b], [b, a, a, a, a]},

thenG′ ∼= Yp3 ×Cp .

Corollary 5.6. If p � 5 andG is a finitep-group, such thatG′ ∼= Xp3 × Cp , thenGp �
Z(G). If p � 3 andG is a finitep-group, such thatG′ ∼= Yp3 ×Cp , thenGp2 � Z(G).

Proof. We only prove the first statement; the proof of the second is very similar.
enough to prove thatup ∈ Z(G) for all u ∈G. So letu ∈G and notice that[v,u] ∈G′ for
all v ∈G. By the collection formula

[v,up] ≡ [v,u]p = 1 mod(N ′)pγp(N) whereN = 〈
u, [u,v]〉.

If p � 5 then(N ′)pγp(N)= 1 therefore[v,up] = 1. ✷
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