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Abstract

For odd primes we prove some structure theorems for fimiggoupsG, such thatG” # 1 and
|G’/G"| = p3. Building on results of Blackburn and Hall, it is shown thaf(G) is a maximal
subgroup of7’, the groupG has a central decomposition into two simpler subgroups, and, moreover,
G’ has one of two isomorphism types.
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1. Introduction

It is well known that in a finitep-groupG the conditionG” # 1 implies thaiG'/G”| >
p3; see, for example, Huppert [10, 111.7.10]. In this article we prove a number of results
about groups in which equality holds; that is, we assumed@fag 1 and|G’/G”| = p°.
Such groups have already been investigated by, among others, N. Blackburn and P. Hall.
Blackburn [3] proved that the conditiat’ / G”| = p® implies thatG” is abelian generated
by two elements and it is nearly homocyclic. In the same article he also published a result,
which he attributed to Hall, that for odd primes the same condition implieg ¢Hat< p.
Here we mostly considgr-groups for odgp, and our main results are concerned with such
groups.
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Let G be a finitep-group andy; (G) theith term of the lower central series, so that
v1(G) = G, y2(G) = G’, etc. If G” # 1 then we have the following chain of normal
subgroups:

G > G =y2(G) > y3(G) > y4(G) > G" > 1. 1)

If, in addition, we assume thatG’/G”| = p®, then it easily follows that the order of
G'/y3(G) is at mostp?. The result of this simple argument is improved by the following
theorem.

Theorem 1.1. Let p > 3and G be a finitep-group, such thatG’/G”| = p® andG” # 1.
Then|G'/y3(G)| = p andG” = y5(G).

The proof of this result is given in Section 3. Our second theorem, whose proof is in
Section 4, is thaG can be written as a central product of two simpler subgroups.

Theorem 1.2. Let p > 3and G be a finitep-group, such thaiG’/G”| = p® andG” # 1.
ThenG can be factorised a6 = HU, where

(i) H is a normal subgroup of; generated by at mo&tgenerators
(i) vi(H)=yi(G)foralli>2;
(iii) U is a normal subgroup of7, such thaty’ < y5(G);
(iv) H andU centralise each other.

An example is given after the proof of this theorem to show that the number “5” is, in
general, best possible, and that there are, in some cases, other central decompositions of
in which the subgroups can have different isomorphism types.

Our proofs are based on commutator calculus. To simplify notation, we write long
commutators according to the left-normed convention; for example, c] = [[a, b], c].

We use the well-known commutator identities that can be found in most group theory
textbooks (see, for instance, Huppert [10, 111.1.2-111.1.3]). In addition to these, we need the
collection formula, which is proved as Lemma VIIl.1.1 by Huppert and Blackburn [11].
We mainly use this result in the simplest case when it can be stated as

[x7.y] =[x, y1” mod (N')’y,(N) whereN = (x,[x, y]).

The Hall-Witt identity will occur in a lesser known form which can be found in Magnus,
Karrass and Solitar [13] on p. 290:

[x, v, [z, x, ¥*] [y, 2 x7] = [, ¥, 2lz, x1][z, x, ¥y, 21][ v, 2, x[x, 1] = 1.

We often manipulate generating sets of groups. In order to avoid cumbersome
repetitions, we introduce a piece of notation. kete a groupg a symbol referring to
a group element, andan element irG. After the occurrence of the expression- g, the
nameg will refer to the elemenk. For example, leG be the cyclic group of order two
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and letg denote its non-identity element. If we perform the replacengént g, then the
symbolg will refer to the identity element of;.

One can naturally ask whether it is possible for a fixed prime to give a classification
of groups which satisfy the conditions of the previous two theorems. It is conceivable
that Blackburn’s [2] description of groups of maximal class with ord®and degree of
commutativity O is a good starting point. However, increasing the number of generators
and allowing the abelian factor to have exponent higher ghkad to complications which
could not be resolved within the research presented here.

Our results can also be viewed in a wider context. It was first shown by Hall [8,
Theorem 2.57] that the conditions> 1 andG+D £ 1 imply that|G® /GU+D| > pZ+1,
and|G| > p? +i+1 (see also Huppert [10, 111.7.10 and 111.7.11]). The lower bound for
the order ofG has recently been improved by Mann [12] and the author [15]. Both
of these improvements are, however, minor, and the order of the smaligiup G
such thatG@*D = 1 is still unknown; the smallest known examples were constructed by
Evans-Riley, Newman, and the author [5].4f> 3 then we also do not know how sharp
Hall's lower bound is foiG® /G @D |. As the example of the Sylow 2-subgroup of the
symmetric group with degreé® shows, this result is best possible fore= 2; it is not
known otherwise. Our research was originally motivated by these questions, and it is hoped
that a more detailed understanding of groups with a small second derived quotient will give
us a hint of the solution to some of the above problems. Some partial results can be found
in the author’s PhD thesis [15].

Our results are inspired by Lie algebra calculations, and it is possible to prove some of
them using the Lie ring method. In fact, Theorem 1.1 can be proved by first verifying the
corresponding result for Lie algebras and then using the Lie ring associated with the lower
central series. This approach would lead to some interesting new results for Lie algebras,
which are beyond the scope of the present article.

The paper is structured as follows. In Section 2 we prove a lemma which is a
generalisation of Blackburn’s Theorem 1.3 [2]. A consequence of this result is that we
can often restrict our interest to groups which are generated by two or three elements. In
Sections 3 and 4 we prove Theorems 1.1 and 1.2, respectively. In Section 5 we characterise
the commutator subgroup ¢of, and show that it has one of two isomorphism types.

2. A general lemma and some consequences

We have seen in the introduction that in a finitgroupG, the conditionsG’/ G”| = p®
andG” # 1 imply thatG’/y3(G) has order at mogt?. The aim of this section is to show
that G has a subgroup/ with a small generating set, such that, apart from the first term,
the lower central series aff coincides with the lower central series 6f This result
generalises Blackburn’s Theorem 1.3 [2] and Slattery’s Lemma 2.1 [16].

Lemma 2.1. Let G be a nilpotent group and a subgroup of5, such thatG’' = H'y3(G).
Theny; (G) = y;(H) for all i > 2. Moreover,H is a normal subgroup of.
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Proof. First we prove by induction on that y;(G) = y;(H)y;+1(G) for all i > 2. By
the conditions of the lemma, this is true fore= 2. Suppose that our claim holds for
somei — 1 > 2, and let us show that it holds far as well. As it is obvious that
vi(H)y;+1(G) < y:(G), we only have to prove that, (G) < y;(H)yi+1(G). Using the
induction hypothesis and I11.1.10(a) of Huppert [10], we compute

vi(G) = [Vi—l(G), G] = [Vi—l(H)Vi(G), G] = [Vi—l(H), G][Vi(G), G]
= [yi-1(H). Glyi+1(G).
Therefore it is enough to prove that;,_1(H), G] < vi(H)y;+1(G). First we note that

¥i(G) = vi(H)yi+1(G) > vi+1(G), and hence; (H)y;1+1(G) is a normal subgroup af.
Using the induction hypothesis we obtain

[G.yi—2(H), H] < [yi-1(G), H] = [yi—1(H)¥:(G), H]
= [yi-1(H), H][7:(G), H] < yi(H)yi1+1(G)
and
[H, G, J/ifZ(H)] < [G’, Vifz(H)] = [H’V3(G), J/i72(H)]
= [H', yi—2(H)][v3(G), vi—2(H)] < yi (H)yi+1(G).
Using the Three Subgroups Lemma (see [10, 111.1.10(b)]), we obtain
[vi-1(H), G] =[yi—2(H), H, G| < yi(H)yi+1(G),
and hence our statement is correct.
Let us prove thay; (G) = y;(H) for all i > 2. If the nilpotency class of; is ¢, that is

Ye+1(G) = 1, theny,4+1(G) = ye41(H) = 1. If y;11(G) = yi+1(H) for somei, such that
3<i+1<c+1,then, by the result of the previous paragraph,

vi(G) =yi(H)Yi+1(G) = yi(H)yi+1(H) = y; (H).

Using induction, we obtaiw; (G) = y;(H) for all i > 2. The normality ofH is an easy
consequence of the factth@t=H' < H. O

Corollary 2.2. Let G be a finitep-group.

(i) If G'/y3(G) is cyclic of orderp, thenG has a2-generator normal subgrouf, such
thaty;(G) = y;(H) forall i > 2.

(i) If G'/y3(G) is elementary abelian of ordep?, then G has a3-generator normal
subgroupH, such thaty; (G) = y;(H) forall i > 2.
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Proof. (i) Suppose that’/y3(G) = ([a, b]y3(G)) for somea, b € G, and setH = (a, b).
As we haveH'y3(G) = G/, Lemma 2.1 implies tha¥ is a normal subgroup and(G) =
y;(H) foralli > 2.

(i) Suppose thatG’/y3(G) is elementary abelian of ordes?, and suppose that
G'/v3(G) = ([a, bly3(G), [c, d]y3(G)) for somea, b, ¢, d € G. Select a subgrouff in G
as follows. If[a, c], [a, d], [b, c], [b, d] are all iny3(G) then letH = (a, bc, d). Otherwise
suppose without loss of generality that c] = [«, b]*[c, d1? modys(G) for somex andg,
such that 0 o, 8 < p — 1, and at least one af and g8 is non-zero. Ifa # 0, then
setH = (a, c,d), otherwise sefd = (a, b, ¢). It is easy to see thall’y3(G) = G’, and
S0, using Lemma 2.1, we obtain thdtis a normal subgroup angd(G) = y; (H) for all
i=z2. O

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1.
Suppose first tha6 is a finite p-group, such thatG’/G”| = p® and G” # 1. If the
quotientG’/y3(G) is cyclic, then Lemma 2.1 of Blackburn [2] implies that

G" =[G, G =[G, y3(G)] < y5(G), )
and there is a chain
G > G'=y2(G) > y3(G) > y4(G) > y5(G) > G" > 1 3)

of normal subgroups. In particular, [it7'/y3(G)| = p, then (2) and (3) imply thaG” =
y5(G); similarly if |G’/y3(G)| = p?, then (2) implies thatG’/y3(G) must be elementary
abelian.

Now assume thallG’/y3(G)| = p?; we show that this can only happen when= 2.
By Corollary 2.2, there is a 3-generator subgrédpf G, such that; (G) = y; (H) for all
i > 2. After replacings by H, we may assume without loss of generality that (a, b, ¢)
for somea, b, c € G. Moreover, from (1) it follows thatG” = y4(G), and hence we may
suppose that has nilpotency class 4. A8’ /y3(G) is elementary abelian of ordef, we
have that there are sorme 8, andy not all zero, suchthatf o, 8,y < p —1 and

[a, b1%[a, c1P[b, c]” =1 mody3(G).

If « =8 =0, then[b,c]” =1 modys3(G), that is[b, c] € y3(G). If « =0 andpg # 0,

then we obtair{a?b?, c] = 1 mody3(G). If we replacea?b” ~ a, then we obtain that

in the new generating sét, c] € y3(G). Similarly, if « #£ 0 andg = 0, then we replace
a~%c? ~ a, and obtain that after the substitutifm, b] € y3(G). If a # 0, andg # 0,

then we replace?/*b?/* ~ a and bcP/® ~» b. Then it is easy to see that in the new
generating sefa, b] € y3(G). After possibly reordering the generators, we may suppose
without loss of generality tha; is generated by three elementsh, andc, such that
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G'/v3(G) = {([a, b]y3(G), [a, c]y3(G)), and moreovefb, c] € y3(G). Note that in this
cas€la, b, c] = [a, ¢, b)) mody4(G) also holds. Thei;” # 1 andys(G) = 1 imply that

[[a, bl, [a, c]] =[a,b,a,clla,b,c,al t#1
and
[[a, cl, [a, b]] =la,c,a,blla,c,b,al t#1.

If [a,b,a] € ya(G), then [a,b,a,c] € y5(G), and hencela, b,a,c] = 1. Similarly
[a, b, c] € y4(G), implies that[a, b, c,a] = 1; therefore at least one of the elements
[a,b,a]l and[a, b, c] does not lie iny4(G). Similarly, at least one df, ¢, a] andla, b, c]
must also lie outsides(G).

First we assume thdt:, b, c] € y4(G). In this case we must haVe, c, a] ¢ y4(G)
and [a, b, a] ¢ v4(G). As y3(G)/ya(G) is cyclic of order p, there is somex, such
that 0< o < p — 1 andla, bc*, a] = 1 mod y4(G), and we carry out the replacement
bc* ~ b. In the new generating sk, c] € y3(G) still holds, and, in addition, we obtain
la, b, a] € ya(G).

So without loss of generality we may assume thatb, a] € y4(G) and [a, b, c] ¢
v4(G). In this casela, b, c,a] = [a,c,b,a] # 1, in other wordsa ¢ Cg(y3(G)). On
the other handja, b, b, a] = [a, b, a, b], and hencda, b, b,a]l = 1. If [a, b, b] ¢ y4(G),
then y3(G) = {[a, b, b], y4(G)), and soa € Cg(y3(G)), which is impossible; therefore
la, b, b] € ya(G). If [a,c,a] ¢ ya(G) then there is some # 0, such thafa, ¢, ab*] €
y4(G); in this case we letb” ~» a and obtaina, ¢, a] € y4(G). In the new generating set
[b, c] € y3(G) and[a, b, al, [a, b, b] € y4(G) still hold. Then

1= [[a,b],a,c][[a,c], [a, b]][c, [a, b],a]
= la,b,a,c]la,c,a,b]la,b,c, a]fl[a,b, c,a]flz [a,b,c,a]fz,

thatis,[a, b, ¢, a]?= 1, and hence = 2. This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

In the previous section we proved Theorem 1.1, and hence we know that in a
group G the conditions of Theorem 1.2 imply th&6’/y3(G)| = p. Thus, according
to Corollary 2.2,G has a 2-generator subgroup, such that for alli > 2 we have
yi(G) = y;(H). We use this subgroup to obtain the desired factorisation. First we show
that we can choose a generating set which satisfies some extra conditions.

Lemma4.1. LetG be a2-generator, finitep-group, such thatG’/G”| = p3, |G’ /y3(G)| =
p, andG” # 1. Then generatorg andb of G can be chosen, such that the following hold

() v2(G)/y3(G) = (b, alys(G));
(i) y3(G)/ya(G) =([b,a,alys(G)) and[b,a,b] € ya(G);
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(i) y4(G)/ys(G) =([b,a,a,alys(G)) and[b, a, a, b] € y5(G);
(iv) y5(G)/ve(G) =(lb,a,a,a,blys(G)) and[b,a,a,a,a] € ys(G).

Proof. We may suppose without loss of generality titathas class 5. As noticed in
the introduction, our conditions imply that the facto®/y3(G), y3(G)/y4(G), and
v4(G)/ys(G) are cyclic with orderp. Using the argument presented by Blackburn [2]
in Lemma 2.9, we can choose the generating&gh}, so that properties (i)—(iii) hold. It
follows from (2) and (3) thatG” = y5(G), andG” = ([[b, a, a], [b, a]]). As the element
[[b,a, al, [, a]]is central and has order, we have|ys(G)| = p, and using Blackburn’s
argument on p. 89, the sét, b} can be chosen so that the additional property (iv) also
holds. O

Lemma 4.2. Let p > 3 and G be a finitep-group, such thatG’/G”| = p3 and G” # 1.
ThenG has a minimal generating sét, b, u1, us, ..., u,}, such that

(i) H = {a,b)is anormal subgroup of;, such that; (H) = y;(G) for all i > 2; further,
a andb are as in Lemmd.1;
(ii) [a,u;] € ys(G) forall u;;
(>iii) [b,u;] € ya(G) for all u;;
(iv) [ui,u;leys(G) forall u; andu;.

In particular, u1, ..., u, € Cg(G").

Proof. First recall Hall's theorem thatG”| = p, and so (3) implies that has class 5.
Selecta, b € G, such that the subgrou = (a, b) and its generators are as in Lemma4.1.
It is easy to see that, b are linearly independent modulo the Frattini subgroupGof
Therefore they can be viewed as elements of a minimal generatifg,getu1, ..., u,}.
Now suppose that for each e {1,...,r}, [u;,al = [b,al% and [u;,b] = [b,alPi
moduloys(G) with someq;, B € {0, ..., p — 1}. Then[u;p~%aPi, b] € y3(G) and also
[uib~%aPi, a] € y3(G). If we perform the replacementb%afi ~ u;, then it is easy to
see thata, b, u1, ..., u,} is also a minimal generating set férand

la,uil, [b,uil € y3(G) forallie(l,...,r}.
Now suppose that for alle {1, ..., r} we have
(i, al=[b,a,al%[b,a,a,all modys(G)
for someq;, B; € {0, ..., p — 1}. Then computing modulgs(G) we obtain
[uilb,al™[b,a,alFi a]
= [uilb,al™, a][ui[b,al™ a, [b,a,a]fﬂ"][[b,a,a]fﬁ’,a]

= [u;. al[ui.a.[b.al™][[b.a™  a][[b.a.a] ™" a]
= [u;,allb,a,al”%[b,a,a,a] P =1
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If we replaceu;[b, a]l~%[b,a,al P ~ u;, then[u;,a] € ys(G). Since the images of the
u; over the Frattini subgroup did not change, the{geb, u1, ..., u,} is still a minimal
generating system fai. We show that this generating set satisfies the properties required
by the lemma.

We claim thatu;, b] € ya(G) forall i € {1, ..., r}. To prove this we observe that

1=[b,a, uilui, bl][ui, b, ala, uil][a, ui, blb, al] = [b. a, [u;i, b)](b, a, uillui, b, al,
and thus
b, a,u;] = [ui,b,a) ™ Y[b, a, [u;, 1] * = [1b, uil™, a] " [[wi, b, [b, al]
= [b,u;, al[[ui, b], [b,al]. (4)
In particular,[b, a, u;] € y4(G). Now consider
1=[[b.al,a,ui[ui,[b,al]][ui, [b.al, ala, uil][a, u;i, [b, allb, a,al]|=[b,a, a, u;].

We can obtain similarlyb, a, a, a, u;] = 1. As[u;, b] € y3(G), [u;, b] = [b, a, a]®* modulo
y4(G) for somesg; € {0, ..., p — 1}. The Hall-Witt identity implies that

1= [[b, al, u;, b[b, [b, a]]] [b, [b, al, uilu;, b]][u,', b,[b,a]llb,a, ui]]
[[b,al, ui, b][[ui. b), [b, al].

Using (4) we getb,a, u;, b]=[b,a,a,a,b]%. Moreover,
[[ui,bl.[b,al]=[[b.a,al® [b,al]=b,a.a,a,b]"",

and thugb, a, a, a, b]~%i = 1, from which it follows that; = 0, that is[u;, b] € y4(G).

We now prove thai1, ..., u, € Cg(G’). We have already seen that a, al, [b, a, a, a]
are centralised by the, so it suffices to prove thgb, a, u;] =1foralli € {1,...,r}. This
is clear because

1= [b, a,ulu;, b]][u,', b,ala, ui]][a, u;, blb, a]] =[b,a,u].

It remains to show tha;, u;] lies in ys(G) for all i, j € {1,...,r}. It easily follows
using the Hall-Witt identity thafu;, u;,al = 1 and[u;, u;, b] = 1, thereforelu;, u;] €
Z(H)N H' = y5(H) = y5(G). The proof is complete. O

Proof of Theorem 1.2. Choose a generating s@t, b, u1,u»,...,u,} for G as in the
previous lemma. In the first stage of the proof we show that this generating set can be
modified so that, in addition to the properties required by Lemma 4.2, one of the following
holds:

(@) u1,...,ur €Cg(a); or
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(b) uz,...,ur € Cg({a, u)).

If ug,...,ur € Cg(a) then (a) holds and we are done. Suppose that there is at least one
u; which does not centralise. Without loss of generality we may assume that, a] =
[b,a,a,a,bl.If [uj,al=1[b,a,a,a,b]¥ forsomei € {2,...,r}, then Ietu,-uIai ~u;.In
this way we obtain a generating §et b, u1, ..., u,}, such thafui, a]l = [b, a, a, a, b] and
(uz,...,ur) <Cq(a).

If us,...,u, centraliseui, then (b) holds and we are done. We assume without
loss of generality thafuo, u1] = [b,a,a,a,bl. f [ui,u1]l = [b,a,a,a,b]P for some
i €{3,...,r}, then Ietuiu;ﬂ" ~ u;. In this way we obtain a generating set, such that
uy, ..., u, centralisez, andus, ..., u, centralises;. Repeating this process, we construct
a generating sdu, b, u1, ..., ug, ..., u,}, such that

. [ur,al=1b,a,a,a,b],

. Uz, ..., u, centralises;

. [#iv1,uil=1[b,a,a,a,blforalli e{1,...,k—1};
gy, ugl = 15

. Uiy2,...,u, centraliseu; foralli € {1,...,k}.

G WN P

Now if k is even then substituteusu, - - - ux ~ a. After this change property (a) holds. If
k is odd then replacejus - - - ux ~ u1; in this case property (b) holds.

We continue with the second stage of the proof. Suppose that the generating set
{a,b,u1,...,u,}isasin Lemma 4.2 and, in addition, property (a) holds. First assume that
all theu; centraliseh moduloys(G). If [u;, b]=[b, a, a, a, b]" forsome € {1,...,r}and
y; €1{0,..., p—1},thenletu;[b,a,a,al™ ~ u;. ThenH = (a, b) andU = (us, ..., u,)
satisfy the assertions of the theorem.

Suppose that some of thg do not centralisé moduloys(G), and assume without loss
of generality thafu1, b] = [b, a, a, al[b, a, a, a, b]"1. Performus[b, a,a,a] " ~ ujy to
obtain[u1,b]=[b,a,a,al. If [u;,b]=[b, a, a,al’ modys(G) with somei € {2,...,r},
then substitutmiuz”" ~» u;. After this there is somé;, such that 6< §; < p — 1 and
[ui,bl=b,a,a,a,b]’; thenreplace;[b, a,a,a] % ~ u;. This way we obtaitiu1, b] =
[b,a,a,a) and, moreoveKuo, ..., u,) < Cg(b). If uo, ..., u, centraliseu1, then choose
H = {a,b,u1) andU = (u2, us, ..., u,) and we are done. Suppose that this is not the case
and(up, u1] = [b,a,a,a, b]. Then, as in the first part of the proof, select a generating set
{a,b,us, ..., ug,...,u}, such that the following additional properties hold:

. [ur,bl=1b,a,a,al;

. Uz, ..., u, centraliseb;

. [#iv1,uil=1[b,a,a,a,blforalli e{1,...,k—1};
gy, ugl = 15

. uiy2,...,u, centraliseu; foralli e {1,...,k}.

G wWN PP

If k is even then set

H=(a,b,uiuz---up_1,ugus---uy)
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and
U= (uz,uz,...,ux—1,Ups1,...,Ur).

If kis odd then letH = (a,b,uiuz---u;) andU = (u2,us, ..., u;). In both cases the
subgroupsd andU are as required.

In the case of property (b), we consider the gr@up= (a, b, u», ..., u,) and choose
subgroupg{; andUz according to the process described in the previous paragraph. Then
note thatH; andU; satisfies the prescribed conditions. Moreokigrcan be generated by
at most four elements. F@f we can choose the subgrouis= (H1, u1) andU = Ui. O

The following example shows that the number “5” in Theorem 1.2 is the best possible.
This construction can be generalised, and it is not difficult to see that similar examples
exist for all p.

Example 4.3. Consider the pro-5-grou@ given by the pro-5-presentation

la,b,us,uz,uz|a® b u3, u3,u3,[b,a,bl,[b,a,a,a,al,[b.a,a,a,blla,uil, [a, uz],

la,u3), [b,uil, [b,a,a,allb, uzl, [b, usl, [u1, u2l, [u1, usl,
[b,a,a,a,blluz, usl}.

Then, using the ANUp-Quotient Program [9,14], it is easy to see thais a finite 5-group
andys(G) = G” # 1. Suppose that = HU is a factorisation o€ as in the theorem. Then
U centralisesH, and in particularl/ < Cg(G’). Using a computer algebra system, such
asGAP [6] or MAGMA [1], it is easy to compute tha&ts(G') = (u1, uz, us, [b, a, a, al),
and that no subgroup aff generated by less than 5 generators can be take#/ for
Theorem 1.2.

In Theorem 1.2 the subgroup satisfiegU’| < p. The non-abeliap-groups with this
property were classified by S.R. Blackburn [4]. Unfortunately, the isomorphism tygés of
andU are not uniquely determined by the isomorphism typé& of he following example
illustrates this fact.

Example4.4.Let p > 5 and letG denote the prgs-group given by the prg»-presentation

3 2 2
la.b,us,uz, uzla? bP uf ,uy ,uly [b,a,bl,[b,a,a,a,allb,a a a, blla,uil,
la,u2l, [b,u1l, [b, uzl, [u1, uzl, [us, al, [us, b, [us, uil,
[b.a,a,a,bl[us, uz]}.
ThenG has the obvious factorisati@h= H1U1, whereH1 = (a, b, u1) andU1 = (u2, u3).

The groupG also admits a factorisatioG = HoU2, where H» = (aus, b, u1) andUs =
(uauyt, uz). Itis easy to see thaly & Ho andUs & Us.
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5. A characterisation of the derived subgroup

The following lemma was already known to Burnside. Its proof is an easy exercise, and
can also be found in Huppert [10, 111.7.8].

Lemma5.1. In a finite p-group G, if Z(G’) is cyclic then so i<5’.

Suppose thaG is a p-group for some odg, such thatlG’/G”| = p® andG” # 1.
As |G"| = p, the subgrougs’ has orderp? and its derived subgrou@” is cyclic with
order p. By the previous lemm& (G’) cannot be cyclic. The following result gives more
information on the structure @¥’.

Lemma5.2. The quotientG’/G” is elementary abelian.

Proof. Recall that Hall's theorem implies thgt(G) = 1. Using Corollary 2.2, assume
that G is generated by two elementsand » which are chosen as in Lemma 4.1. Then
G'/G" is generated by the images [@f, a], [, a, a] and[b, a, a, a]. Since the centre of
G'is{([b,a,a,al, G"), we must havéb, a,a,a]” =1 by Lemma5.1.

Suppose thatb,al” £ 1 mod y4(G). Then [b, a]l’y4(G) generates the quotient
y3(G)/ya(G) and in particulaf[b, a]?, [b, a]] # 1, which is clearly impossible. Suppose
now that[b, a]? # 1 modys(G). Then

[(b,al?,b] =[b,a,b]” =1 mod(N')"y,(N),

whereN = ([b, a], [b, a, b]). This yields[[b, a]?, b] = 1, which is a contradiction. Now
suppose thdb, a, a]? # 1 modys(G). Then

[[b,a,al?,b]=1[b,a,a,b]” =1 mod(N')"y,(N),
whereN = ([b, a, a], [b, a, a, b]). Again, this leads to a contradictionO

Our last main result is a characterisation®t For odd primes leX s andY 3 denote

the non-abeliarp-groups of orden? and exponenp and p?, respectively. The symbol
C, denotes the cyclic group of ordgr

Theorem 5.3. If p >3 and G is a finite p-group, such thatG’/G”| = p% and G” # 1,
thenG’ is isomorphic taX ,3 x Cp, orto ¥,;3 x Cp.

Proof. Recall that by Hall’s theorenfG’| = p*. For p > 5 the list of groups with ordep*
can be found in Huppert [10, 111.12.6]. Fer= 3 one can find this list as part GAP [6]
or MAGMA [1]. It is easy to see that the only groups which satisfy the conditions’ are
Xps x Cp andes xCp. O

Example 5.4. Let G be a group of maximal class of ordeP for p > 5 with degree
of commutativity 0. ThenG’/G”| = p® and by Theorem 3.2 of Blackburn [2}’ =
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X ,3 x Cp. An example for such a group is the ppegroup described by the prp-
presentation

G={a,b|a’, b?, [b,a,b], [b,a,a,a,al}.
If p =3 then the pro-3-group described by the pro-3-presentation
la.b1a® b°, [a,b13 [b,a,bl, [b,a,a,a,al)

containsX»7 x C3 as derived subgroup. This can easily be checked using{Qeotient
Program [9,14].

Example5.5. If p > 3 andG denotes the prg—-group given by the prg>-presentation

{a.bla”, b7, [b,al’ =[b,a,a,a,bl, [b,a,bl, [b,a,a,a,al),
thenG' =Y 3 x C.

Coroallary 5.6. If p > 5 andG is a finite p-group, such thaG’ = X3 x Cp, thenG? <
Z(G). If p >3 andG is a finite p-group, such thaG’ = Y,3xCp, thenG?” < Z(G).

Proof. We only prove the first statement; the proof of the second is very similar. It is
enough to prove that? € Z(G) for all u € G. So letu € G and notice thafv, u] € G’ for
all v € G. By the collection formula

[v, u”]=[v,u]” =1 mod(N")Py,(N) whereN = (u, [u, v]).

If p>5then(N)?y,(N) = 1therefordv,u”]1=1. O

Acknowledgment

Much of the research presented in this paper was carried out while | was a PhD student
at The Australian National University in Canberra. | am grateful to my supervisor, Mike
Newman, for his many suggestions; and to Cheryl Praeger and Eamonn O’Brien for their
helpful comments on a draft.

References

[1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24
(1997) 235-265, doi:10.1006/jsc0.1996.0125.

[2] N. Blackburn, On a special class pfgroups, Acta Math. 100 (1958) 45-92.

[3] N. Blackburn, The derived group of a 2-group, Math. Proc. Cambridge Philos. Soc. 101 (1987) 193-196.

[4] S.R. Blackburn, Groups of prime power order with derived subgroup of prime order, J. Algebra 219 (1999)
625-657, doi:10.1006/jabr.1998.7909.



C. Schneider / Journal of Algebra 266 (2003) 539-551 551

[5] S. Evans-Riley, M.F. Newman, C. Schneider, On the soluble length of groups with prime-power order, Bull.
Austral. Math. Soc. 59 (1999) 343-346.
[6] The GAP Group, GAP—Groups, Algorithms, and Programming, Version 4.2, Aachen, St. Andrews, 2000,
http://www.gap-system.org.
[7] K.W. Gruenberg, J.E. Roseblade (Eds.), The Collected Works of Philip Hall, Clarendon Press, Oxford, 1988.
[8] P. Hall, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc. (2) 36 (1934)
29-95, or collected works [7].
[9] G. Havas, M.F. Newman, E.A. O’'Brien, AN-quotient program, Version 1.4, Available from ftpmaths.
anu.edu.au/pub/algebra/PQ, or as pasAP [6] and MAGMA [1], 1996.
[10] B. Huppert, Endliche Gruppen |, Springer-Verlag, Berlin, 1967.
[11] B. Huppert, N. Blackburn, Finite Groups I, Springer-Verlag, Berlin, 1982.
[12] A. Mann, The derived length gf-groups, J. Algebra 224 (2000) 263-267, doi:10.1006/jabr.1998.8045.
[13] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of
Generators and Relations, Interscience Publishers, New York, 1966.
[14] M.F. Newman, E.A. O’'Brien, Application of computers to questions like those of Burnside I, Internat. J.
Algebra Comput. 6 (1996) 593-605.
[15] C. Schneider, Some results on the derived series of fiiggoups, PhD thesis, The Australian National
University, Canberra, 2000.
[16] M.C. Slattery, Character degrees and nilpotence clagsgroups, J. Austral. Math. Soc. (Ser. A) 57 (1994)
76-80.



