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Abstract 

Liem, V.T. and GA. Venema, Characterization of knot complements in the 4-sphere, Topology 
and its Applications 42 (1991) 231-245. 

Knot complements in S4 are characterized as follows: A connected open set W c S4 is homeo- 
morphic to the complement of some locally flat 2-sphere in S4 if and only if H,( W) is infinite 
cyclic, W has one end, and the fundamental group of that end is infinite cyclic. Applications 
include a characterization of weakly fiat 2-spheres in S4 and a complement theorem for 2-spheres 
in S4. 
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Introduction 

In this paper we characterize knot complaments in S4. Our main theorem is the 
following. 

Let W be a connected open subset of S4. Then W = S4 - K for some 

locally flat 2-sphere K in S4 if and only if 
(0.1.1) H,( W) %!, and 

(0.1.2) W has one end E with V,(E) stable and n,(e) %Z. 

A locally flat 2-sphere in S4 can, of course, be globally knotted, but homology 
does not detect knotting and so the homology of the complement of any locally flat 
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2-sphere in S4 will be the same as that of the standard S2 in S4. In addition, a 
locally flat Zsphere in S4 always has a product neighborhood, and so the complement 
will have a stable fundamental group at infinity and the group will be isomorphic 
to B. Thus the two conditions in Theorem 0.1 are easily seen to be necessary. 

A similar theorem for open subsets of S”, n 3 6, was proved by Daverman [3] 
with later improvements by Liem [13]. The theorems of Daverman and Liem are 
also valid in dimension five since it is possible to extend their techniques to dimension 
five using the machinery of [lo]. The theorem in dimension four is more striking 
than the one in high dimensions (compare Theorem 0.1 with [3, Theorem 4)) because 
it turns out that some of the conditions which must be included as hypotheses in 
high dimensions are automatically satisfied in dimension four. For example, it is 
not necessary for us to assume that W has the homotopy type of a finite complex, 
but instead we prove that this follows from hypotheses (0.1 .l) and (0.1.2). We can 
similarly dispense with higher homotopy conditions on E and higher homology 
conditions on W. 

The situation in dimension three is similar to that in dimension four. In fact, the 
paper of Daverman [2] implicitly contains a proof ol^ the 3-dimensional case of 
Theorem 0.1. 

Our theorem can be viewed as asserting that it is possible to add a boundary to 
W in the sense of Siebenmann’s thesis [ 181. Guilbault [ 1 l] has proved that this can 
be done in other special cases as well; in particular, his theorem covers the case in 
which W has the homotopy type of S’. At present it is not known whether the full 
generalization of Siebenmann’s thesis holds in dimension four. 

As an application of Theorem 0.1, we give a homotopy characterization of those 
2-spheres C c S4 having the property that S4- C = S4- K for some locally flat 
2-sphere K c S4. As in the high dimensional case [3,13], the characterization is 
stated in terms of the global I-alg property. 

Definition. A compact set X embedded in a manifold M is said to be globally 1 -aZg 
if for every neighborhood U of X there exists a neighborhood Y of X in U such 
that each loop in V-X which is null-homologous in V- X is null-homotopic in 
U -X. (The “alg” stands for “Abelian local groups”.) 

Corollary 0.2. Let C c S4 be a topologically embedded 2-sphere. Then S4 - E = S4 - K 
for some locally jlat 2-sphere K c S4 if and only if C is globally 1 -alg. 

Remark 0.3. It should be noted that a 2-sphere which satisfies the global I-alg 
property need not be locally flat; examples are given in [ 11,4]. A local version of 
the I-alg property does imply local flatness for 2-spheres topologically embedded 
in a 4-manifold [7, Theorem lo]. 

As a second application of Theorem 0.1 we prove the following complement 
theorem for subsets of S4. A complemewt theorem is one which gives conditions 
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under which compacta with the same shape have homeomorphic complements and 
conversely. A comparable theorem for codimension two spheres in S”, n a 5, is 
proved in [ 131. The notation Sh(X) = Sh( Y) means that X and Y have the same 
shape. 

Theorem 0.4. Let X be a compact subset of S4 which is globally 1 -alg. Then S4 - X = 
S4- K for some locally flat 2-sphere K in S4 if and only if Sh(X) = Sh(S’). 

Suppose K is a locally flat 2-sphere in S4. It is a well-known folklore result that 
(Milnor duality [ i6] implies that) if v,( S4- K) =P, then S4- K has the homotopy 
type of S’. (Such a result certainly does not hold for codimension two spheres in 
S”, n 2 5.) In the course of proving Theorem 0.1, we prove the following stronger 
version of the folklore theorem which may be of independent Interest. 

Theorem 0.5. Let W be an open subset of S4 which has one end E. If v,( W) = B and 
q(e) =Z, then W has the homotopy type of S’. 

Corollary 0.6. If 2 c S4 is a topologically embedded 2-sphere such that C is globally 
1-alg and ?rI(S4- 2) =B, then S4- C has the homotopy type of S’. 

Remark 0.7. The hypothesis that C be globally I-alg is necessary; in [ 141 an example 
of a 2-sphere C c S4 is constructed having the property that m1(S4 - 2) =Z but 
w2(S4-Z) # 0. 

As a consequence of Theorem 0.5 we are able to restate Guilbault’s characterization 
[ 111 of weakly flat 2-spheres in S4. 

Definition. A 2-sphere C c S4 is weakly flat if S4 - C = S4 - S2 s S’ x Iw3. 

Theorem 0.8. A 2-sphere C c S4 is weakly jlat if and only if Z is globally 1 -alg and 
?ri(S4-Z)zE* 

rhe characterization of weakly flat 2-spheres in S4 is, therefore, exactly the same 
as that of weakly flat l-spheres in S3; see [2, T eorem 31. Instead of the v condition, 
Guilbault uses the apparently stronger hypothesis that S4- C has the homotopy 
type of S’. We should point out, however, that we do not give a new proof of 
Guilbault’s result here; rather, we apply his theorem at a crucial spot in our proof. 
Hollingsworth and Rushing [ 121 have characterized weakly flat codimension two 
spheres in S”, n 2 5. 

Remark 0.9. It is possible for S4 - C to have the homotopy type of S’ even though 

C is not weakly flat; examples are given in [ 11,4]. 

If we restate Theorem 0.8 in terms of complements, we get the following result 
which is more comparable to Theorem 0.1. 
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Theorem 0.10. Let W be a connected open subset of S’. Then W = S4 - S2 = S’ x R3 

if and only if 
(0.10.1) n,(W) =P, and 
(0.10.2) IV has one end E with IQ(E) stable and q(e) =Z. 

1. Homotopy properties of W 

In this section we explore some of the homotopy properties of W. We begin with 
some preliminary definitions and notation. We will use “s” to mean either “is 
homeomorphic to” or “is isomorphic to” (depending on the context), “a” to mean 
“is homotopic to”, and “-” to mean “is homologous to”. The reader is referred to 
[I81 for most definitions relating to ends of manifolds. In this paper we will be 
concerned only with manifolds W which have one end, E. In this case, E should be 
thought of as a sequence of connected open sets V, 3 V, =) V3 3 l l l in W such that 
n:, V;: = $3 and each W - V;: is compact. We say that V,(E) is stable if the V;: can 
be chosen in such a way that the inclusion maps induce isomorphisms of all the 
images {im[ 7r1( VI:+,) + ?rl( Vi)]}. In case ?r, ( E) is stable and G is a group, we say 
that vl( E) s G if each im[ 7rrl( Vi+ :) + q( Vi)] is isomorphic to G. Since every noncom- 
pact (l-manifold can be triangulated as a piecewise linear manifold [IO, Theorem 
8.21, we may assume that each of the 4-manifolds we work with is a PL manifold 
and we will use this PL structure whenever it is convenient to do so. 

Lemma 1.1. Suppose W is a connected open subset of a closed l-man@!d M4 such 
that H,( M4) =O. If W satisfies (0.1.1) and (0.1.2), then the natural map In,+ 
H,( W) is an isomorphism. 

Proof. Let U c W be a neighborhood c f R Choose a connected PL manifold 
neighborhood V of E so that im[ w,( V) 43 ?rl( U)] SE. Consider the commutative 
diagram 

H,(V); H,(W) 3 a-i,(w, V) 

‘* I II 
H,(U) 2 H,( w). 

Using excision, we see that H,( W, V) = H,( M4, Vu ( M4- W)). By considering the 
sequence of the pair ( M4, V w ( M4- W)), we see that H,( M4, Vu ( M4- W)) = 0. 
Thus ar is onto, which means that PL* is onto and so the inclusion induces an 
isomorphism of im[H,( V)+ H,(U)] to H,(W). (Since im[rr*( V)+ ?rl( U)] z 

P, im[H,( V) + HA WI is cyclic and the only onto homomorphisms from a cyclic 
group to H are isomorphisms.) Now the I-Iurewicz map is onto, so the composition 
of the I-lurewicz map and the inclusion induced map gives an isomorphism 
im[~,(V)+7rl(U)]= 
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Definition. A compact set X in a manifold satisfies property k-UV if for every 
neighborhood U of X there exists a neighborhood V of Z such that any map of 
Sk into V is null-homotopic in U. We say that X is UV” if X satisfies property 
i-UV for OGiGk. 

Notice that X is Up if and cr\ly if X is connected. 

Proposition 1.2. If W is an operr subset of a closed simply connected 4-manifold M4 

such that W satis$ies (0.1.1) and (0.1.2) and X = M4- W, then X satisfies property 
l-UK 

Proof. Let U 2 X be given. By Lemma 1.1 we can choose a compact FL manifold 
neighborhood V of X in U such that any loop in V- X which is null-homologous 
in W is actually null-homotopic in U-X. Let I be a loop in K We may assume 
that I is PL embedded. Since I = 0 in M4, I bounds a singular disk in 4. Approximate 
this disk by one which is PL and in general position. Any double points can be 
piped cirer the boundary to form a PL embedded disk A with d =an. Put A in 
general position with respect to d K Then d V n A is a collection of circles. Consider 
such a circle C which is innermost on A. If C bounds in M4- V, then (by the choice 
of V) C is null-homotopic in U -X. Thus we can replace the subdisk of A which 
C bounds by one which is mapped into U - X. 

Let % = { Ci}y= i be the collection of all circles in A A a V such that the subdisk of 
4 which each bounds is not contained in U. Consider a circle C, which is innermost 
in %’ and let Aj be the subdisk of A which Cj bounds. Then Aj n aV consists of a 
collection of circles. Let q(d) be the subcollection of the circles in Aj n a V such that 
their union, together with Ci, bounds a surface in Aj whose image misses X. Join 
the circles in Ce’j’ with arcs on a V to form one loop Ij. Then 4 - Cj in M4 - VC W, 
so 4 = Cj in U - X (by the choice of V again). Hence there is a singular annulus 
in U-X which joins 4 to <?j. Thus it is possible to replace Aj with a new disk 
which maps into U. This removes Cj from the collection %. We can similarly remove 
ea& iiT the other loops from cb. CI 

Corollary 1.3. If W is an open subset of S4 which satisfies (0.1.1) and (0.1.2), then 
H*( W) = 0. 

Proof. By Alexander duality, H2( W) = fi ‘( S4 - W). q 

Let p : r?l+ W denote the universal cover of W. 

Suppose W is an open subset 
soneendE,q(E)=B andr, 

is simply connected. 

ly connected 4manifold 
has one end and that end 
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Proof. Since W,(E) s Z, we can choose a sequence U, 3 U2 3 l l l of neighborhoods 
of E such that the closure of each Ui is a PL manifold and im[ 7rI( Ui+l) + T, ( Ui)] s Z 
for every i. Notice that Lemma 1.1 implies that each p-‘( Ui) is connected. Choose 
K c W such that K - Int( p-‘( Vi)) is a compact, connected PL manifold for each 
i and p( K ) = W. Let t be a deck transformation of ti which corresponds to a 
generator of rr,( W). Define 

Now each V, is connected, @ - V, has compact closure, and (7zz1 Vn = 0. 

Therefore I@ has one end. In order to complete the proof, we must show the 
following: for every n there exists a k such that the inclusion induced homomorphism 
n3 ( Vn+k+, ) + n,( Vn ) is trivial. Fix n. Since p1( W, U,+,) = 0, there exists a homotopy 
h,+, which pushes the l-skeleton of into Un+, and is fixed on Un+z. Let &+, be 

a homotopy of the ‘l-skeleton of @ which covers h,,, . Since K - Int( p-‘( U,,,)) 
is compact, there exists a k such that 

Consider a loop I in Vmtk+,. Apply the homotopy &+, to 2. The track of this 
homotopy will lie in Vn+, and the homotopy will push I to I’q-*( U,,+,). Then 
p(I’)-0 in V, (by Lemma 1.1) and so I’-0 in V,. Cl 

2. Finiteness of W 

This section contains the main technical lemmas of the paper. Our objective is 
to prove that an open set W satisfying the hypotheses of Theorem 0.1 has a tame 
end. In order to do so, we must show that W has the homotopy type of a finite 
complex. 

Irdotation. For the rest of this section, W, will denote an open subset of a closed, 

simply connected 4-manifold M4 such that W, has one end E, q(e) = H, and 
?I,( W,) SZ. By Lemma 1.1 there is a natural isomorphism between these groups. 
We will use J to denote T,( W,) and A to denote the group ring H[J]. We use 
p : 6’l + W, to denote the universal cover of W, (which, in this case, is the same as 
the infinite cyclic cover). We use H.+( I&‘,) and H,*( I@,) to denote the ordinary 
singular homology and cohomology with compact supports. Each of these groups 
has a natural A-module structure. Poincar6 duality gives isomorphisms Hk( @i) = 
Hz-&( ct,>. Fix a generator t of J. We identify t with the corresponding deck 
transformation on c?l, and also with the induced homomorphisms on H.J I&). 
Notice tijat A cari be thought of as the set of Laurent polynomials in t with integer 
coefficients. 
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Local coefficients. We find it convenient to use homology and cohomology with 
local coefficients (in the sense of Steenrod [20]). Let 38 be a bundle over W, with 
fiber B, where B is a A-module. We use H*( W, ; 3) to denote cohomology with 
coefficients in 93 .and Hz< W, ; 9) to denote the homology based on infinite chains 
with coefficients in 58. There are natural Poincart? duality isomorphisms 

Hk( W, ; 3) = Hzk( W, ; 28) 

(cf. [ 17, p. 388;’ 20, p. 6203). 

Lemma 2.1. H3( ti,) = 0. 

Proof. By Lemma 1.4 we can choose a sequence V, 3 V, 2 . l . of connected neigh- 

borhoods of the end of I@, such that n:, & = 0. Consider the sequence 

fi”( V,)+ HL( e,, V,)+ H’( Ict,). 

The first and last terms are zero and therefore H’( 6$, V,) = 0. Thus Hi( 6’,) z 
lim H’( fil, V,,) = 0. By Poincare duality, Hs( fi,) = Hi( 

ol” 0 

), so we have H3( @,> = 

Lemma 2,2. H3( W, ; A) = 0. 

Proof. By Poincark duality, H3( W, ; A) z HT( W, ; A), so we show that 
H;“(W,;A)=O. Let CEZF(W,;A). Then c lifts to &zZy(@,;A). Choose a 
sequence 

of neighborhoods of E such that nT=, Ei =0 and each inclusion induced 
homomorphism n,( Ei+,) + T, ( Ei) has image isomorphic to B. Let si = p-‘( Ei) and 
notice that 

SUpp(E)-Ej 

is compact for every j. Furthermore, the inclusion induced homomorphism 
7r,( Ei+,) + *,( ii) is trivial for every i+ Thus Z ia tront9ogous to a l-cycle ?, in I$ 
via a compact 2-chain S, c i. - - *, and, inductively, Zj _ I is homologous to a l-cycle 
ci in Ei+, via a compact 2-chain Sj e ii__, . Then S = S, u S2 u S, u l l l is a (locally 

finite) infinite 2-chain in 6’, whose boundary is E Moreover, since S [6’, - Ej c S, u 
. . l u Sj, we see that the image of S under the projection map p defines a (locally 
finite) infinite 2-chain in Cy( W, ; A ) whose boundary is c. 0 

Lemma 2.3. H3( W, ; 3) = 0 for every coe@cient bundle 9I whose jiber is a countably 

genera ted free A -module. 

Proof. We must show that HF( W, ; 9) = 0. Let B denote the fiber of 9; then there 
is a decomposition 

B = A,&~,&!,@ l l l 64 
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in which each Ai is.a copy of A. Enumerate the simplices of WI by {e; lj = 1,2,3, . . .}, 
where k = dim et, and let Bj” denote the fiber of 9 over the barycenter of ejk. Fix 
a basepoint in W, and choose a path from the basepoint to the barycenter of e; 
for each j. These paths determine isomorphisms hjk: B + Bj” and 

Bj” = h;(A,)@ h;(A,)@ h;(A,)@ l l l . 

Let c E ZT( W, ; 3) be an infinite l-cycle representing an element of H’;“( W, ; Se). 

Then c is determined by its values on the I-simplices of W,. If ej is a l-simplex, 
c(eif) E B;, so we have c(ej) = CF=, ci(ej) where ci(ej) E hf(Ai). We can write c = 

c T=, ci ; this sum makes sense because, for each j, at most finitely many of the terms 
ci( ej) are nonzero. Since dc = 0 and the decomposition (*) is a A-module decomposi- 
tion, we have that dci = 0 for every i. Notice that ci can be thought of as an element 
of Zy( WI ; Ai) and thus we can proceed as in the proof of Lemma 2.2, working 
with a finite number of Ci at a time. 

Let EON E,D EZ3 l l l be a sequence of neighborhoods of the end of W, as in 
the proof of Lemma 2.2. Since there are only a finite number of I-simptices in 
&- E,, there exists a positive integer k, such that ci( ej) = 0 whenever ej c E,, - E2 

and r‘ 3 ic, = Just as in the proof of Lemma 22, thlcte exists a finite 2-chain S, such 
that S, represents a homology from Ci~k 

‘1 and cl has its support in E1- Define ci 
Ci to City, C: where each C: E ZF( WI ; Ai) 

= Ci for i > k, . Notice that S, defines a 
homology from c = CT= ! ci to C’ = CT’, c: and that c’ has its support in Ez. Similarly, 
there exists a finite 2-chain S, with support in E, such that S, represents a homology 
from c’ to c’, where c2 has support in E3. This process is continued inductively. 
Then S=S,uSzuS3u’.. is a (locally finite) infinite 2-chain whose boundary is 
the original l-cycle c. 0 

Lemma 2.4. H2( fi,) is a projective A-module. 

Proof. The proof uses Lemma 2.3 and is essentially the same as the proof of [21, 
Lemma 2.11, but we indicate how it goes for the sake of completeness. Since W, is 
connected we can cancel all the 4-handles and all but one of the O-handles in a 
handle decomposition and so we see that W, has the homotopy type of ;1 SW 
complex with one O-cell and no k-cells for k a4 [ 18, Lemma 5.31. Thus, by [22, 
Lemma I], we can define H,( I@,) using a chain complex of the form 

in which CO s A, Z is the trivial A-module, and the augmentation E is defined by 

E C niti =C ?li. ( J i i 

Let A, = ker E; then A, is the free submodule of CO = A generated by t - 1. Therefore 
the sequence 
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splits and’ C1 = ker d&l,. Thus ker aI is projective and im d2 = ker 8, (since 
H,( cl) = 0) so im d2 is projective. Hence the sequence 

splits and so C, s ker @im a2. Let B = a,( C,) = im a3 c ker a2 c C,. Then B deter- 
mines a coefficient bundle 93 over W, . Since H3( G,) = 0, a3 is one-to-one, and so 
B z C3, a countably generated free A-module. We can think of a3 : Cp B as an 
element of Horn,, ( C3, B) and use the fact that H3( W, ; 3) = 0 to conclude that 
there existsa A-homomorphism 8 : C’, + B such that a3 = 6,( 0) = 8 0 a3. THUS 8 1 ker a2 
splits the short exact sequence 

O+B+kera,+H,(6+0 

and we see that C,= BOH,( c,)Oima,. Cl 

Construction of W, . Let W be an open subset of S4 which satisfies (0.1 .l ) and 
(0.1.2). Since W,(E) = H, it follows that 7r,( W) is finitely generated. Therefore the 
kernel of the Hurewicz map r,( W) + HI ( W) is normally generated by a finite set. 
Let W, be the manifold obtained from W by doing surgery on a finite set of curves 
which normally generate ker[ v,( W) -4 xH,( W)]. Specifically, choose a finite collec- 
tion of PL embedded loops in W which normally generate ker[ 7rI( W) + I&( W)]. 
These loops bound a collection of disjoint disks in S4 and the disks determine 
framings for the loops. Note that a regular neighborhood of each loop is homeo- 
morphic to S’ x B3. Cut out each of these regular neighborhoods and replace each 
with a copy of B* x S* to form W, . Notice three things about WI : First, the end of 
W, is exactly the same as that of WI Second, each l-surgery corresponds to taking 
connected sum with a copy of S* x S*; i.e., W, c M4, where AI4 is a connected sum 
of a finite number of copies of S* x S*, one for each curve in the finite set. Third, 
since we have killed the entire kernel of a*( Ml) + I&( W), it must be the case that 
7r,( W,)=B. 

Lemma 2.5. Let W be an open 

is constructed from W b}? doing 

as a A-module. 

subset of S4 which s&&x (0.1.1) and (0.1.2.). If 
1 -surgeries as above, then H2( I@,) is finitely generated 

Proof. The first step of the proof consists of showing that H2( W,) is a finitely 
generated free Abelian group. We do so by showing that the inclusion map induces 
an isomorphism H2( W,) = H2( M). Consider the exact sequence 

H3(M W) + H2( W) : H2( )+H*uw W,)~H,(W,)+H1( 

The last term is obviously 0 and the first term is also 0 because Alexander duality 
and Proposition 1.2 
Similarly, we have that This means that p 
is an isomorphism and therefore cy is as well. 
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We next consider &( Ict,> @Cl! and H2( W,) OQ. Since H2( W,) is a finitely gener- 
ated free H-module, Ht( W,)@Q will be a finitely generated vector space over Q. 
Since H2( I&) is projective over A = Z[J], H2( I@,)@2 will be projective over Q[J]. 

But Q[J] is a principal ideal domain, so H2( I&) @Q is a free Q[J]-module. 
The third. step of the proof consists of showing that H2( fi,)@Q is a finitely 

generated free Q[J]-module. Let $ : &( W,) + H2( W,)@Q be defined by q(x) = X@ 
1 and define 6 : Hz( @,) + H2( ~,)@ccP in a similar way. We then have the following 
commutative diagram: 

1 p,Oid 

The short exact sequence 

of chain complexes gives rise to the exact sequence 

0= H3( W,)+ Hz@,)= H,(fi,)z H,(W,)+H,(til)=O 

of homology (cf. [ 16, p. 1181). Thus p* : H2( l@,) -* H2( W,) is onto and 

kerp,=(t-I)(H2(6$)). 

It follows that 

ker(p,@id)=(r-l)(HZ( @,))OQ. 

This means that the image of p* @ id is a free Q-module with one generator for each 
generator of H2( k, ) @Cl as a free Q[J]-module. Thus H2( kl ) @Q is finitely gener- 
ated as a Q[J]-module, having one generator corresponding to each element of a 
basis for H2( W,)@Q. 

Finally, we show that H2( I@,) is finitely generated over A. Pick an arbitrary 
xE &( I@,). Let x1,x2,. . ., x, be a collection of elements in H2( @) such that 

4%x,), &x2), l -0 , (2(x, ) is a basis for H2( 6’,) 043. There exist elements q1 , q2, . . . , q,, 

in Q[J] such that 

3tx>= i qi’ ct(Xi>* 
i=l 

Each qi is a polynomial in t and t-’ with rational coefficients. If I is the lowest 
common denominator of the coefficients of the qi, then 

z ’ J(X) = i Ai l G(Xi), 
i=l 
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where hi E A. Since H2( i?l,) is projective, & is one-to-one, and so we have that 

IaX= f: Ai’Xi. 
i=l 

Now Ht( I&) is a direct summand of a free A-moduIe F = A,@ A,@ A,@ . . - , 

where each Ai is isomorphic to A. For each i there is an ni such that Xi E A 1 @ . . . @ 

A,,OO@O@ l l l . Thus there exists an integer k such that 

H2( ti,)c A,@ l -.@A,@O@O@-•-. 

The fact that H2( fi,) is a direct summand of F implies that there is a projection 
of F to H2( cl) and the restriction of this projection takes A, 0 l l -0 Ak @O@O@ . . . 

onto H2( l&). Therefore H2( fi,) is finitely generated. Cl 

Remark 2.6. The proof above could be simplified if we were to make use of the 
fact that every projective A-module is free [ 1, Theorem 1; 19, Theorem 2.31. 

PrGposition 2.7. Suppose W is an open subset of S4 which satisfies (0.1.1) and (0.1.2) 
and W, is constructed as above. Then W, has the hsmotopy type of a wedge of one 
1 -sphere and a finite number of 2-spheres. 

Proof. Notice that Lemma 2.5 asserts that W, satisfies condition NF2 of [21]. But 
A is Noetherian, so 121, Theorem B] implies that condition F2 is satisfied. Lemmas 
2.3 and 2.4 show that W, satisfies condition D2 of [21], and so we can apply [21, 
Proposition 3.31 to conclude that W, has the homotopy type of a finite wedge of 
l-spheres and 2-spheres. Since w,( W,) = H, there must be exactly one copy of S’ 
in the wedge. Cl 

Gwdlary 2.8. If W is an open subset of S4 which satisjes (0.1.1) and (O-1.2), then 
the end of W is a tame end. 

Proof. By Proposition 2.7 and [ 18, Proposition 4.33 every O-neighborhood of E i!: 
finitely dominated. Therefore WI has a tame end in the sense of Siebenmann. Since 
Z is finitely presented, W, also has a tame end in the sense of Freedman and Quinn 
(see [ 10, Section 11.9A]). But the end of W is the same as that of W, , so 

tame end. Cl 

3. The ml =E case 

In this section we concentrate on the special case in which P,( 
prove that W must have the homotopy type of S’ in t 
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f of Theorem 05. In case 7r1( W) = 9 we have that W = W and so we can 
apply Proposition 2.7 to conclude that W has the homotopy type of a wedge of a 
I-sphere and a finite number of 2-spi;eres. But the number of 2-spheres must be 0 

because H2( W) = 0’ (Corollary 1.3). •l 

In our proof of Theorem 0.1 we will actually need a stronger version of Theorem 
0.10 than the one stated in the Introduction, so we state the stronger version here 
before the proof. t theorem merely states explicitly hat is usually 
proved in [ 1 I]. 

o$ S’ such that 

=S”xB”, S4-Int N=S’x B3, 

f. Theotx3m 0.5 
3.1 foNows the 

the homotopy type of S” and so Theorem 
rem 4.31. 

as in the conclusion of Theorem 3.1 and let 
f we take K = h(S’ x {0}), then K is a locally 
Furthermore, K is unknotted by [7, Theorem 

4, 

Of 0.1 uses techniques of Freedman developed in [S-9 J. For 
we y to [IO] where all these techniques are presented together 

nsistermt notation. According to [IO], a weak collar of the end of W is a 
manifold neighborhood U of the end of W such that there is a proper map 

) 1) + U which is the identity on U x (0). 

a connected open subset of S4 which satisfies (O.L. 1) Ji;ti (3.Q j, 

as a weak collar U. 

roof. Let 6 denote the end of W. By Corollary 2.8, E is tame. Furthermore, B is 
a “good” group and R,(mi:~,(E )] j = 0, so [ 10, Theorem 11.9B] implies that the end 
of W has a weak collar. 0 

mma 4.2. There exists a compact 4-mangold V such that a V = a U, v, (a V) + IT, ( V) 
is onto, and v,(V) = - 2. Furthermore, V has the homotopy type of a 1 -complex. 

roof. By [ 10, ?‘kwem 11X), rl( U) = Z and ker[ n, (a U) + of, ( U)] is a perfect 
group. Therefore there exists a PoincarC pair ( V, a U) with V a homotopy l-complex 
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[lo, Proposition 11.6C]. We may assume that V is a 4-manifold with a V = a U by 

[ 10, Proposition 11.6A]. Cl 

Let O= Uu(S4 - W) and form the manifold sP= V v d t?. 

Lemma 4.3. 9 = S4. 

Proof. By Proposition 0.1 and the definition of weak collar, fi is simply connected. 
Furthermore, r&U) + q( V) is onto, so the Van Kampen theorem shows that Sp 
is simply connected. Our conclusion will follow from the 4-dimensional Poincare 
conjecture [5, Theorem 1.61 if we can just show that H,(Y) = 0. 

Consider the Mayer-Vietoris sequence 

H,(aU)~ H2(~)0H2(V)-,H2(SP)-,H,(aU)-$ H,(ri)on,(vj. 
Since ker[ ?r,(d U) + ?rl( V)] is perfect and ?r,( V) = , we have that _M,(aU) -z 
j3 is an isomorphism. Now H2( V) = 0, so we will be finished if we can show that 
the inclusion induced map ar’: H2(a U) + H,( l?) is onto. Next consider the sequence 
of the pair ( fi*aU). 

H2(aU) 5 H2( fi>+ H2( fi’aU)z Hl(aU)+ H,( 0). 

By Poincare and Alexander dualities, Ht( fi, au) = H2( 0) = fi’(S”- W) = 

Furthermore, H,(aLI) = and H,( fi) =0, so y is an isomorphism. 
erefore cy’ is onto. q 

Proof of Theorem 0.1. Let W’= Vu U c X Then 7r,( ‘) = Z by the Van Kampen 
theorem, so we can apply Theorem 3.1 to W’c 9. The exists a compact manifold 
NcYsuchthat N=S2xB2,SP- W’cint N,and Nn W’=dNx[O,l).Bypushing 
N along this product structure, we can arrange that N c U. Therefore N c S4 
Nn W=aNx[O, 1). If h:S”xB2 + N is a homeomorphism, then K = !r( S2 x (0)) 
is the 2-sphere we are looking for. Cl 

We next prove a result which shows that con%ti;rtr~ CO.1 .l ) and (0.1.2) determine 
the shape of the complement of W in S”. The reader is referred to [ 151 for definitions 
relating to shape theory. 

Let W be an open subset of S4 and let X = S4 - W. Then W satisfies 

(0.1.1) and (0.1.2) if and only if Sh(X) = Sh(S’) and X is globally I-alg. 

Proof. Suppose W satisfies (0.1 .l ) and (0.1.2.). Let 9’ be as in the proof of Theorem 
0.1. Then Theorem 3.1 shows that there exists a compact submanifold of 9’ such 

that X c Int N, N = S2 x B2 and N -X = aN x [0, 1). Since N -X is a product, 
Sh(X) = Sh( N) = Sh(S’). Since N - X = S2 x S’ x [0, l), -X which 

is null-homologous in N-X is also null-homotopic in is globally 

1 -alg. 
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Now suppose that Sh( X) = Sh( S2) and X is globally I-alg. Then H,( W) = fi2( X) 

by Alexander duality, and so H,( W) = Z. Now W is connected since Z&,( W) = 

G”(X) = 0 and W has only one end since X is connected. Let E denote the end of 
W. By [3, Lemma l] (or by the proof of [l 1, Theorem 4.3]), T,(E) is stable and the 
natural map ?T,(E) + H,( W) is an isomorphism. Thus q(~) = B. Cl 

Proof of Theorem 0.4. Theorem 0.4 follows immediately from Theorem 0.1 and 
Proposition 4.4: 0 

Proof of Corollary 0.2. If C is globally I-alg, then S4 - C = S4 - K for some locally 
flat 2-sphere K c S4 by Theorem 0.1 and Proposition 4.4. Conversely, if S4 - C = 
S4 - K for some locally flat 2-sphere K c S4, then the end of S4 - C is homeomorphic 
to the end of S4- K. Now K has a normal bundle in S4 by [ 10, Theorem 9.3A] and 
this normal bundle is trivial since H2( S4) = 0. Therefore the end of S4 - K has a 
neighborhood homeomorphic to S’ x S2 x ll3’ and so the fundamental group at the 
end is Z. Thus 2 is globally I-alg by Proposition 4.4. Cl 

~0~ of Corollary 0.6. Let W = S4 - C. In order to apply Theorem 0.5, we need to 
check that ?T~ of the end of W is isomorphic to 2. This follows from Proposition 
4.4. q 

Proof of Theorem 0.8. Theorem 0.8 follows from Corollary 0.6 and [Z 1, Theorem 
4.31. cl 
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