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Abstract—1In several recent works, some interesting generalizations of the first-order Volterra-
type integro-differential equation governing the unsaturated behavior of the free electron laser (FEL)
were introduced and investigated by making use of fractional calculus (that is, calculus of integrals
and derivatives of an arbitrary real or complex order). Among other things, it is observed here that
an expansion formula for the confluent hypergeometric function in a series of the product of two entire
(integral) incomplete Gamma functions does not hold true as asserted and applied in these earlier
works. Some necessary corrections and possible remedies are also pointed out. (© 2003 Elsevier Ltd.
All rights reserved.

Keywords—Gamma and incomplete Gamma functions, FEL (free electron laser), Hypergeometric
and confluent hypergeometric functions, Fractional calculus, Unilateral and bilateral expansions, Chu-
Vandermonde theorem.

1. INTRODUCTION, DEFINITIONS,
AND MOTIVATION

In terms of the familiar Gamma function I'(z) (2 € C\ Zy ), the incomplete Gamma function
¥(z, &) and its complement I'(z, ) are given by (see, for details, [1, Chapter 9]; see also [2])

v(z,@) = /atz_l e tdt =T(2) -T(z,0)
0 (1.1)

(R(z)>0; |larg(a)| Emr—¢; 0<e< ),
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Zg being the set of nonpositive integers. For fixed a, I'(z, o) is an entire (integral) function of z,
while v(z, a) is a meromorphic function of z with simple poles at the points

z=0,-1,-2,....

Thus, upon interchanging the réles of z and «, we can make use of (1.1) in order to define the
so-called entire incomplete Gamma function v*(a, z) by

¥(a, Z) Iy, 2)
2%v* (a, 2 EASaiints ol St o)
"o 2) = T T(a) 12
(larg (2)| S~ 0<e<m).
Definition (1.1) also yields the following representation:
v(ez) =a™ 2% Fi (o0 + 1;-2) (1.3)

in terms of the confluent hypergeometric 1 F1 function which corresponds to the special case
p=qg=1

of the generalized hypergeometric ,F, function (with p numerator and ¢ denominator parameters)
defined by

at, ..., 0p;
oFy z} =pFy(oa,... ,ap; B1y- .. 1 Bg; 2)
By .. a:Bq; (14)
(a1), - (ap)
:L_; (B)p - - (B

(p,qéNo :={0,1,2,...}; pS£q+1; pS qand |z| < oo;

q 4
p=qg+1land |z|]<1; p=¢g+1, |z|=1, andiR(Zﬁj—Zaj) >0>,

j=1 i=1

provided also that 8; ¢ Zg (j = 1,...,q) (see, for details, [3, Chapter 4]); here, and in what
follows, ()\), denotes the Pochhammer symbol or the shifted factorial, since

(1), =n! (n € Ng),
given (for A, v € C and in terms of the Gamma function) by

ra+y) |V (v=0; Ae C\{0}),
(A), = W =

AQ+1)--(A+n—-1), (w=neN:=Ny\{0}; AeCT).
By means of Kummer’s transformation (cf., e.g., [3, p. 253, equation 6.3 (7)]),

1Fy (a5 8;2) = €1 F1 (B — o; 85 —2) (1.5)
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the hypergeometric representation (1.3) can be rewritten in its equivalent form:
v(a,z) = a 2% % F (La+1;2). o (1.6)

Combining (1.6) with definition (1.2), we immediately obtain the following hypergeometric rep-
resentation for v*(a, z):

¥ (0y2) = F—(;—TL—I)IFI (La+1;2) (1.7)

or, equivalently, .
* — F (o 1. — 1.8
Y (a,z) l-\(a+1)1 l(a;a‘l' y Z)’ ( )

where we have made use of transformation (1.5) once again. Each of the confluent hypergeomet-
ric representations (1.7) and (1.8) reiterates the aforementioned fact that v*(c, 2) is an entire
(integral) function of z.

Recently, by employing the (Riemann-Liouville) operator D¥ of fractional calculus, defined by
(cf., e.g., [4, p. 181 et seq.]; see also [5])

D {f (2)}
1 [ et
m/o (z=¢) fQ)d¢ (R(p)<0),

O DE () (m-1S R <m; meN),

provided that the integral exists, a number of workers (including, possibly among others, Boyad-
jiev et al. [6], Al-Shammery et al. [7,8], and Saxena and Kalla [9]) introduced and investigated
several generalizations of the first-order Volterra-type integrodifferential equation governing the
unsaturated behavior of the free electron laser (cf. [10,11]). In three of the aforecited recent
works on fractional integrodifferential equations of Volterra type, use is also made of an expan-
sion formula for the confluent hypergeometric ; F} function in a series of the product of two entire
incomplete Gamma functions. We recall this claimed expansion formula in the following (slightly
modified) form (cf. [7, p. 504, equation (15); 8, p. 86; 9, p. 93, equation (2.18)]):

(=2)"

n) nl

1F1 (a;¢;2) = 217%°T ( C)ZI‘(a— w10
1.10

YA -a+n,2)7" (c—a+n,z),
which, in view of Kummer’s transformation (1.5), can easily be rewritten in its equivalent form:

I‘(c a- n) nl

1Fy(aic2) = (—2)'” °+“r(c)Z

n=0

(1.11)
' (a+n,-2)yv*(1-c+a+n,-2),

there being no constraints specified for the parameters a and ¢ by the earlier workers.

The left-hand side of each of the expansion formulas (1.10) and (1.11) is indeed a power
series in the argument z. However, for unrestricted parameters a and ¢, the right-hand sides of
the expansion formulas (1.10) and (1.11) are obviously not power series in z, so these expansion
formulas do not seem to be correct as asserted and applied in the earlier works [7-9]. In the present
sequel to these earlier works, we aim at providing the corrected version as well as generalizations
of the equivalent expansion formulas (1.10) and (1.11). We also point out how the aforementioned
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applications (in [6-9]) of such incorrect expansion formulas as {1.10) and (1.11) could possibly
be remedied at least in some special situations.

2. DEMONSTRATION BASED UPON
FRACTIONAL CALCULUS

First of all, for the Riemann-Liouville fractional differintegral operaLtor D¥ it is readily observed
from definition (1.9) that

r(A+1) -
DE {2} = e
{") TA—p+1) (2.1)
(AeC\Z™; 27 :=2Z3 \{0}; peC),
which leads us to the following general fractional differintegral formula:
Apy ...y Opy
Dy {z)“lqu ? wz] }
/817 ey ﬂqa
)\,0(1 ey Qps
C T e g yoer O wz} (2.2)
F()\—H) A~/'l‘7:317---!/6q;

(AéC\Za; peC; |lwzl <oowhenp<gq; |wz| <1, whenp=q+1),

where (and throughout this paper) it is tacitly assumed that all multiple-valued functions take
on their principal values (and also that exceptional parameter values, which would render either
side of an assertion invalid or undefined, are excluded).

Now, in view of the confluent hypergeometric 1 F; representation for v*(a, 2) given by (1.7),
we find from a special case of the operational formula (2.2) when

p=q=1, o =1, B1=p+1, w=1, and A— A +1,

that -
N 1
D¥ {re*y* (p,2)} = WD'; {F 10 +12)}
_ (x+1) py”
T(p+1)T(A—p+1)
(2.3)
A+1,1;
Py z
A—pu+1,p4+1;
(p,peC; AeC\Z7),
which, for p = A, gives us the following interesting operational formula:
Dt Py (M2} = ey (A= mz)  (AHET). (2.4)

In case we make use of the confluent hypergeometric ; F; representation given by (1.8), the
operational formula (2.2) with

p=qg=1, ay = p, b=p+1, w= -1, and Ar—A+1
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would yield .
Dt {22y* (p,2)} = me {F1F(pp+15-2)}

3 T(A+1)
TT(p+)T(A—p+1)

A+1,p
- oFy -z
A—p+1,p+1;

A—p

(pneC; AeC\Z7).
Furthermore, since (cf. definition (1.4))

o0 Zn
¢ =) = = oFo(——i2), (2:6)
n=0

a special case of the operational formula (2.2) when
p=¢q=0, w=1, and A— A+1
immediately yields

DE [} = FI‘(A+ 1)

T AR A+ LA p
(/\_u+1)2 1 1( + 1; u+ ,Z)

(reC AeC\Z7),
which, for A = 0, reduces to the elegant form:
Di{e*} = z7*e*y*(—p,2) (ke ), (2.8)

by virtue of (1.7).
Next, we recall the following generalized Leibniz rule for fractional calculus (cf., e.g., B, p. 317))

DE{f(g(H= 3 ( . )Dé‘“"""’{f(Z)}DZ"*"{g(Z)},

Kkn+o
n=—00

(2.9)

(u,o€C; 0< Kk £1),

which, for ¢ = 0 and & = 1, would reduce at once to a (relatively more familiar) unilateral form
given by

0o

Dt @e@n =2 (L) EID ) (eO), (210)

n=0
D" being the ordinary derivative operator of order n € Ny. By setting

fz)=2"""e* and g(2) =27 (p,2)

in the general result (2.9), and making use of the operational formulas (2.3), (2.5), and (2.7), we
obtain the following bilateral expansion:

By V+1,1;z CTA+)T(w-A+1)T (v —p+1)
V”‘N+11p+1; F(V-l-l)
'n;m“(nn‘:_a) {F()‘"K"—‘""1)F(V—)\—u+nn+a+1)}_l

(2.11)
v—A+1; A+1,p;

1R z| 282 -z
v—-A—p+rn+o+l, A—rn—oc+LlLp+1

(w,v,0 €C; v =X A peC\Z; 0<ksl),
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which, in the special case when v = A, yields

>\+171;z e i n( o ) F(A-—p+1)
A—p+1,p+1; kn+o)TA—6n—0+1)

n=—oc
. A+Llp (2.12)
Y (o + kn = p,z) 2 Fy -z
A—kn—oc+1,p+1,;
(t,0€C; A\,peC\Z™; 0<k<1).

2Fy

Since [12, p. 326, equation 6.5 (13)]

' aq, . ,azm
sl‘,@n{r(a)”F"“ [6 BBy H

JI=11 (@) PR

=3 nt+ 1! (2.13)
H(ﬁj)n-'.l( )
j=1
ar+n+1,...,0p +n+1;
pg+ Z (n € No),
n+2,8+n+1,...,0,+n+1;

we can easily deduce the following unilateral expansions by letting
k=1, c=0, and A—0

in (2.11) and (2.12):

v+1,1;

S () o
v—pu+1,p+1; ] Z p+1) (
v+1;

171 2| Y (p+n,2) (2.14)
v—pu+n+1l; .
(n,veC; peC\Z7)
and
F YU creenra-we S (K)o, o
oy z| =T(p+1 1—yu)e ()p -2z
1—p,p+1; Ao \n/

7 (n—p,2)7* (p+n,2) (2.15)

(heC\N; peC\Z7).

This last expansion formula (2.15), which does involve a series of the product of two entire
incomplete Gamma functions, would follow also from (2.14) upon setting v = 0.

3. BILATERAL EXPANSIONS
INVOLVING GENERALIZED
HYPERGEOMETRIC FUNCTIONS

Let
Fp:T;u (pvq,rvsvuav € NO)

q:s;v
denote a general (Kampé de Fériet’s) double hypergeometric function defined by (cf., e.g., [12,
p. 63, equation 1.7 (16)])
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. O,y Qp D1y .,8r; €1,...,C4;
piTiU
Fq;s;’v z,y
ﬁla'--sﬂq:blv---abs; dlv---adv;

(a,)1+m H (ai) H (cj)m ym (3.1

J—

B T o) T @) T

It
ﬁM8
u::]n s

where, for convergence of the double hypergeometric series,
p+r<qg+s+1 and pH+usqg+v+1,
with equality only when

|x|1/(P—q) + |y|‘1/(P—q) <1 (p > q)

max {lz],lyl} <1 (pS9).

From among many general families of bilateral expansions for multivariable functions with
essentially arbitrary coefficients (see, for details, [13-16] and the references cited in each of these
earlier works), we choose to recall here the following special case involving the Kampé de Fériet
function defined by (3.1) [14, p. 198, equation (66)):

wi Lopir E+n—1L A,y Aui e, Qg Gl e - G
Fv+1:q;’a rz,yz
€+7I‘#—1,#17 IRy R ,Bla aﬂq; bl)'--ybm
_KLOTmrE+n-pu-T(p+1)
TE+n-1)

Z {I‘(u—u—-nn+1)[‘(u+nn+1)1"(§ p+v+en)T(n—v—kn)}!

n=—o0

(3.2)
FuptLir+l [)‘1""’>‘“: San,.. 0
vig+1;9+1
B1s- s pp: € —p+v+an, B, .., By
Q1. ,0y;
Tz,Yyz
nN—v—Knby,... by

(R(E) >0, R(n)>0; R(E+n)>1; ¢ C\Z™; 0<k 1),

provided that each side exists.
In its further special case when

u=v=0, k=1, and v=0,

the bilateral expansion (3.2) would reduce immediately to the following unilateral expansion in
series of the product of two generalized hypergeometric functions:
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. E4+n—1:01,...,0p,01,...,0r;
Fl'pir[ F , Ta:z,yz
E+n—p—1:B1,...,Bsb1,....bs;

CTEOTE+n—p-1) &

(=u), (1=
-F(ﬁ—u)l“(£+n—1)z n! (€ - #)
“p+1Fgt1 S ’ap,xz:| (3.3)
f—u+n7ﬁ1)"'aﬂq;

. n,a1,...,0r;
'r+1Fs+1 Yz
n—n b17~' 8:
(R(E) >0, R(n) >0, R(E+n)>1; peC)

it being assumed (as before) that each side of (3.3) exists
Now, in view of the limit relationship (2.13), (3.3) when n — 1 yields

Lpir E:a1,...,0p501, ..., 073
Flgs xz,yz
E_p‘: ﬂly"':ﬁq;bli'

81

T
a 1;11 (~— Z) é’alv vy Qips
Z s 1 p+1Fgt1 Tz (3.4)
=0 (£ — H n E—pn+n,pB1,..., 0
a+n,...,ar +

yz

(R(&) >0, peC),
bi+mn,...,bs +n;

Upon setting

r=-y=1, p=¢q=0, and r=s5=1 (a1 = o; by = p)

in (3.4), if we apply the Chu-Vandermonde theorem [12, p. 30, equation 1.2 (8)]

oFy (—N,b;c; 1) = -(—c—(’c—)ﬂ (N eNg; beC; ce C\Zy) (3.5)
N

in order to simplify the resulting double hypergeometric series on the left-hand side, we obtain

&p=0; } 2 (—), (9),
2F2 Zp = T n
5.€—M’p;a+ r A (R O () (2.6)
~1F1[ ’Z] 1F1[ ,—2] RE)>0; peC).
E—p+mn; p+n

In view of the confluent hypergeometric ;Fy representations (1.7) and (1.8) for the entire
incomplete Gamma function v*(a, z), a special case of (3.6) when

€:17 P'—>P+1a and g=p

would lead us once again to the expansion formula (2.15) in a series of the product of two entire
incomplete Gamma functions.



Remarks onSome Series Expansions 1757

For o = N (N € Np), each of the infinite series occurring in (3.3), (3.4), and (3.6) would

terminate, since
(=N), =0 (n=N+1,N+2,N+3,...). 3.7

Thus, if we let
u=N (N € Ny) and £E—1

in (for example) our expansion formula (3.6) and apply the limit relationship (2.13) once again,

we get
p—o+N; N N
lFl 2| = (p)N ez Z (__1)n ( ) (a)n
p+N; (p—0o)n 20 n)(p), -
(3.8)
o+n;
1F1 [ - Z] ;

p+n;

which, for

p—p+1 and o=p,

immediately yields the following special case:

N
AW 1o+ N 412 = OIS (V) ) v prma). 9)

}

1 1
=e? i —
¢ 5q-1(111\11—n){r(1+6)1F1 [1+5;z]}
-z .zN—nez

n=0

Since

e ? L
lim {yv*(n —pu,2)} = lim { —— | F z
u_.N{ﬁ' ( py2)} u—*N{F(’n—p,+1)1 1 {n—u+1;

=e
= N-n (0£n<SN; n,NeNy,

by means of the limit relationship (2.13), this last finite summation formula (3.9) would follow
also from the expansion formula (2.15) upon letting p — N (N € Np).

4. REMARKS AND OBSERVATIONS

For p = 0, both (2.14) and (2.15) hold true rather trivially, because the series in each case
reduces (when p = 0) to its first term given by n = 0. Since these series reduce to their first term
also when p = 0, the only nontrivial situations in which the hypergeometric o F»> function in (for
example) the expansion formula (2.14) would become a confluent hypergeometric 1 Fy function
occur when either

v=_p or V= U

We thus find from (2.14) that

Lo ~(\__ O n
1F1[p—u+1;zj|_F(p+1),§)(n)(P—ﬂ+1)n( ?)
p+1;

z
p—pu+n+1;

(beC; peC\Z7)

(4.1)

1k fy*(p+n,z)
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or, equivalently,

V(o= =T+ )Y (4) ey o

' p+1 (4.2)
1R { 7—] 7 (p+n,2)
p—p+n+l,;
(neC; peC\Z")
and )
prds o~ (4 (=2)"
1F1 z| =T(p+1 () p
] S (8 0. S
p+1; 4.3
1P 2|7 (p+n,2) (43)
n+1;

(heC; peC\Z7).

Of the three expansion formulas (4.1), (4.2), and (4.3), only (4.3) expresses a general confluent
hypergeometric 1 F1 function, but in a series which also involves an | F} function. Consequently,
even the expansion formula (4.3) would not serve the purpose in each of the earlier works [7-9],
which was to express their ; F] solutions in series of the product of two relatively more familiar
entire incomplete Gamma functions.

Our other expansion formula (2.15) does indeed involve a series of the product of two entire
incomplete Gamma functions, but the expanded function in (2.15) is an 3 F» function (not an 1 Fy
function). And, as we pointed out in the preceding section in connection with the finite summation
formula (3.9), the 2 F5, function in (2.15) would reduce to an ; Fy function in the limit case when
u — N (N € Ng). The resulting identity is the special finite summation formula (3.9) which
ought to have been used (if at all applicable) in each of the works [7-9] in place of the obviously
erroneous assertion (1.10) or (1.11).

Two further particular cases of the finite summation formula (3.9) (with z = tvx) when

N=2m-1_ and p=ma (m e N)

and when
N=2m and p=(m+1l)a (m € Np)

would provide the corrected versions of the results asserted and used by Boyadjiev et al. [6, p. 5,
equations (14) and (15)].
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