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Summary 

The vertebrate hedgehog.related gene Sonic hedge- 
hog (Shh) is expressed in ventral domains along the 
entire rostrocaudal length of the neural tube, including 
the forebrain. We show here that SHH induces the dif- 
ferentiation of ventral neuronal cell types in explants 
derived from prospective forebrain regions of the neu- 
ral plate. Neurons induced in explants derived from 
both diencephalic and telencephalic levels of the neu- 
ral plate express the LIM homeodomain protein Isl-1, 
and these neurons possess distinct identities that 
match those of the ventral neurons generated in these 
two subdivisions of the forebrain in vivo. A single in- 
ducing molecule, SHH, therefore appears to mediate 
the induction of distinct ventral neuronal cell types 
along the entire rostrocaudal extent of the embryonic 
central nervous system. 

Introduction 

In vertebrate embryos, the patterning of the nervous sys- 
tem is initiated by inductive signals that direct the fate of 
neural progenitor cells. The complex pattern of cell types 
generated within the neural tube is thought to involve the 
action of signals that impose regional character on cells 
at different rostrocaudal positions within the neural plate 
(Doniach et al., 1992; Ruiz i Altaba, 1992) and that define 
the identity of cells along the dorsoventral axis of the neu- 
ral tube (Jessell and Dodd, 1992; Basler et al., 1993; 
Smith, 1993). Thus, the fate of neural progenitor cells de- 
pends on their position along the rostrocaudal and dorso- 
ventral axes of the neural tube (Roach, 1945; Jacobson, 
1964; Simon et al., 1995). 

The mechanisms that control the differentiation of cell 
types along the dorsoventral axis of the neural tube have 
been examined in most detail at caudal levels of the 
neuraxis. In the spinal cord, the differentiation of ventral 

tThe first two authors contributed equally to this work. 

cell types is initiated by signals transmitted from axial me- 
sodermal cells of the notochord to overlying neural plate 
cells, inducing the differentiation of floor plate cells at the 
ventral midline and motor neurons more laterally within 
the neural tube (van Straaten et al., 1988; Placzek et al., 
1990, 1991; Yamada et al., 1991, 1993; Goulding et al., 
1993). At later stages, similar or identical signaling proper- 
ties are acquired by floor plate cells (Hatta et al., 1991; 
Yamada et al., 1991; Placzek et al., 1993). The identity 
of the ventral neuronal cell types that are generated in 
response to midline-derived signals, however, appears to 
depend on the position of origin of neuronal progenitor 
cells along the rostrocaudal axis. For example, serotoner- 
gic neurons are induced at the level of the rostral rhomben- 
cephalon (Yamada et al., 1991), whereas dopaminergic 
neurons are induced at the level of the mesencephalon 
(Hynes et al., 1995). 

At caudal levels of the neuraxis, a vertebrate homolog 
of the secreted protein encoded by the Drosophila gene 
hedgehog (NLisslein-Volhard and Wieschaus, 1980; Lee 
et al., 1992), Sonic hedgehog (SHH), also termed Vhh-1 
or Hhg-1, has been implicated in the induction of ventral 
cell types. Shh is expressed by the notochord and floor 
plate at the time that these two cell groups exhibit their 
inductive activities (Riddle et al., 1993; Krauss et al., 1993; 
Echelard et al., 1993; Chang et al., 1994; Roelink et al., 
1994). Furthermore, exposure of neural plate explants to 
SHH leads to the differentiation of motor neurons in addi- 
tion to floor plate cells (Roelink et al., 1994, 1995; Tanabe 
et al., 1995), suggesting that SHH participates in the induc- 
tion of ventral neurons at caudal levels of the neuraxis. 

At most levels of the embryonic forebrain, the notochord 
and floor plate are absent (Kingsbury, 1930; Puelles and 
Rubenstein, 1993), and neither the identity nor the source 
of inductive signals that trigger the differentiation of ventral 
forebrain neurons has been established. However, Shh is 
expressed by cells at the ventral midline of the embryonic 
forebrain (Echelard et al., 1993; Krauss et al., 1993; Chang 
et al., 1994; Roelink et al., 1994), raising the possibility 
that this gene participates in the specification of neuronal 
identity within the forebrain as well as at more caudal levels 
of the neuraxis. To address this issue, we first defined 
transcription factors that permit the identification of ventral 
neuronal cell types generated in diencephalic and telence- 
phalic subdivisions of the forebrain. We then used these 
markers to assess the ability of SHH to induce the differen- 
tiation of distinct ventral neuronal classes in explants de- 
rived from levels of the neural plate fated to give rise to 
the forebrain. 

Our results show that SHH induces in neural plate ex- 
plants neuronal cell types normally generated in the ven- 
tral diencephalon and telencephalon. A single inducing 
molecule, SHH, therefore appears to be responsible for 
inducing ventral neuronal cell types along the entire rostro- 
caudal extent of the neuraxis. Our results also suggest 
that the differentiation of neuronal cell types generated in 
the ventral region of the telencephalon is induced by an 
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A ~ Figure 1. Shh and lsl.1Are Expressed in Adja- 
cent Ventral Domains in the Embryonic Chick 
Central Nervous System 
(A) Sagittal view showing the domain of neural 
Shh expression in a stage 18-19 chick embryo 

J ' ~  ~ i ' l  (shaded area). Broken lines indicate the levels 
and planes of the sections shown in (B)-(K). 

D (B-K) Shh (blue-black) and Isl-1 (brown) ex- 
pression in adjacent domains of the ventral 
central nervous system. 
(B) A transverse section through the caudal 
rhombencephalon, showing Shh expression at 
the ventral midline in the floor plate and Isl-1 
expression laterally, in motor neurons. 
(C) A sagittal section of the neural tube, show- 
ing Shh and Isl-1 expression in the ventral mes- 
encephalon, diencephalon, and telencepha- 
Ion. Shh expression is detected in the basal 
telencephalon, rostral to the optic chiasm (ar- 
rowhead). Note that there is a region at the 
rostralmost tip of the ventral diencephalon, 
abutting the optic chiasm, that does not ex- 
press Shh. 
(D) A transverse section through the mid- 
diencephalon at the level of infundibulum (i). 
Cells that express Isl-1 are located at the lateral 
edge of the domain of Shh expression. Isl-1 + 
cells are absent from the ventral midline at the 
level of the infundibulum. Cells in Rathke's 
pouch (r) express Isl-1. 
(E) In the rostral diencephalon at stage 13, 
Isl-1 + cells are interspersed with cells that ex- 
press Shh. The double labeling method does 
not resolve whether cells coexpress Shh and 
Isl-1 at this stage. 
(F) A transverse section through the mesen- 
cephalon, showing ventral midline expression 
of Shh and Isl-1. At this axial level, a small num- 
ber of Isl-1 + sensory neurons can also be de- 
tected dorsally, in the trigeminal mesence- 
phalic nucleus. 
(G) Higher magnification of (F), showing that 
Isl-1 + cells are located lateral to the midline do- 
main of Shh expression. 
(H) A transverse section at the level of the ros- 
tral diencephalon, showing ventral midline ex- 
pression of Shh and Isl-1. 
(I) Higher magnification of (H). Shh is ex- 
pressed in the ventricuiar zone, whereas Isl-1 + 
cells are located basally. 

(J) A transverse section at the level of the caudal telencephalon, showing Shh and Isl-1 cells in the floor of the telencephalon. 
(K) Higher magnification of (J). In the ventral telencephalon, cells that express Shh and Isl-1 are more dispersed than at caudal regions of the 
ventral central nervous system. 
Abbreviations: i, infundibulum; di, diencephalon; me, mesencephalon; te, telencephalon. 

Scale bar in (B), (G), (I), and (K), 50 pro; in (C), (F), (H), and (J), 200 ~m; in (D), 100 I~m; in (E), 25 p.m. 

SHH-mediated signal that originates at the ventral midline 
of the rostral diencephalon. 

Results 

Shh and Isl-1 Occupy Adjacent Ventral Domains 
in the Embryonic Central Nervous System 
To examine the involvement of SHH in the patterning of 
the embryonic forebrain, we first identified early markers of 
ventral forebrain neurons. At caudal levels of the neuraxis, 
motor neurons can be identified by expression of Islet-1 
(Isl-1) (Karlsson et al., 1990), a LIM homeodomain protein 

expressed as motor neuron progenitors leave the cell cy- 

cle (Ericson et al., 1992; Korzh et al., 1993; Inoue et al., 
1993; Tsuchida et al., 1994). In the forebrain, motor neu- 
rons are absent, but Isl-1 is expressed by ventral neurons 
(Thor et al., 1991). We therefore examined the pattern 
of expression of Isl-1 in the embryonic chick brain and 
compared it with that of Shh. 

At stage 18, Isl-1 + cells were found in ventral regions 
of the telencephalon, diencephalon, and mesencephalon 
(Figure 1). At each axial level, ventral Isl-1 ÷ cells abutted 
the domain of expression of Shh (Figure 1 ; see Figure 2Ai 
for a summary). Isl-1 expression, therefore, defines ventral 
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Figure 2. Isl-1 Expression Defines Distinct Populations of Ventral 
Neurons at Different Rostrocaudal Levels of the Neuraxis 
(A) Diagram of a sagittal section of the neural tube of a stage 18-19 
chick embryo, showing the domains of expression of cell type markers. 
Small arrows indicate the plane of sections shown in (B)-(J). 
(i) Expression of Shh (stippled) and Isl-1 (red), derived from Figure 1. 
(ii) Coexpression of markers in Isl-1 ÷ neurons. In the rhombencephalon 
(r) and mesencephalon (m), ventral Isl-1 ÷ neurons coexpress SC1 
(green). In the ventral diencephalon, Isl-1 ÷ neurons are absent from 
the most caudal region, although Lira-1 ÷ cells (brown) are expressed. In 
the region of the mid-diencephalon at the zona limitans interthalamica 
(Puelles et al., 1987), and also at the ventral midline of the rostral 
diencephalon, most Isl-1 ÷ neurons coexpress Lim-1 (blue). In the in- 
tervening region, Isl-1 and Lim-1 are expressed in separate but inter- 
mingled neuronal populations (brown and red stripes). In the ventral 
telencephalon, Isl-1 ÷ neurons (red) do not express SC1 or Lim-l. For 
simplicity, the domain of neuroepithelial Urn-1 expression that occu- 
pies the entire dorsoventral extent of the mid-diencephalon is not de- 
picted in this diagram. 
(iii) Ventral domain of expression of Nkx-2.1. 
(B) Ventral detail of a transverse section through the mesencephalon, 
showing that motor neurons of the oculomotor nucleus coexpress Isl-1 
(red) and SC1 (green). 
(C) Ventral detail of a transverse section through the rostral diencepha- 
Ion, showing that Isl-1 + neurons do not express SCI. 
(D) Detail of a transverse section through the ventral telencephalon, 
showing expression of Nkx-2.1 in virtually all cells. 
(E and F) Detail of a transverse section through the lateral region of 
the mid-diencephalon dorsal to the infundibulum (see Figure 1D for 
a low power view), showing that virtually all undifferentiated neuroepi- 
thelial cells express Lira-1 at low levels (F) and that Isl-1 ÷ neurons (E) 
(red) also coexpress Lira-1 (yellow cells in IF]). 
(G-I) Ventral detail of a transverse section through the rostral dien- 
cephalon, showing that Isl-1 ÷ neurons (I) (red) express Lim-1 (H) 
(green). (I) shows a double exposure of (G) and (H) to indicate the 
overlap of labeled cells. 
(J) Detail of a coronal section through the ventral telencephalon, show- 
ing that Isl-1 ÷ neurons do not express Lim-1, as shown by the absence 
of yellow cells in this double exposure of Isl-1 (red) and Lira-1 (green). 
Abbreviations: r, rhombencephalon; m, mesencephalon; d, dienceph- 
alon; t, telencephalon; i, infundibulum. 

Scale bar in (B), 160 p.m; in (C) and (E)-(I), 25 Ilm; in (D) and (J), 
20 p_m. 

cell types at forebrain as wel l  as at more caudal  levels of 
the neural tube. At all axial levels, Isl-1 + cells expressed a 
neuron-specific 13-tubulin isoform (data not shown), showing 
that they were neurons. 

In the diencephalon, mesencephalon, and rhombenceph- 

alon, the expression of Shh preceded the differentiation of 
Isl-1 + cells. Between stages 6 and 10, midl ine expression 
of Shh extended from the mesencephalon rostrally into the 
diencephalon and caudally into the rhombencephalon (see 
Figure 3A; data not shown). The onset of Isl-1 expression at 
diencephalic, mesencephalic, and rhombencephal ic levels 
occurred between stages 13 and 15 (Figure 1E; Ericson et 
al., 1992; Tsuchida et al., 1994; data not shown), 18-24 hr 
after the onset of Shh expression at the same axial levels. 
In the telencephalon, however, expression of Shh was not 
detected until late stage 17 (Figures 1J and 1K), about 30 
hr after the gene was first expressed in ventral midl ine cells 
of the rostral diencephalon (data not shown). Thus, in the 
ventral telencephalon, the initial expression of Isl-1 and SHH 
occurs synchronously. 

Neurons That Express Isl-1 at Different Axial 
Levels Have Distinct Identities 
To determine whether Isl-1 + neurons found at different ros- 
trocaudal positions have distinct identities, we examined the 
expression of other homeodomain proteins and cell surface 
markers. 
SCl Expression Defines Isl.1 + Neurons 
Caudal to the Forebrain 
In the rhombencephalon and mesencephalon, ventral Isl-1 ÷ 
neurons are motor  neurons (Simon et al., 1994) and coex-  
press the SC1 protein (Figures 2Aii and 2B; data not 
shown), in common with spinal motor  neurons (Yamada 
et al., 1991; Ericson et al., 1992). In contrast, neither dien- 
cephal ic nor te lencephal ic  Isl-1 ÷ neurons expressed SC1 
(Figure 2C; data not shown). 
Nkx.2.1 Expression Defines Isl.1 + Neurons 
in the Ventral Forebrain 
Expression of the homeodomain  protein N kx-2,1 (Lazzaro 
et al., 1991; Price et al., 1992) was used to dist inguish 
cells in d iencephal ic  and telencephalic regions from those 
found more caudal ly  (Rubenstein et al., 1994). In chick 
embryos examined at stages 14-18,  Nkx-2.1 was ex- 

pressed by vir tual ly all cells in a broad ventral  domain of 
the mid- and rostral d iencephalon and te lencephalon that 
encompassed the region in which Isl-1 ÷ neurons were gen- 
erated (Figures 2Aiii and 2D; data not shown). Nkx-2.1 ÷ 
cells were not detected in the . rhombencepha lon  (Figure 
2Aiii; data not shown). The onset  of express ion of Nkx-2.1 
occurred prior to that of Isl-l÷, at stage 9 in the d iencepha- 
Ion and at stages 13-14 in the te lencephalon (data not 
shown), and in both regions, expression was transient. 
Because of this, it was diff icult to determine whether  all 
Isl-1 ÷ neurons der ived from Nkx-2.1 ÷ precursors. Never- 
theless, when examined at s tage t8,  about  10% of Nkx- 
2.1 + cells coexpressed Isl-1 (data not shown), support ing 
the idea that Isl-1 ÷ neurons der ive from Nkx-2.1 + cells. 
Thus, the expression of Nkx-2.1 provides a marker  of ven- 
tral forebrain cells, and coexpress ion of Nkx-2.1 can be 
used to dist inguish Isl-1 ÷ neurons generated in the dien- 
cephalon and te lencephalon from those in more caudal  
regions of the neural tube. 
Lim.l  Expression Distinguishes Isl.1 + Neurons 
in the Diencephalon from Those 
in the Telencephalon 
Expression of the LIM homeodomain  protein Lim-1 (Taira 
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[ rhombencephalon ]1 diencephalon JL telencephalon J Figure 3. SHH Induces Isl-l* Neurons in Ex- 
plants Derived from Different Axial Levels of 
the Neural Plate 
(A) Expression of Shh in the cells at the midline 
of a stage 6 chick embryo shown by whole- 
mount in situ hybridization. Shh is expressed 
both in neural ectoderm and in the underlying 
mesoderm (data not shown). The position of 
the prospective telencephalic (T), diencephalie 
(D), and rhombencephalic (R) regions of the 
neural plate isolated for in vitro assays is indi- 
cated. The head fold is at the top, and the ap- 
proximate neuroectodermal-ectodermal bor- 

der is indicated by a broken line. Dotted line indicates approximate border of the epiblast. 
(B)-(M) show explants grown for -65  hr on COS cells transfected with antisense or sense Shh. 
(B, C, F, G, J, and K) Sections of rhombencephalic (B and C), diencephalic (F and G), and telencephalic (J and K) level explants grown on COS 
cells transfected with antisense Shh. No Isl-l* cells are detected, even though 13-tubulin + neurons have differentiated. 
(D, E, H, I, L, and M) Sections of rhombencephalic (D and E), diencephalic (H and I), and telencephalic (L and M) level explants grown on COS 
cells transfected with sense Shh. Numerous Isl-1 ÷ cells are detected, virtually all of which coexpress ~-tubulin. 

Scale bar in (A), 250 p.m; in (B)-(M), 25 I~m. 

et al., 1992) was  used to dist inguish Isl-1 ÷ neurons in the 
d iencephalon from those in the te lencephalon (Barnes et 
al., 1994; Fujii et al., 1994). In chick embryos examined 
f rom stages 14-18,  Lim-1 ÷ cells were detected in the dien- 
cephalon but not in the te lencephalon (Figure 2A; data not 
shown). In the mid-d iencephalon,  Lim-1 was expressed by 
most  neuroepi thel ia l  cells (Figures 2Aii and 2F) as well  as 
by postmitot ic neurons that coexpressed Isl-1 ÷ (Figures 
2E and 2F). In the rostral d iencephalon,  Lim-1 expression 
was conf ined to neurons at the ventral  midl ine, all of which 
expressed Isl-1 (Figures 2G-21). In the intervening region 
of the d iencephalon,  Lim-1 was expressed in a populat ion 
of neurons dist inct from, but intermingled with, Isl-1 ÷ neu- 

rons (Figure 2Aii). Important ly,  in the te lencephalon,  Isl-1 ÷ 
neurons did not express Lira-1 (Figure 2J). Thus, Lira-1 
expression dist inguishes d iencephal ic  f rom te lencephal ic  
cells, and coexpression of Lim-1 indicates the dience- 
phal ic origin of Isl-1 ÷ neurons in the forebrain. 

SHH Induces Isl-l* Neurons in Prospective 
Forebrain Regions of the Neural Plate 
To examine  the inf luence of SHH on cell di f ferentiat ion in 
regions of the neural plate that give rise to the forebrain, 
we constructed a coarse fate map of the neural plate of 
stage 6 chick embryos (M. P., unpubl ished data). This 
map, together with a stage 8 fate map (Couly and Le Douarin, 
1987), was used as a guide to isolate explants from lateral 
regions of the neural plate fated to give rise to the telen- 
cephalon and d iencephalon and, as a control, to the 
rhombencepha lon  (Figure 3A). We then used the markers 
descr ibed above to examine  whether  SHH can induce the 
dif ferentiat ion of ventral  neurons in these explants.  

Numerous Isl-1 + cells were induced in explants der ived 
from each of the three axial levels of the neural plate grown 
on COS cells transfected with sense Shh (Figure 3), 
whereas explants grown on COS cells t ransfected with 
ant isense Shh did not contain Isl-1 ÷ cells (Figure 3; Table 

Table 1. Induction of Isl-1 ÷ Cells by SHH in Neural Plate Explants 

Contact Transfilter 

Percent Isl-1 + Percent Isl-1 ÷ Isl-1 + 
Region of Transfection Percent Isl-1 + Neurons per Neurons That Percent Isl-1 + Neurons 
Neural Plate Construct Explants Explant Express L i ra-1 Explants per Explant 

Rhombencephalic Antisense Shh 0 (49) 0 0 0 (18) 0 
Sense Shh 57 (45) 39 (11) 0 (16) 8 (36)" 1 _+ 2 (10) 

Diencephalic Antisense Shh 0 (28) 0 0 0 (22) 0 
Sense Shh 57 (30) 35 (9) 22 (11) 64 (28) 33 --- 8 (5) 

Telencephalic Antisense Shh 0 (46) 0 0 0 (25) b 0 b 
Sense Shh 78 (42) 96 (7) 0 (15) 76 (25) 39 _ 10 (6) 

Neural plate explants isolated from telencephalic, diencephalic, and rhombencephalic levels of stage 6 chick embryos were cultivated for 60-66 
hr in contact with or transfilter to COS cells transfected with an Shh expression construct in sense or antisense orientation, and the proportion 
of explants that express Isl-1 was determined by whole-mount immunohistochemistry. The number of expants is indicated in brackets. Values 
represent mean _+ SEM. 
a Of 36 rhombencephalic explants cultured on sense Shh COS cells, three contained between one and five Isl-1 + cells. 
b Of 25 telencephalic explants cultured on antisense Shh COS cells, one contained <5 weakly Isl-1 + cells. 
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Figure 4. Expression of Ancillary Markers Distinguishes Isl-1 ÷ Neu- 
rons Induced by SHH in Rhombencephalic, Diencephalic, and Telen- 
cephalic Level Neural Plate Explants 
(A and B) Section through a rhombencephalic level explant exposed 
to SHH. Double-label images of the same section show that Isl-1 ÷ cells 
(A) express SC1 (B). Arrows in (A) and (B) indicate the same cell. 
(C) No Nkx-2.1 ÷ cells are detected in rhombencephalic level explants 
exposed to SHH. 
(D and E) Section through a diencephalic level explant exposed to 
SHH. Isl-1 ÷ cells (D) do not coexpress SC1 (E). 
(F) Section through a diencephalic level explant exposed to SHH, 
showing induction of Nkx-2.1 ÷ cells. 
(G and H) Section through a telencephalic level explant exposed to 
SHH. Isl-1 + cells (G) do not express SC1 (H). 
(I) Section through a telencephalic level neural plate explant exposed 
to SHH, showing induction of Nkx-2.1 ÷ cells. 
(J and K) Double-label immunofluorescence micrograph derived from 
a telencephalic level explant exposed to SHH for 48 hr, showing Isl-1 ÷ 
(J) and Nkx-2.1 ÷ (K) cells in the same section. Over 70% of Isl-1 ÷ cells 
express Nkx-2.1 (arrows point to some of the same cells). 
(L) Superimposition of Isl-1 ÷ (green) and Nkx-2.1 ÷ (red) cells in a telen- 
cephalic level explant. Yellow cells coexpress Isl-1 and Nkx-2.1. Simi- 
lar results were obtained in diencephalic level explants. 

Scale bar in (A)-(E) and (G)-(I), 10 #m; in (F), 15 ~m; in (J)-(K), 25 
~m; in (L), 50 I~m. 

1). The proport ion of Isl-1 ÷ neurons in induced explants 
der ived from the three axial  levels dif fered markedly.  In 
te lencephal ic  level explants,  96% of cells exposed to SH H 
expressed Isl-1 (Table 1), whereas only 35% of cells in 
d iencephal ic  level explants and 39% of cells in rhomben-  
cephal ic level explants expressed Isl-1 (Table 1). 

Isl-1 + Neurons Induced by SHH 
Have Distinct Identities 
To def ine the identi ty of induced Isl-1 + neurons, we exam- 
ined the expression of SC1, Nkx-2.1, and Lim-1. 
SCl Expression 
To def ine Isl-1 + neurons generated, at levels caudal  to the 
forebrain, we examined  the coexpression of SC1 and Isl-1. 
Rhombencepha l ic  level explants exposed to SHH con- 
ta ined Isl-1 + neurons that coexpressed SC1 (Figures 4A 
and 4B), indicat ing that these cells are motor  neurons. 

Figure 5. Expression of Lira-1 Distinguishes Isl-1 + Neurons Induced 
by SHH in Diencephalic and Telencephalic Level Neural Plate Ex- 
plants 

(A and B) Many Isl-1 ÷ cells (A) in diencephalic level explants exposed 
to SHH express Lim-1 (B). Arrows indicate some of the cells that coex- 
press Isl-1 and Lim-l. Isl-l+/Lim-1- and Isl-l-/Lim-1 + cells are also pres- 
ent. 
(C) Lim-1 ÷ cells are present in diencephalic level neural plate explants 
grown on antisense Shh COS cells. 
(D and E) Isl-l-- cells (D) in telencephalic level explants exposed to 
SHH do not express Lim-1 (E). No Lim-1 ÷ cells are present in telence- 
phalic level explants after exposure to SHH. Similar results were ob- 
tained in over 20 explants. 
(F) Lim-1 + cells are not detected in telencephalic level explants grown 
on antisense Shh COS cells. 

Scale bar, 20 p_m. 

IsI-I-/SC1 ÷ cells and FP1 ÷ cells were also detected (data 
not shown), showing that f loor plate cells are also induced 
(Yamada et al., 1991). Isl-1 ÷ neurons induced in dience- 
phal ic (Figure 4D) and te lencephal ic  (Figure 4G) level ex- 
plants by exposu re to SHH did not coexpress SC1 (Figures 
4E and 4H), providing ev idence that they are not motor 
neurons. Floor plate cells, def ined by expression of FP1 
and SC1, were not detected in d iencephal ic  or telence- 
phal ic level explants exposed to SHH (data not shown). 

Nkx.2.1 Expression 
To determine whether  Isl-1 + neurons induced in dience- 
phal ic and te lencephal ic  level explants had propert ies of 
ventral  forebrain neurons, we examined the coexpression 
of Nkx-2.1 and Isl- l .  Over 80% of cells in d iencephal ic  
and te lencephal ic  level explants exposed to SHH for 24 hr 
expressed Nkx-2.1 (Figures 4F and 41), whereas induced 
rhombencephal ic  level explants did not contain Nkx-2.1 ÷ 
cells (Figure 4C). Moreover,  about  70% of Isl-1 ÷ cells coex- 
pressed Nkx-2.1 in explants after 48 hr exposure to SHH 
(Figures 4J, 4K, and 4L), conf i rming the forebrain identity 
of these Isl-1 ÷ neurons. 
Lim.1 Expression 
To dist inguish d iencephal ic  from te lencephal ic  Isl-1 + neu- 
rons in induced explants, we moni tored the coexpression 
of Lim-1 and Isl-1. In d iencephal ic  level explants exposed 
to SHH, 22°/o of Isl-1 + neurons expressed Lim-1 (Figures 
5A and 5B; Table 1), consiste nt with a d iencephal ic  identi ty 
(see Figure 2Aii). In te lencephal ic  level explants,  however,  
the Isl-1 + neurons induced by SHH did not express Lira-1 
(Figures 5D and 5E; Table 1). Lim-1 + ceils were detected 
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Figure 6. Transfilter Induction of Ventral Forebrain Neurons by Shh 
(A) Whole mount of a rhombencephalic level explant grown for 60 hr 
transfilter to COS cells expressing SHH. Very few Isl-1 ÷ neurons are 
induced. 
(B and C) Whole mounts of diencephalic (B) and telencephalic (C) 
level explants grown for 60 hr transfilter to COS cells expressing SHH. 
Numerous Isl-1 + cells are induced. 
(D and E) Sections through telencephalic level explants grown for 48 
hr transfilter to COS cells expressing antisense (D) or sense (E) Shh. 
Numerous Nkx-2.1 ÷ cells are induced by sense (E) but not by antisense 
(D) Shh. 

Scale bar, 20 ~m. 

in rhombencephal ic  and d iencephal ic  (Figure 5C) but not 
te lencephal ic  (Figure 5F) level explants grown on COS 
cells transfected with ant isense Shh. 

These results indicate that a rostrocaudal character of 
neural cells that has been establ ished at the neural plate 
stage is mainta ined in vitro, in the absence and presence 
of ventral iz ing signals mediated by SHH. Thus, an ear ly 
and stable restrict ion in the potential  of cells located at 
dif ferent rostrocaudal posit ions within the neural plate ap- 
pears to define the repertoire of ventral  neuronal  cell types 
that can be generated upon exposure of cells to SHH. 

SHH Can Induce Ventral Forebrain Neurons 
in a Contact-Independent Manner 
In neural plate explants der ived from spinal cord levels, 
the induction of motor neurons by the notochord or by 
cells expressing SHH can be achieved in the absence of 
contact (Tanabe et al., 1995; Roel ink et al., 1995). We 
examined whether  SHH can similar ly induce Isl-1 ÷ neu- 
rons in forebrain level neural plate explants in a contact- 
independent  manner.  Diencephal ic and te lencephal ic  
level neural plate explants grown transfi l ter to COS cells 
expressing SHH contained Isl-1 + neurons (Figures 6B, 6C, 
and 6D; Table 1) and Nkx-2.1 + cells (Figure 6E). These 

nl ¸ F 
Figure 7. Floor Plate and Ventral Cells of the Rostral Diencephalon 
Induce Ventral Neurons at Different Levels of the Neuraxis 
(A) Isl-1 ÷ neurons are induced by floor plate in rhombencephalic level 
explants. These cells coexpress SC1 (data not shown). 
(B) Nkx-2.1 ÷ cells are not induced by floor plate in rhombencephalic 
level explants. 
(C) Isl-1 ÷ neurons are induced by floor plate in telencephalic level 
explants. These neurons do not coexpress SC1 (data not shown). 
(D) Nkx-2.1 ÷ cells are induced by floor plate in telencephalic level 
explants. 
(E) Rostral diencephalic tissue induces Isl-1 ÷ cells (green) in telence- 
phalic level neural plate explants. Diencephalic tissue of murine origin 
is delineated by anti-nestin immunoreactivity (red) and contains a few 
Isl-1 + neurons (yellow cells). The induced telencephalic Isl-1 ÷ neurons 
do not express SC1 (data not shown). About 15% of cells in telence- 
phalic explants were induced to express Isl-1. 
(F) Induced Isl-1 ÷ cells in telencephalic level neural plate explants 
grown transfilter to explants derived from the ventral midline region 
of the rostral diencephalon. A total of 830/0 of explants (n = 12) con- 
tained Isl-l÷cells (46 ± 14cells per explant; mean ± SEM; n = 6). No 
induction of Isl-1 + cells was observed with dorsal rostral diencephalic 
tissue (n = 8). 

Scale bar in (A) and (B), 15 ~m; in (C) and (D), 10 p_m; in (E), 25 
I~m; in (F), 45 p.m. 

results show that ventral  forebrain Isl-1 ÷ neurons can be 
induced by cells expressing SH H in the absence of contact 
with forebrain level explants. In contrast, few, if any, Isl-1 ÷ 
neurons were induced in rhombencepha l ic  level neural 
plate explants (Figure 6A; Table 1). At rhombencephal ic  
levels, eff icient induct ion of Isl-1 ÷ motor  neurons, there- 
fore, appears to depend on contact  with cel lular sources 
of SHH. Similarly, the induct ion of dopaminerg ic  neurons 
in the mesencephalon depends on contact with the f loor 
plate (Hynes et al., 1995). 

Inductive Activity of Floor Plate and Rostral 
Diencephalic Cel ls 
We next examined whether  the induct ive act ions of SHH 
reflect those of endogenous neural sources of SHH pres- 
ent at di f ferent levels of the neuraxis. 
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Chick floor plate was used as a source of SHH implicated 
in the induction of ventral cell types at rhombencephalic 
levels (see Figure 1). Rhombencephalic level explants 
grown in contact with floor plate tissue contained Isl-l÷/ 
SC1 ÷ neurons (Figure 7A; data not shown) but not Nkx-2.1 ÷ 
cells (Figure 7B). In telencephalic level explants, floor plate 
tissue induced Isl-1 ÷/SC1- and Isl-l÷/Lim-1- neurons (Fig- 
ure 7C; data not shown) and Nkx-2.1 ÷ cells (Figure 7D). 
Thus, the profile of markers induced in neural plate ex- 
plants exposed to floor plate and to SHH is identical. 

The activity of cells at the ventral midline of the rostral 
diencephalon (see Figure 1) was assayed as a neural 
source of SHH implicated in patterning the diencephalon 
(Hatta et al., 1994) and ventral telencephalon (see Discus- 
sion). Since the ventral region of the rostral diencephalon 
itself contains Isl-1 + neurons, conjugate experiments were 
performed with tissue obtained from E11 mouse embryos 
and identified by antibodies to mouse nestin (Dahlstrand 
et al., 1992). Cells at the ventral midline of the rostral di- 
encephalon induced numerous Nkx-2.1 ÷ cells (data not 
shown) and expression of Isl-1 in about 15O/o of cells in 
telencephalic level explants (Figure 7E). The decreased 
number of induced Isl-1 ÷ neurons is likely to result from 
the provision of lower levels of SHH by diencephalic tissue 
than by Shh-transfected COS cells. These Isl-1 ÷ neurons 
did not express SC1 or Lim-1 (data not shown), character- 
istic of a telencephalic phenotype. Furthermore, chick ven- 
tral rostral diencephalic tissue was able to induce Isl-1 + 
neurons when grown transfilter to telencephalic level ex- 
plants (Figure 7F; Table 1). In contrast, diencephalic tissue 
isolated from the dorsal midline of the rostral diencephalon 
or the ventral midline at the level of the infundibulum, re- 
gions that do not express Shh (see Figure 1), did not induce 
Isl-1 ÷ neurons either in contact with or transfilter to telence- 
phalic level explants (data not shown). 

Thus, signals derived from the ventral midline of the 
rostral diencephalon appear able to act at a distance to 
induce Isl-1 ÷ neurons characteristic of the ventral telen- 
cephalon. These results show also that the identity of ven- 
tral neurons induced by neural sources of SHH appears 
to depend on rostrocaudal restrictions in the response 
properties of neural plate cells and not on the axial level 
of origin of the inducing tissue. 

Discussion 

A vertebrate homolog of the Drosophila hedgehog gene, 
Shh, is expressed by the notochord and floor plate and 
can mimic the ability of these two midline cell groups to 
induce motor neuron differentiation (Roelink et al., 1994, 
1995; Tanabe et al., 1995). On this basis, SHH has been 
implicated in the induction of ventral neuronal types at 
caudal levels of the neural tube. Shh is also expressed 
by cells in the ventral neural tube rostral to the floor plate, 
raising the question of whether SHH also participates in 
the induction of ventral neurons in the forebrain. Our re- 
sults show that SHH induces ventral neurons characteris- 
tic of the diencephalon and telencephalon in regions of 
the neural plate that normally give rise to these two subdivi- 
sions of the forebrain. Thus, a single inducing molecule, 

SHH, appears to participate in the differentiation of ventral 
neuronal cell types along the entire rostrocaudal extent 
of the neural tube, inducing distinct cell types through its 
actions on neural plate cells of predetermined rostrocau- 
dal character. 

Although the final identity of the embryonic forebrain 
neurons induced by SHH has not been resolved by these 
studies, in the adult forebrain, Isl-1 ÷ neurons are found in 
several ventral diencephalic nuclei and in the basal telen- 
cephalon (Thor et al., 1991). It is likely that neurons in these 
ventral forebrain nuclei represent the mature derivatives of 
the Isl-1 ÷ neurons that are induced by SHH at prospective 
forebrain levels of the neural plate. 

SHH as an Inducer of Ventral Forebrain Neurons 
In telencephalic level neural plate explants, SHH induced 
virtually all cells to differentiate into Isl-1 ÷ neurons of telen- 
cephalic character. Moreover, exposure of telencephalic 
level explants to SHH does not induce endogenous Shh 
expression (J. E. and J. M., unpublished data). These re- 
sults suggest that at telencephalic levels, SHH induces 
ventral neurons by an action on neural plate cells that is 
independent of the induction of Shh or of intermediary 
cell types. Similarly, in neural plate explants derived from 
spinal cord levels, the induction of motor neurons in re- 
sponse to SHH does not depend on the induction of floor 
plate differentiation (Tanabe et al., 1995; Roelink et al., 
1995). Thus, at many levels of the neuraxis, the induction 
of ventral neurons by SHH does not depend on the prior 
differentiation of specialized midline cells. It remains pos- 
sible that in the diencephalon, SHH induces midline cells 
that secrete a distinct factor that is responsible for inducing 
ventral Isl-1 + neurons. Since in the rostral diencephalon, 
the domains of expression of Shh and Isl-1 overlap at the 
midline, it is also possible that Isl-1 ÷ neurons differentiate 
from cells that have expressed Shh at an earlier stage. 

Induction of Ventral Telencephalic Neurons by 
Signals from the Rostral Diencephalon 
One important issue that is raised by our studies is the 
source of the inductive signal that triggers the differentia- 
tion of neurons in the ventral telencephalon. Our results 
suggest that the induction of Isl-1 ÷ neurons in the ventral 
telencephalon depends on cell groups distinct from those 
that induce ventral cell types at more caudal levels of the 
neuraxis. 

Caudally, ventral Isl-1 + neurons appear to be induced 
by a signal, presumably SHH, that derives initially from 
the notochord and later from floor plate cells. Two lines 
of evidence suggest that at telencephalic levels, the induc- 
tion of ventral neurons appears not to depend on the axial 
mesoderm. First, cells fated to give rise to the floor of the 
telencephalon are located in the lateral margins of the 
neural plate and are never in proximity to the prechordal 
mesoderm (Couly and Le Douarin, 1987; M. P., unpub- 
lished data). Second, prospective ventral telencephalic tis- 
sue isolated as late as stage 12 does not give rise to Isl-1 + 
neurons when grown in vitro (J. M., unpublished data). 
Thus, signals that commit telencephalic cells to a ventral 
neuronal fate are required at a stage when the prechordal 
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mesoderm is even farther removed from the prospect ive 
te lencephalon ( M  P., unpubl ished data). 

If the axial mesoderm does not represent a source of 
signals involved in the induction of neurons in the ventral  
te lencephalon,  from where do these signals or ig inate? 
Ventral  te lencephal ic  cells are unl ikely to provide this sig- 
nal, since Shh is not expressed by cells at the f loor of 
the te lencephalon until s tages 17-18,  coincident with the 
appearance of te lencephal ic  Isl-1 ÷ neurons and after the 
specif ication of ventral  forebrain Isl-1 ÷ neurons. Cells at 
the ventral  midl ine of the rostral d iencephalon,  however,  
represent a potent ial  source of SHH involved in inducing 
Isl-1 ÷ neurons in the ventral  te lencephalon.  Shh is ex- 
pressed at the midl ine of the rostral d iencephalon from 
stage 9, prior to the onset of expression of Nkx-2.1 and 
to the specif icat ion of Isl-1 + neurons in the te lencephalon.  
Furthermore, our in vitro studies show that midl ine rostral 
d iencephal ic  cells that express SHH can act at a distance 
to induce Isl-1 + neurons in te lencephal ic  regions of the 
neural plate. It remains possible that rostral d iencephal ic  
cells secrete addit ional factors that cooperate  with SHH 
to def ine the number  and diversi ty of ventral  cell types 
generated within the f loor of the te lencephalon.  

Thus, in vivo, a SHH-mediated signal from ventral  mid- 
l ine cells of the rostral d iencephalon might act in a planar 
manner  to induce the dif ferentiat ion of neurons in the ven- 
tral te lencephalon.  Studies of the zebraf ish mutant cy- 
clops (Hatta et al., 1991) have provided ev idence that cells 
at the ventral  midl ine of the embryonic  d iencephalon also 
have a role in patterning the d iencephalon (Hatta et al., 
1994; Macdonald et al., 1994). 

Homeobox Gene Expression and a Common 
Program for the Generation of Ventral Neurons 
The detect ion of Isl-1 in ventral  neuronal  cell types induced 
by SHH at dif ferent posit ions a long the rostrocaudal extent  
of the neural tube suggests that Isl-1 expression is more 
closely associated with the dif ferentiat ion of neurons of 
ventral  character  than with the generat ion of any specif ic 

class of ventral  neuron. Moreover,  Isl-1, a l though a promi- 
nent marker of ventral  neuronal  dif ferentiat ion, is not al- 
ways expressed by ventral  neurons that dif ferentiate in 
response to notochord- and f loor p la te-der ived signals. 
For example,  at rhombencephal ic  and mesencephal ic  lev- 
els, serotonergic and dopaminerg ic  neurons dif ferentiate 
ventral ly in response to signals from the notochord and 

f loor plate but do not express Isl-1 (Yamada et al., 1991; 
Hynes et al., 1995; our unpubl ished data). 

Nevertheless, the expression of Isl-1 by many  distinct 
classes of ventral  neurons raises the possibi l i ty that ele- 
ments of the response of neural plate cells to SHH may 
be conserved a long the rostrocaudal axis. In support  of 
this, members  of the Nkx-2 fami ly  of homeobox  genes, 
notably Nkx-2.1 and Nkx-2.2, are expressed in the ventral  
neural tube at all rostrocaudal levels, in a domain that 
over laps closely with that of Shh (Price et al., 1992; Laz- 
zaro et al., 1991; Rubenstein et al., 1994). Moreover,  at 
forebrain levels, the expression of both Nkx-2.1 and Nkx- 
2.2 (Barth and Wilson, 1995) is induced by SHH. Thus, 
the Nkx-2 and Isl homeodomain  proteins might represent 

e lements of a common SHH-response program that is acti- 
vated in neural plate cells independent  of their  rostrocau- 
dal position. 

Experimental Procedures 

Animals 
Fertilized white leghorn chicken eggs were obtained from Agrisera 
AB, Ume~, Sweden. Chick embryos were staged according to the 
protocols of Hamburger and Hamilton (1951). Time-mated mouse em- 
bryos were obtained from the animal facility of Ume=~ University. 

In Situ Hybridization and Immunohistochemistry 
In situ hybridization analysis using a chick Shh probe (1. L. and J. 
Dodd, unpublished data) was performed essentially as described 
(Schaeren-Wiemers and Gerfin-Moser, 1993). Immunohistochemical 
localization of antigens was performed as described (Yamada et al., 
1991). Double-label immunohistochemistry and in situ hybridization 
was performed as described by Tsuchida et al. (1994). Whole-mount 
in situ hybridization was performed as described (Francis et al., 1994). 

Isl-1 was detected by using rabbit anti-lsl-t antibodies (Thor et al., 
1991; Ericson et al., 1992) or monoclonal antibody (MAb) 4D5 (Roelink 
et al., 1994). Lira-1 (Taira et al., 1992) was detected with MAb 4F2, 
which also recognizes Lira-2 (Tsuchida et al., 1994). Lira-1 and Lim-2 
have similar patterns of expression in the forebrain (data not shown). 
SC1 was detected with MAb SC1 (Tanaka and Obata, 1984), the ho- 
meodomain protein Nkx-2.1 with rabbit antibodies (Lazzaro et al., 
1991), floor plate cells with MAb FP1 (Yamada et al., 1991), nestin 
with antisera 129/130 (Dahlstrand et al., 1992), and acetylated 
~-tubulin with MAb T6793 (Sigma Immunochemicals). The number of 
Isl-1 ÷ and Lira-1 + cells in explants was determined by sectioning ex- 
plants and counting the number of labeled cells in every fifth section. 
The total number of cells was determined by nuclear labeling using 
DAPI (Boehringer Mannheim). 

Isolation and Culture of Neural Plate Explsnts 
Neural plate explants (Yamada et al., 1993) corresponding to presump- 
tive telencephalic, diencephalic, and rhombencephalic regions were 
dissected from stage 6 chick embryos. Floor plate tissue was isolated 
from stage 25 chick embryos as described (Yamada et al., 1993). 
Midline rostral diencephalic tissues expressing Shh were dissected 
from E11 mouse embryos and from stage 17 chick embryos. The infun- 
dibulum and roof of the diencephalon, tissues that do not express Shh, 
were also dissected. Neural plate explants were cultured for 24-66 
hr in contact with or transfilter to COS cell aggregates, floor plate 
tissue, or diencephalic tissue as described (Roelink et al,, 1994; Ta- 
nabe et al., 1995). For transfection, COS cells were grown until 90% 
confluency, transfected with 1 I~g of DNA per 35 mm dish with 12 I~g/ 
ml lipofectamine reagent (GIBCO BRL) in Dulbecco's modified Eagle's 
medium (DMEM), and processed as described (Roelink et al., 1994). 
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