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Abstract

We consider multiple-integral variational problems where the Lagrangian function, defined on a frame bu
homogeneous. We construct, on the corresponding sphere bundle, a canonical Lagrangian form with the
that it is closed exactly when the Lagrangian is null. We also provide a straightforward characterization
Lagrangians as sums of determinants of total derivatives. We describe the correspondence between La
on frame bundles and those on jet bundles: under this correspondence, the canonical Lagrangian form
the fundamental Lepage equivalent. We also use this correspondence to show that, for a single-determ
Lagrangian, the fundamental Lepage equivalent and the Carathéodory form are identical.
 2004 Elsevier B.V. All rights reserved.

MSC: 53C60; 70S05

Keywords: Calculus of variations; Homogeneous Lagrangian; Null Lagrangian; Carathéodory form; Lepage equivalent

1. Introduction

By a ‘null’ Lagrangian we mean one whose Euler–Lagrange equations vanish identically
Lagrangians are important in the context of the study of symmetries of Lagrangian system[2],
Carathéodory’s theory of fields of extremals, and integral invariants[4].
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The subject of null Lagrangians has an interestingly intermittent history. This may be because
case of Lagrangians of the type that occur in classical dynamics, that is to say, ones which de
a single independent variablex, a finite number of dependent variablesuα , α = 1,2, . . . , n, and the
(formal) first-order derivativeṡuα of theuα with respect tox, the null Lagrangians are well known an
easily described: a Lagrangian is null if and only if it is the total derivative of a functionf of x and the
uα, so that

L(x,uα, u̇α) = df

dx
= ∂f

∂uα
u̇α + ∂f

∂x

(we use the summation convention for repeated indices throughout the paper).
On the other hand, the situation is neither quite so obvious nor so well known in the case o

theoretic Lagrangians, even those of first order—that is to say, where there are several (but finitel
independent variablesxi , i = 1,2, . . . ,m, m � 2, and the Lagrangian is a function of these, the depen
variablesuα as before, and their formal first-order derivativesuα

i . As a result, the field theoretical ca
has had to be rediscovered from time to time.

The 1983 paper of Hojman[6] is a case in point. This turned out to be seminal, because it led to
tounes’s re-discovery of the so-called fundamental Lepage equivalent of a Lagrangian form—of
more below. However, the whole question of first-order null Lagrangians had already been exte
analysed ten years or more before by both Krupka[7] and Rund[11]. After Hojman and Betounes, an
apparently in ignorance of the preceding work, Olver and Sivaloganathan discussed the whole q
afresh, and from a somewhat different point of view[10]. Other approaches to the problem, some incl
ing explicit formulae for higher-order null Lagrangians, may be found in[5] and the references therein

Our excuse for revisiting the story is this. The theory of null first-order Lagrangians is remar
transparent if the Lagrangians in question are assumed to be homogeneous, so that the variatio
grals are parameter-independent. We can deduce the rather more complicated results in the je
formalism by choosing special coordinates, called affine coordinates. By approaching the prob
this way, we have been led to a new interpretation of the fundamental Lepage equivalent, and th
the discovery of a rather remarkable result, namely that for a single determinant null Lagrangi
Carathéodory form and the fundamental Lepage equivalent are identical.

2. Properties of frame bundles

Suppose given a configuration manifoldE with dimE = N = m + n. By a (first-order)m-velocity at
a pointu ∈ E we mean the 1-jet at the origin 0∈ Rm of a smooth mapφ of a neighbourhood of 0 intoE
with φ(0) = u. The bundle of 1-jets at 0 of smooth mapsRm → E is denoted byT 1

(m)E. By a first-order
m-frame we mean the 1-jet of an immersion. The bundle ofm-frames overE is denoted byF(m)E. We
can also regard a pointξ of F(m)E as an ordered linearly independent set{ξi}, i = 1,2, . . . ,m, of elements
of TuE, u ∈ E. With this interpretation we see thatF(m)E is an open submanifold of the Whitney su
bundle

⊕m
TE of arbitrary (not necessarily linearly independent) orderedm-tuples of tangent vectors.

We shall letτm :T 1
(m)E → E denote the natural projection, and also its restriction toF(m)E. We write

the coordinates on bothT 1
(m)E andF(m)E as(uA,uA

i ), whereuA, A = 1,2, . . . ,N , are coordinates onE
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uA
i = ∂φA

∂xi
(0),

where thexi are natural coordinates onRm. ThenF(m)E is defined by the condition that the matrix(uA
i )

has rankm. The frame corresponding to the point with coordinates(uA,uA
i ) has for itsith element the

vectoruA
i ∂/∂uA at the point(uA).

We shall also need to make use ofT 2
(m)E, the bundle of 2-jets at 0 of mapsRm → E; we shall conside

its restriction to a bundle overF(m)E ⊂ T 1
(m)E, with π the projection. We shall denote the extra fib

coordinates byuA
ij , with the understanding thatuA

ji = uA
ij wheni �= j .

For eachi, i = 1,2, . . . ,m, we define an operatorSi :T ∗T 2
(m)E → T ∗T 2

(m)E, linear overC∞(T 2
(m)E),

by

Si(duA) = 0, Si(duA
j ) = δi

j duA, Si(duA
jk) = δi

j duA
k + δi

k duA
j .

Note thatSi restricts to a similar operator onT ∗T 1
(m)E, which we denote by the same symbol. We c

extendSi to a derivation of degree 0 of
∧

T 1
(m)E.

We also define a derivationdi :T ∗T 1
(m)E → T ∗T 2

(m)E by

di(duA) = duA
i , di(duA

j ) = duA
ij ,

and for anyf ∈ C∞(T 1
(m)E),

dif = uA
i

∂f

∂uA
+ uA

ij

∂f

∂uA
j

.

Finally, we define an operatorε :T ∗T 1
(m)E → T ∗T 2

(m)E, the Euler–Lagrange operator, by

ε = π∗ − di ◦ Si.

Then for anyν ∈ T ∗T 1
(m)E, sayν = νA duA + νi

A duA
i , we have

ε(ν) = ν − di(ν
i
A duA) = (

νA − di(ν
i
A)

)
duA.

We note thatε(ν) is semi-basic overE, and that for any functionL onF(m)E, ε(dL) = 0 is equivalent
to the Euler–Lagrange equations forL.

3. Homogeneous Lagrangians

We considerGL(m)+, the group ofm×m matrices of positive determinant. This group acts onF(m)E

by (a, ξ) �→ a ·ξ where, ifξ = {ξi} anda = (a
j

i ), a ·ξ = {aj

i ξj }. This action makesF(m)E into a principal
bundle; we denote the base byS(m)E, since it generalizes the sphere bundle of the casem = 1. A point
of S(m)E can be regarded as an orientedm-dimensional contact element at a point ofE, or an oriented
m-dimensional subspace of the tangent space at a point ofE; in fact S(m)E is a double cover of the
Grassmanm-plane bundle ofE. We shall denote the natural projections byρ :F(m)E → S(m)E and
τm+ :S(m)E → E.
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A functionL onF(m)E is said to be homogeneous if it satisfies

L(a · ξ) = (deta)L(ξ)

for all a ∈ GL(m)+, or in coordinates

L(uA, a
j

i u
A
j ) = (deta)L(uA,uA

i ).

Given any functionL and any immersionσ : Rm → E we define them-form (σ̂ ∗L)dmx on Rm, where
σ̂ : Rm → F(m)E is the 1-jet prolongation ofσ . This m-form is to be thought of as the integrand o
variational problem; ifL is homogeneous then the variational integral will not depend on the par
trization, provided the orientation is unchanged: that is, if we make an orientation-preserving par
transformationyi = yi(x) we will have

L

(
uA

(
y(x)

)
,
∂uA

∂yi

(
y(x)

))
dmy = L

(
uA(x),

∂uA

∂xi
(x)

)
dmx.

Thus homogeneous Lagrangians are those that give rise to parameter-independent variational p
If we differentiate the determinantal homogeneity condition, in the coordinate form, partially

respect toaj

i at the identity ofGL(m)+ we obtain

uA
i

∂L

∂uA
j

= δ
j

i L.

This is in fact equivalent to the determinantal condition forGL(m)+, because the vector fields∆j

i =
uA

i ∂/∂uA
j form a local basis (overR) for the space of the fundamental vector fields corresponding t

GL(m)+ action (see also[11]).
We can construct homogeneous Lagrangians onF(m)E out of m-forms onS(m)E, as follows. A dif-

ferential form onS(m)E is semi-basic if it vanishes when contracted with any vector field vertical
τm+ . An m-form λ on S(m)E which is semi-basic overE will be called a Lagrangian form. Now an
Lagrangian formλ defines a Lagrangian functionL on F(m)E as follows. Letξ ∈ F(m)E, with corre-
sponding frame{ξi}. We may considerλρ(ξ) to be an element of

∧m
T ∗E (rather than of

∧m
T ∗S(m)E)

becauseλ is semi-basic. Now defineL(ξ) by

L(ξ) = 〈ξ1 ∧ ξ2 ∧ · · · ∧ ξm,λρ(ξ)〉 = 〈ξ, λρ(ξ)〉,
where the angle brackets denote the pairing of anm-vector and anm-form onE. As ρ(a · ξ) = ρ(ξ) for
anya ∈ GL(m)+, it follows immediately that

L(a · ξ) = (deta)L(ξ),

so the Lagrangian function defined by this construction is homogeneous.
Conversely, every homogeneous Lagrangian can be derived from a Lagrangian form. One

doing this for nowhere-vanishing Lagrangians, which we introduced in[3], goes as follows. Given
non-vanishing homogeneous LagrangianL, let Θ be the decomposablem-form defined by

Θ = L−(m−1)

m∧
i=1

∂L

∂uA
i

duA.
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It can be shown thatΘ is well-defined as anm-form onF(m)E; it is invariant under theGL(m)+ ac-
tion, and passes to the quotient to define a Lagrangian formΘ̃ on S(m)E; and the Lagrangian functio
associated with̃Θ is L itself. Proofs of these assertions can be found in[3]. In the casem = 1, Θ is
the Hilbert 1-form of Finsler geometry. On the other hand, for generalm, Θ is closely related to the
so-called Carathéodory form, as we shall explain below. We therefore callΘ the Hilbert–Carathéodor
form associated with the homogeneous LagrangianL.

There is another way of constructing a Lagrangian form from a homogeneous Lagrangian, whic
present context is more important; we shall call this the fundamental Lagrangian form, and discu
detail below. This second construction may be applied whether or not the Lagrangian vanishes an

The correspondence between Lagrangian forms and homogeneous Lagrangian functions is m
A form onS(m)E which is pulled back to zero by the prolongation of every immersion defining the bu
is called a contact form. Two Lagrangian formsλ1, λ2 define the same Lagrangian function if and o
if their differenceλ1 − λ2 is a contact form.

For calculational purposes it is convenient to proceed as follows. A Lagrangian form can be re
as a semi-basicm-form onF(m)E invariant under theGL(m)+ action. Note that, in particular, a bas
m-form (that is, anm-form on E pulled back toF(m)E) is invariant. If µ is an invariant semi-basi
m-form onF(m)E, the corresponding homogeneous LagrangianL is given by

L = µ(∆1,∆2, . . . ,∆m),

where the∆i are the locally defined vector fields given by

∆i = uA
i

∂

∂uA
.

It does not matter that the∆i are defined only locally, sinceµ is semi-basic. Note that these local vec
fields satisfy[∆i,∆j ] = 0, a convenient property that we shall make use of later.

4. Null homogeneous Lagrangians

We shall devote the major part of this section to proving that a homogeneous first-order Lagran
null if and only if it can be derived from a closed basic Lagrangian form.

Suppose first thatL is defined by a closed basic Lagrangian form. We express this by saying tha
is a basicm-form µ onF(m)E such that

L = µ(∆1,∆2, . . . ,∆m);
we shall show that ifµ is closed thenL will be null.

From the assumed closure ofµ, for any vector fieldX onF(m)E, we have

0 = dµ(X,∆1, . . . ,∆m) = X
(
µ(∆1, . . . ,∆m)

) +
∑

i

(−1)i∆i

(
µ(X,∆1, . . . , ∆̂i, . . . ,∆m)

)
+

∑
i

(−1)iµ
([X,∆i],∆1, . . . , ∆̂i, . . . ,∆m

)
= X(L) −

∑
i

(
∆i

(
µi(X)

) − µi
([∆i,X])),
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where we have written

µi = µ(∆1, . . . , ∆̂i, . . . ,∆m) = µi
A duA

say (µi is a semi-basic 1-form); we have here used the fact that[∆i,∆j ] = 0. If we takeX = ∂/∂uA
i and

X = ∂/∂uA in turn, we find that

∂L

∂ui
A

= µi
A; ∂L

∂uA
= ∆iµ

i
A.

From the first of these,Si dL = µi . Now

diµ
i
A = π∗∆iµ

i
A + uB

ij

∂µi
A

∂uB
j

.

But

µi
A = µ

(
∆1, . . . ,∆i−1,

∂

∂uA
,∆i+1, . . . ,∆m

)
,

so that fori < j ,

∂µi
A

∂uB
j

= µ

(
∆1, . . . ,∆i−1,

∂

∂uA
,∆i+1, . . . ,∆j−1,

∂

∂uB
,∆j+1, . . . ,∆m

)
= −µ

(
∆1, . . . ,∆i−1,

∂

∂uB
,∆i+1, . . . ,∆j−1,

∂

∂uA
,∆j+1, . . . ,∆m

)
= −∂µ

j

A

∂uB
i

,

and of course∂µi
A/∂uB

i = 0. Thus

uB
ij

∂µi
A

∂uB
j

= 0,

whence

diµ
i
A = π∗∆iµ

i
A = π∗ ∂L

∂uA
,

and so

diµ
i = di(µ

i
A duA) = (diµ

i
A) duA + µi

A duA
i = π∗ dL.

It follows that

ε(dL) = π∗ dL − diS
i dL = π∗ dL − diµ

i = 0,

andL is null as asserted.
We now show the converse: our argument is a variant of that given by Rund[11], but unlike him we

emphasise the role of Lagrangian forms.
Let L be a null homogeneous first-order Lagrangian function. From the homogeneity condition

uA
i

∂L

∂uA
j

= δ
j

i L
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it follows, by induction and repeated differentiation, that for anyr = 1,2, . . .

u
A1
i1

u
A2
i2

. . . u
Ar

ir

∂rL

∂u
A1
j1

∂u
A2
j2

. . . ∂u
Ar

jr

= δ
j1j2...jr

i1i2...ir
L,

whereδ is the generalized Kronecker delta (see for example[9]). Now by considering the coefficient o
uA

ij in the Euler–Lagrange equations, we see that ifL is null,

∂2L

∂uB
i ∂uA

j

= − ∂2L

∂uA
i ∂uB

j

.

It follows that if we set

µA1A2...Am
= ∂mL

∂u
A1
1 ∂u

A2
2 . . . ∂u

Am
m

thenµA1A2...Am
is completely skew-symmetric in its indices; and on differentiating one more tim

find thatµA1A2...Am
is independent of theuA

i . Under a coordinate transformationuA �→ vA on E, theuA
i

transform like contravariant vectors:

vA
i = ∂vA

∂uB
uB

i .

It follows that for anyk1, k2, . . . , kr

∂rL

∂u
A1
k1

∂u
A2
k2

. . . ∂u
Ar

kr

= ∂vB1

∂uA1

∂vB2

∂uA2
. . .

∂vBr

∂uAr

∂rL

∂v
B1
k1

∂v
B2
k2

. . . ∂v
Br

kr

.

Thus in particular

∂mL

∂v
B1
1 ∂v

B2
2 . . . ∂v

Bm
m

dvB1 ∧ dvB2 ∧ · · · ∧ dvBm = ∂mL

∂u
A1
1 ∂u

A2
2 . . . ∂u

Am
m

duA1 ∧ duA2 ∧ · · · ∧ duAm,

which is to say that the right-hand side (say) is a well-defined semi-basicm-form onF(m)E. We set

µ = 1

m!µA1A2...Am
duA1 ∧ duA2 ∧ · · · ∧ duAm.

From the generalization of the homogeneity condition we obtain

µ(∆1,∆2, . . . ,∆m) = u
A1
1 u

A2
2 . . . uAm

m µA1A2...Am
= L.

If we now consider the remaining terms in the Euler–Lagrange equations we find that fo
A,A1,A2, . . . ,Am

m∑
i=1

∂µA1...Ai−1AAi+1...Am

∂uAi
= ∂µA1A2...Am

∂uA
.

But
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dµ = 1

m + 1

(
∂µA1A2...Am

∂uA
duA ∧ duA1 ∧ duA2 ∧ · · · ∧ duAm

+
∑

i

∂µA1...Ai−1AAi+1...Am

∂uAi
duAi ∧ duA1 ∧ · · · ∧ duA ∧ · · · ∧ duAm

)
= 1

m + 1

(
∂µA1A2...Am

∂uA
−

∑
i

∂µA1...Ai−1AAi+1...Am

∂uAi

)
duA ∧ duA1 ∧ · · · ∧ duAm = 0,

which is to say thatµ is closed.
We have stated the result in terms of basic formsµ; but in fact it is only necessary to assume t

µ is semi-basic, because a semi-basic form onF(m)E, which is closed, is necessarily basic. This i
consequence of a quite general result: ifπ :B → M is a bundle andω is a closed semi-basic form o
B thenω is the pull-back of a form onM . We haveV ω = 0 for any vertical vector fieldV sinceω is
semi-basic. Moreover, for any verticalV

LV ω = V dω + d(V ω) = 0;
thusω ‘passes to the quotient’, i.e., defines a form onM by projection, of which it is the pull-back.

5. The fundamental Lagrangian form

The construction of a Lagrangian form described in the proof of the converse result above
extended to any homogeneous Lagrangian, not just a null one.

Let L be a homogeneous first-order Lagrangian function. It remains true that for anyr = 1,2, . . .

u
A1
i1

u
A2
i2

. . . u
Ar

ir

∂rL

∂u
A1
j1

∂u
A2
j2

. . . ∂u
Ar

jr

= δ
j1j2...jr

i1i2...ir
L.

Also, by repeatedly using the commutator[
∆

j

i ,
∂

∂uA
k

]
= −δk

j

∂

∂uA
i

we obtain

∆
j

i

∂rL

∂u
A1
k1

∂u
A2
k2

. . . ∂u
Ar

kr

= δ
j

i

∂rL

∂u
A1
k1

∂u
A2
k2

. . . ∂u
Ar

kr

−
r∑

s=1

δ
ks

i

∂rL

∂u
A1
k1

. . . ∂u
As

j . . . ∂u
Ar

kr

.

As before,

1

m!
∂mL

∂u
A1
1 ∂u

A2
2 . . . ∂u

Am
m

duA1 ∧ duA2 ∧ · · · ∧ duAm

is a well-defined semi-basicm-form onF(m)E; we denote it byλ. From the expression for∆j

i operating
on themth partial derivative we find that

L
∆

j
i
λ = 0,
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so thatλ is invariant (and defines a form onS(m)E). Finally, from the expression involving the generaliz
Kronecker delta, in the caser = m, we find as before that

λ(∆1,∆2, . . . ,∆m) = L.

Thusλ is a Lagrangian form forL.
We call this Lagrangian form the fundamental Lagrangian form for the given Lagrangian.
We have shown that ifL is null then its fundamental Lagrangian form is closed and basic. On

other hand, we know that if a homogeneous LagrangianL admits a closed Lagrangian formµ then
L must be null andµ must be basic. It is then easy to see, by repeatedly differentiating the eq
µ(∆1,∆2, . . . ,∆m) = L with respect touAi

i , i = 1,2, . . . ,m, that

∂mL

∂u
A1
1 ∂u

A2
2 . . . ∂u

Am
m

= µA1A2...Am
,

so thatµ = λ. We therefore conclude that the necessary and sufficient condition for a homoge
Lagrangian to be null is that its fundamental Lagrangian form is closed (and therefore basic).

We now give a useful representation of the fundamental Lagrangian form. First, it is easy to se
can be written

λ = 1

m!S
1 dS2 d . . . Sm dL.

It is useful to observe, in this context, that the operatorsSi ◦ d andSj ◦ d anti-commute.
Now consider a coordinate patch with coordinates(uA,uA

i ). In this coordinate patch we shall (for th
remainder of this section) use Latin indicesi, j, . . . to represent indicesA,B, . . . taking values in the
range{1, . . . ,m}, and Greek indicesα,β, . . . to representA − m,B − m, . . . , whereA,B, . . . lie in the
range{m + 1, . . . ,N}: with this notation, the coordinates become(uj , uα,u

j

i , u
α
i ).

Using this notation, we restrict our attention to the open subset of the fibres in which them×m matrix
(u

j

i ) is non-singular. Define functions̄uj

i to be the entries in the inverse matrix, i.e.,ūk
i u

j

k = δ
j

i . Then

∂

∂u
j

i

= ūk
j

(
∆i

k − uα
k

∂

∂uα
i

)
,

and using this it turns out thatSi can be written as

Si = χj ⊗ ∆i
j + θα ⊗ ∂

∂uα
i

,

where

χj = ū
j

k duk, θα = duα − uα
j χ

j .

We see immediately that for homogeneousL

Si dL = Lχi + ∂L

∂uα
i

θα.

Furthermore,

Si dχj = χi ∧ χj , Si dθα = χi ∧ θα,
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s;
r, in

th
an
and therefore

Sid(f θα1 ∧ · · · ∧ θαr ∧ χi1 ∧ · · · ∧ χis ) = (
Sidf + (r + s)f χi

) ∧ θα1 ∧ · · · ∧ θαr ∧ χi1 ∧ · · · ∧ χis .

For any integersi1, i2, . . . , ip, with 1� ir � m, r = 1,2, . . . , p (and 1� p � m), set

χi1i2...ip = χi1 ∧ χi2 ∧ · · · ∧ χip;
and for any integersj1, j2, . . . , jq , with q � p, 1� js � m, s = 1,2, . . . , q, set

χ
i1i2...ip
j1j2...jq

= ∆jq
∆jq−1 · · · ∆j1 χi1i2...ip .

Note that the∆j satisfy〈∆j,χ
i〉 = δi

j . Furthermore,χ
i1i2...ip
j1j2...jq

is skew-symmetric in both sets of indice
it is zero unless their are distinct, thejs are distinct, and the latter comprise a subset of the forme
which caseχ

i1i2...ip
j1j2...jq

is a(p − q)-form which is, up to sign, the exterior product of 1-formsχk indexed by
the complement of thejs in their .

Of courseχi ∧ χi1i2...ip = χii1...ip , from which it follows that

(−1)qχi ∧ χ
i1...ip
j1...jq

= χ
ii1...ip
j1...jq

+
q∑

s=1

(−1)sδi
js
χ

i1...ip
j1...̂s ...jq

,

an index to be omitted being indicated in the usual way. Slightly less obviously, we have

χj ∧ χ
i1...ip
jj1...jq

= (−1)q(p − q)χ
i1...ip
j1...jq

(note that this time there is a sum over the repeated indexj on the left). To see this, note first that bo
sides give zero unless thejs are a subset of their . In the latter case, without loss of generality we c
write

(i1, i2, . . . , ip) = (j1, j2, . . . , jq, k1, . . . , kp−q)

(as ordered sets), whence

χ
i1...ip
j1...jq

= χk1 ∧ · · · ∧ χkp−q ,

so that

χ
i1...ip
jj1...jq

= (−1)q∆j χk1 ∧ · · · ∧ χkp−q ,

from which the result follows.
We now show, inductively, that

1

p!S
i1 dSi2d · · ·Sip dL =

p∑
q=0

1

(q!)2
L

j1j2...jq
α1α2...αq θ

α1 ∧ θα2 ∧ · · · ∧ θαq ∧ χ
i1i2...ip
j1j2...jq

,

where for convenience we have writtenL
j1j2...jq
α1α2...αq for

∂qL

∂u
α1
j1

∂u
α2
j2

. . . ∂u
αq

jq

.
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We have already seen that this is correct whenp = 1. We now act withp−1Si1 ◦ d on

p−1∑
q=0

1

(q!)2
L

j1...jq
α1...αq θ

α1 ∧ · · · ∧ θαq ∧ χ
i2...ip
j1...jq

,

and evaluate the result. We have, using an earlier remark,

Si1d
(
L

j1...jq
α1...αq θ

α1 ∧ · · · ∧ θαq ∧ χ
i2...ip
j1...jq

) = (
Si1 dL

j1...jq
α1...αq + (p − 1)L

j1...jq
α1...αq χ

i1
)

∧ θα1 ∧ · · · ∧ θαq ∧ χ
i2...ip
j1...jq

,

and

Si1 dL
j1...jq
α1...αq = ∆

i1
j

(
L

j1...jq
α1...αq

)
χj + L

i1j1...jq
αα1...αq θ

α = L
j1...jq
α1...αq χ

i1 −
q∑

s=1

L
j1...i1...jq
α1...αs ...αq χ

js + L
i1j1...jq
αα1...αq θ

α.

It follows that

Si1d
(
L

j1...jq
α1...αq θ

α1 ∧ · · · ∧ θαq ∧ χ
i2...ip
j1...jq

) = (−1)qpL
j1...jq
α1...αq θ

α1 ∧ · · · ∧ θαq ∧ χi1 ∧ χ
i2...ip
j1...jq

− (−1)q

q∑
s=1

L
j1...i1...jq
α1...αs ...αq θ

α1 ∧ · · · ∧ θαq ∧ χjs ∧ χ
i2...ip
j1...jq

+ L
i1j1...jq
αα1...αq θ

α ∧ θα1 ∧ · · · ∧ θαq ∧ χ
i2...ip
j1...jq

.

We consider first of all the terms in which noχs occur. These are the terms like the last in the prev
equation, for whichq = p − 1, and their contribution to the final sum can be written (rememberin
insert the appropriate numerical factors)

1

p!(p − 1)!L
i1j1...jp−1
α1...αp θα1 ∧ · · · ∧ θαp ∧ χ

i2...ip
j1...jp−1

.

Theχ here is a 0-form, and in fact is justδ
i2...ip
j1...jp−1

. Taking into account the symmetries ofL
i1...ip
α1...αp we can

write this sum as
1

p!L
i1...ip
α1...αpθ

α1 ∧ · · · ∧ θαp ,

which in turn is equal to

1

(p!)2
L

j1...jp
α1...αpθ

α1 ∧ · · · ∧ θαp ∧ χ
i1...ip
j1...jp

,

as required.
For the terms which do involveχs, we have, when we collect together terms with the same numb

factorsθ ,

1

p

p−1∑
q=0

1

(q!)2
θα1 ∧ · · · ∧ θαq

∧
(

(−1)qpL
j1...jq
α1...αq χ

i1 ∧ χ
i2...ip
j1...jq

− (−1)q

q∑
L

j1...i1...jq
α1...αs ...αq χ

js ∧ χ
i2...ip
j1...jq

+ q2L
i1j1...jq−1
α1...αq χ

i2...ip
j1...jq−1

)
.

s=1
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The first term inside the brackets, by the formula forχi1 ∧ χ
i2...ip
j1...jq

, is

pL
j1...jq
α1...αq χ

i1...ip
j1...jq

+ p

q∑
s=1

(−1)sL
j1...i1...jq
α1...αs ...αqχ

i2...ip
j1...̂s ...jq

.

Note that by using the symmetry ofL
j1...i1...jq
α1...αs ...αq we can move the index pair(i1, αs) to the front; then by

relabelling theαs, and taking account of the skew symmetry in theαs coming from the summation ove
theθs, we can rewrite the sum above as

−p

q∑
s=1

L
i1j1...̂s ...jq
α1...αq χ

i2...ip
j1...̂s ...jq

.

Finally, we can relabel thejs in the sum, to obtain

−p

q∑
s=1

L
i1j1...jq−1
α1...αq χ

i2...ip
j1...jq−1

= −pqL
i1j1...jq−1
α1...αq χ

i2...ip
j1...jq−1

.

The second term,

−(−1)q

q∑
s=1

L
j1...i1...jq
α1...αs ...αqχ

js ∧ χ
i2...ip
j1...jq

,

can be rewritten, using the formula for the sumχj ∧ χ
i2...ip
jj1...jq

, and similar rearrangements of indices, a

q(p − q)L
i1j1...jq−1
α1...αq χ

i2...ip
j1...jq−1

.

Taking account of the third term,

q2L
i1j1...jq−1
α1...αq χ

i2...ip
j1...jq−1

,

we see that the terms involvingL
i1j1...jq−1
α1...αq cancel, and after division byp, and the reintroduction of th

term with noχs, we are left with

p∑
q=0

1

(q!)2
L

j1j2...jq
α1α2...αq θ

α1 ∧ θα2 ∧ · · · ∧ θαq ∧ χ
i1i2...ip
j1j2...jq

.

6. Some consequences

If λ is exact, sayλ = dν for some(m − 1)-form onF(m)E, and we define functionsνi onF(m)E by

νi = (−1)i−1ν(∆1, . . . , ∆̂i, . . . ,∆m),

then

L = dν(∆1, . . . ,∆m) = ∆iν
i.
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It is easy to see, using an argument similar to one given previously, that

∂νj

∂uA
i

= − ∂νi

∂uA
j

,

whence

diν
i = π∗L,

which expressesL as a divergence (i.e., for anyσ : Rm → E, σ̂ ∗L really is the divergence of the vect
field whose components areσ̂ ∗νi).

One way of obtaining a closed basicm-form µ is to take functionsf 1, f 2, . . . , f m onE and set

µ = df 1 ∧ df 2 ∧ · · · ∧ df m;
then the corresponding null Lagrangian is

L = det(∆if
j ) = det

(
uA

i

∂f j

∂uA

)
.

In this case
∂L

∂uA
i

duA = Ci
j df j ,

where C is the cofactor matrix of the matrix whose determinant isL; and therefore the Hilbert
Carathéodory formΘ is given by

Θ = L−(m−1)

m∧
i=1

∂L

∂uA
i

duA = µ,

since detC = Lm−1.
The Hilbert–Carathéodory form is always a Lagrangian form for its Lagrangian, but will not gen

be equal to the fundamental Lagrangian form, even when the Lagrangian is null—it will differ from
a contact form, and need not itself be closed. However, the immediately preceding argument sh
in the case whereL is of the determinant form,L = det(∆if

j ), the fundamental Lagrangian form a
the Hilbert–Carathéodory form are the same.

If µ is a sum of terms of the formdf 1 ∧ df 2 ∧ · · · ∧ df m then the null LagrangianL is the sum of
the corresponding determinants. Now every closed form may be written (locally) as the sum of e
products of exact differentials, and so every null homogeneous Lagrangian can be written as the
determinants. One way of writing a closedm-form as the sum of exterior products of exact different
is to write it as the exterior derivative of an(m − 1)-form: the(m − 1)-form, when expressed in term
of N coordinate differentials, is the sum ofNCm−1 terms, and when the exterior derivative is taken e
of them gives the exterior product ofm exact differentials. Thus every null homogeneous Lagrangia
F(m)E can be written as the sum of at mostNCm−1 determinants, whereN = dimE.

7. The jet bundle formalism

We can recover more conventional results about null Lagrangians from those obtained above fo
geneous ones by a special choice of coordinates, which we call affine coordinates: we choose coo
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uA on E such thatui = xi , i = 1,2, . . . ,m, and we setum+α = vα , α = 1,2, . . . , n. With this choice we
effectively restrict our attention tom-dimensional submanifolds ofE which can be represented as grap
with respect to the firstm coordinates, that is, in the formvα = vα(xi). Thevα

i can be regarded as coord
nates on an open submanifold of each fibre ofS(m)E, such that each suitablem-plane is coordinatized b
its intersection with the affinen-planeui

j = δi
j . Furthermore, we can regardE as fibred over an oriente

m-dimensional base manifoldB, whose coordinates are thexi and which has a volume formω = dmx;
thevα are the fibre coordinates, and the fibre dimension isn. Thevα

i are then the additional coordinat
on the bundleJ 1π of 1-jets of sections of the fibrationπ :E → B.

Let L be a homogeneous Lagrangian onF(m)E, and defineĽ by

Ľ(xi, vα, vα
i ) = L(xi, vα, δ

j

i , v
α
i );

then the extremals of̌L are the extremals ofL which are graphs in the sense described above. G
any functionĽ(xi, vα, vα

i ), one can reconstruct the homogeneous LagrangianL(uA,uA
i ), at least locally.

Geometric objects defined with respect toL in the homogeneous case, when they are expressed in
of affine coordinates, take forms familiar from the usual jet bundle formulation of variational calcul
the field-theoretic LagrangiaňL. For example, the 1-formχi becomesdxi , the 1-formθα becomes the
contact 1-formdvα − va

i dxi , and the Hilbert–Carathéodorym-form becomes

(1)Ľ−(m−1)

m∧
i=1

(
Ľ dxi + ∂Ľ

∂vα
i

(dvα − vα
j dxj )

)
,

which is the Carathéodory form of̌L. Moreover, on restriction to affine coordinatesχ12...m
j1j2...jq

becomes
ωj1j2...jq

= dm−qxj1j2...jq
.

Thus so far as local considerations and coordinate calculations are concerned, there is a c
equivalence between the jet bundle formalism and the homogeneous formalism.

In terms of affine coordinates we have

∆i = ∂

∂xi
+ vα

i

∂

∂vα
= d

dxi
.

We conclude from our results in the homogeneous case that a LagrangianL on J 1π (we drop the no-
tational distinction between a homogeneous Lagrangian and its jet bundle equivalent now) is nu
only if it can be writtenL = µ(∆1,∆2, . . . ,∆m), whereµ is a closedm-form onE (and∆i is the lo-
cal vector field given above). ThusL will be a polynomial in the jet coordinatesvα

i of order at most
min(m,n). We can also expressL as a divergence,L = ∆iν

i , whereµ = dν and

νi = (−1)i−1ν(∆1, . . . , ∆̂i, . . . ,∆m).

For the basic type of null Lagrangian, in whichµ is the exterior product of exact 1-forms, we have

L = det

(
df i

dxj

)
for functionsf 1, f 2, . . . , f m on E. Any null Lagrangian can be written as a sum ofNCm−1 terms of
this type, whereN = m + n. We hereby recover, in a more transparent way, the results of Olve
Sivaloganathan[10]. (These authors also use the term ‘homogeneous’, but with quite a different me
from ours: for them, a homogeneous Lagrangian is one derived from anm-form µ on E which has
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constant coefficients when expressed as a linear combination of basis formsdxi1 ∧ · · · ∧ dxir ∧ dvα1 ∧
· · · ∧ dvαm−r . This terminology strikes us as rather odd, since it is clearly coordinate dependent.)

Rund, in[11], also gives a determinantal formula for a null Lagrangian, depending onm arbitrary
functions onE; the resulting Lagrangian is a homogeneous polynomial in thevα

i of orderM , whereM is
any preassigned integer withM � min(m,n). His construction works as follows, from our perspecti
Let f i , i = 1,2, . . . ,m, be functions onE. For any set ofM distinct integersi1, i2, . . . , iM with 1� i1 <

i2 < · · · < iM � m, we construct them-form

dx1 ∧ · · · ∧ df i1 ∧ · · · ∧ df iM ∧ · · · ∧ dxm,

where theith term isdf i if i belongs to the set{i1, i2, . . . , iM}, anddxi otherwise. Now take the sum
of all such terms, for all choices of the set{i1, i2, . . . , iM} (for the chosenM). The corresponding nu
Lagrangian is the one given in Eq. (4.28) on p. 257 of[11].

8. Lepage equivalents

For any LagrangianL on a jet bundle, an important construction is that of a Lepage equivalent of tm-
form Ldmx. This is a form with the property that all its extremals are holonomic, and that these extr
are the same as those of the Lagrangian: ifΦ is a Lepage equivalent then any sectionψ :B → J 1π

satisfying

δ

∫
ψ∗Φ = 0

must be a prolongationψ = j1φ for some sectionφ :B → E, and then also

δ

∫
(j1φ)∗Ldmx = 0;

conversely if the latter condition holds then so does the former.
Any Lepage equivalent ofLdmx is characterized by the conditions thatLdmx − Φ must be a contac

form, and that for any vector fieldX defined onJ 1π and vertical overE, the contractionX dΦ must
also be a contact form. In the present context, these conditions specify the 0-contact and 1-cont
(respectively) ofΦ, so that in coordinates we must have

Φ = Ldmx + ∂L

∂vα
i

θα ∧ dm−1xi + · · · ,

where the(m − 1)-form dm−1xi is the contraction∂/∂xi dmx, the 1-form θα is the contact form
dvα − vα

j dxj , and the dots indicate terms that are 2-contact or more. These latter terms may be
completely, to give a well-defined Cartan form; there are, however, other possibilities, and two o
are particularly relevant to the present discussion. The first is the fundamental Lepage equivalen
Krupka and Betounes[1,8], represented in coordinates as

Φ =
min{m,n}∑

q=0

1

(q!)2

∂qL

∂v
α1
i1

. . . ∂v
αq

iq

θα1 ∧ · · · ∧ θαq ∧ dm−qxi1...iq ;

this has the important property that it is closed precisely when the LagrangianL is null [7].
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It follows from the alternative representation of the fundamental Lagrangian form given above t
fundamental Lepage equivalent is just the fundamental Lagrangian form restricted to the jet bund

The other relevant Lepage equivalent is the Carathéodory form; this is a decomposablem-form defined
for a non-vanishing Lagrangian and represented in coordinates as

Θ = 1

Lm−1

m∧
i=1

(
Ldxi + ∂L

∂vα
i

θα

)
.

As we discussed above, in[3] we have described an invariant construction for a relatedm-form,
the Hilbert–Carathéodory form, in the homogeneous situation, and shown how this projects
Carathéodory form. Of course we should not in general expect that the Carathéodory form
have properties related specifically to null Lagrangians; it follows, however, from our results
homogeneous case that when the null Lagrangian consists of a single determinant rather than
combination, the Carathéodory form and the fundamental Lepage equivalent are identical.

One further interesting new result follows from our analysis. The Carathéodory form is famo
being invariant under a general (rather than fibred) change of coordinates onE. But now we see tha
the fundamental Lepage equivalent must also be invariant in this way, because it comes from th
bundle.
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