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SUMMARY

MicroRNAs (miRNAs) are genomically encoded
small RNAs used by organisms to regulate the
expression of proteins generated from messen-
ger RNA transcripts. The in vivo requirement of
specific miRNAs in mammals through targeted
deletion remains unknown, and reliable predic-
tion of mRNA targets is still problematic. Here,
we show that miRNA biogenesis in the mouse
heart is essential for cardiogenesis. Further-
more, targeted deletion of the muscle-specific
miRNA, miR-1-2, revealed numerous functions
in the heart, including regulation of cardiac
morphogenesis, electrical conduction, and cell-
cycle control. Analyses of miR-1 complemen-
tary sequences in mRNAs upregulated upon
miR-1-2 deletion revealed an enrichment of
miR-1 ‘‘seed matches’’ and a strong tendency
for potential miR-1 binding sites to be located
in physically accessible regions. These findings
indicate that subtle alteration of miRNA dosage
can have profound consequences in mammals
and demonstrate the utility of mammalian loss-
of-function models in revealing physiologic
miRNA targets.

INTRODUCTION

Many complex cellular, developmental, and homeostatic

processes depend on precise spatiotemporal regulation

of protein levels, some of which function as ‘‘rheostats’’
to execute programs in a quantitative fashion. The dose-

sensitivity of proteins involved in the development and

maintenance of organs is highlighted by the numerous

human diseases caused by heterozygous mutations that

result in haploinsufficiency (http://www.ncbi.nlm.nih.gov/

entrez/query.fcgi?db=OMIM). This is particularly true for

the heart. The heart is one of the most conserved organs

at the molecular level (Buckingham et al., 2005; Olson,

2006; Srivastava, 2006) and is the organ most affected

by disease in childhood and adult populations (Thom

et al., 2006). Human heart disease can involve abnormal-

ities in morphogenesis, muscle maintenance and function,

and cardiac rhythm. Damage to heart muscle is typically

irreversible as cardiomyocytes terminally exit the cell cy-

cle postnatally and have little or no regenerative capacity,

despite niches of cardiac progenitors that may contribute

to basal turnover of myocytes (Torella et al., 2006; Soon-

paa and Field, 1998). Networks of transcription factors

regulate heart development and maintenance in a dose-

dependent manner, but the effects of translational regula-

tion on the titration of these pathways are largely unknown.

MicroRNA (miRNA)-mediated control of protein expres-

sion is likely a widely used mechanism for posttranscrip-

tional regulation of important cellular pathways (Ambros,

2004; Kloosterman and Plasterk, 2006; Zhao and Srivas-

tava, 2007). Nearly 500 mammalian miRNAs are tran-

scribed in the nucleus and undergo successive process-

ing events by the enzymes Drosha and Dicer to ultimately

yield mature miRNAs of �20–22 nucleotides (Berezikov

et al., 2006). Mature miRNAs typically bind to target

mRNAs by partial sequence matching after becoming in-

corporated into the RNA-induced silencing complex

(RISC), resulting in degradation of the mRNA transcript

and/or translational inhibition. Disruption of miRNAs in

Caenorhabditis elegans and Drosophila suggest several
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ways by which miRNAs may control cellular events. In

some cases, they function to ‘‘fine-tune’’ physiologic

events, but in others they function as molecular ‘‘switches’’

(Brennecke et al., 2003; Johnston and Hobert, 2003; Kwon

et al., 2005; Lee et al., 1993; Moss et al., 1997; Reinhart

et al., 2000; Sokol and Ambros, 2005; Wightman et al.,

1993). miRNAs can also function in a ‘‘fail-safe’’ mecha-

nism to silence mRNAs that are unwanted in specific cell

lineages (Cohen et al., 2006; Hornstein et al., 2005). In

mice, interference with miRNA biogenesis by tissue-spe-

cific deletion of Dicer revealed a requirement of miRNA

function during limb outgrowth (Harfe et al., 2005) and in

development of skin progenitors (Yi et al., 2006). However,

the in vivo requirement of specific miRNAs in mammals

through targeted deletion remains unknown.

We and others have described muscle-specific miRNAs,

such as the bicistronic miR-1 and miR-133 cluster and

miR-206. miR-1 and -133 are expressed in cardiac and

skeletal muscle and are transcriptionally regulated by the

myogenic differentiation factors MyoD, Mef2, and serum

response factor (SRF) (Chen et al., 2006; Kwon et al.,

2005; Lagos-Quintana et al., 2001; Rao et al., 2006; Sokol

and Ambros, 2005; Zhao et al., 2005). An ancient genomic

duplication likely resulted in two distinct loci for the miR-1/

miR-133 cluster in vertebrates, with identical mature se-

quences derived from the duplicated loci. In Drosophila,

deletion of the single miR-1 gene (dmiR-1), expressed

specifically in cardiac and somatic muscle, results in a de-

fect in muscle differentiation or maintenance (Kwon et al.,

2005; Sokol and Ambros, 2005). dmiR-1 targets the Notch

ligand, Delta, a known regulator of cardiogenesis and myo-

genesis in flies (Kwon et al., 2005). In contrast, overexpres-

sion of miR-1 in mouse cardiac progenitors has a negative

effect on proliferation, where it targets the transcription

factor Hand2, which is involved in myocyte expansion

(Zhao et al., 2005). Similar to the heart, miR-1 overexpres-

sion in cultured skeletal myoblasts promotes skeletal

muscle differentiation, as does the related but skeletal

muscle-specific miR-206 (Chen et al., 2006; Kim et al.,

2006). miR-133 overexpression curiously prevents skeletal

muscle differentiation, suggesting that differential pro-

cessing from the dicistronic transcript may regulate cellu-

lar decisions of differentiation or proliferation (Chen et al.,

2006). Although significant dysregulation of miRNA ex-

pression has been reported in cardiac disease (Sayed

et al., 2007; van Rooij et al., 2006), it remains unknown if

the heart requires miRNA function for normal development

or maintenance.

A major obstacle in understanding how miRNAs regu-

late cellular events has been identifying mRNAs that are

directly targeted by a specific miRNA. While a few targets

have been validated at the protein level for miR-1 and sev-

eral other miRNAs, each miRNA likely targets tens of

different mRNAs (Brennecke et al., 2005; Lewis et al.,

2005; Rajewsky, 2006). Bioinformatic approaches re-

warding a high-degree of Watson-Crick base-pairing at

nucleotides 2–7 at the 50 end of the miRNA (the so-called

‘‘seed match’’) and its mRNA target have been informa-
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tive, but specificity remains a problem in efficiently iden-

tifying targets (Didiano and Hobert, 2006; Lewis et al.,

2005; Rajewsky, 2006). We proposed that accessibility

of the miRNA binding site within the mRNA, as defined

by the local secondary structure and free energy charac-

teristics of the mRNA, may be an important predictor of

true miRNA:mRNA interactions (Zhao et al., 2005). We

had found that most validated miRNA targets exist in lo-

cally accessible regions of mRNAs, although mammalian

targets have generally been validated in overexpression

models that may not accurately reflect endogenous re-

quirements (Zhao and Srivastava, 2007). The true impor-

tance of target accessibility in mammalian physiologic

settings has awaited generation of in vivo loss-of-function

models to better ascertain criteria for miRNA:mRNA

interactions at a genome-wide level.

In this report, we examine the effects of a global loss of

miRNAs during cardiac development and use targeted

deletion to examine the requirement of a specific miRNA,

miR-1-2. We demonstrate that the functions of miR-1 are

dose sensitive and that miR-1-2 regulates cardiac mor-

phogenesis, cardiac conduction, and the cardiac cell

cycle. Using the loss-of-function model, we characterize

miR-1-2 targets and evaluate the importance of miRNA

target accessibility along with seed matching in determin-

ing miRNA targets.

RESULTS

Disruption of the Dicer Allele in Cardiac Progenitors

To assess the global requirement of miRNAs in the mouse

heart, we deleted a floxed Dicer allele (Harfe et al., 2005),

using Cre recombinase under control of the endogenous

Nkx2.5 regulatory region, which directs expression in car-

diac progenitors by embryonic day (E) 8.5 (Moses et al.,

2001). Dicer, which is essential for processing of pre-

miRNAs into the mature form (Bernstein et al., 2001),

was efficiently deleted in the heart, and the embryos

died from cardiac failure by E12.5 (Figure 1). Embryos

lacking Dicer in the developing heart exhibited pericardial

edema and a poorly developed ventricular myocardium.

Most markers of initial cardiac differentiation and pattern-

ing, such as Tbx5, Hand1, Hand2, and Mlc2v, were ex-

pressed normally (Figure 1). Microarray analysis of E11.5

hearts in triplicate, before obvious signs of dysfunction,

revealed upregulation of several genes, such as the endo-

derm marker a fetoprotein and the skeletal muscle-spe-

cific gene, fast skeletal troponin; numerous genes were

also downregulated, including those encoding the home-

odomain only protein (Hop), myoglobin, and the potas-

sium channel Kcnd2 (Table S3). The early lethality in the

Dicer mutant revealed an essential requirement for miRNA

function in the developing heart.

One of the most abundant and specific miRNAs

affected in the Dicer mutant heart was miR-1. miR-1-1

and miR-1-2 are both specific for cardiac and skeletal

muscle and are cotranscribed as dicistronic messages

with miR-133a-2 and miR-133a-1, respectively, but have



Figure 1. miRNA Biogenesis Is Necessary for Cardiogenesis

(A) Quantitative RT-PCR for relative mRNA levels of Dicer’s RNase III domain.

(B) Protein level of Dicer in wild-type (wt) or Nkx2.5-Cre; Dicerflox/Dicerflox embryos measured by western blot using an antibody that recognizes the

RNase III domain.

(C and D) Nkx2.5-Cre; Dicerflox/Dicerflox (mutant) embryos showed developmental delay and pericardial edema (arrow) at E12.5.

(E and F) Transverse sections of E11.5 embryos showing thin-walled myocardium in mutant.

(G–N) Whole-mount in situ hybridization with indicated cardiac markers in wild-type and mutant E9.5 embryos.

(O) RT-PCR using primers specific for miR-1-1 or miR-1-2 in wild-type hearts at E8.5, E10.5, E12.5, and P10 with or without reverse transcriptase (RT).

ra, right atrium; la, left atrium; rv, right ventricle; lv, left ventricle; h, head; ht, heart; pa, pharyngeal arch; lm, lateral mesoderm; lb, limb bud.
unique expression patterns (Chen et al., 2006; Wienholds

et al., 2005; Zhao et al., 2005). Using PCR primers specific

for each miRNA, we found that both were present in

the embryonic and postnatal heart, although miR-1-2

expression began slightly earlier in the embryonic heart

(Figure 1).

Targeted Deletion of miR-1-2 in Mice

To define the in vivo function of a specific miRNA in mam-

mals, we targeted the 21-nt mature miR-1-2 sequence for

deletion by homologous recombination in mouse embry-

onic stem (ES) cells. miR-1-2 is transcribed as a 2.5 kilo-

base (kb) message containing miR-1-2 and miR-133a-1

sequences (Chen et al., 2006). The miR-1-2/miR-133a-1

gene resides in a 14.6 kb genomic region between the

12th and 13th exons of the Mind bomb1 (Mib1) locus, in-

volved in Notch signaling (Koo et al., 2005), in an antisense

orientation, and is regulated by an independent SRF-

dependent enhancer in the heart and MyoD-dependent

enhancer in skeletal muscle (Figure 2) (Zhao et al., 2005).
Gene targeting was designed to remove the mature

21 nt miR-1-2 sequence, while leaving the rest of the tran-

scribed sequence, enhancer region, and Mib1 exons

intact (Figure 2).

Mice heterozygous for miR-1-2 survived without any

apparent abnormalities and reproduced efficiently. miR-

1-2 heterozygotes were intercrossed, and in the surviving

homozygous mutants, we confirmed the absence of the

miR-1-2 transcript with PCR primers specific for the pre-

form of miR-1-2. The miR-133a-1 pre-form was tran-

scribed intact, and we did not detect compensatory

changes in miR-1-1 levels. Importantly, Mib1 transcript

levels were unchanged in the miR-1-2 mutant with effi-

cient transcription through the targeted locus, as deter-

mined by quantitative real-time RT-PCR (qPCR) using

primers crossing the exons 19 and 20 (Figure 2). RT-

PCR across the exons 12 and 13 revealed normal splicing

of exons surrounding the targeted locus (Figure 2). Thus,

we specifically targeted the miR-1-2 locus without affect-

ing nearby genes.
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Figure 2. Generation of Mice with Targeted Deletion of miR-1-2

(A) Schematic of the miR-1-2 and miR133a-1 locus between the 12th and 13th exons of Mind bomb1 (Mib1); arrow indicates direction of transcription

of the miRNAs, opposite of Mib1 transcription.

(B) Targeting strategy for deletion of miR-1-2 by replacement of 21 nucleotides with the Neomycin (Neo) resistance cassette using homologous

recombination. The wild-type (wt) and mutant (mt) loci are shown with the targeting vector (tv). Mature miR-1-2 sequence is indicated in red,

pre-miR-1-2 in purple. TK, thymidine kinase.

(C) Genomic Southern analysis of wild-type (+/+), miR-1-2 heterozygous (+/�), or homozygous (�/�) mice using 50 or 30 probes, after digestion of

genomic DNA with Nde I or Sac I, respectively.

(D) RT-PCR of wild-type and miR-1-2-null hearts showing specific loss of miR-1-2 in comparison to miR-133a-1 and absence of miR-1-1 upregulation.

(E) Real-time qPCR results in wt or mutant hearts showing intact transcription of the Mib1 gene using primers 30 of the miRNA locus (exons 19 and 20).

Data are presented as means ± standard error of the mean (SEM).

(F) RT-PCR using primers spanning exons 12 and 13 showing normal splicing across the targeted region.
306 Cell 129, 303–317, April 20, 2007 ª2007 Elsevier Inc.



Figure 3. Partial Penetrance of Cardiac

Morphogenetic Defects in miR-1-2

Mutants

(A) Genotypes of mice from miR-1-2+/� inter-

crosses. Absolute numbers are shown with

percentages in parenthesis. *p < 0.025.

(B and C) Transverse sections of wild-type (wt)

or miR-1-2�/� hearts at E15.5 showing ventric-

ular septal defect (arrowhead).

(D) qPCR of Hand2 showing similar levels of

Hand2 mRNA in miR-1-2 mutant and wt hearts.

Data are presented as means ± SEM.

(E) Western blot of protein lysate from wt or

mutant hearts showing increased Hand2 pro-

tein level in mutant, quantified by densitometry.

rv, right ventricle; lv, left ventricle.
Cardiac Morphogenetic Defects in miR-1-2 Mutants

Genotyping of offspring from miR-1-2 heterozygous inter-

crosses revealed 50% lethality by weaning (Figure 3).

Mendelian ratios were observed in offspring until E15.5,

but thereafter, death occurred at varying times, ranging

from E15.5 to just after birth. The external anatomy of

mutant embryonic hearts was unremarkable, except for

occasional enlargement. Skeletal muscle was grossly

normal. However, histologic analysis revealed a large

ventricular septal defect (VSD) in half of the embryos (Fig-

ure 3). Failure of ventricular septation results in death

within hours after birth in mice, but some miR-1-2�/�

embryos also exhibited pericardial edema before birth,

consistent with primary myocardial dysfunction in utero

contributing to embryonic demise. VSDs can result from

dysregulation of myriad events during cardiogenesis,

and it is likely that miR-1-2 regulates numerous genes

during this process. Our previous studies demonstrated

a highly conserved miR-1 binding site in the 30UTR of a

critical cardiac transcription factor, Hand2, that re-

sponded to overexpression of miR-1 by inhibiting trans-

lation (Zhao et al., 2005). Precise dosage of Hand2 is

essential for normal cardiomyocyte development and

morphogenesis (McFadden et al., 2005; Srivastava

et al., 1995, 1997; Yamagishi et al., 2001; Yelon et al.,
2000). The mRNA levels of Hand2 were unchanged in

miR-1-2 mutants, but the protein levels were increased

approximately 4-fold as seen by western blots (Figure 3),

consistent with Hand2 being a physiologic miR-1 target

in vivo.

Cardiac Electrophysiologic Defects in miR-1-2

Mutants and miR-1-2 Regulation of Irx5

The miR-1-2 homozygous mice that survived postnatally

exhibited a range of phenotypes. In some cases (�15%),

mice developed rapid dilation of the heart and ventricular

dysfunction with evidence of atrial thrombi and death by

2–3 months of age. The rest were remarkably normal

with no dysfunction by echocardiography nor evidence

of scarring, but many suffered sudden death. Because ab-

normalities in cardiac conduction and repolarization often

cause sudden death, we performed surface electrocardi-

ography in mutant mice and their littermates. The average

heart rate of mutants was significantly lower than that of

wild-type littermates, and the normal delay between atrial

and ventricular depolarization (the PR interval) was short-

ened (Figure 4). In addition, ventricular depolarization,

manifested by the QRS complex, was significantly pro-

longed in the mutant hearts. Synchronous depolarization

of ventricular myocytes is coordinated by rapid conduction
Cell 129, 303–317, April 20, 2007 ª2007 Elsevier Inc. 307



Figure 4. Cardiac Electrophysiologic Defects in miR-1-2 Mutants and miR-1-2 Regulation of Irx5

(A) Electrocardiographic parameters of wild-type (+/+), miR-1-2+/�, and miR-1-2�/� adult mice. P < 0.05 was considered significant. bpm, beats per

minute; msec, milliseconds.

(B and C) Representative diagrams of electrocardiograms in lead II indicate the location of PR and QRS intervals. The second peak in the QRS

complex (R0) was observed in 58% of mutant and only 14% of wild-type mice (p < 0.05).

(D) Sequence alignment between miR-1 and the 30UTR of Irx5 in several species. 50 seed matching is shown with Watson-Crick base-pairing in blue

and non-Watson-Crick G::U wobble in yellow; sequence matching in the 30 end is boxed in light gray.
308 Cell 129, 303–317, April 20, 2007 ª2007 Elsevier Inc.



through the atrioventricular bundle, bundle branches, and

Purkinje fibers. The increased width and the morphology of

the QRS complex in the mutants were typical of abnormal

conduction along one of the bundle branches (bundle-

branch block), a finding that in humans can be associated

with an increased risk of sudden death (Desai et al., 2006).

In our search for potential miR-1 targets that might ex-

plain aspects of the cardiac conduction abnormalities,

we found that the 30UTR of Irx5 had a well-conserved

miR-1 binding site (Figure 4) and was located in a region

of very high free energy (DG) (50 DG: �8.5 and 30 DG:

�2.8), suggesting a locally accessible site. Irx5 belongs

to the Iroquois family of homeodomain-containing tran-

scription factors and regulates cardiac repolarization by

repressing a key potassium channel, Kcnd2 (Costantini

et al., 2005). We therefore cloned the miR-1 binding site

(five copies) from the Irx5 30UTR or the entire Irx5 30UTR

into the luciferase reporter 30UTR, with transcription of lu-

ciferase under control of a constitutively active thymidine

kinase promoter. Introduction of these reporter plasmids

into tissue-culture cells resulted in high levels of luciferase

activity. Addition of miR-1 into this system resulted in

a significant reduction in luciferase activity, which was

specific for miR-1, as introduction of miR-133 did not

result in a significant change in activity (Figure 4). Since

miRNAs can repress protein production by affecting either

mRNA stability or translation, we assessed both mRNA

and protein levels in miR-1-2 mutant hearts. qPCR re-

vealed a nearly 2-fold increase in Irx5 mRNA levels in

miR-1-2-null hearts compared to wild-type, and western

blots showed an approximately 5-fold increase in Irx5

protein accumulation by densitometry (Figure 4). Consis-

tent with the upregulation of Irx5, we found that transcripts

of the Irx5 target gene Kcnd2 were downregulated in the

mutant hearts (Figure 4). These data provide compelling

evidence that miR-1 regulates the cardiac electrical

system and directly targets Irx5.

miR-1-2 Regulates Cardiac Cell Cycle

and Karyokinesis

Although the vast majority of adult miR-1-2 mutants had

normal cardiac function, we often observed thickening of

the walls of the heart by echocardiography. We confirmed

this observation by assessing the heart-to-body weight

ratios of mice sacrificed at 4–6 months of age. The mutant

mice had a significant increase in this ratio (Figure 5). His-

tologic analysis revealed no evidence of myocyte hyper-

trophy or fibrosis, suggesting that the increased weight

may be due to hyperplasia. Dissociation of heart muscle

in wild-type and mutants and assessment of cell number

revealed a 20% increase in the number of cardiomyocytes
in miR-1-2-null mice (Figure 5). The normal variance

among animals was minimal, and this represented a signif-

icant degree of hyperplasia (p < 0.001). Closer histologic

examination of the adult hearts revealed that many

myocytes appeared to be undergoing nuclear division.

Immunohistochemistry with antibodies recognizing phos-

phohistone H3 (PH3) (Wei et al., 1998), a marker for mitotic

nuclei, and cardiac a-actinin to mark cardiomyocytes,

revealed the unusual presence of mitotic adult cardiomyo-

cytes (Figure 5). Postnatal mouse cardiomyocytes typi-

cally undergo a single round of nuclear and sometimes

cellular division in the first two weeks of life, before termi-

nally exiting the cell cycle (Li et al., 1996). At postnatal day

10 (P10), we consistently found a significant increase in

PH3-positive myocytes (�3-fold, p < 0.02), indicating in-

creased proliferation in the miR-1-2 mutants (Figure 5).

PH3-positive myocytes—never observed in adult wild-

type mice—were found in 2–3-month-old mutant animals,

although the number of PH3-positive cells was highly vari-

able, ranging from a few cells to the large number of cells

indicated in a highly affected adult miR-1-2 mutant heart.

Enrichment of miR-1 Seed Matches among mRNAs

Upregulated in miR-1-2 Mutants

A major benefit of studying mice that lack a specific miRNA

is the ability to investigate mRNAs that may be upregulated

upon loss of function of the miRNA, a subset of which may

be direct miRNA targets. These would represent targets

regulated at the level of mRNA stability rather than via

translational inhibition (Valencia-Sanchez et al., 2006). To

address this, we performed mRNA expression microarray

analyses of P10 wild-type and mutant hearts, well before

any obvious dysfunction. Forty-five protein-coding genes

were significantly upregulated and 25 downregulated in

miR-1-2-null hearts (Figure 6). The dysregulated genes

clustered into several major categories, including upregu-

lation of cardiac transcription factors, such as Irx5 (as de-

scribed above), Irx4, Hrt2, Hand1, and Gata6. In addition,

we observed upregulation of numerous cell-cycle regula-

tors and concomitant downregulation of tumor suppressor

genes (Figure 6). qPCR of candidate dysregulated genes

validated over 80% of those tested, suggesting that the

subtle dysregulation of numerous regulatory genes may

contribute to the miR-1-2 mutant cardiac irregularities.

qPCR data of a subset of cell cycle and tumor-suppressor

genes and genes encoding cardiac transcription factors

are consistent with the proliferative phenotype of the

mutant (Figure 6).

If some of the mRNAs upregulated upon miR-1-2 dele-

tion were direct targets, we would expect a disproportion-

ate percentage of sequence complementarity with miR-1
(E) Luciferase activity in Cos cells with the Irx5 miR-1 binding site (5x) or 30UTR of Irx5 cloned into the luciferase 30UTR. Values relative to luciferase

reporter alone are shown. Data are presented as means ± SEM.

(F) qPCR of Irx5 mRNA in wt or miR-1-2 mutants showing 1.8-fold increase in mutants (n = 3).

(G) Western blot of protein lysates of postnatal day 10 (P10) wt or miR-1-2 mutant hearts with Irx5- or a-tubulin-specific antibodies showing an

increase in Irx5 protein in mutants, quantified by densitometry.

(H) qPCR of the Irx5 target gene, Kcnd2, showing downregulation in the miR-1-2 mutant. Data are presented as means ± SEM. *p < 0.05.
Cell 129, 303–317, April 20, 2007 ª2007 Elsevier Inc. 309



Figure 5. Cardiomyocyte Hyperplasia and Proliferation in miR-1-2 Mutants

(A) The heart weight-to-body weight (HW/BW) ratio was greater in miR-1-2�/� adult mice than in wild-type (wt) mice with data from individual mice

shown. Bars indicate averages, *p < 0.05.

(B) Coronal sections stained with H&E showing similar cardiomyocyte diameter between adult wt and miR1-2�/� hearts and lack of hypertrophy.

(C) Quantitation of cardiomyocyte number from dissociated wt or miR-1-2�/� adult hearts (n = 3).

(D) H&E of cardiac sections from adult hearts suggestive of mitotic nuclei in miR-1-2�/� animals (white arrows).

(E) Immunohistochemistry using phosphohistone H3 (PH3, green), a-actinin (red), or DAPI (blue) antibodies demonstrating PH3-positive cardiomyo-

cytes in the adult miR-1-2 mutant.

(F) Coronal sections of P10 and adult hearts showing an increase in the number of PH3+ nuclei in mutants compared to wt.

(G) Quantification of PH3+ nuclei per section of P10 heart, showing average of multiple sections each from five wt or miR-1-2 mutant mice. Data are

presented as means ± SEM. *p < 0.05.
in their 30UTRs (Lim et al., 2005). We therefore analyzed

the 30UTRs for Watson-Crick base-pairing with varying

stretches of residues between nucleteotides 1 and 8 of

miR-1, encompassing the seed match. We compared

the occurrence of motifs that had sequence matching

with 50 or 30 regions of miR-1 in mRNAs upregulated or

downregulated in miR-1-2 mutants with the frequency of

such motifs in over 26,000 mRNA 30UTRs encoded by

the mouse genome. We did the same analysis for enrich-

ment of seed matches with a second miRNA, miR-124, as

a control.

There was no statistical enrichment for miRNA comple-

mentarity among mRNAs downregulated in mutants.

However, we observed significant enrichment for matches

with miR-1 positions 1–8, 2–8, 2–7, and 1–7 among

mRNAs upregulated in miR-1-2 mutants (Figure 7) (p <

0.001). An upward slope in the graphical depiction (Figures
310 Cell 129, 303–317, April 20, 2007 ª2007 Elsevier Inc.
7B–7D) of tabular data indicates enrichment of miR-1

seed matches in upregulated genes. Although nearly 50%

of upregulated genes had 2–7 seed matches, the six-

nucleotide complementarity did not effectively discrimi-

nate between up- and downregulated genes. However,

12 of 45 upregulated mRNAs (27%) had a miR-1 match

of at least seven nucleotides in the 50 region compared to

2 of 25 in the downregulated group (p < 0.0001). No enrich-

ment of 30-sequence matches was observed in the up-

regulated genes. As an important control, there was no en-

richment for 50 matches of miR-124 with the upregulated

genes in the miR-1-2 mutant (Figure 7).

Accessibility of miRNA Binding Sites Defined

by Local Free Energy

The degree of Watson-Crick base-pairing, particularly at

the 50 end of the miRNA, is a major criterion in defining



Figure 6. Dysregulated Genes in miR-1-2�/� Hearts

(A) Genes that were consistently up- or downregulated in the miR1-2�/� hearts at P10 by microarray analysis.

(B) Validation of gene dysregulation in miR-1-2�/� P10 hearts compared to wt by qPCR. Data are presented as means ± SEM. Dotted line indicates wt

expression levels for each gene set at one.
miRNA:mRNA interactions (Lewis et al., 2005; Rajewsky,

2006; Stark et al., 2003). However, many mRNA targets

predicted by sequence matching fail validation tests in

vivo (Didiano and Hobert, 2006; Zhao et al., 2005). There

is increasing recognition that contextual features may

also govern this interaction (Ambros, 2004; Du and

Zamore, 2005; Vella et al., 2004). Earlier, we proposed

physical accessibility of the mRNA target region as a po-

tential contextual feature and found that nearly all miRNA

targets validated at the level of protein regulation were

located preferentially in regions of high free energy and

unstable secondary structure (Zhao et al., 2005). Quantifi-

cation of the DG for 70 nucleotides flanking each side of

the miRNA binding site and evaluation of the secondary

structure of the target site itself allowed establishment

of potential criteria to enhance target prediction. Since

few miRNA targets have been described in mammals,

the validity of this model remains uncertain.

The generation of miR-1-2 mutants provided an oppor-

tunity to test whether upregulated mRNAs that contain

seed matches are more frequently located in high DG

areas than would be expected randomly. We calculated

the DG of 70 nt immediately flanking the 50 and 30 sides

of each miR-1 binding site in mRNAs upregulated in

miR-1-2 mutants and determined if it was above or below

the species average (DG = �13.4). The ratio of regions

flanking miR-1 binding sites with higher than average

free energy compared to those with lower than average

free energy was quantified as the ‘‘free energy index.’’ In
mice, there is a relatively equal distribution of high or low

DG regions among 70 nucleotide 30UTR fragments, result-

ing in an average index of 1.17 among 100 randomly

selected sequences. However, among the mRNAs up-

regulated in the miR-1-2 mutant, the index was 6.69,

indicating significant enrichment of miR-1 binding sites

that are located in more accessible regions (Figures 8

and S1 [p < 0.01] and Table S1).

We extended the evaluation of this index to other targets

that have been validated in (1) miRNA loss-of-function

models in vivo or (2) in reporter assays involving endoge-

nous rather than overexpressed miRNAs, given the poten-

tial for nonphysiologic interactions upon overexpression

(Didiano and Hobert, 2006). The free energy index in

validated C. elegans miRNA targets was 5.67 (species

average, 0.92; p < 0.001), suggesting that these targets

were also preferentially located in accessible regions as

defined by the free energy of flanking regions (Figures 8

and S2). In Drosophila, the index was 3.0 for validated tar-

gets (species average, 0.67), but the number of targets

was insufficient for statistical analysis. Evaluation of

a number of other miRNA targets validated at the protein

level in tissue culture or through overexpression studies

revealed that they, too, were almost always in areas with

at least one high DG flanking region (Table S2).

The recent in vivo experimental testing of 16 specific

C. elegans lsy-6 target sites with perfect seed pairing re-

vealed striking discordance between the predicted and

validated lsy-6 binding sites, although the reason for this
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Figure 7. Enrichment of miR-1 50 Seed Matches among Genes Upregulated in miR-1-2�/� Hearts

(A) Table showing the occurrence of miR-1 sequence matches in 30UTRs of all mRNAs of the mouse genome compared to genes up- or downregu-

lated in miR-1-2�/� hearts at P10. The occurrence of motifs that had sequence matching with 50 or 30 regions of miR-1 is shown. Similar analysis for

miR-124 was performed as a control. P values represent comparison with the genome-wide analysis.

(B–D) Graphical depiction of the enrichment of miR-1 or miR-124 sequence matches among genes up- or downregulated in miR-1-2 mutants versus

the expected number from the mouse genome. A positive slope is indicative of enrichment of sequence matching in the upregulated versus down-

regulated genes.
discrepancy was unclear (Didiano and Hobert, 2006). We

tested the utility of the free energy index on the experimen-

tally validated (2 of 16) or nonvalidated (14 of 16) lsy-6

targets. The index among nonvalidated sites was 1.33

(close to species average), while both validated sites

were in very high DG regions (Figure 8). This evaluation

suggests a strong predictive value of the index, at least

in this setting, and may explain why certain lsy-6 predicted

targets were not true targets in vivo based on target site

accessibility.

DISCUSSION

In this report, we demonstrate that miRNA function in

cardiac progenitors is necessary for cardiogenesis and

show that disruption of just one of the two miR-1 family

members, miR-1-2, has profound consequences for de-
312 Cell 129, 303–317, April 20, 2007 ª2007 Elsevier Inc.
velopment and maintenance of the heart. Mice lacking

miR-1-2 have a spectrum of abnormalities, including

VSDs in a subset that suffer early lethality, cardiac rhythm

disturbances in those that survive, and a striking myocyte

cell-cycle abnormality that leads to hyperplasia of the

heart with nuclear division persisting postnatally. Remark-

ably, a redundant miR-1-1 locus did not compensate for

loss of miR-1-2, at least for many aspects of its function.

While it is likely that mice lacking both miR-1-1 and miR-

1-2 will have even more profound abnormalities, the range

of defects upon deletion of miR-1-2 highlights the ability of

miRNAs to regulate multiple diverse targets in vivo. Using

the loss-of-function model, we determined in vivo miR-1-2

targets, including the cardiac transcription factor, Irx5,

and used this model to evaluate the importance of miRNA

target accessibility and of seed matching in determining

miRNA targets.



Figure 8. Bias of miRNA Target Sites to ‘‘Accessible’’ Regions Defined by High Free Energy

(A) Free energy index of miR-1 binding sites was defined by flanking regions (70 nucleotides) adjacent to either side of the binding site with calculated

free energy (DG) above the species average (mouse DG =�13.4) divided by the number of flanking regions below the average. *p < 0.01, **p < 0.001.

(B) List of miRNAs and their target sites within direct mRNA targets validated in vivo. The DG of 70 nt genes flanking each miRNA binding site on the 50

or 30 side is shown. Validation method by protein levels in loss-of-function models (1) or by repression of reporters by endogenous levels of miRNA

activity (2) is indicated.

(C) Analysis of free energy surrounding experimentally validated and nonvalidated lsy-6 targets in vivo (Didiano and Hobert, 2006). The two validated

targets were in much higher DG regions than either the C. elegans average (�7.2) or the nonvalidated targets, all of which were in low DG regions.
miR-1-2 Regulates Cardiac Morphogenesis

In animals and in humans, increases in copy number or

gain-of-function mutations can be as consequential as

loss of function, sometimes causing similar phenotypes

(Liao et al., 2004; Redon et al., 2006). The sensitivity of

the heart to gene or protein dosage is reflected in the

nearly 1% of live human births that are affected by cardiac

malformations, with ventricular septal defects being the

most frequent (Hoffman et al., 2004). Interestingly, many

genes that cause VSDs when deleted in mice were upre-
gulated in the miR-1-2 mutants. These included Hrt2/

Hey2, a member of the Hairy family of transcriptional re-

pressors that mediates Notch signaling (Fischer and

Gessler, 2003; Nakagawa et al., 1999), which itself causes

heart disease (Garg et al., 2005), and Hand1, a bHLH

transcription factor involved in ventricular development

and septation (McFadden et al., 2005; Srivastava et al.,

1995). Hand2, a close relative of Hand1, was not upregu-

lated at the mRNA level, but the Hand2 protein levels were

increased, consistent with our previous report that miR-1
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directly targets Hand2 for translational repression (Zhao

et al., 2005). Hand2 and Hand1 are partially redundant

and progressive loss of the four combined alleles causes

increasingly severe heart defects, suggesting that proper

titration of Hand dosage is important for cardiogenesis

(McFadden et al., 2005). Gata6, a transcription factor par-

tially redundant with Gata4 (Xin et al., 2006), was also up-

regulated. GATA4 heterozygosity in humans causes

VSDs, suggesting this family of genes also plays a role in

ventricular septation (Garg et al., 2003). Subtle dysregula-

tion of numerous developmental genes may contribute to

the embryonic defects observed in miR-1-2 mutants.

miR-1-2 Regulation of Cardiac Conduction

Disruptions in cardiac rhythm are frequent causes of sud-

den death in humans and frequently require placement of

pacemakers and defibrillators (Zipes and Wellens, 1998).

In miR-1-2 mutants, we observed an abnormality in the

propagation of cardiac electrical activity despite normal

anatomy and function. Normally, depolarization and repo-

larization of cardiomyocytes are determined by the prop-

erties of a specialized network of cardiomyocytes, the

cardiac conduction system (Gourdie et al., 1999). The tran-

scriptional regulation of these cells requires precise dos-

ages of several transcription factors (Cheng et al., 2003).

One of these factors, Irx5, functions with the corepressor

Smyd1 to repress the potassium channel, Kcnd2, in an

endocardial-to-epicardial transmural gradient within ven-

tricular myocytes (Costantini et al., 2005; Gottlieb et al.,

2002). Loss of Irx5 disrupts this pattern, resulting in ven-

tricular repolarization abnormalities and a predisposition

to arrhythmias.

Of particular relevance to the findings in the mir-1-2 mu-

tants, combined loss of function of Irx5 and Irx4 causes

prolongation of the PR interval (B.G. Bruneau, personal

communication). We showed that miR-1-2 mutants have

the opposite phenotype, with a shortened PR interval,

and that Irx5 is a direct target of miR-1. The increase in

protein levels of Irx5 in miR-1-2 mutants was greater

than the increase in mRNA levels, raising the possibility

that miR-1-2 may regulate both mRNA translation and

stability via the Irx5 30UTR, although this may simply re-

flect an accumulation of protein. The increase in Irx5 pro-

tein levels in miR-1-2 mutants corresponded to a decrease

in the Irx5 target gene, Kcnd2, as expected, as well as in-

creased Irx4 mRNA levels. The decrease in Kcnd2 was

also observed in Dicer mutant embryos, likely due to

loss of miR-1.

In addition to the short PR interval, electrocardiography

also revealed a broad QRS complex with features of

bundle branch block, which can be associated with sud-

den death in humans, although the contribution of Irx5

dysregulation to this feature remains to be tested.

Cell-Cycle Dysregulation in miR-1-2 Mutants

miR-1-2 mutants displayed an increase in mitotic nuclei at

P10 that continued to varying degrees, even in the adult.

The hyperplasia of mutant hearts and the upregulation of
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genes that promote the cell cycle were consistent with

miR-1-2-mediated regulation of cell-cycle events in the

mammalian heart. Manipulation of the cardiac cell cycle

could potentially stimulate the regenerative capacity of

the heart, but this has proved challenging given the strin-

gent cell-cycle control in cardiomyocytes (MacLellan and

Schneider, 2000). Karyokinesis in differentiated cardio-

myocytes is not normally observed. In miR-1-2 mutants,

karyokinesis occurs in the adult heart, and the general

molecular ‘‘threshold’’ for cell cycling may be lower, given

the upregulation of cell-cycle genes and downregulation

of tumor suppressors. While we observed an increased

number of cardiomyocytes in the hearts of adult mutants,

this is likely a result of the early increase in proliferation, as

we do not have evidence that cytokinesis persists in the

adult. Consistent with our findings, overexpression of

miR-1 and the related miR-206 in skeletal myoblasts re-

sults in inhibition of DNA synthesis and withdrawal from

the cell cycle (Kim et al., 2006). It will be interesting to

determine if the cell cycle threshold is also affected in

miR-1-2 mutant cardiac progenitor cells as they begin to

differentiate into myocytes, possibly allowing greater

expansion of such cells after injury.

Sequence Matching and Target Site Accessibility

during miRNA:mRNA Interactions

Some features of miRNA:mRNA interactions have been

revealed through elegant bioinformatics and experimental

approaches (Lewis et al., 2005; Stark et al., 2003; Xie et al.,

2005), but the limited number of validated miRNA targets

reflects our incomplete knowledge of the ‘‘rules’’ of miRNA

target prediction. Base-pairing between nucleotides 2–7

of the miRNA and its target site is important. However,

many conclusions regarding base-pairing have been

drawn from overexpression of miRNAs, in which non-

physiologic miRNA:mRNA interactions may occur and

siRNA-like off-target effects may be observed (Birming-

ham et al., 2006; Jackson et al., 2006).

The miR-1-2�/�mouse model described here provided

a unique model to address the question of endogenous

targets in a mammalian model. Our findings that mRNAs

upregulated in hearts lacking miR-1-2 were enriched for

sequence matches with miR-1 nt 1–8, 1–7, or 2–8 was

consistent with the concept of seed-match significance.

As suggested by previous studies, matches to only 2–7

occurred with higher frequency than would be expected

in upregulated genes, but this feature was not useful in

discriminating between up- and downregulated genes in

the miR-1-2�/� model, suggesting that a 7 nt match may

be more predictive .

Another potential feature of miRNA:target site interac-

tions may involve local accessibility of the binding site.

Significant portions of mRNA sequences are hidden, and

only local single-strand regions are accessible for binding

to single-strand RNA. Thus, complex RNA secondary

structures may have inhibitory effects on miRNA:mRNA

interactions. In earlier work, we found that validated

miRNA target sites typically had destabilizing elements



or had high free energy in regions flanking the 50 or 30 ends

of the target site (Zhao et al., 2005). Several additional

miRNA targets have been validated in vivo, and we con-

tinue to find that most miRNA binding sites reside in areas

of high free energy. Analysis of upregulated mRNAs in

miR-1-2 mutants that contain miR-1 binding sites revealed

a strong bias toward sites in areas of high free energy. We

attempted to quantify this bias with a free energy index

that allows determination of the likelihood that target

sets are located in accessible areas and therefore may

be more likely to be true targets. Analysis of putative

C. elegans lsy-6 targets provided further evidence of flank-

ing free energy as a criterion for target prediction (Didiano

and Hobert, 2006). Indeed, insertion of a lsy-6 binding site

into a favourable free energy region of lin-28 allowed tar-

geting by lsy-6, but introduction of an equally matched

lsy-6 site into a lower free energy area of unc-54 did not re-

sult in effective targeting. Our findings suggest that RNA

accessibility, as assessed by free energy of flanking re-

gions, may be a critical feature of miRNA target recogni-

tion. The accessibility of an mRNA binding site may be

a factor that is regulated by cells via RNA binding proteins

or other mechanisms that modulate RNA secondary struc-

ture. This may be analogous to DNA binding proteins that

function as transcriptional regulators only when local chro-

matin modifications render cis elements accessible for in-

teraction with transcription factors. RNA accessibility as

a criterion for target recognition, if upheld as more targets

are identified and validated, has the potential to rapidly ac-

celerate the pace of biological discovery related to miRNA

biology, as specificity of target prediction has been one of

the most significant obstacles in this nascent field.

EXPERIMENTAL PROCEDURES

Generation of Dicer Conditional Null or miR-1-2-Null Mice

Dicer flox/flox mice (Harfe et al., 2005) and Nkx2.5-Cre mice (Moses

et al., 2001) have been described previously and were intercrossed

to generate Nkx2.5-Cre; Dicer flox/flox mice. Genotyping was performed

as described. To generate miR-1-2-null mice, Sv129 embryonic stem

(ES) cells were electroporated with the targeting vector. Nde I or Sac I

digests of genomic DNA were used for Southern blot genotyping of 50

or 30 recombination, respectively. Two of the 1500 colonies screened

were properly targeted and injected into C57BL6 blastocysts to gener-

ate high-percentage chimeras that were bred to recover heterozygous

mice with germline transmission.

RNA In Situ Hybridization, Quantitative Real-Time PCR,

and RT-PCR Analysis

RNA in situ hybridizations of whole embryos were performed as de-

scribed (Yamagishi et al., 2003). qPCR was performed using the ABI

7900HT (TaqMan, Applied Biosystems) per the manufacturer’s proto-

cols. Primer sets for Mib1 spanned exons 19 and 20 (Taqman:

Mm00523008_m1) or exons 12 and 13; sequences are found in Supple-

mental Data. Expression levels were normalized to Gapdh expression.

Semiquantitative RT-PCR was done in the linear range of amplification.

Statistical analysis was performed using the two-tailed student’s t test.

Immunohistochemistry and Western Blot Analysis

Histological sectioning and hematoxylin and eosin staining were per-

formed according to standard practices. Immunohistochemistry was
performed on paraffin embedded sections (7 mm) as described in

Supplemental Data. Western blots were performed as described

previously (Zhao et al., 2005) on heart tissues from P10 mice. Irx5 an-

tibody (kindly provided by C.C. Hui) was used at 1:100 dilution, goat

polyclonal Hand2 (Santa Cruz Biotechnology) at 1:100 dilution, and

Dicer C-20 antibody (Santa Cruz Biotechnology) at 1:100 dilution.

Quantification of Cardiomyocyte Cell Numbers

Cardiomyocytes from adult hearts were isolated as previously de-

scribed using an alkaline dissociation method (Shin et al., 2002). Cell

suspension (10 ml) was loaded onto a Fuchs-Rosenthal counting

chamber (Hausser Scientific). Cardiomyocytes in the counting cham-

ber were distinguished from fibroblasts by cytoplasmic size and the

presence of sarcomeres. The numbers of cardiomyocytes per mm2

of the counting chamber were evaluated eight times per heart (n = 3).

Sequence Analysis and Free Energy Calculations

Mouse 30UTR sequences were retrieved from the RefSeq database

(http://www.ncbi.nlm.nih.gov/RefSeq/). Bioinformatic analyses of

miRNA binding sites were performed as described with DGs deter-

mined using mFold (Zhao et al., 2005). Determination of motif occur-

rence is described in Supplemental Data.

Noninvasive Assessment of Heart Function

Transthoracic echocardiography was used for noninvasive serial

assessment of cardiac function in mice using a Vevo 770 ultrasound

machine (VisualSonics). Cardiac electrophysiological function was as-

sessed by surface electrocardiograms as described in Supplemental

Data. Mean, standard deviation, and standard error of the mean

were calculated for each genotype, and all pairwise statistical compar-

isons were made with t tests.

Cell Culture and Transfection Assays

Irx5 30UTR was cloned into a pGL-TK vector as described (Zhao et al.,

2005) and introduced into Cos cells with or without a plasmid contain-

ing miR-1 or miR-133. Luciferase assays were performed as described

previously (Zhao et al., 2005).

Microarray Analysis

Mouse genome-wide gene expression analysis was performed using

Affymetrix mouse genome 430 2.0 array. RNA was extracted from

E11.5 or P10 whole heart tissue using Trizol reagent (Invitrogen) per

manufacturer’s protocol. Microarray analysis was performed in tripli-

cate from independent biologic samples according to the standard

Affymetrix GeneChip protocol. Data were analyzed with GeneSpring

software (Agilent Technologies). Details of statistical analyses can be

found in Supplemental Data.

Supplemental Data

Supplemental Data include two figures, three tables, Supplemental

Experimental Procedures, and Supplemental References and can be

found with this article online at http://www.cell.com/cgi/content/full/

129/2/303/DC1/.
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