In vitro and in vivo bactericidal activity of Vitex negundo leaf extract against diverse multidrug resistant enteric bacterial pathogens

Muhammad Kamruzzaman*, S.M. Nayeemul Bari, Shah M. Faruque

Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka–1212, Bangladesh

ARTICLE INFO

Article history:
Received 10 November 2012
Received in revised form 15 December 2012
Accepted 15 January 2013
Available online 20 April 2013

Keywords:
Bactericidal activity
Vitex negundo
Enteric pathogenic bacteria

ABSTRACT

Objective: To investigate in vitro and in vivo antibacterial potentials of Vitex negundo (V. negundo) leaf extracts against diverse enteric pathogens. Methods: Water and methanol extracts of V. negundo leaves were evaluated against enteric bacterial pathogens by using standard disc diffusion, viable bacterial cell count methods, determination of minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC). Results: Methanol extract of V. negundo leaves showed potent antibacterial activity (inhibition zone: 9.9–22.6 mm, MIC: 200–3 200 μg/mL, MBC: 200–6 400 μg/mL) against all the pathogenic enteric bacteria (Vibrio cholerae, Vibrio parahaemolyticus, Vibrio mimicus, Escherichia coli, Shigella spp., and Aeromonas spp) tested. Methanol extract of V. negundo leaves showed potent bactericidal activity both in vitro laboratory conditions (MBC, 200–400 μg/mL) and in the intestinal environment (Dose, 1–2 mg/mL) of infant mice against pathogenic Vibrio cholerae, the major causative agent of cholera. Furthermore, assays using the mice cholera model showed that V. negundo methanol extract can protect mice from Vibrio cholerae infection and significantly decrease the mortality rate (P<0.0001).

Conclusions: For the first time we showed that methanol extract of V. negundo leaves exhibited strong vibriocidal activity both in vitro and in vivo conditions. Therefore, it will be useful to identify and isolate the active compounds of this extract that could be a good alternative of antibiotics to treat cholera.

1. Introduction

Infectious disease is one of the leading causes of death worldwide, particularly, in developing countries. The treatment of most of the infectious diseases depends on the use of antibiotics or antimicrobial drugs. Global antimicrobial resistance is becoming an increasing public health predicament. Bacteria resistant to almost all available antibiotics have been identified[1]. Multiply resistant organisms render therapy more precarious and costly and sometimes unsuccessful. In developing countries, multidrug resistant enteric disease agents such as Vibrio cholerae (V. cholerae), Escherichia coli (E. coli) and Shigella spp. threaten and circumvent public health measures.

Diarrhoeal diseases are a major public health apprehension in Bangladesh. Every year a large number of people suffer from diarrhoea. V. cholerae is the major causative agent of cholera, the devastating diarrhoeal disease. In Bangladesh, V. cholerae O1 has developed antimicrobial resistance to trimethoprim, sulfamethoxazole, furazolidone and tetracyclin; and resistance is emerging to ciprofloxacin and azithromycin leaving few options for effective antimicrobial treatment for cholera[2,3]. Multidrug resistant V. cholerae have also emerged in African countries[4,5]. Besides, other enteric pathogens, including Shigella spp, diarrhoeagenic E. coli, and Salmonella spp., are rapidly growing resistance to currently available antibiotics[6]. Therefore, it is an urgent need to discover and develop more effective and new antimicrobial agents.

Natural products from the medicinal plants, spices
and herbs were used worldwide and their antimicrobial potential has been recognized since antiquity[7]. A large number of modern medicines were derived originally from ancient herbal traditions. Medicinal plants have been used as remedies for human diseases for many years as they contain components of therapeutic value. There are numerous natural plant products which have antimicrobial activities that could be used either systemically or locally[8]. Antimicrobials of plant origin are effective in the treatment of infectious diseases while simultaneously mitigating many of the side effects that are often associated with synthetic antimicrobials[9]. Therefore, natural products from plants could be interesting alternatives to explore new antimicrobial agents.

Vitex negundo (V. negundo) belonging to the family Verbenaceae) is an important medicinal plant found throughout Bangladesh, India and some other tropical and temperate regions of the world. Even though almost all of its parts are used in Ayurvedic and Unani systems of medicine, the extracts from its leaves and roots are the most important in the field of medicine and drug[10]. Its leaves[11] and seeds[12] are widely used externally for rheumatism and inflammations of joints and are also reported to have insecticidal properties. The antimicrobial activity and chemical components of the essential oil isolated from V. negundo leaf[13–15] have been reported by several researchers in the past. In Bangladesh, leaves of V. negundo are widely used for different types of gastroenteritis as traditional medicine and it is immensely effective in different types of diarrhoea and dysentery. The leaves of V. negundo have been reported to possess pesticidal, antifungal and antibacterial properties[16]. However very little systemic information of V. negundo leaves are available to treat diarrhoeal diseases and its activity against enteric pathogenic bacteria. Our aim is to examine and evaluate bactericidal activity of V. negundo leaves extracts from Bangladesh against diverse multidrug resistant enteric pathogens in laboratory conditions as well as in animal model experiments.

2. Materials and methods

2.1. Collection of medicinal plants and spices

Leaves of V. negundo were collected from the Kishoreganj district, northern east part of Bangladesh and information about their traditional uses for gastroenteritis were collected from local people and also verified from two books i) Traditional uses of ethnomedicinal plants of Chittagong hill tracts published by Bangladesh National Herberium[17] and ii) Useful plants of Bangladesh[18].

2.2. Extraction procedure

Healthy and well grown V. negundo leaves were collected and immediately brought to the laboratory. The leaves were first washed with distilled water and then sterilized with 10% sodium hypochlorite to prevent the contamination of any microorganisms. They were then rinsed with distilled water again and dried the water. Ten grams of V. negundo leaves were cut into small pieces and were grinded to make paste with mortar and pestle. Appropriate solvents (water or methanol) were added to a concentration of 1 g/10 mL and extracted in a soxhlet apparatus for 72 hours. The extracts were pooled and the solvent was evaporated using a rotary evaporator under reduced pressure at 37 °C. The crude extracts were kept at 4 °C until further use.

2.3. Bacterial strains and culture medium

Multidrug resistant and drug sensitive enteric pathogens used in this study were obtained from our laboratory collections. The details of the strains including their antibiotic resistance pattern are described in Table 1. All strains were grown in Luria broth (LB) broth or on LB agar at 37 °C. Bacterial strains were maintained in nutrient agar slants at room temperature or in LB broth containing 15% glycerol at ~80 °C. Before use bacterial cultures were prepared by inoculating into a tube containing LB and

Table 1

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Strain ID</th>
<th>Antibiotic resistant pattern</th>
<th>Source of isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. cholerae O1</td>
<td>AY–1868921</td>
<td>STR, SXT, NA, ERY, TET</td>
<td>Patient</td>
</tr>
<tr>
<td>V. cholera O139</td>
<td>NHC0270</td>
<td>STR, SXT, NA</td>
<td>Patient</td>
</tr>
<tr>
<td>V. cholera non O1 non O139</td>
<td>2006RV/86</td>
<td>STR, SXT, NA, AMP, KAN, GEN</td>
<td>Environmental water</td>
</tr>
<tr>
<td>E. coli O157-H7</td>
<td>M–885496</td>
<td>AMP, CHL, SXT, TET</td>
<td>Patient</td>
</tr>
<tr>
<td>S. dysenteriae</td>
<td>Vm110432</td>
<td>CHL</td>
<td>Patient</td>
</tr>
<tr>
<td>Shigella flexneri</td>
<td>M–12163</td>
<td>AMP, TET, CHL</td>
<td>Patient</td>
</tr>
<tr>
<td>Shigella boydi</td>
<td>M–297092</td>
<td>Sensitive</td>
<td>Patient</td>
</tr>
<tr>
<td>Shigella sonnei</td>
<td>M–275521</td>
<td>STR, SXT, NA, ERY, TET</td>
<td>Patient</td>
</tr>
<tr>
<td>V. parahaemolyticus (O3:K6) pandemic</td>
<td>AQ–3794</td>
<td>TETi</td>
<td>Patient</td>
</tr>
<tr>
<td>V. minicus</td>
<td>MGL–2585</td>
<td>TETi</td>
<td>Environmental water</td>
</tr>
<tr>
<td>A. sobria</td>
<td>MGL–3585/1</td>
<td>NA, AMP</td>
<td>Environmental water</td>
</tr>
<tr>
<td>Aeromonas cavei</td>
<td>MGL–3615/1</td>
<td>AMP</td>
<td>Environmental water</td>
</tr>
</tbody>
</table>

i, intermediate resistant; STR, Streptomycin; AMP, ampicillin; TET, tetracycline; NA, nalidixic acid; SXT, Sulphamethoxazole trimethoprim; CHL, chloramphenicol; ERY, erythromycin; GEN, gentamicin; KAN, kanamycin.
2.4. Disc diffusion assay

The test solution was prepared with 10 mg/mL of crude extracts, dissolved in 5% dimethyl sulfoxide (DMSO). Whatman no.1 sterile filter paper discs (6 mm) were impregnated with 10 μL of the extract to obtain 100 μg/disc and allowed to dry at room temperature. Ciprofloxacin (5 μg/disc) was used as positive control and 5% DMSO was used as negative control. Bacterial growth inhibition was determined by standard disc diffusion assay[19]. Briefly, Petri plates were prepared by pouring 20 mL of Mueller Hinton agar and allowed to solidify. Plates were dried and 100 μL of bacterial suspension containing 1×10^6 cells/mL was poured in each plate and spread uniformly. The plates were allowed to dry for 5 minutes. The filter paper discs impregnated with extract (100 μg/disc) were then placed on the surface of the plate. Plates were kept for 2 hours in refrigerator to enable pre-diffusion of the extracts into the agar. Then the plates were incubated at 37 °C for 24 h and zone of inhibition was observed and measured in millimeters. Reported inhibition zones were the average values calculated from at least three replicate observations.

2.5. Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)

The extract was dissolved in 5% DMSO to obtain 25.6 mg/mL and 0.5 mL of stock solution was incorporated into 0.5 mL of Mueller Hinton broth to get a concentration of 12 800, 6 400, 3 200, 1 600, 800, 400, 200, 100 and 50 μg/mL. Fifty microliter of standardized suspension of the test organism was transferred onto each tube. MIC of the crude extract was then tested in Mueller Hinton broth by broth micro-dilution method[20]. MBCs were determined by plating 100 μL of samples from each MIC assay tube with growth inhibition into freshly prepared Mueller Hinton agar plates and plates were incubated at 37 °C for 24 h. The MBC values were recorded as the lowest concentration of extract that did not permit any visible bacterial colony growth on the agar plates during the period of incubation[21]. These assays were repeated three times.

2.6. Bactericidal activity in vitro

Bactericidal activity was determined by the viable cell count method[22]. Five milliliter of nutrient broth was inoculated with the bacterial culture and incubated for 3 h at 37 °C. Equal volumes of the bacterial suspension containing ~1×10^8 cells/mL (5 mL) and extract were mixed and incubated. At different time intervals viz. 0, 5, 10, 16 h, 0.2 mL of the mixed suspension was spread on nutrient agar plates with different dilutions and were incubated for 24 h at 37 °C. The mean number of colonies were counted and compared with that of the control in which the extract was replaced with DMSO. The experiment was repeated three times.

2.7. Laboratory animals

Swiss albino mice (5–7 days) of either sex used in this study were obtained from the Animal resources branch of ICDDR, B. The animals were housed in well-ventilated and hygienic compartments, maintained under standard environmental conditions and fed with standard rodent pellet and water ad libitum. All experimental procedures were performed according to the NIH Guide for the Care and Use of Laboratory Animals. This study was approved by the Animal Experimentation Ethics Committee of ICDDR, B (institutional).

2.8. Bactericidal activity inside mice intestine

The assay of bactericidal activity of extracts inside mice intestine was similar to infant mouse colonization assays and were performed with modification of previously described method[23]. In brief, batches of 6–day-old infant CD–1 mice were inoculated intragastrically with a mixture of overnight cultures of V. cholerae strains with different concentrations of methanol extracts of V. negundo leaves. The extracts were mixed just before feeding of mice. Two control groups one was bacteria alone and another was bacteria and DMSO (5%) were fed to mice. Six mice were fed in each group. After 18 h of incubation, the mice were sacrificed, and the small intestines were removed and homogenized. The homogenates were plated on Luria agar plates, incubated overnight at 37 °C and the colonies were counted and compared with the controls and initial input. Each experiment was done at least on three different groups of mice.

2.9. Mice survival assay

The ability of the extracts to protect mice against pathogenic V. cholerae infection was determined by using groups of ten 5–day old mice with modifications of previously described methods[24]. Each mouse was given 0.05 mL bacterial suspension containing 1×10^8 cfu/mL orally and after 1 hr incubation each mouse was given 0.05 mL of methanol extract of V. negundo leaves. Different concentrations of extract were administered to different groups of mice. Another control group was given bacteria and DMSO. All mice were kept at RT for 18 hrs and then live and dead mice were counted and compared with control. The experiments were done with three different groups of mice for each sample.

The mean values and the standard deviations were calculated from the data obtained with three separate experiments. The data on percentage of mice survival were statistically analyzed by using Student’s t test for the significance, and a P value < 0.05 was considered statistically significant.
3. Results

3.1. Antibacterial activity of V. negundo leaf extract

Antibacterial activity for both methanol and water extracts of V. negundo leaves were examined against diverse enteric pathogens and most of them were resistant against one or more antimicrobial drugs (Table 1). Methanol extract exhibited potent antibacterial activity against V. cholerae O1, O139, non O1 non O139 strains; E. coli O157:H7 strain; Vibrio parahaemolyticus (V. parahaemolyticus) O3:K6 pandemic strain, and Aeromonas species (Table 2). The zone of inhibition ranged between (15.233±0.351) and (22.600±0.818) mm for above strains against 100 μg of extract. Moderate antibacterial activity was observed for other enteric pathogens tested (Table 2) and the zone of inhibition ranged between (9.966±0.702) and (13.466±0.288) mm. The water extract of V. negundo leaves showed moderate antibacterial activity against V. cholerae strains and V. parahaemolyticus strain only (Table 2).

3.2. MIC and MBC of methanol extract of V. negundo leaves

Between methanol extract and water extract of V. negundo leaves, methanol extract showed potent antibacterial activity against different enteric pathogens. Hence, we determined the MIC and MBC of methanol extract against different enteric pathogens. MIC value indicates the lowest concentration of the extract that exhibits the growth inhibition of particular bacteria and MBC value indicates the lowest concentration that can kill any particular organism. MIC value of the methanol extract of V. negundo leaf was 200 μg/mL for pathogenic Vibrio species and Aeromonas sobria (A. sobria), 800 μg/mL for Vibrio mimicus (V. mimicus) and all types of Shigella spp. except Shigella dysenteriae (S. dysenteriae), 1 600 μg/mL for pathogenic E. coli. The high MIC value was observed for S. dysenteriae strain (3 200 μg/mL). MBC value of V. negundo methanol extract was higher than the MIC. The MBC was 200 μg/mL for V. cholerae non O1 non O139 strains and for A. sobria strain, 400 μg/mL for V. cholerae O1, O139 strains and V. parahaemolyticus strain, 800 μg/mL for V. mimicus, different Shigella spp. except S. dysenteriae, 1 600 μg/mL for pathogenic E. coli strain.

3.3. Bactericidal activity of V. negundo leaves methanol extract in vitro

Since we found that methanol extract of V. negundo leaves showed potent bacterial killing activity, we examined the bactericidal activity of methanol extract against different enteric pathogens at different time intervals by using viable bacterial count methods under laboratory conditions. We used 500 μg/mL of methanol extract of V. negundo leaves, as this is the moderate concentration that can kill bacteria found from MBC results. The 500 μg/mL methanol extract of V. negundo leaves exhibited strong bactericidal activity

Table 2

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Mean zone of inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water extract (100 μg/disc)</td>
</tr>
<tr>
<td>V. cholerae O1</td>
<td>10.033±0.404</td>
</tr>
<tr>
<td>V. cholerae O139</td>
<td>9.466±0.665</td>
</tr>
<tr>
<td>V. cholera non O1 non O139</td>
<td>10.500±0.200</td>
</tr>
<tr>
<td>E. coli O157:H7</td>
<td>no zone</td>
</tr>
<tr>
<td>S. dysenteriae</td>
<td>no zone</td>
</tr>
<tr>
<td>Shigella flexneri</td>
<td>no zone</td>
</tr>
<tr>
<td>Shigella boydi</td>
<td>no zone</td>
</tr>
<tr>
<td>Shigella sonnei</td>
<td>no zone</td>
</tr>
<tr>
<td>V. parahaemolyticus (O3:K6) pandemic</td>
<td>10.133±0.251</td>
</tr>
<tr>
<td>V. mimicus</td>
<td>no zone</td>
</tr>
<tr>
<td>A. sobria</td>
<td>no zone</td>
</tr>
<tr>
<td>Aeromonas cavie</td>
<td>no zone</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Strains</th>
<th>Inoculums</th>
<th>1 h</th>
<th>2 h</th>
<th>3 h</th>
<th>4 h</th>
<th>6 h</th>
<th>16 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. cholerae O1</td>
<td>1.2×10⁶</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V. cholerae O139</td>
<td>2.2×10⁷</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V. cholera non O1 non O139</td>
<td>7.8×10⁷</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V. parahaemolyticus O3:K6</td>
<td>9.8×10⁶</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E. coli O157:H7</td>
<td>7.9×10⁶</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S. dysenteriae</td>
<td>8.6×10⁶</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V. mimicus</td>
<td>4.3×10⁶</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A. sobria</td>
<td>7.2×10⁶</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
against different enteric pathogens and this concentration was able to completely kill pathogenic *V. cholerae* of different serotypes, *V. parahaemolyticus*, and *A. sobria* strains and were unable to kill *E. coli* O157:H7, *S. dysenteriae* and *V. mimicus* strains up to 16 hrs incubation period (Table 3). However, this concentration showed bacteriostatic activity against those strains.

3.4. Bactericidal activity of *V. negundo* leaf methanol extract in vivo

The MBC value and in vitro bactericidal activity study clearly indicated that methanol extract of *V. negundo* leaves had potent antibacterial activity against *Vibrio* species, especially against all types of pathogenic *V. cholerae* strains. Therefore, these results convinced us to examine the bactericidal activity of these extracts in vivo conditions. *V. cholerae* is a major causative agent of the devastating diarrhoeal disease cholera and these bacteria were able to colonize the infant mice intestine. Here we examined the ability of this extract to kill the bacteria in the mice intestinal environment. In this experiment we used pathogenic strains of *V. cholerae* O1 El Tor; O139; and non O1 non O139 strains. We administrated ~1×10⁸ live bacterial cells along with different concentrations of *V. negundo* leaves methanol extract and found that 2.0 mg/mL concentration of *V. negundo* leaf methanol extract killed all types of *V. cholerae* inside the mice intestinal environment and therefore we could not retrieve any viable bacteria from the homogenized mice intestine, whereas, 1.0 mg/mL concentration was enough to kill non O1 non O139 strain completely (Table 4). These results indicated that the active compound of *V. negundo* leaf which has bactericidal activity in vitro was found to retain the activity under in vivo conditions as well.

<table>
<thead>
<tr>
<th>Strains</th>
<th>Inoculums (cfu/mL)</th>
<th>V. negundo methanol extract (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>V. cholerae O1</td>
<td>1.8×10⁸</td>
<td>6.0×10⁷</td>
</tr>
<tr>
<td>V. cholerae O139</td>
<td>8.2×10⁷</td>
<td>1.2×10⁷</td>
</tr>
<tr>
<td>V. cholerae</td>
<td>2.3×10⁸</td>
<td>3.4×10⁷</td>
</tr>
<tr>
<td>non O1 non O139</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.5. *V. negundo* leaf extract can protect mice against *V. cholerae* infection

Pathogenic *V. cholerae* induce the mortality in infant mice[24]. Here we examined the ability of the *V. negundo* leaf methanol extract to protect mice challenged with a high dose of pathogenic *V. cholerae*. Mice have been used as a model for *V. cholerae* pathogenesis in which mice are ultimately killed by the bacteria. When we orally administrated *V. cholerae* strains and then administered DMSO (5%) as control we observed that about 80% of mice died after 18 h of incubation. Whereas when we first administrated cholera bacteria and then administrated different concentrations of *V. negundo* leaf methanol extract, we found that the extracts had the ability to protect mice and increased their survival rate in a dose dependent manner (Figure 1). The 2 mg/mL and 3 mg/mL of *V. negundo* leaf methanol extract significantly increased (P<0.001 and P<0.0001) the survival rate up to 60% and 80% of mice respectively. On the other hand high mortality of mice was observed when 10 mg/mL of extract was used, suggesting that the higher dose might toxic to mice.

![Figure 1. Effects of *V. negundo* leaf methanol extract on mice survival against *V. cholerae* infection.](image)

4. Discussion

During the second half of the 20th century, the acceptance of traditional medicine as an alternative form of health care and the development of microbial resistance to the available antibiotics led researchers to investigate the antimicrobial activity of medicinal plants.

In this study, we collected the *V. negundo* leaves from the north-east part of Bangladesh, where it is readily used to treat diarrhoea, dysentery and different types of gastroenteritis. We examined the antibacterial activity of both methanol and water extracts against different drug sensitive and multi drug resistant pathogenic bacteria isolated from clinical and environmental sources. These bacteria are major causative agents of different kinds of enteric diseases. The extracts were examined for their antibacterial activity against various types of *V. cholerae* epidemic strains, *V. parahaemolyticus* O3:K6 pandemic strain, *E. coli* O157:H7 strain, different types of *Shigella* strains, toxigenic *V. mimicus* strain and strains of *Aeromonas* spps.

Toxigenic strains of *V. cholerae* belonging to the O1 and O139 serogroups cause cholera, a severe diarrheal disease
that occurs frequently as epidemics in many developing countries\[25\]. Strains belonging to other serogroups, collectively referred to as non–O1, non–139, have also been implicated as etiologic agents of moderate to severe human gastroenteritis\[26,27\]. V. mimicus has also been implicated in diarrheal disease, and some strains of V. mimicus have been demonstrated to carry virulence genes including cholera toxin gene and produce cholera toxin\[27–29\]. Pathogenic V. parahaemolyticus cause gastroenteritis through consumption of sea foods. Pandemic strains of V. parahaemolyticus mainly O3:K6 clone first emerged in Asia in 1995 and then rapidly spreads and causes outbreaks in north and south America, Europe and Africa\[30–32\]. Enterohemorrhagic E. coli (EHEC) O157:H7 is a human pathogen that contributes to an average of 17 outbreaks and 75,000 cases of illness each year in the USA alone\[33\]. EHEC O157:H7 strains cause a range of clinical complications including diarrhoea, haemorrhagic colitis and haemolytic uraemic syndrome\[34,35\]. The largest outbreak caused by E. coli O157:H7 in 1996 in Sakai, Japan\[36\]. Bacillary dysentery caused by Shigella species is a public health problem in developing countries including Bangladesh. Shigellosis occurs as a disease endemic in Bangladesh, and at least three large epidemics caused by S. dysenteriae type 1 have occurred between 1972 and 1994, causing high morbidity and mortality, particularly in children\[37,38\].

V. negundo is a very well known medicinal plant for its wide range of uses traditionally. Almost all of its parts are used in Ayurvedic and Unani systems of medicine\[10\] and V. negundo leaf extracts had been reported to possess antibacterial, antifungal, pesticidal activity\[13,39–42\]. It also has antioxidant and anti-inflammatory and hepatoprotective activity\[43–49\]. However, effects of V. negundo leaf extracts on enteric pathogens are not well studied. In different parts of Bangladesh, V. negundo leaves are traditionally used for different types of gastroenteritis, fever, hyper acidity and leismoniasis\[18\].

We examined the methanol and water extract of V. negundo leaf by disc diffusion assay and found that methanol extract of V. negundo showed moderate to strong antibacterial activity against all types of enteric pathogens tested and exhibited very potent antibacterial activity against all types of V. cholerae strains, the major causative agent of cholera. The antibacterial activity of V. negundo leaf methanol extract was previously examined against other bacterial species\[13,15,44\].

As methanol extract exhibited potent antibacterial activity than water extract, we used methanol extract of V. negundo leaf for further experiments in this study. Methanol was widely used as a solvent to prepare medicinal plant extracts\[50,51\] and this is the solvent, well known for its nature to dissolve wide range of antimicrobials including tannins, terpenoids, saponins, lactones, flavones and phenones\[7\].

Since disc diffusion assay has some limitations and this assay only indicate the growth inhibition ability of the extracts against certain microorganisms, it could not tell whether the inhibition zone is for bactericidal or bacteriostatic activity of the certain extracts. Therefore, to confirm the nature of activity and specific dose against certain microorganisms, we determined the MIC and MBC of the extracts and found that MIC value was within the range of 200–800 \(\mu\)g/mL for all enteric bacteria tested except E. coli O157:H7 and S. dysenteriae. From MBC value it was found that methanol extract of V. negundo leaf could kill all types of enteric bacteria tested but different doses were needed for different bacteria. A range of 200–400 \(\mu\)g/mL of the extract was sufficient to kill the V. cholerae, V. parahaemolyticus and A. sobria strains. Hence, our data suggested that V. negundo leaf methanol extract has both growth inhibition as well as killing activity against all the bacteria tested and those activity is very potent on V. cholerae O1, O139, non O1 non O139 strains, V. parahaemolyticus pandemic strain, toxigenic V. mimicus and Aeromonas spp.

In vitro bactericidal activity of V. negundo leaf methanol extract (500 \(\mu\)g/mL) at different time interval suggested that it has very strong killing activity against all the Vibrio species and Aeromonas spp. tested and interestingly within one hour incubation period this extract was able to killed all the bacterial cells \((10^8\) cfu/mL) incubated with the extract whereas this concentration of extract (500 \(\mu\)g/mL) was not able to kill E. coli O157:H7, S. dysenteriae and V. mimicus strains. However, this concentration can inhibit the growth of these microorganisms and act as potent bacteriostatic agent at lower dose. The microorganisms we examined in this study are Gram–negative bacteria. It was suggested that the lipopolysaccharides present in the outer membrane of Gram–negative bacteria gave them more resistance towards antibacterial agents than Gram–positive bacteria\[52,53\]. Nevertheless, we demonstrated here potent antibacterial activity of V. negundo leaf methanol extract against number of Gram–negative enteric pathogens.

As V. negundo leaf methanol extract exhibited bactericidal activity, especially on V. cholerae, which is called vibriocidal activity, in vitro, this result prompted us to examine the vibriocidal activity of this extract in in vivo conditions. V. cholerae can colonize in mice intestine and help to express virulence determinants and ultimately cause disease. Here 5–day old mice were administered high dose \((10^3\) cfu/mL) of viable V. cholerae cells with different dose of V. negundo leaf methanol extracts \((0.5 \text{ mm/mL} \text{ to } 10 \text{ mg/mL})\), as we do not know which dose will be able to kill bacteria inside mice intestinal environments. Very surprisingly we found that V. negundo leaf methanol extract was able to retain its activity in intestinal conditions and 2 mg/mL of concentrations were completely killed all the V. cholerae.
bacteria administered whereas 1 mg/mL of extract was able to killed all the cells of *V. cholerae* non O1 non O139 strain. These results suggested that the compounds of *V. negundo* leaf responsible for antibacterial activity *in vitro* are effective to exert its activity *in vivo* also. This result convinced us to examine the potentiality of this extract whether it can be able to protect mice from the pathogenic *V. cholerae* infection.

Pathogenic *V. cholerae* can cause death of infant mice in cholera model experiments\[24\], therefore we administered in infection. Pathogenic responsible for vibriocidal activity manner and 3 mg/m L concentration was able to increase leaf responsible for antibacterial activity can cause severe diarrhoeal diseases and dysentery. Here rate (\[2\] Saha D, Karim MM, Khan WA, Ahmed S, Salam MA, Bennish ML. \[1\] Bax R, Mullan N, Verhoef J. The millennium bugs- the need for... 358 2452–2462.

In this study, we have shown the antibacterial activity of *V. negundo* leaf extracts on a wide range of enteric pathogens *e.g.*, *V. cholerae*, *V. parahaemolyticus*, *V. mimicus*, *E. coli*, *Shigella* species and *Aeromonas* species. These organisms can cause severe diarrhoeal diseases and dysentery. Here for the first time we also carried out *in vivo* assay with extracts in mice cholera model and evidenced that *V. negundo* leaf methanolic extract is equally potent both *in vitro* and *in vivo* conditions to kill the cholera causing bacteria and protect mice from disease and death. If we identified and isolate the active compounds from *V. negundo* leaf, responsible for vibriocidal activity *in vivo*, then it could be a good alternative of antibiotics to treat cholera to reduce the disease burden. Therefore, further studies should be undertaken to characterize the active compounds residing in *V. negundo* leaves. Additionally, evaluation of the effects of each individual compound on microorganisms as well as toxicological studies need to be performed.

Conflict of interest statement

We declare that we have no conflict of interest.

References

[21] Suffredini IB, Sader HS, Goncalves AG, Reis AO, Gales AC,

