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1. INTRODUCTION 

In searching for isomorphic refinements of direct-sum decompositions of 
modules9 Crawley and Jonsson introduced an exchange property for modules 
that is strongly reminiscent of Steinitz’ Exchange Lemma for vector spaces. 
An R-module M (where R is an associative ring with identity) is said to have 
the (finite) exchange property if M can be fitted into any (finite) sum grid as 
follows: Whenever A4 occurs as a direct summand of a (finite) direct sum 
A = BielAi, then A = M@ @,,[ Ci for suitable submodules Ci of the Ai 
[2]. This concept led to very general extensions of the classical refinement 
theorems (see, e.g., [2, 3, 171). 

Many of the problems suggested by Crawley and Jonsson in their 
pioneering paper are still open. The most salient one: Does the finite 
exchange property imply the unrestricted exchange property? We show that 
the answer is yes for modules which possess decompositions into indecom- 
posable summands. In the background of this observation stands the 
following: 

THEOREM. Let (Mj)jEJ be a semi-T-nilpotent family of modules (i.e., for 
each sequence Mj, +fl MI2 _sf2 Mj, -+‘-’ . ‘. of nonisomorphisms, where the 
indices j, E J are pairwise difJ’erent, and for each x E Mj, there exists a p 

such that f, 0 -.- 0 f2 0 f,(x) = 0). Moreover, suppose that each Mj has the 
exchange property. Then @ jcJ Mj has the ex’change property in either of the 
folio wing two cases : 
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(I) Mj and Mk have no nontrivial isomorphic direct summand for 

j+ k. 

(II) Mj z Mk for all j, k E J. 

In particular, the theorem provides the missing link for a complete 
description of those modules with decompositions into indecomposable 
summands which enjoy the exchange property (Corollary 5). Only a few 
special cases had been completely covered by the predecessors of this result 
(see [8-11, 21-231). A s a consequence, we rediscover the fact that each 
projective right R-module over a right perfect ring has the exchange property 
(see [9, 221). Furthermore, the theorem is applicable to certain direct sums 
of modules which cannot be refined to decompositions into indecomposable 
summands (see Corollary 8). 

Barring a few interlopers, the following are all major classes of modules 
with the exchange property which were known (of course, finite sums of any 
of the candidates below again have the exchange property by [2, p. 8121): 

(1) The modules with local endomorphism rings [ 171 and certain infinite 
direct sums of these (cf. Corollary 5). 

(2) Each finitely generated module, whose endomorphism ring has 
liftable idempotents and is von Neumann regular modulo its radical [20]. 

(3) The quasi-injective modules [4, 181. 

(4) The L-adically complete (= algebraically compact and reduced) 
abelian groups [ 19, Theorem 31. 

(5) The torsion-complete primary abelian groups [2, p. 8471. A p-group 
is called torsion-complete if it is the p-torsion subgroup of some p-adically 
complete group. 

In Theorem 10 we establish a class of modules having the exchange property 
which includes the modules under (3), (4), (5). Namely: Each strongly 
invariant submodule of an arbitrary algebraically compact module has the 
exchange property. (We call a submodule M of X strongly invariant if 
f(M) c M for all fC Hom,(M, X).) In addition, this class contains the 
linearly compact modules over commutative rings. Thus, in the commutative 
case, we answer in the positive the question of Crawley and Jonsson whether 
each artinian module has the exchange property [2, p. 8551. 

Throughout, the unadorned term “module” stands for “right R-module,” 
Recall that an R-module M is called algebraically compact if each system 

of linear equations Cic, Xiaij= mj (jEJ) with a column-finite R-matrix 
(aJ and mj E M, such that each finite subsystem is solvable, has a global 
solution. Moreover, M is called pure-injective provided that homomorphisms 
A -+ M can be extended to modules B containing A as a pure submodule. By 
[ 16, Theorem 21, algebraic compactness is the same as pure-injectivity. 
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Prerequisites. The following elementary devices will be used repeatedly: 

LEMMA 1 (SEE [I, PROPOSITION 5.51). Suppose that M has a decom- 
position M = U @ V with corresponding projection p: M + V. Furthermore, 
let W be an arbitrary submodule of M. Then M = tY@ W precisely if the 
restriction of p to W is an isomorphism W -+ V. 

LEMMA 2 [ 2, p. 8 121. if M has the e?cchange property and 

A=M@B@E=@Ai@E, 
icl 

then there exist submodules Ci of Ai such that 

A=M@@ CiOE. 
iEI 

2. THE EXCHANGE PROPERTY OF MCAN BE TESTED 
IN DIRECT SUMS OF COPIES OF M 

Pursuing work of Warfield (201 and Monk [ 13 1, Nicholson showed in 
[ 14, Theorem 2.11 that a module M with endomorphism ring S has thefinite 
exchange property if and only if, given any endomorphism f of M, there 
exists an idempotent e E 5” with (1 - e) E S( 1 -f ); this was observed 
independently by Goodearl (cf. [6, p. 6 171). The characterization of the 
unrestricted exchange property via an analogous “approximability of 
endomorphisms by idempotents,” which we will give below, was inspired by 
this result. 

Given two R-modules U and V, call a family (A)ic, of homomorphisms 
II + V summable if, for each u E U, we have A(u) = 0 for all but a finite 
number of i E I. Write xi,, fi for the obvious “sum” in that case. (Clearly, 
the summability thus defined just amounts to convergence of the series 
Ci,,L in the finite topology of Hom,(U, v).) 

Following Crawley and Jonsson, we say that M has the K-exchange 
property (EC being a cardinal number) if A4 can be exchanged in direct sums 
with at most K summands. 

PROPOSITION 3. For a module M with endomorphism ring S andfor any 
cardinal number K the following statements are equivalent: 

(1) M has the K-exchange property. 
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(2) Whenever M occurs as a direct summand of a direct sum of at 
most K copies of M, say, 

M@B=@Ai with A,zM foralliEI 
iel 

and 1 I / < K, then there exist submodules Ci c Ai such that 

M@ @ Ci= @ Ai* 
icI iel 

(3) For each summable family (jJia, in S with Ci,,fi = 1 and 
111 < N there are pairwise orthogonal idempotents e, E Sfi such that 
CiE,ei = 1. 

Proof. (1) * (2) is trivial. 

(2) =‘ (3): Suppose (2) is satisfied and let (fi)iE, be a summable 
family of endomorphisms of M such that zi,,A = 1 and 111< K. If we 
define A = Bip,Ai with Ai = M for all i and M= {(f;.(m))iG,: m E M}, then 
i@ G’ M is a direct summand of A. This follows from the commutativity of 
the diagram 

where f(m) = (J(m))i,, and g((mi)i,,) = xi,, m,. Hence, the Ai can be 
decomposed by hypothesis, say, Ai = Bi @ Ci, such that A = A @ a,,, Ci = 
ai,, Bi @ ei,, Ci. By Lemma 1, this equality means that the projection 
p: A + oi,, Bi along oi,, Ci induces an isomorphism r = p/a: fi+ @,,, B,. 
By rj denote the composite map pj o 7: iI?+ @,,, Bi -+ Bj, where pj is the 
canonical projection. 

We will show that the definition e, := gr - ‘ri f E S meets our wishes. First, 
note that eiej = gs- ‘pirjf E S is equal to e, if i = j and to zero otherwise. 
Next, observe that, denoting by pi the projection Ai + Bi along Ci, we have 
rif = p,f, and consequently e, E Sfi. In particular, the family (e,)i,, is again 
summable; the equality CiE, ei = 1 follows immediately from our 
construction. 

(3) * (1): Start with a situation 

A=M@B=@A, with 111 <EC 
ief 
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and denote by rri: A + Ai and p: A + M the corresponding projections. The 

family (fi)iet with fi = p7rI,,, is then clearly summable and adds up to the 
identity. By (3) we can therefore find orthogonal idempotents e, = sifi E Sfi 
with xi,, e, = 1. 

We claim that, setting (oi = e,s,px,: A -+ M, we obtain 

A = M @ @ (Ai CT Ker(rp,)) 
iEI 

which shows that M can be fitted into aie, Ai as desired. First note that the 
family (rpi)iEI is summable and write (o for its sum. Next, observe that 
pilM = ei and infer that rpi(oj = aijrpi and &, = l,,. Since this implies pp? = rp, 
all that is left to be done is to check that Ker(p) equals aie,(Aif7 

Ker(pJ)- I 

Nicholson’s result is retrieved as a special case of (1) o (3): 

COROLLARY 4 [14, 2.1 AND 1.111. For a module M with endomorphism 
ring S, the following conditions are equivalent: 

(1) M has the finite exchange property. 

(2) For each finite number f,,...,f,, of elements of S with CL, & = 1, 
there are orthogonal idempotents ei E Sfi such that EyEI ei = 1. 

(3) For each f E S there is an idempotent e E Sf such that (1 - e) E 

S(l -f>. 

3. DIRECT SUMS OF MODULES WITH THE EXCHANGE PROPERTY 

It is easy to verify that finite direct sums of modules with the exchange 
property inherit this asset (see [2, p. 8 121). That this is no longer true for 
infinite sums, in general, was already observed by Crawley and Jonsson in 
their initial paper: The direct sum a,,, Z/(p”) of cyclic abelian groups, for 
instance, fails to have the exchange property by [2, p. 8521. As a conse- 
quence, the problem arises: For which families of modules with the exchange 
property does the direct sum retain this property? 

An interesting special case of this problem is the following question: 
Which modules possessing decompositions into indecomposable summands 
have the exchange property? Since, for any indecomposable module the 
exchange property is tantamount to a local endomorphism ring by [ 171, we 
may start with a module it4 = ojpJ Mj such that each M, has a local 
endomorphism ring. In a long list of papers [8-l 1, 21-231, the following 
three conditions were compared with each other: 

(1) M has the exchange property. 
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(2) M has the finite exchange property. 

(3) The family (ikfj)jpJ is semi-T-nilpotent, meaning that for each 
sequence Mj, -A Mj2AM. +fJ .*. of nonisomorphisms, where j, E J and 
j, # j, for k # I, and for ea:h x E Mj, there exists a natural number p such 
that& ofp-, 0 ... of,(x) = 0. 

In the papers listed above the equivalence of (2) o (3) is proved (for 
(2) 3 (3) see [lo, Lemma 91 and [23, Theorem 11, for (3) Z- (2) see [23, 
Theorem 11); moreover, the implication (3) * (1) is established in the special 
cases where all Mis are injective, resp. all Mj’s are isomorphic (see [21], 
[22] and [9]). 

The following theorem will yield, as an immediate consequence, the 
equivalence of (l)-(3) in general. Our method of proof is completely 
different from the one used in the above-mentioned articles; in particular, it 
is free of category techniques and is rather conceptual. 

THEOREM 5. Let (Mj)jpJ be a semi-T-nilpotent family of modules (not 
necessarily indecomposable) with the exchange property. Then @ jEJ Mj has 
the exchange property in either of the following cases: 

(I) Mj and Mk have no nontrivial isomorphic direct summand for 
j# k. 

(II) MjzM,forallj,kEJ. 

Remark. In Case II, the condition of semi-T-nilpotence is particularly 
strong: it forces all Mj’s to be indecomposable. Even though this case has 
been previously settled in [9], we include a particularly brief argument based 
on Proposition 3 and an idea of J. Stock [ 15, Satz 5.21. 

Proof of Theorem 5 

Case I. We start by well-ordering the index set J. For simplicity we 
assume that J = {a: a ordinal, a < p} for some ordinal number p. 

In view of Proposition 3, we may reduce the test of the exchange property 
ofM=@ a cp M, to the test in direct sums of copies of M: Suppose 

A= @ M,@B= @ Ami 
a<0 icl 

a<0 

with Ami z M, for each i. 
Our goal is to successively insert the Ma’s on the right-hand side of the 

above equality by discarding certain summands of the A,ts in order to make 
room for the Mcl’s. More precisely, we claim the existence of families 
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(CnLsp and PaLsp of submodules of A with C, = @ji,,Aki and D, = 
ai6,Azi such that we have 

(1) 

and 

A& = Ahj @ A;; for all a and i 

Once such families are established, the special choice /I =p completes the 
proof. 

The required families (Ca))acp and (Da)aGP are constructed by translinite 
induction. Suppose that for some y < p we already have (C,), < 1’ and (D,), < ; 
with (1) and such that (2) holds for each /I < Y. 

First suppose that 1’ is a successor ordinal, say, y = p + 1. In view of 
Lemma 2. we derive from 

A= @ M,@ @ C,@ @ A,i= @ Ma@ @ ALi@ @ A,i 
nSL3 a64 isl as5 ief iel 

a>4 nsL3 n>b 

and the exchange property of M, = M,, , the existence of decompositions 

A~,=~,,@~,, for a</3 and A,i=~Ui@~~i for a >p such that 

We infer 

and hence, by hypothesis, zai = 0 for all a #/I + 1. Set A;, ,.i :=x4+ ,.i and 
A” = 

5+ I.i := Defining, 
@i.,A;+~~,‘$k’have 

moreover, CLl+, :=@ic,A;I+,.j and D,,, = 

A= @ M,@ @ C,@ @ Aai 
R<B+l a<D+l isl 

a>D+I 

as desired. 
Now let y be a limit ordinal. In a first step we establish the equation 
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Observe that 

A= @ C,O @ D,O @ A,i, 
n<Y rr<Y ieI 

a>Y 

because we have C, = oisl AAi, D, = aipl ALi and Aai = AAi @ Aii for all 
a c Y- Let P,: OacyMa+OocyDa be the restriction of the projection 
4 : A -+ 0, <y D, along 

for /l < y define pI1 and gD analogously. By Lemma 1, the equality at which 
we are aiming holds if and only ifp, is an isomorphism. 

Since, by induction hypothesis, ps is an isomorphism for each /3 < y, it is 
clear that py is injective. 

Assume that py is not surjective. Then there exists some /I, < y and some 
x, E D,, such that x, does not belong to the image of py. Using again the 
fact that p. is an isomorphism for all /l < y, we can define 

x; :=P~oP$+,(x,)E @ Da. 
a<Y 

We claim that there exists an ordinal number /I2 with /3, < /I2 < y such that 
the &component of x; in en<? D, lies outside Im(p,): Set 
z=x;--pz,(x;) and observe that zE@~,<~<~D~. In view of p4,+,= 
pz, opy we obtain, moreover, 

z =-G -P4,+1 0 pi,: ,h) =py(pi,L(-d - xl7 

and since x, does not belong to Im(p,), neither does z. Therefore & exists as 
required. Having picked such a &, let x2 be the &-component of x; in 
Oa<y%* 

Now proceed with x2 instead of x,. Inductively, our process yields a 
diagram as follows: 

fl uq,----------+DD2- __--” ---- +DD, ---f3--, . . . 
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Here Y,  = PO,‘+ ,(xA and II, denotes the obvious projection. That is. we 
obtain an increasing sequence p, < /I2 < /I3 < u.. of ordinal numbers below y 
and a sequence x,, x2, x3 ,... of elements x, E Do,\Im( p,3, respectively. 
Furthermore, settingf, = rr, 0 p), 0 pin’+, , we have x, + , =fn(xn). 

Once it becomes clear that D,” g Mfln for all n, this situation is seen to be 
incompatible with the semi-T-nilpotence of (M,),<p; in fact, the hypothesis 
entails that all of the maps f, are nonisomorphisms. But, keeping in mind 
that BierAD i= C, 0 D4,, we deduce D, zMM,” from the following 
equality which” is par; of the induction hypothe:is: 

@ M,@ @ C,@ @ Aai= @ M,@ @ C,@ @ Aai. 
U<O, u<4. iEl a<& Q<4, iel 

aall, n>D, 

The modules C, and D, can now be found exactly as for a successor 
ordinal, and the induction is complete. 

Case II. Once more, Proposition 3 permits us to focus on a situation 
where A4 = @ jeJ Mj is a summand of a direct sum of copies of M: 

A=M@B=@A, 
iEI 

with Ai g Mj for all i E Z and jE .Z. Clearly, we may assume that .Z is 
infinite. 

Choose a subset L c Z which is maximal with respect to the following 
properties: 

(1) Mn@,,,A,=O. 

(2) Each finite subsum of BjeJ Mj 0 @,,, A, is a direct summand of A. 

Now suppose that M @ alsL A, is not all of A. We will construct a sequence 

(Mncll of elements of Z and a sequence (xn)nERJ of nonzero elements x, of 
Ai”, respectively, such that, for some nonisomorphisms f,: Ain -+ Ai,+,, we 
have x,,, =f,o . . . ofi( However, in view of A, z Mj, the existence of 
such sequences contradicts the semi-T-nilpotence of (Mj)jEJ (since all MTs 
and Ar’s are isomorphic, the requirement of distinctness of the indices i, 
becomes irrelevant). 

Pick i, E Z together with x, EA,, such that x, $ MO BIELA,. By the 
maximality of L, there exists a finite subsum F = Ofin Mj @ Ofin A, of 
@,Mj@@,A, such that either FnA,,#O or F+A,, is not a direct 
summand of A. On the other hand, the hypothesis tells us that F has the 
exchange property, and therefore we can find a subset I’ of Z with 

A=F@@A;. 
I’ 

(Note that our hypotheses force the Mj, and hence also the Ai, to be 
indecomposable in Case II.) 
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For i E I’, let p1 be the projection A + Ai corresponding to this decom- 
position. By the choice of x, there is some i2 E I’ with p,,(xr) @ MO 
@[EL A,. Moreover, the restriction f,: Ai, + Ai of pi, to Ai is not an 
isomorphism, because otherwise we would have A = Fe Ai, 0 C$i,,,\~iz~ Ai, 
which we have excluded by our choice of F. Now iterate the procedure with 
x2 =f,(xi). An obvious induction completes the proof. 1 

EXAMPLE. Showing that the method employed in Case I of the preceding 
theorem fails, in general, if the Mis are allowed to have common direct 
summands, even in the case of vector spaces. More precisely, the translinite 
induction of Case I may then collapse as we reach the first limit ordinal. 

Suppose A is a vectorspace of countably infinite dimension over some field 
not of characteristic 3, say, A = ois N(xi) @ oie bd( y,), where the (xi), (vi) 
are one-dimensional subspaces. If we set iWj = (xi + 3yj+ ,), we clearly have 

A = @ MjO 0 (Yi)= O (Xi>@ O (Yi + JXi+,). 
jeih iebl ieh ic El 

Observe that we can successively insert the Mis on the right-hand side by 
throwing out (xi), respectively, to make room for Mj, i.e., 

A = O MjO @ (Xi)@ O (Yi + JXi+,), 
j<n i>n iEN 

COROLLARY 6. Suppose M = @ jsJ Mj, where each Mj is indecom- 
posable. Then the following conditions are equivalent: 

(1) M has the exchange property. 

(2) M has thefmite exchange property. 

(3) All the summands Mj have local endomorphism rings, and the 

family (Mj)jc, is semi-T-nilpotent. 

Proof: (3) 3 (1): Single out a set of representatives (Mk)kcK of the 
isomorphism classes of the Mj, j E J. Next, collect all those Mj’s which are 
isomorphic to a fixed M, and denote their direct sum by Nk. Then each Nk 
has the exchange property by Case II of the preceding theorem. Moreover, 
Konig’s Graph Lemma guarantees that the family (N,JkcK is again semi-T- 
nilpotent. The exchange property of M = a,,, Nk is therefore a conse- 
quence of Case I of Theorem 5. 

(1) * (2) is clear. 

(2) * (3): For the convenience of the reader we include a compact 
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proof which is an amalgamation of arguments due to Harada and Sai [ 10. 
Lemma 91 and Yamagata [23, Theorem 11: 

The following technical remark, referred to as *, will be employed 
repeatedly. Suppose C = P @ Q = oi,, Ci is a module whose summands Ci 
all have local endomorphism rings. If I’ is a finite subset of Z with 
PI? @i,I, Ci # 0, then there exists an index k E I’ such that C = C,@ 
P' 0 Q for a certain submodule P' of P. 

To see this, invest the exchange property of @,,,, Ci to arrive at an 
equation 

C= @ Ci@P,&Q, 
iEI’ 

where P = P, @ P,, Q = Q, 0 Q,. By Lemma 1, this means that the 
projection p: C -+ P, 0 Q, along P, 0 Q, induces an isomorphism 

Observe that necessarily P, # 0 by our choice of I’. According to 
Azumaya’s Theorem (see, e.g., [ 1, p. 144]), P, has in turn a direct summand 
P,, with local endomorphism ring, P, = P,, @ Pzz, say, and there exists 
k E I’ so that the following composition of maps is an isomorphism 

here q denotes the projection along Pzz @ Q,. Apply Lemma 1 once again to 
deduce the equality 

which completes the proof of *. 
Now assume (2), deduce that all Mj have local endomorphism rings, and 

start with a sequence j,, jz, j, ,... of pairwise different elements of J and a 
sequence of nonisomorphisms Mj, JI Mj2 +*z Mj, -+*I . . . . We may obviously 
assume that .Z = { jn: n E n\l }, and we write j, = n for simplicity. Furthermore, 
we may assume that either all of the maps f, are monomorphisms or all of 
them are nonmonomorphisms: For if infinitely many fn’s are not injective, 

wJmlJm,~fm,~... with m, < m2 < m3 < ..-, then replace the set J by the set 
(m,:iE N) and consider the nonmonomorphisms f,,+,-, o . +. o fmi: 
wni+ 411i+,* 

Next define modules MA E M, by MA = (x + f,(x): x E M,}. Clearly, we 
have 
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Since, by hypothesis, encN M;,-, has the finite exchange property, we 
obtain 

M= @ MS,-,@A@B with AC @ M2,-,andBc @ Mi,,. 
n E bJ PIE Pd nEkl 

Suppose first that all of the maps f, are nonmonomorphisms. Then we 
have A = 0, since otherwise * (with P = A and Q = @,, EJ M;,-, @ B) would 
yield the existence of an index k such that M = @,,,), MS,_, @ MZk-, @ 
A’ @ B. But this is impossible since Ker(& ,) c Mikm, n MZk- , . Picking 
any x E M,, we deduce 

which in turn implies the existence of some p with f, 0 f, _, 0 . . . of,(x) = 0. 
Finally, consider the case where all thef, are monomorphisms and conse- 

quently not surjective. We show first that 

M= @ M;,-,@A@M;@B, for some B, G B. 
nEkl 

Set X= @nEkjM&-, @ A and let px: M -+ X, respectively pe: M -+ B, be the 
projections for the decomposition M = X 0 B. Moreover, denote by pzn the 
projection M- M;,, with respect to the decomposition M = BncN M;,, 0 

@,,, M2+, and by in2,, the canonical injection M;, + M. Invest the fact 
that f, is not surjective to see that pzpx is not surjective either; in fact, we 
have p*(X) G MS ~7 (Im(f,) 0 MJ f MS. From the fact that p2(px + p,) inI 
is the identity in the local ring End,(M;) we consequently deduce that 
pzps in, is an isomorphism in End,(M;). But the latter means that the 
projection pe induces an isomorphism from MS onto a direct summand of B, 
say, Bi. If B = B; 0 B,, then Lemma 1 yields the desired equality. 

The game can be repeated for M; where B, now plays the role of B and 
a,,, MS,-, @A @ MS the role of X. The result is a decomposition 

M= @ MS,-,@A@M;@M;@B, with B, CL B,. 
nEll 

The process continues in an obvious finite induction. In particular, we see 
that the sum BncE, M;,- , + @r=, M;, + A is direct for all m E R\i, which 
entails 

since B G @,,,, M;,. 

4Sl/SS/2-8 
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If A = 0, we are done as in the preceding case. Otherwise, we have 
A n @,, M2n-1 # 0 for some finite set I’ c N, and another application of * 
shows 

M= @ iv;,-,@ @ M;,,OM,,-,@A’ 
ItElfl n E b1 

for some 2k - 1 E I’ and some A’ c A. We must have A’ = 0 at this stage 
since otherwise a repetition of the previous argument would yield an index 1 
different from k such that 

M= @ M;,-,O 0 M;,0M2k-,0MZ,-,0A”; 
REN llEN 

if k ( I, the inclusion IV,,-, c MSk-, 0 Mik 0 *a* 0 A&, 0 MzI-, is 
incompatible with this decomposition of M, symmetrically, 1 < k leads to a 
contradiction. 

Now pick m > k. From Mzm-, c @neNMin-, 0 @ns~M~,,OMZk-I 
deduce 

E(f :y-y 0 . . . 
the existence of some index p with 

o f2,,, _ ,) # 0. Because all the maps f, are monomorphisms, 
this least tase clearly does not occur. 1 

COROLLARY 7 [9, 221. Zf the identity of R is a finite sum of orthogonal 
primitive idempotents, then the following conditions are equivalent: 

(1) Each projective right R-module has the exchange property. 

(2) The free right R-module R (‘) has the finite exchange property. 

(3) R is right perfect. 

Proof: This is an immediate consequence of Corollary 6. 1 

Remark. If the overall hypothesis in Corollary 7 is removed, conditions 
(l)-(3) are no longer equivalent. Kutami and Oshiro were the first to exhibit 
a nonartinian Boolean ring which satisfies (1) in [ 121. In [ 151, Stock 
supplemented the picture as follows: (1) holds for any ring R with right-T- 
nilpotent Jacobson radical and a von Neumann regular factor ring. Provided 
that all idempotents of R are central (e.g., in the commutative case), the 
converse is also true, whereas, in general, (1) does not force the radical 
factor ring of R to be regular. 

COROLLARY 8. Suppose that (Mj)j,, is a family of modules, the lengths 
of which are untformly bounded by some integer N. Then ojeJMj has the 
exchange property. 

Proof Since each Mj is a finite direct sum of modules with local 
endomorphism rings, we may assume that the Mj’s are indecomposable to 
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begin with. But by [ 10, Lemma Ill, any composition of 2N - 1 
nonisomorphisms between the M,‘s is then the zero map. Consequently the 
family (Mj)j,J is semi-T-nilpotent, and our claim follows from Corollary 6. 

Remarks. 1. As a consequence of Corollary 8 we obtain that each 
decomposition of @jcJ Mj into indecomposable modules complements direct 
summands in the sense of [ 1, p. 1411, provided that the lengths of the Mj’s 
are uniformly bounded. This is a mild extension of a result of Anderson and 
Fuller (see [ 1, 29.61). 

2. In Corollary 8, the common bound on the lengths of the Mj’s is not 
redundant. On the other hand, the existence of such a bound is not necessary 
for ojsJ Mj to have the exchange property: Think of Bpprime Z/(p”). 

COROLLARY 9. Choose R = Z and let M, be a p-adically complete 
abelian group for each prime p. Then 0, prime Mp has the exchange property. 

Proof In view of Theorem 5, it suffices to note that Hom,(M,, MJ = 0 
forp+q. I 

4. INVARIANT SUBMODULES OF ALGEBRAICALLY COMPACT MODULES 

PROPOSITION 10. For a module M with thefinite exchange property, the 
following statements are equivalent: 

(1) M has the exchange property. 

(2) Whenever M is a direct summand of a direct sum A = oi,I Ai 
with Ai z M for all i, there exists a submodule C of A which is maximal with 
respect to the following properties: 

(a) C = eicl Ci with Ci c Ai. 

(b) CnM=O. 

(c) The canonical embedding M + A/C splits. 

Proof: (1) * (2) is clear. 
For the converse, suppose (2) is satisfied. To verify (1) we may, by 

Proposition 3, restrict our attention to the situation 

MOB= @ A,=A 
isl 

with each Ai z M. Choose a maximal Cc A as in (2). Identifying the 
module M with its image in A/C = X and denoting AJC, by Xi, we have 

M@ Y= @ Xi=X, 
icI 
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where Y is some complement of M in X. The maximality of C guarantees 
that, for each nonzero submodule Zi of some Xi with Mf7 Zi = 0. the sum 
M@ Zi is not a direct summand of X. 

Our aim is to show Y= 0, which means A = M@ @,,, Ci. For this 
purpose it clearly suffices to check that Yn @,,,, Xi = 0 for each finite 
subset I’ of I. For simplicity of notation we suppose that the finite subset at 
which we are looking is of the form I’ = { l,..., n). Moreover, we denote by 

p: X+ Y the projection along M, by ek: X+ X, the projection along 
BitkXi. Setting e=e, + ... + e, we may then identify the endomorphism 
ring S of @i=, X, with e(End,(X)) e. 

All we have to show is that epe, E Rad(S) for 1 < k < n (Rad(S) standing 
for the Jacobson radical of S). For then we infer that epe = epe, + ... + 
epe, E Rad(S), and since epe induces the identity on Y n @i=, X,, we 
conclude that the latter intersection is zero. 

First observe that each X, (and therefore @i=, X,) has the finite 
exchange property. In fact: The finite exchange property of M yields X= 
M @ Z, 0 Z for some Z, c X, and Z c Bitk- Xi. By our construction, 
Z, = 0, and consequently X, is isomorphic to a direct summand of M. 

To see that epe, E Rad(S), let s E S and apply Proposition 3 to @i=, X, 
together with the endomorphism a = sepe, and e - a E S. This provides us 
with two orthogonal idempotents of S, say, f = ra E Sa and e -f E S(e - a). 
Clearly, we may assume r =fr. We claim f = 0, which implies e E s(e - a). 
Since s E S is arbitrary, the latter means epe, E Rad(S). 

In view of f 2 = f = rsepe,, our claim will follow if we can show that 
q = e, rsep = 0. But r =fr guarantees that Ed is an idempotent of End,(X), 
and hence X is the direct sum of the kernel Ker(o) and the image Im(o) of o. 
Now M is contained in Ker(p), and we arrive at an equality 

X=M@ Z@ Im(q). 

But since Im(q) is contained in Xi, our construction forces Im(q) to be zero, 
and the proof is complete. 1 

DEFINITION. We call a submodule M of a module X strongly invariant if 
f(M) c M for each homomorphism f E Horn&V, X). 

Note that for any quasi-injective module X, “strong invariance” of M is 
the same as “invariance” in the classical sense. 

THEOREM 11. Each strongly invariant submodule of any algebraically 
compact module has the exchange property. 

Before we give a proof, we list classes of examples covered by this 
statement. Several of them are new. On the other hand, numerous 
occurrences of the exchange property, which were previously established by 
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various methods, are subsumed and thus seen from a unifying point of view. 
For torsion-complete abelian groups (special case of 5 below), the original 
proof of the exchange property in [2, p. 8471 makes heavy use of techniques 
specific to abelian group theory. 

EXAMPLES OF STRONGLY INVARIANT SUBMODULES OF ALGEBRAICALLY 
COMPACT MODULES. 

1. All quasi-injective modules. Note that each quasi-injective module 
is strongly invariant in its injective envelope. That these modules enjoy the 
exchange property is Fuchs’ theorem in [5], which was preceded by 
Warfield’s analogous statement for injectives [ 18, p. 2651. 

2. All algebraically compact modules. (It was pointed out to the 
authors by H. Lenzing that an alternative proof of the exchange property in 
this case can be derived from Gruson and Jensen’s [7, 1.2 and 3.21, 
combined with [ 18, p. 2651.) Specializing to R = Z, we use the well-known 
fact that “algebraically compact + reduced” is the same as “Z-adically 
complete” (see [5, p. 1631) to rediscover Warfield’s result that each 
L-adically complete abelian group has the exchange property [ 19, 
Theorem 3 1. 

3. All linearly compact modules over an arbitrary commutative 
ring. (M is called linearly compact if each system of congruences 
Xi - m, E Ui (i E I) with m, E M and Vi a submodule of M, which admits a 
solution for each finite subsystem, admits a global solution.) Namely: By 
[ 16, Proposition 91, each linearly compact module over a commutative ring 
is algebraically compact. 

4. All artinian modules over an arbitrary commutative ring. This is 
a special case of 3. Theorem 5 thus provides a partial answer to the question 
of Crawley and Jonsson, whether each artinian module has the exchange 
property. Note that, in this case, Theorem 5 can be rephrased as follows: 
Each indecomposable artinian module over a commutative ring has a local 
endomorphism ring. 

5. All torsion submodules of algebraically compact modules with 
respect to any hereditary torsion theory. For instance: Given a 
multiplicatively closed subset S of a commutative ring R and an 
algebraically compact module X, then T,(X) = {x E X: xs = 0 for some 
s E S } is among the above. In particular, the classical torsion submodule of 
any algebraically compact module over a commutative integral domain has 
the exchange property. Specializing still further to R = Z, we obtain the 
exchange property for all torsion-complete abelian p-groups. 

Proof of Theorem 11. Suppose that X is an algebraically compact 
module and M a strongly invariant submodule with endomorphism ring S. 
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First, we show that the ring S, viewed as a right module over itself, is 
algebraically compact: Note that S, = Hom,(M, M)s z Horn&M, X), ; to 
see that the latter S-module is algebraically compact (= pure-injective), start 
with a pure inclusion U, -+ I’, and observe that the pure-injectivity of X, 
forces the upper row (and hence also the lower one) of the following 
commutative diagram to be an epimorphism. 

Hom,(UO, M 9 - Hom,(V@,M,X) 

II? 111 
Hom,( U, Horn&M, X)) - Hom,(K Hom,(M X)) 

By [25, Theorem 91 we conclude that the ring S is von Neumann regular 
modulo its radical and has the lifting property for idempotents modulo the 
radical. Now apply [20, Theorems 2 and 31 to see that M has the finite 
exchange property. 

That A4 even enjoys the unrestricted exchange property will follow from 
Proposition 10. Suppose M is a direct summand of A = aiEl Ai with Ai z M 
for each i. By Zorn’s Lemma, choose C c A maximal with the properties 

(a) C = aiEI Ci with Ci c Ai, 

(b) CnM=O, 

(c) the canonical embedding R: M + A/C is pure. 

All we have to show is splitness of the latter embedding. To do this, consider 
the following commutative diagram: 

Ai 

I =i 
MA @ A&, 

II 

iEl / 
/ 

/ 

M /‘f 
/ 

can 

I 

/ 
/ 

XL 

where xi: A i + AJC, denotes the canonical epimorphism. The existence off 
follows from the pure injectivity of X. In view of Ai z M, the hypothesis of 
strong invariance forcesfxi(Ai) to be contained in M for each i E 1, which is 
tantamount to Im(f) c M. This completes the proof. 1 
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