
Implementation of an Optimal Strategy for

Algorithmic Debugging 1

David Insa2 Josep Silva3

Departamento de Sistemas Informáticos y Computación
Universitat Politècnica de València

E-46022 Valencia, Spain.

Abstract

One of the most automatic debugging techniques is Algorithmic Debugging because it allows us
to debug a program without the need to inspect the source code. In order to find a bug, an
algorithmic debugger asks questions to the programmer about the correctness of subcomputations
in an execution. Reducing the number and complexity of these questions is an old objective in
this field. Recently, an strategy for algorithmic debuggers that minimizes the number of questions
has been released. This new strategy is called Optimal Divide and Query and, provided that all
questions can be answered, it finds any bug in the source code with a minimum set of questions.
In this work we discuss the implementation of such a strategy in different algorithmic debugging
architectures.

Keywords: Debugging, Algorithmic Debugging.

1 Introduction

Debugging is often a hard task. Specially when we try to debug source code
that we have not written ourselves or that we wrote a long time ago. When this
happens, we usually know or remember what our functions or methods do, but
we hardly remember how they do it. In these cases, the technique Algorithmic
Debugging [10,11] can be very useful because it allows us to debug programs

1 This work has been partially supported by the SpanishMinisterio de Ciencia e Innovación
(Secretaŕıa de Estado de Investigación) under grant TIN2008-06622-C03-02 and by the
Generalitat Valenciana under grant PROMETEO/2011/052.
2 Email: dinsa@dsic.upv.es
3 Email: jsilva@dsic.upv.es

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 282 (2012) 47–60

1571-0661 © 2011 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2011.12.005
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82183099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dinsa@dsic.upv.es
mailto:jsilva@dsic.upv.es
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2011.12.005
http://dx.doi.org/10.1016/j.entcs.2011.12.005
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/

without the need to inspect the source code. The technique automatically
generates a series of questions and uses the answers of the programmer to
find the location of a bug. The questions are always whether a given result
of a method or function activation with given input values is actually correct.
Therefore, the programmer only needs to know what a function is supposed
to do (instead of how) in order to debug it.

Example 1.1 Consider this simple Haskell program that wrongly (it has a
bug) checks whether two sets are equal:

main = equal_sets [1,3] [3]

element _ [] = False
element x (y:ys) = (x==y) || element x ys

subset [] _ = True
subset (x:xs) ys = element x ys || subset xs ys

equal_sets xs ys = subset xs ys && subset ys xs

An algorithmic debugging session for this program is the following (YES and
NO answers are provided by the programmer):
Starting Debugging Session...
(1) subset [1,3] [3] = True? NO
(2) element 1 [3] = False? YES
(3) subset [3] [3] = True? YES

Bug found in rule:
subset (x:xs) ys = element x ys || subset xs ys

The debugger points out the part of the code that contains the bug. In this
case || should be &&. Note that, to debug the program, the programmer only
has to answer questions. It is not even necessary to see the code.

Typically, algorithmic debuggers have a front-end that produces a data
structure representing a program execution—the so-called execution tree (ET)
[8]—; and a back-end that uses the ET to ask questions and process the
answers of the programmer to locate the bug. For instance, the ET of the
program in Example 1.1 is depicted in Figure 1.

Fig. 1. ET of the program in Example 1.1

D. Insa, J. Silva / Electronic Notes in Theoretical Computer Science 282 (2012) 47–6048

The internal algorithm used by algorithmic debuggers to decide what nodes
of the ET should be asked is crucial for the performance of the technique.
In [6], we conducted a series of experiments to compare the performance of
different algorithms, and Divide & Query (D&Q) and its variants [11] showed
the best performance. In that work, we also proved that the variant Optimal
D&Q asks (as an average) an optimal number of questions.

In this paper we present an implementation of Optimal D&Q that has
been integrated into the Declarative Debugger for Java [5]. We show how to
implement this algorithm in different implementation contexts that present
different architectures.

The rest of the paper has been organized as follows. In Section 2 we recall
and formalize the strategy D&Q and its improved version Optimal D&Q.
Then, in Section 3 we discuss the implementation of Optimal D&Q. Finally,
Section 4 concludes.

2 Algorithmic Debugging and Optimal D&Q

In this section we formalize the strategy D&Q [10] focussing on the improved
version by Hirunkitti [4]. We start with the definition of marked execution
tree, that is an ET where some nodes could have been removed because they
were marked as correct (i.e., answered YES), some nodes could have been
marked as wrong (i.e., answered NO) and the correctness of the other nodes
is undefined.

Definition 2.1 [Marked Execution Tree] A marked execution tree (MET) is
a tree T = (N,E,M) where N are the nodes, E ⊆ N ×N are the edges, and
M : N → V is a marking total function that assigns to all the nodes in N a
value in the domain V = {Wrong ,Undefined}.

Initially, all nodes in the MET are marked as Undefined . But with every
answer of the user, a new MET is produced. Concretely, given a MET T =
(N,E,M) and a node n ∈ N , the answer of the user to the question in n
produces a new MET such that: (i) if the answer is YES, then this node and
its subtree is removed from the MET. (ii) If the answer is NO, then, all the
nodes in the MET are removed except this node and its descendants. 4

Therefore, the size of the MET is gradually reduced with the answers. If
we delete all nodes in the MET then the debugger concludes that no bug
has been found. If, contrarily, we finish with a MET composed of a single

4 It is also possible to accept I don’t know as an answer of the user. In this case, the
debugger simply selects another node [2]. For simplicity, we assume here that the user only
answers YES or NO.

D. Insa, J. Silva / Electronic Notes in Theoretical Computer Science 282 (2012) 47–60 49

node marked as wrong, this node is called buggy node and it is pointed as
responsible of the bug of the program.

All this process is defined in Algorithm 1 where function selectNode selects
a node in the MET to be asked to the user with function askNode. Therefore,
selectNode is the central point of this paper. In the rest of this section, we
assume that selectNode implements D&Q. In the following we use E∗ to refer
to the reflexive and transitive closure of E.

Algorithm 1 General algorithm for algorithmic debugging

Input: A MET T = (N,E,M)
Output: A buggy node or ⊥ if no buggy node exists
Preconditions: ∀n ∈ N , M(n) = Undefined
Initialization: buggyNode = ⊥
begin

(1) do
(2) node = selectNode(T)
(3) answer = askNode(node)
(4) if (answer = Wrong)
(5) then M(node) = Wrong
(6) buggyNode = node
(7) N = {n ∈ N | (node → n) ∈ E∗}
(8) else N = N\{n ∈ N | (node → n) ∈ E∗}
(9) while (∃n ∈ N,M(n) = Undefined)
(10) return buggyNode

end

D&Q assumes that the individual weight of a node is always 1. There-
fore, given a MET T = (N,E,M), the weight of the subtree rooted at node
n ∈ N , wn, is defined as its number of descendants including itself (i.e.,
1 +

∑ {wn′ | (n → n′) ∈ E}).
D&Q tries to simulate a dichotomic search by selecting the node that better

divides the MET into two subMETs with a weight as similar as possible.
Therefore, given a MET with n nodes, D&Q searches for the node whose
weight is closer to n

2
. In particular, it always selects the node whose weight is

closer to n
2
between:

• the heaviest node n′ whose weight is as close as possible to n
2
with wn′ ≤ n

2
,

• the lightest node n′ whose weight is as close as possible to n
2
with wn′ ≥ n

2

Example 2.2 Consider the following MET where nodes are labeled with their
weight.

In this MET, D&Q divides the MET by selecting the node with weight 4

D. Insa, J. Silva / Electronic Notes in Theoretical Computer Science 282 (2012) 47–6050

because it is the closer one to 7
2
.

2.1 Optimal Divide & Query

In [6], Optimal Divide & Query was introduced as a new variant of D&Q that
optimally divides the remaining tree with every question. It is presented in
Algorithm 2 where wn represents the weight of node n (i.e., the weight of the
subtree rooted at n), and win represents the individual weight of node n (i.e.,
the weight of the single node n without taking into account its descendants).
It is important to note that, in this algorithm, the weight of a subtree with
root n is computed with the sum of the individual weights of all nodes in
the subtree, but the individual weight of n is only added if it is marked as
Undefined. In the case that it is marked as Wrong, then it is ignored.

Algorithm 2 Optimal D&Q (SelectNode)

Input: A MET T = (N,E,M) whose root is n ∈ N ,
∀n1, n2 ∈ N,win1 = win2 and ∀n1 ∈ N,win1 > 0

Output: A node n′ ∈ N

begin

(1) Candidate = n
(2) do
(3) Best = Candidate
(4) Children = {m | (Best → m) ∈ E}
(5) if (Children = ∅) then return Best
(6) Candidate = n′ ∈ Children | ∀n′′ ∈ Children, wn′ ≥ wn′′
(7) while (wCandidate > wn

2
)

(8) if (M(Best) = Wrong) then return Candidate
(9) if (wn ≥ wBest + wCandidate − win)
(10) then return Best
(11) else return Candidate

end

Essentially, Algorithm 2 traverses the MET top-down from the root until
it finds the buggy node. In order to do this, it compares nodes to discard
some of them and define a path until the buggy node. It is based on four
properties that are summarized in Figure 2: In cases 1 and 4, the heaviest
node is better. In case 2, the lightest node is better. And in case 3, the best
node must be determined with the equation wroot ≥ wn1 + wn2 − wiroot that
is implemented in Line (9) of the algorithm. Observe that these cases allow
the algorithm to determine the path to the optimal node that is closer to the
root by comparing a reduced number of nodes.

3 Implementation of Optimal Divide and Query

In this section we present our implementation of the strategy Optimal D&Q
and we discuss how can it be adapted to different architectural contexts. Our

D. Insa, J. Silva / Electronic Notes in Theoretical Computer Science 282 (2012) 47–60 51

Case 1 Case 2 Case 3 Case 4

Fig. 2. Determining the best node in a MET (four possible cases)

algorithmic debugger, the Declarative Debugger for Java (DDJ) [5], debugs
Java programs and it has been also written in Java itself. Consequently, in
this debugger the information of the nodes contain method invocations and
their effects.

Along this section, we will assume the existence of an object that imple-
ments the strategy Optimal D&Q. We will refer to this object with the usual
reference this, and thus, we can access the methods of this object as usual
(e.g., this.node.getState(), this.moveNodeToChild(indexChild), etc.).

The implementation presented includes the methods that compose the Op-
timalDivideQuery class. Some of these methods must be adapted depending
on the architecture of the host debugger. In particular, we discuss these meth-
ods for three different architectures:

(i) Standard architecture. Where nodes are pruned after every answer ac-
cording to Algorithm 1; and where all the nodes of the MET are already
generated when the first question is asked.

(ii) Fix MET architecture. Where the MET is never pruned; and thus nodes
have a state attribute that indicates to the strategy whether this node
can be buggy or not. Here again, it is assumed that all the nodes of the
MET are already generated when the first question is asked.

(iii) Dynamic MET architecture. Where nodes are pruned after every an-
swer according to Algorithm 1; and where the nodes in the MET can be
dynamically generated while the questions are asked.

The code of the class OptimalDivideQuery that is common for the three
architectures is shown in Frame 1. The code that is only used in the standard
architecture is shown in Frame 2 (it continues the code in Frame 1). The
code that is only used in the fix MET architecture is shown in Frame 3 (it
continues the code in Frame 1). The code that is only used in the dynamic
MET architecture is shown in Frame 4 (it continues the code in Frame 1).

Clearly, the strategy needs a mechanism to explore the MET and extract

D. Insa, J. Silva / Electronic Notes in Theoretical Computer Science 282 (2012) 47–6052

private Node node;

public Node selectNode()
begin
(1) this.node = this.root;
(2) double weight = this.calculateWeight();
(3) double weightFather = weight;
(4) boolean thru = true;
(5)
(6) mainLoop:
(7) do {
(8) int numChildren = this.getNodeChildren();
(9)
(10) // Heaviest child
(11) int indexChild = -1;
(12) double weightChild = -1;
(13) for (int index = 0; index < numChildren; index++) {
(14) this.moveNodeToChild(index);
(15) double weightCandidate = this.node.getWeight();
(16) if (this.node.getState() == Undefined && weightCandidate > weightChild)
(17) {
(18) weightChild = weightCandidate;
(19) indexChild = index;
(20) }
(21) this.moveNodeToFather();
(22) }
(23)
(24) // Leaf
(25) if (indexChild == -1)
(26) return this.node;
(27)
(28) // Continue going down or equation
(29) thru = weightChild > weight / 2;
(30) if (thru || this.node.getState() == Wrong ||

!this.equation(weight, weightFather, weightChild, this.root.getIndividualWeight()))
{

(31) this.moveNodeToChild(indexChild);
(32) weightFather = weightChild;
(33) }
(34) } while (thru);
(35)
(36) return this.node;
end

private boolean equation(double rootWeight, double weightNode1, double weightNode2,
double individualWeight)
begin
(1) if (weightNode1 == weightNode2)
(2) return true;
(3) if (weightNode1 > weightNode2)
(4) return rootWeight ≥ weightNode1 + weightNode2 - individualWeight;
(5) return rootWeight < weightNode1 + weightNode2 - individualWeight;
end

Frame 1: class OptimalDivideQuery (code independent of the architecture)

the information from nodes. For this, we use a pointer that can point to
any node in the MET. This pointer is the attribute node of the strategy that
initially points to the root of the MET and can be moved to any node by means
of the method selectNode. This method (selectNode) implements the Optimal
D&Q strategy presented in Algorithm 2, and it uses 7 different methods during
its execution:

D. Insa, J. Silva / Electronic Notes in Theoretical Computer Science 282 (2012) 47–60 53

• node.getState() returns the state of the current node:
· Undefined if no information is known about this node,
· Wrong if this node has been marked as wrong,
· Right if this node has been marked as correct,
· Trusted if the method associated to this node is trusted [7] and cannot
contain the bug, and

· Unknown if this node has been marked as unknown, e.g., because its
associated question was too difficult.

• node.getIndividualWeight() returns the probability that the node contains
the bug,

• node.getWeight() returns the probability that the subtree of the node con-
tains the bug,

• this.getNodeChildren() returns the number of children from the node at-
tribute,

• this.moveNodeToChild(index) updates the node attribute in order to point
to one of its children,

• this.moveNodeToFather() updates the node attribute in order to point to
its father,

• this.calculateWeight() calculates the weight of the node attribute taking its
state into account.

Only four of these methods depend on the architecture selected from the
three discussed above. Therefore, these methods are implemented at the level
of the strategy (i.e., this.getNodeChildren(), this.moveNodeToChild(index),
this.moveNodeToFather() and this.calculateWeight()) and not at the level of
node as node.getState(), node.getWeight() and node.getIndividualWeight().

The code of selectNode() is divided into three parts: Lines (1) to (4) ini-
tialize the main loop. Here, variable weight represents the weight of the root,
variable weightFather represents the weight of the best node found so far and
it is initialized with the weight of the root node, and variable thru is used to
decide when the loop must terminate; Lines (6) to (34) implement a loop that
finds the optimal node; and finally Line (36) returns the optimal node.

The loop traverses the MET in a top-down manner in order to find the
optimal node. We start the search in the root node and in each iteration we
descend to one of its children. Once we have selected one child, the other
children are discarded. Lines (8) to (22) determine this child and stores it in
variable indexChild. If this child does not exist (e.g., the node is a leaf) then
Lines (24) to (26) return the node itself as the optimal node.

After selecting the child, Line (29) checks whether the optimal node is

D. Insa, J. Silva / Electronic Notes in Theoretical Computer Science 282 (2012) 47–6054

in the subtree of the child (otherwise it must be in the child itself or in its
father). If the optimal node is in the subtree then variable thru remains
true, and another iteration is performed to look for the buggy node in this
subtree. Otherwise, variable thru becomes false and method equation is used
to determine the optimal node. If it returns true, attribute node remains
pointing to the father, otherwise it is updated to point to the child. Finally,
the node pointed by attribute node is returned as the optimal node.

Note that the behavior of the strategy should be the same when variable
thru remains true and when the equation method returns false. In both cases
attribute node should be updated to point to the child. Algorithm 2 directly
finishes the loop at this point and then it checks which node is the optimal
one. But in our code this procedure would repeat Lines (30) and (31) after the
loop. This can be easily avoided extending the if condition, because during
the execution of Line (31) the value of thru is not modified and then the loop
will terminate.

Another important part of the code is implemented by method equation
that implements Line (9) of Algorithm 2. It is used to decide what node is
better between any pair of nodes. If it returns true the first node is better, if
it returns false the second node is better.

The following subsections discuss specific changes in the algorithms that
are used for each of the architectures discussed.

3.1 Standard Architecture

The specific code for this architecture is shown in Frame 2. In this setting
the nodes that cannot be buggy are pruned from the MET. This means that
the root node can be marked as Undefined or Wrong, and the others can only
be marked as Undefined. This property strongly simplifies the technique and
the implementation of the methods.

Traditionally, the weight of a node represents the number of nodes of the
subtree. In our approach the weight of a node represents the probability
that the subtree of this node contains the bug. This probability is computed
with method calculateWeight shown in Frame 2. This method does not take
into account the wrong root when computing probabilities because it is not
necessary to answer it again to determine that it is wrong.

In this architecture, Lines (24) to (26) of Frame 1 could be moved to Line
(9) using the condition numChildren==0 instead of indexChild==-1 and the
condition this.node.getState()==Undefined in line (16) can be removed. These
changes make the algorithm to avoid unnecessary checks.

D. Insa, J. Silva / Electronic Notes in Theoretical Computer Science 282 (2012) 47–60 55

private int getNodeChildren()
begin
(1) return this.node.children.size();
end

private void moveNodeToChild(int index)
begin
(1) this.node = this.node.getChild(index);
end

private void moveNodeToFather()
begin
(1) this.node = this.node.getFather();
end

private double calculateWeight()
begin
(1) double weight = this.node.getWeight();
(2) if (this.node.getState() == Wrong)
(3) weight -= this.node.getIndividualWeight();
(4) return weight;
end

Frame 2: class OptimalDivideQuery (code for the standard architecture)

3.2 Fix MET Architecture

As stated before, in the standard architecture nodes are pruned from the MET.
While this simplifies the technique, it also removes the possibility of reusing
the same MET in other sessions (e.g., in order to find more than one bug). For
this reason many debuggers avoid the pruning of the MET with some labeling
mechanism that labels nodes as “possibly-buggy” or “no-buggy”. In order
to make this labeling mechanism compatible with the code in Frame 1, we
assign a weight of 0 to Right and Trusted nodes, Unknown nodes are assigned
an individual weight of 0, and Normal and Wrong nodes maintain their usual
weights.

In an architecture where no nodes are pruned and different debugging
sessions can use the same MET, a debugging session can end up with multiple
Wrong nodes. This means that, in order to maintain the standard behavior,
the last node marked as wrong should be the initial (root) node of the strategy
(Line (1) of selectNode method in Frame 1). However, some debuggers [9,1,3]
allow the user to make manual debugging sessions. In these cases the user
can select a node whose subtree already has a wrong node. The algorithm
of the standard architecture is not prepared for METs with multiple wrong
nodes, but this situation can be easily handled adding Lines (15) to (19) in
Frame 3 between Lines (14) and (15) of method selectNode in Frame 1. These
lines make the algorithm to restart the search in the subtree whose root is
already marked as wrong. In order to do this, we use the wrong node as the
new root of the algorithm (this is done implicitly), we update both weight and
weightFather to the weight of the new root, and we re-execute the external

D. Insa, J. Silva / Electronic Notes in Theoretical Computer Science 282 (2012) 47–6056

private Node father = null;
private ArrayList<Node> children = new ArrayList<Node>();

public Node selectNode()
begin
(1) ...
(15) if (this.node.getState() == Wrong) {
(16) weight = this.calculateWeight();
(17) weightFather = weight;
(18) continue mainLoop;
(19) }
(20) ...
end

private int getNodeChildren()
begin
(1) this.children.clear();
(2) this.father = this.node;
(3) int numChildren = this.getNodeChildren(0);
(4) this.node = this.father;
(5) return numChildren;
end

private int getNodeChildren(int numChildren)
begin
(1) for (Node child : this.node.children)
(2) if (child.getState() == Undefined || child.getState() == Wrong)
(3) this.children.add(numChildren++, child);
(4) else if (child.getState() == Unknown) {
(5) this.node = child;
(6) numChildren = this.getNodeChildren(numChildren);
(7) }
(8) return numChildren;
end

private void moveNodeToChild(int index)
begin
(1) this.node = this.children.get(index);
end

private void moveNodeToFather()
begin
(1) this.node = this.father;
end

private double calculateWeight()
begin
(1) double weight = this.node.getWeight();
(2) if (this.node.getState() == Wrong)
(3) weight -= this.node.getIndividualWeight();
(4) return weight;
end

Frame 3: class OptimalDivideQuery (code for the fix MET architecture)

loop.

In addition, when the user marks a node as unknown, this node should
be removed from the MET. But, because we do not prune these nodes, they
remain in the middle of the tree. This means that the getNodeChildren method
should be modified in order to exclude Unknown nodes. Moreover, it should
also be modified to exclude Right and Trusted nodes that also remain in the

D. Insa, J. Silva / Electronic Notes in Theoretical Computer Science 282 (2012) 47–60 57

MET. This is performed by the new version of getNodeChildren shown in
Frame 3, that stores in attribute children the children of the current node.
If one of its children is an Unknown node, it is ignored, but the children
of this Unknown node are also added. After collecting the children of the
current node, we can use moveNodeToChild and moveNodeToFather methods
in Frame 3 to move from father to children and vice versa. Finally, having
correctly updated the weights of Right, Trusted and Unknown nodes, the
calculateWeight method can be implemented as the one in Frame 2.

3.3 Dynamic MET Architecture

In this section we show the changes that we should make in order to adapt
the algorithm to debuggers where the MET is dynamically generated while
the debugging session is performed. These debuggers allow the user to start
the debugging session while the MET is being produced and thus it is uncom-
pleted. Therefore, the MET contains:

(i) Completed nodes. Those nodes that have been invoked and their execu-
tion already finished,

(ii) Not completed nodes. Those nodes that have been invoked but their
execution did not finish, and

(iii) Not generated nodes. Those nodes that are not present yet in the MET
because their invocation has not been performed yet.

An algorithmic debugger can only ask questions to completed nodes, that
contain not only arguments and initial context but also final context and
return value. Therefore, method getNodeChildren(int numChildren) should
exclude those nodes that are not completed yet. The implementation of this
method is similar to the one from Frame 3 changing Lines (2) and (4) (see
Frame 4). Note that both approaches can be used together using a &&
operator in Line (2) and changing Line (4) by else if (!node.isCompleted()
|| node.getState() == Unknown) {. Methods getNodeChildren(), moveN-
odeToChild and moveNodeToFather can be implemented as in Frame 3.

In algorithmic debugging the weight of a node is computed with the sum of
the weights of its children adding its own individual weight. In order to ensure
that we calculate the weights of the nodes in linear time, they are calculated
only when the node is completed. Note that when a node is completed, its
children are also completed and thus no more nodes can be added. Therefore,
in trees where nodes are not completed, the weights of some root descendants
have not been calculated yet and, hence, the weight of the root node cannot
be determined. Consequently, method calculateWeight should also be modi-
fied. The new version of this method in Frame 4 uses the getNodeChildren,

D. Insa, J. Silva / Electronic Notes in Theoretical Computer Science 282 (2012) 47–6058

private Node father = null;
private ArrayList<Node> children = new ArrayList<Node>();

private int getNodeChildren()
begin
(1) this.children.clear();
(2) this.father = this.node;
(3) int numChildren = this.getNodeChildren(0);
(4) this.node = this.father;
(5) return numChildren;
end

private int getNodeChildren(int numChildren)
begin
(1) for (Node child : this.node.children)
(2) if (child.isCompleted())
(3) this.children.add(numChildren++, child);
(4) else {
(5) this.node = child;
(6) numChildren = this.getNodeChildren(numChildren);
(7) }
(8) return numChildren;
end

private void moveNodeToChild(int index)
begin
(1) this.node = this.children.get(index);
end

private void moveNodeToFather()
begin
(1) this.node = this.father;
end

private double calculateWeight()
begin
(1) double weight = 0;
(2) int numChildren = this.getNodeChildren();
(3) for (int index = 0; index < numChildren; index++) {
(4) this.moveNodeToChild(index);
(5) weight += this.node.getWeight();
(6) this.moveNodeToFather();
(7) }
(8) if (this.node.isCompleted() && this.node.getState() != Wrong)
(9) weight += this.node.getIndividualWeight();
(10) return weight;
end

Frame 4: class OptimalDivideQuery (code for the dynamic MET architecture)

moveNodeToChild and moveNodeToFather methods to transform all those
completed nodes in the MET whose parent is not completed into children of
the root node. In this way, when the strategy is used again, the weight of the
root will be updated as new nodes become completed.

In this architecture, as in the standard architecture, Lines (24) to
(26) of Frame 1 could also be moved to Line (9) using the condition
numChildren==0 instead of indexChild==-1 and removing the condition
this.node.getState()==Undefined in line (16). Here again, these changes make
the algorithm to avoid unnecessary checks.

D. Insa, J. Silva / Electronic Notes in Theoretical Computer Science 282 (2012) 47–60 59

4 Conclusions

In this work we present an implementation of Optimal D&Q for object-
oriented languages. We have shown our code for Java that has been integrated
into a real debugger (DDJ) but the ideas discussed for the implementation
could also be applied in other languages.

Our implementation has been presented in a parameterized way so that
it can work in three different architectures, including those architectures that
allow the dynamic generation of the MET. For each architecture, it has been
discussed how to adapt the algorithms to the particular restrictions that they
impose, and how to change the code to increase performance in this particular
architecture.

References

[1] R. Caballero. A Declarative Debugger of Incorrect Answers for Constraint Functional-Logic
Programs. In Proc. of the 2005 ACM SIGPLAN Workshop on Curry and Functional Logic
Programming (WCFLP’05), pages 8–13, New York, USA, 2005. ACM Press.

[2] D. Cheda and J. Silva. State of the practice in algorithmic debugging. Electron. Notes Theor.
Comput. Sci., 246:55–70, August 2009.

[3] T. Davie and O. Chitil. Hat-delta: One Right Does Make a Wrong. In Seventh Symposium on
Trends in Functional Programming, TFP 06, April 2006.

[4] V. Hirunkitti and C. J. Hogger. A Generalised Query Minimisation for Program Debugging. In
Proc. of International Workshop of Automated and Algorithmic Debugging (AADEBUG’93),
pages 153–170. Springer LNCS 749, 1993.

[5] D. Insa and J. Silva. An Algorithmic Debugger for Java. In Proc. of the 26th IEEE
International Conference on Software Maintenance, 0:1–6, 2010.

[6] D. Insa and J. Silva. Optimal Divide and Query (extended version). Available in the Computing
Research Repository (http: // arxiv. org/ abs/ 1107. 0350) , July 2011.

[7] Y. Luo and O. Chitil. Algorithmic debugging and trusted functions. Technical report 10-07,
University of Kent, Computing Laboratory, UK, August 2007.

[8] H. Nilsson. Declarative Debugging for Lazy Functional Languages. PhD thesis, Linköping,
Sweden, May 1998.

[9] B. Pope. A Declarative Debugger for Haskell. PhD thesis, The University of Melbourne,
Australia, 2006.

[10] E. Shapiro. Algorithmic Program Debugging. MIT Press, 1982.

[11] J. Silva. A Comparative Study of Algorithmic Debugging Strategies. In Proc.
of the International Symposium on Logic-based Program Synthesis and Transformation
(LOPSTR’06), pages 143–159. Springer LNCS 4407, 2007.

D. Insa, J. Silva / Electronic Notes in Theoretical Computer Science 282 (2012) 47–6060

http://arxiv.org/abs/1107.0350)

	Introduction
	Algorithmic Debugging and Optimal D&Q
	Optimal Divide & Query

	Implementation of Optimal Divide and Query
	Standard Architecture
	Fix MET Architecture
	Dynamic MET Architecture

	Conclusions
	References

