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Glossary

Kinetochore: Protein complex assembled on centromeric chromatin. Site of

microtubule attachment during cell division.

Microtubule: Filament composed of the protein tubulin.

Kinetochore microtubules: Subset of spindle microtubules that attach to

kinetochores.

Kinetochore fiber: Bundle of kinetochore microtubules.

Mitotic spindle: Apparatus consisting of microtubule arrays and many other

associated components, which segregates chromosomes during mitosis

(mitotic spindle) and meiosis (meiotic spindle).

Spindle assembly checkpoint (SAC): Biochemical pathway that monitors the

attachment state of kinetochores. Delays anaphase onset until all kinetochores

are attached to spindle microtubules.

Chromosome mis-segregation: Segregation of a whole chromosome to the

incorrect daughter cell during cell division. This leads to the formation of

aneuploid daughter cells.

Chromosomal instability (CIN): Elevated rate of chromosome mis-segregation

during mitosis. Hallmark of many types of cancer cells.

Aneuploidy: Abnormal number of chromosomes. Common characteristic of
Accurate chromosome segregation depends on the
proper attachment of sister kinetochores to microtu-
bules emanating from opposite spindle poles. Merotelic
kinetochore orientation is an error in which a single
kinetochore is attached to microtubules emanating from
both spindle poles. Despite correction mechanisms,
merotelically attached kinetochores can persist until
anaphase, causing chromatids to lag on the mitotic
spindle and hindering their timely segregation. Recent
studies showing that merotelic kinetochore attachment
represents a major mechanism of aneuploidy in mitotic
cells and is the primary mechanism of chromosomal
instability in cancer cells have underlined the importance
of studying merotely. Here, we highlight recent progress
in our understanding of how cells prevent and correct
merotelic kinetochore attachments.

Introduction
To segregate chromosomes properly, the cell must ensure
that sister kinetochores attach to microtubules emanating
from opposite spindle poles and prevent erroneous kineto-
chore attachment (Box 1 and Glossary). Merotelic kineto-
chore attachment is an error that occurs when a single
kinetochore is attached to microtubules emanating from
both spindle poles. Merotelically attached kinetochores are
frequently observed in the early stages of mitosis but most
are corrected [1,2]. If, however, they persist until ana-
phase, they cause chromatids to lag behind, hindering
their segregation to spindle poles. Although the phenome-
non of merotely has been known for decades, recent dis-
coveries showing that merotelic kinetochore orientation
represents a major mechanism of aneuploidy in mitotic
cells [3] and is the primary mechanism of chromosomal
instability (CIN) in cancer cells [4–7] have attracted the
attention of scientists from various fields. In this review,
we focus on mechanisms preventing and correcting mer-
otelic kinetochore attachment and we outline some impor-
tant areas of future studies in this field.

Preventing merotelic attachments
The number of merotelic attachments predicted by com-
puter simulations highly exceeds those observed experi-
mentally, suggesting that there are cellular mechanisms
that prevent or correct such erroneous attachments [8].
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Indeed, in addition to proteins that actively correct mer-
otelic attachments (described below), many proteins are
required to prevent the formation of merotelic attachments
(Table 1). These are mostly proteins regulating chromo-
some or kinetochore structure and their absence leads to
altered kinetochore architecture that would allow a single
kinetochore to face both spindle poles, thereby favoring
merotelic orientation. For example, it has been hypothe-
sized that chromatin alterations induced by the inhibition
of histone deacetylases lead to a loosely organized centro-
meric chromatin, which results in an increase in merote-
lically attached lagging chromosomes [9]. Such a
mechanism would also explain the increase in lagging
chromosomes observed after topoisomerase II inhibition
[10]. Condensin, which has been proposed to regulate the
stiffness of centromeres [11], has also been implicated in
preventing merotelic attachments in human cells [12]. Cae-
norhabditis elegans hcp-6 mutant, which is unable to fully
condense chromosomes, displays high frequencies of mer-
otelic attachments [13]. However, an independent study
concluded that condensin is not an obligate component of
a system preventingmerotelic attachments in chicken kine-
tochores [11]. It is not clear why condensin is required to
prevent merotelic attachments in human and C. elegans
cells, but is not in chicken cells. However, merotelic attach-
ment might be less likely for kinetochores, such as those
of chicken DT40 cells that bind only a few microtubules.
Recent studies have shown that the depletion of the
cancer cells.
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Box 1. Accurate chromosome segregation depends on the proper attachment of kinetochores to microtubules

Chromosome segregation occurs thanks to the interaction between a

microtubule-based bipolar spindle and kinetochores, proteinaceous

complexes assembled on the centromeric heterochromatin of each

chromosome [78]. The individual kinetochores of most eukaryotic

cells are associated with multiple microtubules. For high-fidelity

chromosome segregation, kinetochores must capture spindle micro-

tubules and connect the sister chromatids of each chromosome to

opposite spindle poles before anaphase onset. During anaphase,

pulling forces of the spindle separate sister chromatids from each

other to opposite spindle poles [79–83]. Thus, the attachment of sister

kinetochores to microtubules emanating from opposite spindle poles

(amphitelic attachment, Figure I) is necessary for accurate chromo-

some segregation. Commonly, at early mitotic stages, only one of the

two sister kinetochores is attached to spindle microtubules (mono-

telic attachment) (Figure I) [84]. This is because the interaction

between kinetochores and spindle microtubules is stochastic [85–88],

and sister kinetochores rarely attach to microtubules simultaneously.

In addition, two types of erroneous kinetochore attachments can

occur during spindle assembly: syntelic attachment, where both sister

kinetochores interact with microtubules that emanate from the same

spindle pole (Figure I), and merotelic attachment, where a single

kinetochore is connected to both spindle poles (Figure I, Figure II). If

not corrected, erroneous kinetochore attachments might result in the

mis-segregation of chromosomes during anaphase, leading to

aneuploid progeny [89,90]. Therefore, it is important that the

attachment of kinetochores to spindle microtubules is monitored by

the SAC, which ensures that anaphase is triggered only after all

kinetochores are attached to spindle microtubules [39,62,91]. In

addition, correction mechanisms eliminate erroneous kinetochore

attachments and promote correct (amphitelic) attachments [41,92–

94]. This prevents the loss of unattached chromosomes and mis-

segregation of incorrectly attached chromosomes during anaphase.
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Figure I. Types of kinetochore attachments during mitosis. Whereas only one

of the two sister kinetochores is attached to spindle microtubules in monotelic

attachment, sister kinetochores are attached to microtubules emanating from

opposite spindle poles in amphitelic attachment. Monotelic kinetochore

attachment is an intermediate state preceding proper amphitelic attachment.

There are two types of erroneous kinetochore attachments: syntelic

attachment, where both sister kinetochores interact with microtubules

emanating from the same spindle pole, and merotelic attachment, where a

single kinetochore is connected to both spindle poles. There are 15–30

microtubule attachment sites at vertebrate kinetochores, thereby providing

considerable opportunity for generating merotelic attachments. Three types of

merotelic attachments have been observed: i) balanced merotelic (similar

number of kinetochore microtubules attached from both poles), ii) mero-

amphitelic (more kinetochore microtubules emanating from the pole opposite

to that of the sister kinetochore) and iii) mero-syntelic (more kinetochore

microtubules emanating from the pole to which the sister kinetochore is

attached) [36,95]. Chromosomes with monotelic or syntelic attachments are

also referred to as mono-oriented, whereas those with amphitelic or merotelic

attachments are referred to as bioriented. To segregate chromosomes

properly, erroneous kinetochore attachments should be corrected and

amphitelic attachments stabilized.
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Figure II. Merotelically attached kinetochores in PtK1 cells. PtK1 cells are ideal

for studying kinetochores because of the small number of chromosomes and

the fact that the cells remain flat throughout mitosis, making them amenable

for high-resolution light microscopy. The images show live PtK1 cells

microinjected with X-rhodamine-labeled tubulin and Alexa 488-labeled

CENP-F antibodies to fluorescently label kinetochore fibers (red) and

kinetochores/spindle poles (green), respectively. (a) Late prometaphase PtK1

cell with one merotelic kinetochore (arrow) aligned at the metaphase plate. (b)

Anaphase PtK1 cell with two merotelically attached lagging chromosomes

(arrows).
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retinoblastoma protein (pRB) causes defects in chromosome
condensation and the deformation of centromeric structure,
which promote merotelic attachments [14–16]. Cohesion
between sister chromatids is also important for preventing
merotelic attachments. This might be because of the back-
to-back arrangement of sister kinetochores that sterically
hinders erroneous attachments [17,18]. Indeed, if single
chromatids, rather than cohesed sister chromatids, enter
anaphase their kinetochores are often merotelically at-
tached [19–23]. Similarly, centromere fragmentswith single
kinetochores or kinetochores detached from chromosomes
establish merotelic attachments [24,25]. It is also possible
that merotelic orientation is the only way to achieve the
stable attachment of singlekinetochores and thereby satisfy
the spindle assembly checkpoint (SAC). Alternatively, the
correctionmachinerymight not be functional in the absence
of sister chromatid cohesion. Finally, the importance of
kinetochoremorphology for propermicrotubule attachment
has also been shown by the effect of nocodazole treatment,
which increases the size and alters the shape of the kineto-
chore [26]. This is believed to cause the massive increase of
merotelic attachments observed in cells recovering from
nocodazole treatment [3,27].

In the fission yeast Schizosaccharomyces pombe, both
Clr4/Swi6-dependent centromeric heterochromatin and a
putative microtubule site clamp Pcs1/Mde4 are required to
prevent merotelic attachments [28–31]. It has been pro-
posed that the Pcs1/Mde4 complex acts in the central
kinetochore domain to clamp (or crosslink) microtubule-
binding sites together, thereby ensuring that all microtu-
bule attachment sites on a single kinetochore face the same
pole [28,29] (Figure 1). Consistent with this model are
recent structural studies of the Pcs1/Mde4 complex and
its budding yeast counterpart Csm1/Lrs4, which have
revealed the distinctive V-shaped structure of these com-
plexes [31]. Although no orthologs of Pcs1 and Mde4 have
375



Table 1. Selected proteins implicated in preventing or correcting merotelic attachments

Protein name Proposed roles Organism studied Reference

Pcs1, Mde4 Clamping together microtubule attachment sites Fission yeast (S. pombe) [28–30]

Clr4, Swi6 Establishment of centromeric heterochromatin Fission yeast (S. pombe) [29,30]

Rad21 Mediates sister chromatid cohesion Fission yeast (S. pombe) [19]

Aurora B Kinetochore assembly and correction

of erroneous kinetochore attachments

Fission yeast (S. pombe),

rat kangaroo (Potorous tridactylis)

[43,96,97]

MCAK, Kif2b Depolymerization of microtubules Man (Homo sapiens), rat kangaroo (P. tridactylis),

Chinese hamster (Cricetulus griseus)

[4,36,98]

Hec1/Ndc80 Mediates microtubule–kinetochore attachment Rat kangaroo (P. tridactylis) [52]

pRB Negative regulator of cell proliferation,

chromatin compaction

Man (H. sapiens) [14]

Dido Histone H3 lysine 4-binding protein Mouse (Mus musculus) [76]
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been identified in higher eukaryotes, the recent discovery
that the Pcs1/Mde4 complex shares similar features with
the conserved kinetochore complex Spc24/Spc25 might
provide important functional insights [30,31]. The molec-
ular basis of how centromeric heterochromatin prevents
merotelic attachments has not been studied in detail.
However, it is probable that Pcs1/Mde4 clamps and cen-
tromeric heterochromatin suppress merotely in different
ways because pcs1D and swi6D mutations are synthetical-
ly lethal [28]. Mutants defective in centromeric heterochro-
matin display a precocious separation of sister
centromeres because of a lack of centromeric cohesin
[32,33]. As discussed above, the lack of geometric con-
straint between sister kinetochores might increase the
likelihood of merotelic orientations. In addition, it is also
possible that centromeric heterochromatin provides rigid-
ity to the kinetochore, ensuring that microtubule-binding
sites are properly oriented (Figure 1). Defective centromer-
ic heterochromatin might cause increased kinetochore
flexibility, making it more prone to merotelic attachments.

Finally, the proper assembly of a bipolar spindle is also
important to minimize the occurrence of merotelic attach-
ments. Indeed, delays in establishing spindle bipolarity or
the presence of multipolar spindles induce merotelic
[()TD$FIG]
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Figure 1. Putative microtubule site clamp Pcs1/Mde4 and centromeric heterochrom

chromosomes caused by merotelic attachment frequently occur in fission yeast cells l

defective in centromeric heterochromatin [28–30]. The kinetochore proteins Pcs1 and Md

Clr4/Swi6-dependent centromeric heterochromatin might provide rigidity to the kineto

Disturbing either of these systems leads to high frequencies of merotelic attachments.
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attachments [1,5,6,8,34,35]. Although the mechanisms
preventing merotelic attachments discussed here are im-
portant, additional mechanisms that actively correct mer-
otelic attachments must operate to ensure the high fidelity
of chromosome segregation.

Correcting merotelic attachments
Merotelic kinetochore attachment represents a serious
threat for dividing cells because it frequently occurs in
the early stages of mitosis [1,2], it does not trigger SAC-
dependent arrest in mitosis and uncorrected merotelically
attached kinetochores can lead to chromosome mis-segre-
gation and aneuploidy [2,3,20,36,37]. Therefore, mechan-
isms correcting merotelic attachments are crucial for the
normal development and survival of an organism.Whereas
monotelically attached chromosomes engage the SAC
because of the presence of one unattached kinetochore
on the sister pair (note that a single unattached kineto-
chore can trigger SAC-dependent arrest) [38], and syntelic
attachment can be identified by low tension across sister
kinetochores [39,40], it is rather difficult to distinguish
merotelic attachment from the correct amphitelic attach-
ment. Both merotelic and amphitelic attachments gener-
ate tension across sister kinetochores and do not produce
hromatin Chromosome arms

ing site MT-clamp (Pcs1/Mde4)

pcs1Δ or mde4Δ mutant
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atin are required to prevent merotelic attachments in fission yeast. Lagging

acking the components of the putative microtubule site clamp Pcs1/Mde4 or cells

e4 have been proposed to clamp together (or crosslink) microtubule-binding sites.

chore, which is necessary for the proper orientation of microtubule-binding sites.
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unattached kinetochores. Nevertheless, mechanisms cor-
recting merotelic kinetochore attachments clearly operate
during mitosis, as best evidenced by much lower frequen-
cies of merotelic attachments in anaphase cells compared
with cells in prometaphase [1]. Thus, what are these
mechanisms and how do they detect and correct merotelic
attachments?

Several observations suggest that the centromeric pool
of the Aurora B kinase plays a central role in correcting
kinetochore attachment errors including merotelic attach-
ments [41–47]. Aurora B is specifically enriched at mer-
otelic attachment sites and its inhibition causes an
increase in the number of merotelic attachments [42,43].
Aurora B localizes to the inner centromere, whereas its
opposing phosphatase (protein phosphatase 1) localizes to
the outer kinetochore [48,49]. This allows Aurora B to
generate a phosphorylation gradient emanating from the
inner centromere. In the absence of high tension across
sister kinetochores (e.g. syntelic or merosyntelic kineto-
chore orientation), centromeric Aurora B is able to reach its
kinetochore substrates, which leads to the destabilization
of kinetochore microtubules. As soon as proper amphitelic
attachment is established, spindle forces pull kinetochores
away from the inner centromere, beyond the reach of
Aurora B, but still within the zone of protein phosphatase
1 activity (Figure 2). Aurora B can directly modulate
kinetochore–microtubule attachments by altering the ac-
tivity of kinetochore proteins, including the microtubule-
binding components of the KMN network (KNL1/Mis12
complex/Ndc80 complex) and microtubule depolymerizing
kinesins (MCAK, Kif2b), and in this way efficiently detach
incorrectly oriented kinetochore microtubules [50–54]. The
Aurora B-dependent phosphorylation of the outer kineto-
chore proteins Ndc80, Dsn1 and KNL1 severely compro-
mises the microtubule-binding activity of the KMN[()TD$FIG]
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Figure 2. Model of the Aurora B-mediated correction of merotelic attachments. (a) In t

proximity to, and thereby is able to phosphorylate, its kinetochore substrates. This

establishment of amphitelic attachment, microtubules pull the kinetochore away fro

kinetochore–microtubule attachment is stabilized. (c) Upon merotelic attachment (in th

clamp Pcs1/Mde4), the portion of a kinetochore attached to the incorrect pole tends to b

attachment sites bound to the incorrect pole within the region of high Aurora B activit
network, probably by introducing negative charges that
prevent interaction with the negatively charged microtu-
bules [53,55]. Both MCAK and Kif2b are required for the
correction of merotelic orientations; however, the mecha-
nism by which Aurora B regulates this process is less clear.
Aurora B has a negative effect on the microtubule depo-
lymerase activity of MCAK and it is required for the proper
localization of Kif2b and MCAK [4,56–58]. The temporal
control of kinetochore–microtubule dynamics mediated by
Aurora B kinase activity seems to play a key role in
eliminating merotelic kinetochore attachments. Reduction
in the turnover of kinetochore microtubules by depleting
microtubule depolymerizing kinesin Kif2b induces kineto-
chore misattachments, whereas stimulating the dynamics
of kinetochore microtubules by overexpressing microtu-
bule depolymerizing kinesin suppresses the incidence of
erroneous kinetochore attachments [4]. Although this ele-
gant mechanism explains the selective stabilization of
amphitelic attachments and destabilization of erroneous
attachments including syntelic and merosyntelic, it does
not necessarily provide a satisfactory explanation for how
meroamphitelic attachment is corrected. However, an in-
teresting observation suggests how even meroamphitelic
attachmentmight be selectively corrected via an Aurora B-
dependent mechanism [43]. Both live and fixed cell analy-
sis has shown that the portion of a merotelic kinetochore
attached to the incorrect pole tends to be stretched toward
the inner kinetochore region [1,2]. It has been proposed
that this could bring the microtubule attachment sites
bound to the incorrect pole within the region of high Aurora
B concentration, resulting in the selective detachment of
the misattached microtubules [43,59]. In addition, live cell
analysis in PtK1 cells has shown the existence of meroam-
phitelically attached chromosomes persisting into ana-
phase segregated to the correct pole, indicating that this
hromatin Chromosome arms

ing site MT-clamp (Pcs1/Mde4)

(c)
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leads to the destabilization of kinetochore microtubules [41–46]. (b) Upon the

m the inner centromere and thereby out of reach of Aurora B. Consequently,

is example, merotely occurs because of the absence of putative microtubule site

e stretched toward the inner kinetochore region. This could bring the microtubule

y, resulting in the selective detachment of the misattached microtubules.
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Box 2. Outstanding questions

To fully understand the mechanisms correcting merotelic attach-

ments it will be important to address the following questions:

� How does the timing of merotely formation impact the efficiency

of repair?

� Does the stretched shape of the merotelic kinetochore increase

the probability of additional (secondary) erroneous attachments

on the same kinetochore?

� How much time is needed for efficient correction and does this

depend on the number of erroneously attached microtubules?

� Does the presence of multiple merotelic attachments slow the rate

of correction at individual kinetochores?

Review Trends in Cell Biology June 2011, Vol. 21, No. 6
type of misattachment might not contribute to chromo-
some mis-segregation [2]. It is also possible that mechan-
isms correcting merotelic attachments operate during
anaphase, relying on forces exerted bymicrotubules during
spindle elongation [19], and it will be interesting to inves-
tigate this in future experiments.

The fact that merotelic kinetochore attachments do not
trigger a checkpoint-dependent delay of anaphase onset
[2,20,37,38] indicates that the pre-anaphase correction of
merotelic attachments might not involve the detachment
of the kinetochore from all its kinetochore microtubules.
Otherwise, the exposure of the unattached kinetochore
would inevitably trigger a checkpoint-dependent response.
Therefore, a likely scenario is that only kinetochore micro-
tubules emanating from the incorrect pole are detached
and possibly replaced by microtubules emanating from the
correct pole. The correction mechanism must be efficient
enough to ensure that before the onset of anaphase most, if
not all, sister kinetochores attain proper amphitelic, or
occasionally meroamphitelic, attachment. This ensures
the high fidelity of chromosome segregation during cell
division.

Finally, it is noteworthy that mechanisms correcting
erroneous kinetochore attachments can be overwhelmed
(or bypassed) if the frequency of erroneous attachments is
elevated. For example, chromosomes often mis-segregate
in cells transiently treated with the microtubule poison
nocodazole, which induces various kinetochore misattach-
ments including merotelic [3]. Similarly, increasing the
number of merotelic attachments by acquisition of extra
centrosomes leads to a high rate of chromosome mis-seg-
regation [5,6]. This indicates that there is a thin line
between the faithful transmission of chromosomes and
mis-segregation, and that dividing cells might be particu-
larly vulnerable to factors inducing errors in kinetochore
attachment. Thus, the machinery correcting erroneous
kinetochore attachments can be seen as the Achilles’ heel
of dividing cells.

Future directions and concluding remarks
The functional disruption of many genes leads to high
frequencies of merotelic attachments (Table 1). In future
experiments, it will be important to dissect which of these
proteins have a direct role in the correctionmechanism and
which proteins are more likely to have an indirect role by
altering kinetochore structure. These studies will be com-
plicated by the fact that some proteins (e.g. Aurora B)
might be involved in both correcting erroneous kinetochore
attachments and kinetochore assembly. It will be impor-
tant to address the possible relation between the putative
microtubule site clamp Pcs1/Mde4 and Aurora B. Both
Pcs1 and Mde4 are phosphorylated, but it is not known
if they are substrates of the Aurora B kinase [30,60].
Merotely also occurs during meiosis, when the dramatic
rearrangements of kinetochore architecture occur
[21,45,61]. It will be interesting to investigate if the
mechanisms preventing and correcting merotelic attach-
ments characterized in mitotic cells also operate during
meiosis. Finally, it is probable that the list of proteins
required to prevent or correct merotelic attachments is
still incomplete. Identifying these proteins and defining
378
the mechanisms by which they function is an important
aim for future research.

The molecular machinery involved in correcting mero-
telic attachment is beginning to emerge. Future experi-
ments should address whether error correction
mechanisms promoting amphitelic attachments and the
SAC are independent or constitute two parts of the same
pathway. Similarly, it will be important to determine what
the SACmonitors because these issues are still a matter of
debate [39,40,62,63]. This will also help us understandwhy
merotelic attachment does not trigger SAC-dependent
arrest. It also remains to be tested whether the correction
mechanism based on the Aurora B gradient is sufficient for
efficient error correction or whether other correction
mechanisms are involved (Box 2).

Recent work has providedmany important details about
the internal architecture of the kinetochore [64,65]. How-
ever, little work has been performed to determine how the
kinetochore structure changes upon merotelic attachment.
A combination of light and electron microscopy has
revealed dramatic changes in the shape of the merotelic
kinetochore. Microtubules can stretch a merotelic kineto-
chore laterally from its normal width of approximately
0.4 mm to more than 2 mm. Sometimes, the kinetochore
is extended laterally into two domains that remain con-
nected by a thin kinetochore extension [3]. The molecular
identity of these domains is not known. To fully under-
stand how the cell prevents and corrects merotelic attach-
ments, it will be important to determine the molecular
architecture of the merotelic kinetochore. This might allow
the identification of kinetochore proteins whose localiza-
tion patterns are altered upon merotelic attachment,
thereby providing insight into the molecular components
potentially acting as effectors in the biochemical pathway
responsible for correcting merotelic attachments.

Given that relatively subtle changes in kinetochore size
or shape in organisms with localized kinetochores can lead
to increased frequencies of merotelic attachments
[9,10,13,19,23,26,29], it will also be interesting to study
how organisms with holocentric chromosomes, which as-
semble kinetochores along the entire length of each sister
chromatid (e.g. C. elegans), deal with merotelic attach-
ments.

Recent studies showing that merotelic kinetochore ori-
entation is the primary mechanism of CIN in cancer cells
[4–7] have attracted wide attention. Understanding the
mechanism of CIN is important because it can drive tu-
morigenesis through the tumor suppressor gene loss of
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Figure 3. Multipolar spindle geometry promotes merotelic kinetochore attachments. (a) In normal unperturbed mitosis, sister kinetochores are attached amphitelically and

segregate to opposite poles of the bipolar spindle during anaphase. (b) CIN cells with supernumerary centrosomes assemble multipolar spindles, which allows for the

frequent formation of merotelic attachments. This is followed by the clustering of centrosomes into two poles and division in a bipolar fashion. During anaphase,

merotelically attached kinetochores give rise to lagging chromosomes, which might lead to mis-segregation [5,6].
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heterozygosity and can promote tumor relapse [66–68].
Previous models have assumed that the chromosome
mis-segregation phenotype of CIN cells resulted mainly
from a defective SAC [69,70] or multipolar cell division
[71]. However, recent studies have revealed that the SAC
in many CIN cells is normal [7,72,73] and that progeny
from multipolar divisions are usually inviable [5]. A re-
cently proposed model for chromosome mis-segregation in
CIN cells with supernumerary centrosomes suggested that
multipolar spindles are assembled only transiently be-
cause of centrosome clustering before anaphase onset,
and this allows for the frequent formation of merotelic
attachments, but bipolar cell division. This model provides
an elegant explanation for the high rates of lagging chro-
mosomes observed in CIN cells (Figure 3). Although this
mechanism does not rule out other factors contributing to
CIN, it largely explains the chromosome mis-segregation
typical of CIN cells and links it to centrosome amplifica-
tion, another common feature of cancer cells. However, this
model is based on analyses of CIN cell lines. Thus, it will be
important to address whether this model can be extended
to in vivo tumorigenesis models and identify the additional
changes that allow CIN cells to tolerate aneuploidy. Al-
though the relation between aneuploidy and tumorigenesis
remains highly complex and controversial, a mounting
body of evidence suggests that CIN contributes to tumor
initiation and progression [74,75]. In this respect, it is
encouraging that recent work showed that CIN can be
suppressed in tumor cells [4]. It will also be interesting
to further analyze the recently proposed model that mer-
otelic attachments give rise to chromosome breakage at the
centromere, which might activate DNA damage repair
pathways and promote carcinogenesis [76]. However, it
is important to mention that an independent study found
no evidence of DNA damage on lagging chromosomes [77].

Taken together, the work summarized in this review
shows that there are multiple cellular mechanisms for pre-
venting or correcting merotelic kinetochore attachments.
Recent studies have provided important functional insights
into some of thesemechanisms and highlighted the key role
of the Aurora B kinase. Deciphering how cells orchestrate
individual components to efficiently suppress merotelic
attachments and ensure the faithful segregation of chromo-
somes will be an important aim of future studies. Given the
recentdiscoveries showing thatmerotely representsamajor
mechanism of aneuploidy in mitotic cells [3] and is the
primary mechanism of CIN in cancer cells [4–7], it is proba-
ble that this will continue to be an area of intense research.
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