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Abstract

We introduce a parameter space for periodic point sets, given as unions of m translates of point lattices.
In it we investigate the behavior of the sphere packing density function and derive sufficient conditions
for local optimality. Using these criteria we prove that perfect, strongly eutactic lattices cannot be locally
improved to yield a periodic sphere packing with greater density. This applies in particular to the densest
known lattice sphere packings in dimension d � 8 and d = 24.
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1. Introduction

The classical and widely studied sphere packing problem asks for a non-overlapping arrange-
ment of equally sized spheres in a Euclidean space, such that the fraction of space covered
by spheres is maximized. The problem arose from the arithmetical study of positive definite
quadratic forms. By the works Thue [29] and Hales [17] the optimal arrangements of spheres are
known in dimension 2 and 3. We refer to [15,10,21,27] for details and further reading.

E-mail address: a.schurmann@tudelft.nl.
1 The author was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant SCHU 1503/4-2. He thanks

the Hausdorff Research Institute for Mathematics for its hospitality and support.
0001-8708/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.aim.2010.05.002

https://core.ac.uk/display/82182773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A. Schürmann / Advances in Mathematics 225 (2010) 2546–2564 2547
Table 1
Point sets defining best known sphere packings up to dimension 24.

d point set δ/volBd author(s)

2 A2 0.2886 . . . Lagrange, 1773 [19]
3 A3 = D3,∗ 0.1767 . . . Gauß, 1840 [13]
4 D4 0.125 Korkine & Zolotareff, 1877 [18]
5 D5,∗ 0.0883 . . . Korkine & Zolotareff, 1877 [18]
6 E6,∗ 0.0721 . . . Blichfeldt, 1935 [4]
7 E7,∗ 0.0625 Blichfeldt, 1935 [4]
8 E8 0.0625 Blichfeldt, 1935 [4]
9 �9,∗ 0.0441 . . .

10 P10c 0.0390 . . . Leech & Sloane, 1970 [20]
11 P11a 0.0351 . . . Leech & Sloane, 1970 [20]
12 K12 0.0370 . . .

13 P13a 0.0351 . . . Leech & Sloane, 1970 [20]
14 �14,∗ 0.0360 . . .

15 �15,∗ 0.0441 . . .

16 �16,∗ 0.0625
17 �17,∗ 0.0625
18 V18 0.0750 . . . Bierbrauer & Edel, 1998 [3]
19 �19,∗ 0.0883 . . .

20 V20 0.1315 . . . Vardy, 1995 [30]
21 �21,∗ 0.1767 . . .

22 V22 0.3325 . . . Conway & Sloane, 1996 [9]
23 �23 0.5
24 �24 1 Cohn & Kumar, 2004 [7]

In dimensions d � 8 and d = 24 the corresponding authors solved the lattice sphere packing problem. The other men-
tioned authors found the listed, densest known periodic sphere packings. The asterisk ∗ indicates that an equally dense,
periodic non-lattice sphere packing is known.

For reasons related to the historical roots of the sphere packing problem, special attention
has been on (point) lattices as the discrete set of sphere centers. In dimension 2 the hexagonal
lattice and in dimension 3 the face-centered-cubic lattice yield optimal sphere packings. For the
restriction of the sphere packing problem to lattices, the optimal configurations are known up to
dimension 8 and in dimension 24 (see Table 1). Here, solutions are given by fascinating objects,
the so-called root lattices and the Leech lattice. We refer to [10,21,36] for further information on
these exceptional objects.

A major open problem in the theory of sphere packing is to find a dimension in which there
is a non-lattice packing that is denser than any lattice packing. In dimension 10 there exists a
non-lattice sphere packing, that is conjectured to have a higher density than any lattice sphere
packing (see [20]). As shown in Table 1, below dimension 24 similar sphere packings have been
found in dimensions 11, 13, 18, 20 and 22. All of them are periodic, that is, a finite union of
translates of a lattice sphere packing. By a well-known conjecture, attributed by Gruber [16] to
Zassenhaus, optimal sphere packing density can always be attained by periodic sphere packings.
It is known that their density comes arbitrarily close to the optimal value (see for example [6,
Appendix A]).

A natural idea to obtain a better non-lattice sphere packing, is to “locally modify” one of the
optimal known lattice sphere packings in dimensions d = 4, . . . ,8. In this paper we show that
such modifications are not possible within the set of all periodic sphere packings (see Corol-
lary 11). We more generally show in Theorem 10 that such modifications are not possible for
perfect, strongly eutactic lattices.
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One may wonder why the restriction to periodic structures is necessary. One could also con-
sider more general discrete sets. However, within the set of all discrete sets, we are not aware of
any notion of a “local modification” that on the one hand could potentially lead to an improved
sphere packing density, but on the other hand would allow us to generalize the result of this paper.
For instance, a natural approach to define the ε-neighborhood of a discrete set is as the collection
of sets that can be obtained by changing the position of elements by at most an ε distance. How-
ever, such a local modification would not even change the sphere packing density. It is equal to a
constant multiple of the average number of points per unit volume, which could not be changed
in such an ε-neighborhood. In contrast to that, the local changes of periodic sets considered in
this paper allow arbitrarily large displacements of points, if they are far enough from the origin.

The paper is organized as follows. In Section 2 we recall some necessary background on
lattices and positive definite quadratic forms. In Section 3 we introduce the so-called Ryshkov
polyhedron, and based on it we give a geometrical interpretation of Voronoi’s characterization of
locally optimal lattice sphere packings. This viewpoint allows a natural generalization to study
local optimal periodic sphere packings. For their study we introduce a parameter space in Sec-
tion 4. We give characterizations of local optimal periodic sphere packings with up to m lattices
translates in Section 5. Based on these general characterizations we obtain one of the main re-
sults of this paper in Section 6: We show that perfect, strongly eutactic lattices cannot locally be
modified to yield a better periodic sphere packing – they are periodic extreme (see Definition 8).

2. Background on lattices and quadratic forms

Lattices and periodic sets. A (full rank) lattice L in R
d is a discrete subgroup L = Za1 +· · ·+

Zad generated by d linear independent (column) vectors ai ∈ R
d . We say that these vectors form

a basis of L and associate it with the matrix A = (a1, . . . ,ad) ∈ GLd(R). We write L = AZ
d . It

is well known that L is generated in this way precisely by the matrices AU with U ∈ GLd(Z).
We refer to [15] for details and more background on lattices. Given a lattice L and translational
vectors t i , for say i = 1, . . . ,m, the discrete set

� =
m⋃

i=1

(t i + L) (1)

is called a periodic (point) set.
The sphere packing radius λ(�) of a discrete set � (not necessarily periodic) in the Euclidean

space R
d (with norm ‖ · ‖) is defined as the infimum of half the distances between distinct points:

λ(�) = 1

2
inf

x,y∈�,x �=y
‖x − y‖.

The sphere packing radius is the largest possible radius λ such that solid spheres of radius λ

and with centers in � do not overlap. Denoting the solid unit sphere by Bd , the sphere packing
defined by � is the union of non-overlapping spheres

⋃(
x + λ(�)Bd

)
.

x∈�
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Its density δ(�) is, loosely speaking, defined as the fraction of space covered by spheres. We can
make this definition more precise by considering a cube C = {x ∈ R

d : |xi | � 1/2} and setting

δ(�) = λ(�)d volBd · lim inf
λ→∞

card(� ∩ λC)

volλC
.

If the limit inferior above is a true limit, the cube in the definition can be replaced by any other
compact set C that is the closure of its interior, without the value of δ changing. We say that a
corresponding set � is uniformly dense in that case. It can be shown that the supremum of δ(�)

over all discrete sets is attained by a uniformly dense set �. We refer to [14] and [6, Appendix A]
for further reading.

For general discrete sets, it may be difficult to compute the density, respectively the limit
inferior in the definition. For a lattice the limit inferior can simply be replaced by 1/detL, where
detL = |detA| is the determinant of the lattice L = AZ

d . Note that the determinant of L is
independent of the particular choice of the basis A. For periodic sets � as in (1) we get the
estimate

δ(�) � mλ(�)d volBd

detL
,

with equality if and only if the lattice translates t i + L are pairwise disjoint.

Positive definite quadratic forms. Among similarity classes of lattices, hence in the space
Od(R)\GLd(R)/GLd(Z), there exist only finitely many local maxima of δ up to scaling. In
order to characterize and to work with them, i.e., enumerate them, it is convenient to use the
language of real positive definite quadratic forms (PQFs for short). These are simply identified
with the set S d

>0 of real symmetric, positive definite matrices. Given a matrix Q ∈ S d
>0, we set

Q[x] = xtQx for x ∈ R
d , defining a corresponding PQF. Note that every matrix Q ∈ S d

>0 can
be decomposed into Q = AtA with A ∈ GLd(R) and therefore S d

>0 can be identified with the
space Od(R)\GLd(R) of lattice bases up to orthogonal transformations. Two PQFs (respectively
matrices) Q and Q′ are called arithmetically equivalent (or integrally equivalent) if there exists
a matrix U ∈ GLd(Z) with Q′ = UtQU . Thus arithmetical equivalence classes of PQFs are in
one-to-one correspondence with similarity classes of lattices.

The arithmetical minimum λ(Q) of a PQF Q is defined by

λ(Q) = min
x∈Zd\{0}

Q[x].

If L = AZ
d with A ∈ GLd(R) satisfying Q = AtA is a corresponding lattice, there is an imme-

diate relation to the packing radius of L: We have λ(Q) = (2λ(L))2 and therefore

δ(L) = H(Q)d/2 volBd

2d
,

where

H(Q) = λ(Q)

1/d
(detQ)
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is the so-called Hermite invariant of Q. Note that H(·) is invariant with respect to scaling. A clas-
sical problem in the arithmetic theory of quadratic forms is the determination of the Hermite
constant

Hd = sup
Q∈S d

>0

H(Q).

By the relation described above, it corresponds to determining the supremum of possible lattice
sphere packing densities. Local maxima of the Hermite invariant on S d

>0 and corresponding
lattices are called extreme.

3. Voronoi’s characterization of extreme forms

The Ryshkov polyhedron. Since the Hermite invariant is invariant with respect to scaling, a
natural approach to maximizing it is to consider all forms with a fixed arithmetical minimum,
say 1, and minimize the determinant among them. We may even relax the condition on the
arithmetical minimum and only require that it is at least 1. In other words, we have

Hd = 1/ inf
R

(detQ)1/d ,

where

R = {
Q ∈ S d

>0: λ(Q) � 1
}
. (2)

We refer to R as Ryshkov polyhedron, as it was Ryshkov [26] who noticed that this view on
Hermite’s constant allows a simplified description of Voronoi’s theory, to be sketched below.

We denote by S d the space of real symmetric matrices, respectively of real quadratic forms
in d variables. It is a Euclidean vector space of dimension

(
d+1

2

)
with the usual inner product

defined by

〈
Q,Q′〉 = d∑

i,j=1

qij q
′
ij = trace

(
Q · Q′).

Because of the fundamental identity

Q[x] = 〈
Q,xxt

〉
,

quadratic forms Q ∈ S d attaining a fixed value on a given x ∈ R
d \ {0} lie all in a hyperplane

(affine subspace of co-dimension 1). Thus Ryshkov polyhedra R are intersections of infinitely
many halfspaces:

R = {
Q ∈ S d

>0:
〈
Q,xxt

〉
� 1 for all x ∈ Z

d \ {0}}. (3)

It can be shown that R is “locally like a polyhedron”, meaning that any intersection with
a polytope (convex hull of finitely many vertices) is itself a polytope. For a proof we refer to
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[27, Theorem 3.1]. As a consequence R has vertices, edges, facets and in general k-dimensional
faces (k-faces). For details on terminology and basic properties of polytopes we refer to [33].

Perfect forms. The vertices Q of the Ryshkov polyhedron are called perfect forms. Such forms
are characterized by the fact that they are determined uniquely by their arithmetical minimum
(here 1) and its representatives

MinQ = {
x ∈ Z

d : Q[x] = λ(Q)
}
.

A corresponding lattice is called perfect too. The following proposition due to Minkowski implies
that the Hermite constant can only be attained among perfect forms, i.e., the maximal lattice
sphere packing density can only be attained by perfect lattices.

Proposition 1. (See Minkowski [22].) (detQ)1/d is a strictly concave function on S d
>0.

For a proof see for example [15, § 39.2]. Note, that in contrast to (detQ)1/d , the function
detQ is not a concave function on S d

>0 (see [24]). However Minkowski’s theorem implies that
the set

{
Q ∈ S d

>0: detQ � D
}

(4)

is strictly convex for D > 0.
Another property of perfect forms which we use later is the following.

Proposition 2. If Q ∈ S d is perfect, then MinQ spans R
d .

The existence of d linear independent vectors in MinQ for a perfect form Q follows from
the observation that the rank-1 forms xxt with x ∈ MinQ have to span S d , since they uniquely
determine Q through the linear equations 〈Q,xxt 〉 = λ(Q). If however MinQ does not span R

d

then these rank-1 forms can maximally span a
(
d
2

)
-dimensional subspace of S d .

Finiteness up to equivalence. The arithmetical equivalence operation Q �→ UtQU of GLd(Z)

on S d
>0 leaves λ(Q), MinQ and also R invariant. In fact, GLd(Z) acts on the sets of faces of a

given dimension, thus in particular on the sets of vertices, edges and facets of R. The follow-
ing theorem shows that the Ryshkov polyhedron R contains only finitely many arithmetically
inequivalent vertices. By Proposition 1 this implies in particular that Hd is actually attained,
namely by some perfect forms. For a proof we refer to [27, Theorem 3.4].

Theorem 3 (Voronoi [32]). Up to arithmetical equivalence and scaling there exist only finitely
many perfect forms in a given dimension d � 1.

Thus the classification of perfect forms in a given dimension, respectively the enumeration of
vertices of the Ryshkov polyhedron up to arithmetical equivalence, yields the Hermite constant.
Perfect forms have been classified up to dimension 8 (see [11]).

Characterization of extreme forms. From dimension 6 onwards not every perfect form is ex-
treme (see [21]). In order to characterize extreme forms within the set of perfect forms the notion
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of eutaxy is used: A PQF Q is called eutactic if its inverse Q−1 is contained in the (relative)
interior relint V (Q) of its Voronoi domain

V (Q) = cone
{
xxt : x ∈ MinQ

}
.

Here coneM denotes the conic hull{
n∑

i=1

αixi : n ∈ N and xi ∈ M,αi � 0 for i = 1, . . . , n

}

of a set M . Note that the Voronoi domain is full-dimensional (of dimension
(
d+1

2

)
) if and only

if Q is perfect. Note also that the rank-1 forms xxt give inequalities 〈Q,xxt 〉 � 1 defining the
Ryshkov polyhedron and by this the Voronoi domain of Q is equal to the normal cone

{
N ∈ S d :

〈
N,Q/λ(Q)

〉
�

〈
N,Q′〉 for all Q′ ∈ R

}
(5)

of R at its boundary point Q/λ(Q).
Algebraically the eutaxy condition Q−1 ∈ relint V (Q) is equivalent to the existence of positive

αx with

Q−1 =
∑

x∈MinQ

αxxxt . (6)

Thus computationally eutaxy of Q can be tested by solving the linear program

maxαmin such that αx � αmin and (6) holds. (7)

The form Q is eutactic if and only if the maximum is greater 0.
Voronoi [32] showed that perfection together with eutaxy implies extremality and vice versa:

Theorem 4 (Voronoi [32]). A PQF Q ∈ S d
>0 is extreme if and only if Q is perfect and eutactic.

We here give a proof providing a geometrical viewpoint that turns out to be quite useful for
the intended generalization discussed in the following sections.

Proof. The function detQ is a positive real valued polynomial on S d , depending on the
(
d+1

2

)
different coefficients qij of Q. Using the expansion theorem we obtain

detQ =
d∑

i=1

q#
jiqij

for any fixed column index j ∈ {1, . . . , d}. Here, q#
ij = (−1)i+j detQij (with Qij the minor

matrix of Q, obtained by removing row i and column j ) denote the coefficients of the adjoint
form Q# = (detQ)Q−1 ∈ S d

>0 of Q. Thus

grad detQ = (detQ)Q−1 (8)
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and the tangent hyperplane T in Q of the smooth determinant-detQ-surface

S = {
Q′ ∈ S d

>0: detQ′ = detQ
}

is given by

T = {
Q′ ∈ S d :

〈
Q−1,Q′〉 = 〈

Q−1,Q
〉}

.

Or in other words, Q−1 is a normal vector of the tangent plane T of S at Q. By Proposition 1
and the observation that (4) is convex, we know that S is contained in the halfspace

{
Q′ ∈ S d :

〈
Q−1,Q′ − Q

〉
� 0

}
, (9)

with Q being the unique intersection point of S and T .
As a consequence, a perfect form Q attains a local minimum of detQ (hence is extreme) if

and only if the halfspace (9) contains the Ryshkov polyhedron R, and its boundary meets R only
in Q. This is easily seen to be equivalent to the condition that the normal cone (Voronoi domain)
V (Q) of R at Q contains Q−1 in its interior. �

Note that eutaxy alone does not suffice for extremality. However, there exist only finitely
many eutactic forms in every dimension and they can (in principle) be enumerated too (see [21,
Section 9.5]). Nevertheless, this seems computationally more difficult than the enumeration of
perfect forms (see [28,5,1,12]). By the geometry of S and T a eutactic form attains always a
unique minimum of δ (maximum of det) on its face of the Ryshkov polyhedron. However, not
all faces of the Ryshkov polyhedron contain a eutactic form.

4. Parameter spaces for periodic sets

We want to study the more general situation of periodic sphere packings. Recall from (1) that
a periodic set with m lattice translates (an m-periodic set) in R

d is of the form

�′ =
m⋃

i=1

(
t ′
i + L

)
, (10)

with a lattice L ⊂ R
d and translation vectors t ′

i ∈ R
d , i = 1, . . . ,m.

We want to work with a parameter space for m-periodic sets similar to S d
>0 for lattices. For

this, we consider �′ as a linear image �′ = A�t of a standard periodic set

�t =
m⋃

i=1

(
t i + Z

d
)
. (11)

Here, A ∈ GLd(R) satisfies in particular L = AZ
d . Since we are only interested in properties of

periodic sets up to isometries, we encode �′ by Q = AtA ∈ S d
>0, together with the m translation

vectors t1, . . . , tm. Since every property of periodic sets we deal with here is invariant up to trans-
lations, we may assume without loss of generality that tm = 0. Thus we consider the parameter
space
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S d,m
>0 = S d

>0 × R
d×(m−1) (12)

for m-periodic sets (up to isometries). We hereby in particular generalize the space S d,1
>0 = S d

>0

in a natural way. We call the elements of S d,m
>0 periodic forms and denote them usually by X =

(Q, t), where Q ∈ S d
>0 and

t = (t1, . . . , tm−1) ∈ R
d×(m−1)

is a real valued matrix containing m−1 columns with vectors t i ∈ R
d . One should keep in mind:

although we omit tm = 0, we implicitly keep it as a translation vector. Note that a periodic set
�′ as in (10) has many representations by periodic forms. In particular, m may vary and we have
different choices for A. A similar approach for periodic sets in dimension 3 has been considered
in [25].

The parameter space S d,m
>0 is contained in the space

S d,m = S d × R
d×(m−1). (13)

It can be turned into a Euclidean space with inner product 〈·,·〉, defined for X = (Q, t) and
X′ = (Q′, t ′) by

〈
X,X′〉 = 〈

Q,Q′〉 + m−1∑
i=1

t t
i t

′
i .

Note, for the sake of simplicity we use the same symbol for the inner products on all spaces
S d,m.

We extend the definition of the arithmetical minimum λ, by defining the generalized arith-
metical minimum

λ(X) = min
{
Q[t i − tj − v]: 1 � i, j � m and v ∈ Z

d, with v �= 0 if i = j
}

for the periodic form X = (Q, t) ∈ S d,m
>0 . Note that we have λ(X) = 0 in the case of intersect-

ing lattice translates (t i + Z
d) ∩ (tj + Z

d) �= ∅ with i �= j . The set of representations of the
generalized arithmetical minimum MinX is the set of all w = t i − tj − v attaining λ(X). Com-
putationally, MinX and λ(X) can be obtained by solving a sequence of closest vector problems
(CVPs), one for each pair i, j with i �= j . In addition one shortest vector problem (SVP) has to
be solved, taking care of the cases where i = j . Implementations of algorithms solving CVPs
and SVPs are provided for example in MAGMA [35] or GAP [34].

In order to define the sphere packing density function δ : S d,m
>0 → R we set detX = detQ for

periodic forms X = (Q, t). Then

δ(X) =
(

λ(X)

(detX)1/d

) d
2

mvolBd/2d . (14)

In analogy to the lattice case, we call a periodic form X ∈ S d,m
>0 m-extreme if it attains a local

maximum of δ within S d,m.
>0
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The relation (14) shows that the supremum of δ among m-periodic sphere packings is up to
some power and a constant factor equal to the “Hermite like constant”

sup
X∈S d,m

>0

λ(X)/(detX)1/d = 1/ inf
X∈Rm

(detX)1/d ,

where the set Rm on the right side is the (generalized) Ryshkov set

Rm = {
X ∈ S d,m

>0 : λ(X) � 1
}
. (15)

The condition λ(X) � 1 gives infinitely many linear inequalities

pv(X) = Q[v] = 〈
X,

(
vvt ,0

)〉
� 1

for v ∈ Z
d \ {0}, as in the case m = 1. For m > 1 we additionally have the infinitely many

polynomial inequalities

pi,j,v(X) = Q[t i − tj − v] � 1, (16)

where i, j ∈ {1, . . . ,m} with i �= j and v ∈ Z
d . These polynomials are of degree 3 in the

parameters qkl , tkl of X. Note that they are linear for a fixed t . Observe also that pi,m,v and
pm,j,v are special due to our assumption tm = 0 and that there is a symmetry pi,j,v = pj,i,−v

by which we may restrict our attention to polynomials with i � j . For i = j we have the linear
function pi,j,v = pv .

5. Local analysis of periodic sphere packings

Characterizing local optima. Before we generalize perfection and eutaxy to a notion of m-
perfection and m-eutaxy (in order to obtain a sufficient condition for a periodic form to be m-
extreme from it) we discuss a rather general setting: Assume we want to minimize a smooth
function on a basic closed semialgebraic set, that is, on a region which is described by finitely
many (non-strict) polynomial inequalities. Let E denote a Euclidean space with inner product
〈·,·〉. Further, let f : E → R be smooth (infinitely differentiable) and g1, . . . , gk be (real valued)
polynomials on E. Assume we want to determine whether or not we have a local minimum of f

at X0 on the boundary of

G = {
X ∈ E: gi(X) � 0 for i = 1, . . . , k

}
. (17)

For simplicity, we further assume (gradf )(X0) �= 0 and gi(X0) = 0, as well as
(gradgi)(X0) �= 0, for i = 1, . . . , k. Then, in a sufficiently small neighborhood of X0, the func-
tion f as well as the polynomials gi can be approximated arbitrarily close by corresponding
affine functions. For example, f is approximated by the beginning of its Taylor series

f (X0) + 〈
(gradf )(X0),X − X0

〉
.
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From this one easily derives the following well-known criterion (see for example [2, Theo-
rem 4.2.2]) for an isolated local minimum of f at X0, depending on the normal cone

V (X0) = cone
{
(gradgi)(X0): i = 1, . . . , k

}
.

The function f attains an isolated local minimum on G if

(gradf )(X0) ∈ int V (X0), (18)

and f does not attain a local minimum if

(gradf )(X0) /∈ V (X0). (19)

The behavior in the case (gradf )(X0) ∈ bd cone V (X0) depends on the involved functions f and
gi and has to be treated depending on the specific problem.

For the lattice sphere packing problem we have E = S d and f = det1/d . For Q0 ∈ S d
>0 we set

gi(Q) = Q[vi] − λ(Q0) with (gradgi)(Q) = viv
t
i for each pair ±vi in MinQ0. By Theorem 4

we have a local minimum of f (Q) = (detQ)1/d at Q0 on G (as in (17)) if and only if Q0 is
perfect and eutactic, respectively if V (Q0) is full-dimensional and (gradf )(Q0) ∈ int V (Q0).
Here, (gradf )(Q0) is a positive multiple of Q−1

0 . Thus in this special case (due to Proposition 1)
we do not have a local minimum of f where (gradf )(Q0) ∈ bd cone V (Q0).

Let us consider the case of m-periodic sets, hence of E = S d,m with m > 1. We want to
know if a periodic form X0 ∈ S d,m

>0 attains a local minimum of f = det1/d . We may assume
λ(X0) > 0. The set MinX0 is finite and moreover, for X = (Q, t) in a small neighborhood of
X0 = (Q0, t

0), every t i − tj − v ∈ MinX corresponds to a t0
i − t0

j − v ∈ MinX0. Thus locally
at X0, the generalized Ryshkov set Rm is given by the basic closed semialgebraic set G defined
by the inequalities pi,j,v(X) − λ(X0) � 0, one for each pair ±(t0

i − t0
j − v) in MinX0. As

explained in Section 4, we may assume 1 � i � j � m and t0
j = 0 if j = m. An elementary

calculation yields

(gradpi,j,v)(X) = (
wwt ,0, . . . ,0,2Qw,0, . . . ,0,−2Qw,0, . . . ,0

)
, (20)

where we set X = (Q, t) and use w to abbreviate t i − tj − v. This is to be understood as a
vector in S d,m = S d × R

d×(m−1), with its “S d -component” being the rank-1 form wwt and
its “translational-component” containing the zero-vector 0 in all but the ith and j th column. If
j = m, the j th column is omitted and if i = j the corresponding column is 0. For (gradf )(X)

we obtain a positive multiple of (Q−1,0).

A sufficient condition for local m-periodic sphere packing optima. Generalizing the notion
of perfection, we say a periodic form X = (Q, t) ∈ S d,m

>0 (and a corresponding periodic set rep-
resented by X) is m-perfect if the generalized Voronoi domain

V (X) = cone
{
(gradpi,j,v)(X): t i − tj − v ∈ MinX for some v ∈ Z

d
}

(21)
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is full-dimensional, that is, if dim V (X) = dim S d,m = (
d+1

2

)+ (m−1)d . Generalizing the notion
of eutaxy, we say that X (and a corresponding periodic set) is m-eutactic if

(
Q−1,0

) ∈ relint V (X).

So the general discussion at the beginning of this section yields the following sufficient condition
for a periodic form X to be isolated m-extreme, that is, for X having the property that any
sufficiently small change which preserves λ(X), necessarily lowers δ(X).

Theorem 5. If a periodic form X ∈ S d,m
>0 is m-perfect and m-eutactic, then X is isolated m-

extreme.

Note that the theorem gives a computational tool to certify isolated m-extremeness of a given
periodic form X = (Q, t) ∈ S d,m

>0 : First, we compute MinX and use Eq. (20) to obtain generators
of the generalized Voronoi domain V (X). From the generators it can be easily checked if the
domain is full-dimensional, hence if X is m-perfect. Next, we can computationally test whether
(Q−1,0) is in V (X) or not; for example by solving a linear program similar to (7).

If we find (Q−1,0) ∈ relint V (X) (or equivalently in int V (X) as V (X) is assumed to be full-
dimensional), the periodic form X represents an isolated m-extreme periodic set. If (Q−1,0) /∈
V (X), the periodic form X does not represent an m-extreme periodic set. In this situation, we
can even find a “direction” N ∈ S d,m, for which we can improve the sphere packing density of
the periodic form X, that is, such that δ(X + εN) > δ(X) for all sufficiently small ε > 0.

Remark 6. Let X ∈ S d,m
>0 with (Q−1,0) /∈ V (X). Then we can improve the sphere packing

density of X in direction N given by the nearest point to −(Q−1,0) in the polyhedral cone

P (X) = {
N ∈ S d,m: 〈V,N〉 � 0 for all V ∈ V (X)

}
. (22)

Note that the cone P (X) is dual to the generalized Voronoi domain V (X) and (added to X)
gives locally a linear approximation of the generalized Ryshkov set Rm.

Fluid diamond packings. For general m we are confronted with a difficulty which does not
show up in the lattice case m = 1: There may be non-isolated m-extreme sets, which are not
m-perfect. The fluid diamond packings in dimension 9, described by Conway and Sloane in [8],
give such an example.

Example. The root lattice Dd can be defined by

Dd =
{

x ∈ Z
d :

d∑
i=1

xi ≡ 0 mod 2

}
.

The fluid diamond packings are 2-periodic sets

D9〈t〉 = D9 ∪ (D9 + t)
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with t ∈ R
9 such that the minimal distance among elements is equal to the minimum distance

√
2

of D9 itself. We may choose for example t = tα = ( 1
2 , . . . , 1

2 , α)t with any α ∈ R. For integers α

we obtain the densest known packing lattice �9 = D9〈tα〉 in dimension 9, showing that it is part
of a family of uncountably many equally dense 2-periodic sets.

The sets D9〈tα〉 give examples of non-isolated 2-extreme sets, which are 2-eutactic, but not
2-perfect. In order to see this, let us consider a representation Xα ∈ S 9,2

>0 for D9〈tα〉. We choose
a basis A of D9. Then Xα = (Q,A−1tα), with Q = AtA, is a representation of D9〈tα〉.

For non-integral α we find MinXα = MinQ (using MAGMA for example). It follows (for
example by Lemma 9 below) that Xα is 2-eutactic, but not 2-perfect. For integral α we find

MinXα = MinQ ∪
{

(x1, . . . , x8,0)t ∈ {0,1}9:
8∑

i=1

xi ≡ 0 mod 2

}
.

Thus the vectors in MinXα \ MinQ span only an 8-dimensional space. Therefore Xα is not 2-
perfect. Nevertheless, a corresponding calculation shows that Xα is 2-eutactic, as in the case of
non-integral α.

In order to see that Xα is non-isolated 2-extreme, we can apply Proposition 7 below. One
easily checks that for integral α (hence for the lattice �9) we have only one degree of freedom
for a local change of tα giving an equally dense sphere packing. For non-integral α we have nine
degrees of freedom for such a modification.

Non-isolated m-extreme sets as in this example can occur for periodic forms X ∈ S d,m
>0 , only if

(Q−1,0) ∈ bd V (X) (which is for example always the case if X is m-eutactic, but not m-perfect).
In this case it is in general not clear what an infinitesimal change of X in a direction N ∈ S d,m

leads to (already assuming it is orthogonal to (Q−1,0) as well as in the boundary of the set P (X)

in (22)). If F (X) denotes the unique face of V (X) containing (Q−1,0) in its relative interior, then
this “set of uncertainty” is equal to the face of P (X) dual to F (X), that is, equal to

U (X) = {
N ∈ P (X): 〈V,N〉 = 0 for all V ∈ F (X)

}
. (23)

Or in other words, the set U (X) is the intersection of P (X) with the hyperplane orthogonal to
(Q−1,0). Note that it is possible to determine F (X) (and hence a description of U (X) by linear
inequalities) computationally, using linear programming techniques.

Purely translational changes. Below we give an additional sufficient condition for m-
extremeness. For this we consider the case when all directions in U (X) are “purely translational
changes” N = (0, tN) ∈ S d,m. A vivid interpretation of a purely translational change can be
given by thinking of the corresponding modification of a periodic sphere packing. The spheres of
each lattice translate are jointly moved. If in such a local change all contacts among spheres are
lost, we can increase their radius and obtain a new sphere packing with larger density. If some
contacts among spheres are preserved however, the sphere packing density remains the same.
The latter case is captured in the following proposition, which gives an easily testable criterion
for m-extremeness. We apply this proposition in Section 6, where we consider potential local
improvements of best known packing lattices to periodic non-lattice sets.
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Proposition 7. For a periodic form X = (Q, t) ∈ S d,m
>0 with (Q−1,0) ∈ bd V (X), let U (X) be

contained in

{(
0, tN

) ∈ S d,m: tN
i = tNj for at least one t i − tj − v ∈ MinX with v ∈ Z

d
}
.

Then X is (possibly non-isolated) m-extreme.

Note, if X is m-eutactic (possibly not m-perfect), the set U (X) is the orthogonal complement
V (X)⊥ of the linear hull of V (X). Note also that Proposition 7 includes in particular the special
case where some v ∈ Z

d are in MinX (and therefore t i = tj = 0 for i = j = m). This situation
occurs for the 2-periodic, fluid diamond packings in the example above.

From the sphere packing interpretation of the proposition its assertion is clear. Nevertheless,
we give a proof below, based on a local analysis in S d,m

>0 . More than actually needed for the

proof, we analyze how δ changes locally at a periodic form X ∈ S d,m
>0 in a direction N ∈ U (X).

As a byproduct, we obtain tools allowing a computational analysis of possible local optimality
for a given periodic form (not necessarily covered by the proposition). These can for example be
used in a numerical search for good periodic sphere packings.

Proof of Proposition 7. The generalized Voronoi domain V (X) is spanned by gradients
(gradpi,j,v)(X) (as given in (20)), one for each pair of vectors ±w ∈ MinX. The assumption that
a direction N = (QN, tN) is in U (X) for a periodic form X = (Q, t), implies 〈Q−1,QN 〉 = 0.
Moreover, for the unique maximal face F (X) of V (X) with (Q−1,0) ∈ relint F (X), the condi-
tion that N is orthogonal to some (gradpi,j,v)(X) in F (X) translates into

〈
(gradpi,j,v)(X),N

〉 = QN [w] + 2
(
tN
i − tN

j

)t
Qw = 0, (24)

with w = (t i − tj − v). Recall that in the special case i = j (and for m = 1 anyway) pi,j,v is
linear and (24) reduces to the condition QN [w] = 0; if then N satisfies this linear condition,
pi,j,v(X + εN) is a constant function in ε.

When pi,j,v(X + εN) is a cubic polynomial in ε we need to use higher order information in
order to judge its behavior. An elementary calculation yields for the Hessian

(hesspi,j,v)(X)[N ] = 2Q
[
tN
i − tN

j

] + 4
(
tN
i − tN

j

)t
QNw. (25)

Now how does δ change at X in direction N , assuming it is in the set of uncertainty U (X)?
Among the polynomials pi,j,v with N satisfying (24), the fastest decreasing polynomial in direc-
tion N determines λ(X + εN) for small enough ε. Thus for the local change of δ in direction N ,
we may restrict our attention to a polynomial pi,j,v with the smallest value (25) of its Hessian.

By Proposition 1 we know that det1/d decreases strictly at X in a direction N ∈ U (X) if and
only if QN �= 0.

For a purely translational change with QN = 0, the function det1/d remains constant. On the
other hand, because of (25) and since Q is positive definite, we have (hesspi,j,v)(X)[N ] � 0,
with equality if and only if tN

i − tN
j = 0. The latter implies that pi,j,v(X + εN) is a constant

function of ε. Thus for purely translational changes N = (0, tN) ∈ U (X), the density function
δ(X + εN) is constant for small enough ε � 0, if tN

i = tN
j for some pair (i, j) with t i − tj − v ∈

MinX (for a suitable v ∈ Z
d ). This proves the proposition. �
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Note that our argumentation in the proof also shows that δ(X+ εN) increases for small ε > 0,
for a purely translational change N = (0, tN) ∈ U (X) with tN

i �= tN
j for all pairs (i, j) with

t i − tj − v ∈ MinX (for some v ∈ Z
d ). This case corresponds to a modification of a periodic

sphere packing in which all contacts among spheres are lost.

6. Periodic extreme sets

A given periodic set has many representations by periodic forms, in spaces S d,m
>0 with vary-

ing m. For example, by choosing some sublattice of Z
d , we can add additional translational

parts.
It could happen that a periodic set � with a given representation X ∈ S d,m

>0 is m-extreme,

whereas a second representation X′ ∈ S d,m′
is not m′-extreme. We are not aware of an example

though. However, in some cases we are certain that the packing density of no representation of �

can locally be improved.

Definition 8. A periodic set is periodic extreme if it is m-extreme for all possible representations
X ∈ S d,m

>0 .

Theorem 10 below gives a sufficient condition for a lattice to be periodic extreme. For its
statement we need the notion of strong eutaxy for lattices, respectively PQFs: A form Q ∈ S d

>0
(and a corresponding lattice) is called strongly eutactic if

Q−1 = α
∑

x∈MinQ

xxt (26)

for some α > 0, i.e., if the coefficients in the eutaxy condition (6) are all equal. It is well known
that a PQF Q is strongly eutactic if and only if the vectors in MinQ form a so-called spherical
2-design with respect to Q (see [31], [21, Corollary 16.1.3]).

Lemma 9. Any representation X ∈ S d,m
>0 of a strongly eutactic lattice (respectively PQF) is m-

eutactic.

Proof. Let Q ∈ S d
>0 be strongly eutactic, satisfying (26) for some α > 0. Let X = (QX, tX) ∈

S d,m
>0 be some representation of Q, e.g. with m > 1. Let the corresponding eutactic lattice be

denoted by �. Then QX is the Gram matrix of a basis A ∈ GLd(R) of a sublattice L of �. The
columns of tX are the coordinates of lattice points of � relative to A.

For a fixed w ∈ MinX we define an abstract graph, whose vertices are the indices in
{1, . . . ,m}. Two vertices i and j are connected by an edge whenever there is some v ∈ Z

d such
that w = tXi − tXj −v. In other words, the graph reflects via an edge (i, j) that spheres of packing

radius λ(�) around points of the two sublattice translates A(tX
i + Zd) and A(tX

j + Zd) touch.

For z ∈ Zd , the sphere with center A(tX
j + z) touches the sphere with center A(tX

j + z + w).
Since the periodic form X represents a lattice �, we find a chain of touching spheres at cen-
ters A(tX

j + z + kw), with k = 0,1, . . . . Modulo some natural number less or equal to m these
centers belong to the same lattice translate of L. As a consequence, we find that the graph defined
above is a disjoint union of cycles. So w induces a partition (I1, . . . , Ik) of {1, . . . ,m}.
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Let I be an index set of this partition (containing the indices of a fixed cycle of the defined
graph). Summing over all triples (i, j,v) with i, j ∈ I and v ∈ Z

d such that w = tX
i − tX

j − v ∈
MinX, we find (using (20)):

∑
(i,j,v)∈I 2×Z

d

with v=tXi −tXj −w

(gradpi,j,v)(X) = 2|I |(wwt ,0
)
.

The factor 2 comes from the symmetry gradpi,j,v = gradpj,i,−v . Summation over all index sets
I of the partition yields

∑
(i,j,v)∈{1,...,m}2×Z

d

with v=tXi −tXj −w

(gradpi,j,v)(X) = 2m
(
wwt ,0

)
. (27)

As a consequence we find by the strong eutaxy condition (26) that

(
Q−1,0

) = (α/2m)
∑

w∈MinX,(i,j,v)∈{1,...,m}2×Z
d

with v=tXi −tXj −w

(gradpi,j,v)(X),

with a suitable α > 0. Thus X is m-eutactic. �
Not all PQFs (or lattices) which are strongly eutactic have to be perfect. For example the

lattices Z
n for n � 2 are of this kind. But if a strongly eutactic PQF is in addition also perfect,

then the following theorem shows that this is sufficient for it to be periodic extreme. Note that
this applies in particular to so called strongly perfect lattices and PQFs. For these lattices the
vectors in MinQ form a spherical 4-design with respect to Q (see [23] or [21, Chapter 16] for
further details).

Theorem 10. Perfect, strongly eutactic lattices (respectively PQFs) are periodic extreme.

Proof. Let Q ∈ S d
>0 be perfect and strongly eutactic. Hence the vectors in MinQ span R

d (by

Proposition 2) and satisfy (26) for some α > 0. Let X = (QX, tX) ∈ S d,m
>0 be a representation

of Q. By Lemma 9, X is m-eutactic. If X is m-perfect as well, we know by Theorem 5 that X is
also m-extreme.

So let us assume that X is not m-perfect; hence the generalized Voronoi domain V (X) is not
full-dimensional. We want to apply Proposition 7. For this we choose

N = (
QN, tN

) ∈ U (X) = V (X)⊥ with N �= 0.

(Recall the definition of U (X) from (23) and that U (X) = V (X)⊥ if X is m-eutactic.) By this
assumption we have in particular

〈
N, (gradpi,j,v)(X)

〉 = 0
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for all triples (i, j,v) with w = tX
i − tX

j − v ∈ MinX. Using Eq. (27), which we obtained in the

proof of Lemma 9, we get 〈N, (wwt ,0)〉 = QN [w] = 0 for every fixed w ∈ MinX.
By Proposition 2 there exist d linearly independent w in MinX, which implies QN = 0. Using

(24), we obtain

0 = 〈
N, (gradpi,j,v)(X)

〉 = 2
(
tN
i − tN

j

)t
Qw. (28)

If tN
i − tN

j = 0 for some pair (i, j) we can apply Proposition 7. Note that this includes in partic-

ular the case i = j = m (tN
i = tN

j = 0) if v ∈ Z
d ∩ MinX. So we may assume that such v do not

exist.
We choose d linearly independent vectors w1, . . . ,wd ∈ MinX (that exist by Proposition 2).

By the assumption that non of the wi is integral and by the assumption that X represents a lattice,
each wi connects the origin tX

m = 0 to another translation vector tX
j (with j �= m) via wi = tX

j −v

for some v ∈ Z
d . In the same way each of the chosen minimal vectors connects the translation

vector with index i to other translation vectors. We denote by I the subset of {1, . . . ,m} that is
connected to the index m (respectively to the origin 0) via a sequence of such links through the
chosen d minimal vectors. For each index i ∈ I we get from the minimal vectors d independent
linear conditions (28) for the differences tN

i − tN
j , with suitable j ∈ I \ {i}. Overall we obtain

d|I | independent equations for d|I | differences. We deduce that all of them vanish. Moreover, as
tN
m = 0 we even find tN

i = 0 for all indices i ∈ I . �
The root lattices Ad , Dd and Ed , as well as the Leech lattice are known to be perfect and

strongly eutactic (cf. [21]). These lattices are known to solve the lattice sphere packing problem
in dimensions d � 8 and d = 24 (see Table 1). As an immediate consequence of Theorem 10, we
find that they cannot locally be improved to a periodic non-lattice set with greater sphere packing
density.

Corollary 11. The lattices Ad , for d � 2, Dd , for d � 3, and Ed , for d = 6,7,8, as well as the
Leech lattice are periodic extreme.

We also checked whether or not Theorem 10 can be applied to other dimensions d � 24. For
these dimensions the so-called laminated lattices �d and sections Kd of the Leech lattice give
the densest known lattice sphere packings. The lattices Kd are different from �d (and at the
same time give the densest known lattice sphere packings) only in dimensions d = 11,12,13.
For these d , the lattice Kd is strongly eutactic only for d = 12, when Kd is also known as
Coxeter–Todd lattice. The laminated lattices �d give the densest known packing lattices in di-
mensions d = 9,10 and d = 14, . . . ,24 (for d = 18, . . . ,24 they coincide with Kd ). Among
those values for d , the laminated lattices �d are strongly eutactic if and only if d = 15,16
or d � 20. Concluding, we cannot exclude that densest known lattice sphere packings in di-
mensions d ∈ {9,10,11,13,14,17,18,19} can locally be improved to better periodic sphere
packings. Further analysis is required here.

7. Floating and strict periodic extreme lattices

The last step of the proof of Theorem 10 has a vivid interpretation if we think of a sphere
packing described by the given lattice. Let X = (QX, tX) be one of its representations and let A
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denote a sublattice basis with Gram matrix QX . Then the sublattice translates A(tX
i + Zd) with

i ∈ I form a “rigid component” of the sphere packing. If we do not want to decrease the sphere
packing density in a local deformation we have to move all of its translates simultaneously. This
rigid component may actually be larger than the one used in the proof of Theorem 10. It may
even consist of the whole packing. A maximal rigid component of translates can be described
via an abstract graph with vertices in {1, . . . ,m}: (i, j) is an edge whenever there is some v ∈ Z

d

such that tX
i − tX

j − v ∈ MinX. Let I be the set of indices i (vertices of the graph) connected by
a path with m. If |I | = m the whole packing forms one rigid component. If I is a strict subset of
{1, . . . ,m} we say a corresponding packing or lattice is floating.

In a floating packing each connected component of the graph above corresponds to a union
of translates which can jointly locally be moved without changing λ(X) and δ(X) respectively.
Examples are the fluid diamond packings described in the example of Section 5. The same applies
to their higher-dimensional generalizations D+

d = Dd ∪ (Dd + ( 1
2 , . . . , 1

2 )) for d � 10 (see [10,
Section 4.7.3]). For even d these 2-periodic sets are actually lattices (hence 1-periodic). In fact
E8 = D+

8 .
We note that Theorem 10 and Corollary 11 give statements about local optimality of lattices,

but not about strict local optimality. With the assumptions of Theorem 10 alone strict local opti-
mality cannot be ensured, as shown by floating lattices like D+

d for even d � 10. These lattices
have the same minimal vectors as the corresponding root lattice Dd and therefore they give a se-
ries of perfect and strongly eutactic lattices that are periodic extreme by Theorem 10. However,
they can locally be modified to other 2-periodic sets of the same density.

We think that a strengthening of Corollary 11 is possible for certain lattices that are non-
floating, perfect and strongly eutactic. These include in particular the E8 root lattice and the Leech
lattice. We think it is possible to show that these lattices are strict periodic extreme, meaning they
are isolated m-extreme for all possible representations X ∈ S d,m

>0 . By Lemma 9 and Theorem 5
one has to show that a given non-floating, perfect and strongly eutactic lattice is m-perfect for
every m. Here some further work is required. . . .
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