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Abstract

We establish in this paper a theorem for the volume of the largest parallelotope contained in a
given simplex. Applying this theorem, we prove some inequalities for unions of parallelotopes in
a given simplex and some spanning theorems for inscribed simplices. c© 2000 Elsevier Science
B.V. All rights reserved.
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0. Introduction

Relative to a given n-polytope P in Rn, an n-simplex 
 in P is largest if it has
maximum volume among all n-simplices contained in P. It is interesting to �nd a
largest simplex contained in a given polytope. Of equal interest, and perhaps of even
greater algorithmic di�culty, is the problem of �nding a smallest n-simplex containing a
given n-polytope. Quite recently, the researches for these two problems have been done
extensively [2–6,8,10]. In [5], Klee has established the following interesting theorem.

Theorem 1. If 
 is a smallest simplex containing a given polytope P; then the cen-
troid of each facet of 
 belongs to P.

Relative to a given n-simplex 
, an n-parallelotope � is largest if it has maximum
volume among all n-parallelotopes contained in 
. Applying Theorem 1, we in this
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paper establish a formula for the volume of the largest n-parallelotope contained in
a given n-simplex. We apply this result to obtain some inequalities concerning the
parallelotope-stack in a given simplex.
The other main purpose of this paper is to show that the paralleotopes which are

spanned by some special simplices inscribed in a given simplex 
 are also contained
in 
. As applications, two well-known inequalities are derived.
We use the following notation throughout this paper. The sets of points with which

we deal will be subsets of real n-dimensional Euclidean space, Rn. A set is called
n-dimensional if it is a subset of Rn and not a subset of any hyperplane in Rn. We
denote by V (K) the n-dimensional volume of set K if it is n-dimensional and by S(Q)
the (n− 1)-dimensional volume of set Q if it is a facet of K . Denote by conv(K) the
convex hull of K . Let 
 = 〈A0; A1; : : : ; An〉 denote the n-simplex in Rn with vertices
A0; A1; : : : ; An.

1. A formula for the volume of the largest parallelotopes

Theorem 2. Suppose that � is an n-parallelotope contained in a given n-simplex 
;
then

max

⊃�

V (�) =
n!
nn
V (
): (1.1)

(After our paper was �nished, we learned that formula (1.1) has been got by Lassak
[7]. We found the result independently and our line of argument leads to extensions
not covered in his paper.)
It is clear that Theorem 2 can be replaced equivalently by the following statement.

Theorem 2′. Suppose that 
 is an n-simplex containing a given n-parallelotope �;
then

min

⊃�

V (
) =
nn

n!
V (�): (1.2)

Proof. We prove (1.2) by induction on n.
In the case of n=2 (1.2) is a well-known result (see [9, Section XIV. 25]). Let us

assume that (1.2) holds in Rn−1 and prove that (1.2) is true in Rn.
By an a�ne transformation we may assume that � is an n-cube with volume an. Also

we may assume that 
 lies in a ball, concentric with � of radius nna, since otherwise

 has a vertex Aj outside this ball, and the convex hull of {Aj} ∪ �, a subset of

, already has volume greater than (nn=n!)an. By compactness the continuous function
V (·), de�ned on the set of such simplex 
 containing �, attains its in�mum. Thus we
may assume that V (
) is minimal, so that in particular

V (
)6
nn

n!
an: (1.3)
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Let Gi be the centroid of facet 
[i]=〈A0; : : : ; Ai−1; Ai+1; : : : ; An〉 of 
 (i=0; 1; : : : ; n); 
∗

denotes a simplex with vertex set {G0; G1; : : : ; Gn}, i.e. 
∗= 〈G0; G1; : : : ; Gn〉. Then the
facets 
∗[i] of 
∗ are parallel to the facets 
[i] of 
 and we have

V (
∗) =
1
nn
V (
)6

1
n!
an: (1.4)

By Theorem 1, all n+ 1 vertices of 
∗ belong to the cube �.
If there is a facet 
[i] of 
 which meets � in only a single point P, then P must

be a vertex of � and must also be the centroid of 
[i]. So all n + 1 vertices of the
simplex 
∗ are vertices of �. Now we choose a Cartesian coordinate system in Rn

such that its origin is a vertex of � and its axes are n edge-vectors from this vertex.
So each coordinate of any vertex of 
∗ is either 0 or a. Let A be the (n+1)×n matrix
whose rows list the coordinates of the vertices of 
∗ and let M be the (n+1)×(n+1)
matrix formed from A by appending a columm of 1’s. Then detM must be the integer
multiple of an. This implies

0 6= V (
∗) =
1
n!

|detM |¿a
n

n!
: (1.5)

From (1.4) and (1.5), we obtain V (
∗) = an=n!. It follows that a facet of 
∗ lies in a
facet of the cube �. Hence that opposite facet of the cube � lies a facet of 
, which
contradicts the hypothesis.
The above contradiction shows that at least one facet 
[i],


[i] = 〈A0; : : : ; Ai−1; Ai+1; : : : ; An〉;
(the base) of 
, of (n − 1)-dimesional volume S(
[i]), contains an edge of � and
makes a dihedral angle � (0¡�¡ �=2) with a facet of �. Making a hyperplane H
parallel to 
[i] at distance a cos � from 
[i] meet � in an (n − 1)-parallelotope, of
(n − 1)-dimensional volume an−1=cos � and meets 
 in an (n − 1)-simplex �
. By
induction hypothesis we have

S( �
)¿
(n− 1)n−1
(n− 1)!

an−1

cos �
: (1.6)

Let x be the distance from the vertex Ai to hyperplane H . Then the altitude from the
vertex Ai of 
 is of length x+ a cos �. Noticing that 
[i] and �
 are similar, we obtain

S(
[i])

S( �
)
=
(x + a cos �)n−1

xn−1
: (1.7)

From (1.6) and (1.7), we have

V (
) =
1
n
S(
[i])(x + a cos �)

=
1
n
S( �
)

(x + a cos �)n

xn−1

¿
1
n
(n− 1)n−1
(n− 1)! a

n−1 (x + a cos �)
n

xn−1 cos �
: (1.8)
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Setting x = y cos � and applying the arithmetic-geometry mean inequality, we infer

(x + a cos �)n

xn−1 cos �
=
(y + a)n

yn−1

=
(y + a)n · (n− 1)an+1
((n− 1)a2)(ay)n−1

¿
(y + a)n(n− 1)an+1

((n− 1)ay + (n− 1)a2)n=nn

=
nn

(n− 1)n−1 a: (1.9)

Combining (1.8) and (1.9), we get

V (
)¿
nn

n!
an (1.10)

with equality only if y = (n− 1)a and the equality of (1.6) holds.
(1.2) follows from (1.3) and (1.10). This completes the proof.

Remark. Since ratios of volumes are invariant under nonsingular a�ne transformations,
and simplices and parallelotopes are both preserved by such transformations, Theorem
2′ could also be described as determining the volume of a smallest simplex containing
a unit cube. That is interesting in view of the fact that �nding the largest simplex
contained in unit cube is a very di�cult (and largely unsolved) problem. Even its
most tractable case, that in which the dimension is congruent to 3 (mod 4), subsumes
the famous problem concerning the existence of Hadamard matrices. Hudelson et al.
[4] have studied this problem and they connect largest simplices and the Hadamard
problem.

2. Parallelotope-stack in simplex

De�nition 1. Let �1 and �2 be two n-parallelotopes, the union �1 ∪ �2 is called
a parallelotope-stack of �1 and �2 if there is a hyperplane H (called the coupled
hyperplane) such that the two parallelotopes lie in opposite halfspaces bounded by H
and H contains a facet of each.

It should be noted that not all the parallelotope-stacks are convex.
For the parallelotope-stack in a given simplex, we establish the following inequality.

Theorem 3. Suppose that �1 ∪�2 is the parallelotope-stack in a given n-simplex 
;
and the coupled hyperplane H of �1 ∪�2 is parallel to one of facets of 
: Then

V (�1 ∪�2)6 n!
nn(1− (n− 1)(n−1)=nn)n−1V (
): (2.1)
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Proof. Let �[k]2 and �[k]1 be the facets of �2 and �1 which are parallel to H but do
not lie in H and let �[l]2 be the facet of �2 which lie in H; H ′ the hyperplane spanned
by �[k]1 ; e the normal vector of H . Without loss of generality we assume that the facet
�[k]2 lies in the facet 
[k] of 
. Let h2; h1 and h be the altitudes of �2; �1 and 

in the direction e, respectively. Since H ∩ 
 and H ′ ∩ 
 are two (n− 1)-dimensional
simplices, and

�[l]2 ⊂H ∩ 
; �[k]1 ⊂H ′ ∩ 
;
by applying Theorem 2, we obtain

V (�[l]2 )6
(n− 1)!
(n− 1)n−1 S(H ∩ 
) (2.2)

and

V (�[k]1 )6
(n− 1)!
(n− 1)n−1 S(H

′ ∩ 
): (2.3)

On the other hand, both simplices 
1 = conv({Ak} ∪ (H ∩
)) and 
2 = conv({Ak} ∪
(H ′ ∩ 
)) are similar to 
, so we have

S(H ′ ∩ 
)
hn−10

=
S(H ∩ 
)
(h0 + h1)n−1

=
Sk
hn−1

; (2.4)

where h0 = h− (h1 + h2) and Sk = S(
[k]). Combining (2.2)–(2.4), we infer
V (�1 ∪�2) = V (�1) + V (�2)

6
(n− 1)!
(n− 1)n−1 [S(H

′ ∩ 
)h1 + S(H ∩ 
)h2]

6
(n− 1)!
(n− 1)n−1

Sk
hn−1

(hn−10 h1 + (h0 + h1)n−1h2): (2.5)

Set

f(h0; h1; h3) = hn−10 h1 + (h0 + h1)n−1h2:

Now we must maximize f(h0; h1; h2) in the domain

D = {(h0; h1; h2): h0 + h1 + h2 = h; hi ¿ 0; i = 0; 1; 2}:
Let � be the Lagrange multiplier. We seek the extreme values of the function L with

respect to hi (i = 0; 1; 2), where

L= hn−10 h1 + (h0 + h1)n−1h2 + �(h0 + h1 + h2 − h):
Hence hi (i = 0; 1; 2) must satisfy

@L
@h0

= (n− 1)hn−20 h1 + (n− 1)(h0 + h1)n−2h2 + �= 0;

@L
@h1

= hn−10 + (n− 1)(h0 + h1)n−2h2 + �= 0;

@L
@h2

= (h0 + h1)n−1 + �= 0: (2.6)
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From three equalities in (2.6), we can �nd the unique extreme point of f(h0; h1; h2)
as follows:

h0 =
(n− 1)2

n2(1− (n− 1)n−1=nn)h; h1 =
(n− 1)

n2(1− (n− 1)n−1=nn)h

and

h2 =
nn−1 − (n− 1)n−1
nn − (n− 1)n−1 h:

This must be the maximum point of f(h0; h1; h2) (obviously, f(h0; h1; h2) has
minimum 0).

max
(h0 ;h1 ;h2)∈D

f(h0; h1; h2) =
(n− 1)n−1

nn(1− (n− 1)n−1=nn)n−1 h
n: (2.7)

From (2.5) and (2.7), we get

V (�1 ∪�2)6 (n− 1)!
(n− 1)n−1

Sk
hn−1

max
(h0 ;h1 ;h2)∈D

f(h0; h1; h2)

=
(n− 1)!

hn(1− (n− 1)n−1=nn)n−1 Skh

=
n!

nn(1− (n− 1)n−1=nn)n−1V (
): (2.8)

Noticing that the equalities in (2.2) and (2.3) hold at the same time, we know that the
equality in (2.1) holds as desired.

De�nition 2. Let �1; �2; : : : ; �m be n-parallelotopes in Rn. Then the union
⋃m
k=1�k

is called the parallelotope-stack of �1; �2; : : : ; �m if there are m− 1 mutually parallel
hyperplanes H1; H2; : : : ; Hm−1 (whenever i6j¡k; Hj is between Hi and Hk) such
that Hi is the coupled hyperplane of �i ∪ �i+1 (i = 1; 2; : : : ; m − 1). We also de�ne
V (
⋃m
i=1�i) =

∑m
i=1 V (�i).

Theorem 4. Suppose that
⋃m
k=1�k is the parallelotope-stack of m parallelotopes

�1; �2; : : : ; �m in a given n-simplex 
; and all coupled hyperplane Hi (i = 1; 2; : : : ;
m− 1) are parallel to one of facets of 
; then

V

(
m⋃
k=1

�k

)
6

n!
(n− 1)n−1CmV (
); (2.9)

where Cm is the mth term of the series {Ck} de�ned by recurrent equation

C0 = 0; Ck =
(n− 1)n−1

nn
1

(1− Ck−1)n−1 (k¿1):

Proof. Let Si be the (n−1)-dimensional volume of the facet 
[i] of 
 which is parallel
to the coupled hyperplanes, hi and h be the altitudes of �i and 
 in the direction of
the normal vector of 
[i].
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By the method similar to that used to obtain (2.1), we infer

V

(
m⋃
i=1

�i

)
6

(n− 1)!
(n− 1)n−1

Si
hn−1

(hn−10 h1 + (h0 + h1)n−1h2

+ · · ·+ (h0 + h1 + · · ·+ hm−1)n−1hm); (2.10)

where h0 = h−
∑m

i=1 hi.
Let f(h0; h1; : : : ; hm) = hn−10 h1 + (h0 + h1)n−1h2 + · · ·+ (h0 + h1 + · · ·+ hm−1)n−1hm.

To establish (2.9) it only remains to �nd the maximum of f(h0; h1; : : : ; hm) subject to
the condition h0 + h1 + · · · + hm = h. But it is di�cult to compute the extreme value
by using Lagrange’s method of multipliers as in the proof of Theorem 3.
Now we use induction for m to show

f(h0; h1; : : : ; hm)6Cmhn (m¿2): (2.11)

According (2.7), (2.11) is true when m=2. Let us assume that (2.11) holds for m−1,
and we shall prove it holds true for m.
Let x=h−hm, then 06x6h. Applying the inductive hypothesis and the arithmetric-

geometric mean inequality, we have

f(h0; h1; : : : ; hm) = f(h0; : : : ; hm−1) + (h− hm)n−1hm
6Cm−1(h− hm)n + (h− hm)n−1hm
= xn−1 (h− (1− Cm−1)x)

=
(

n− 1
1− Cm−1

)n−1(1− Cm−1
n− 1 x

)n−1
(h− (1− Cm−1)x)

6
(

n− 1
1− Cm−1

)n−1( (n− 1)( 1−Cm−1

n−1 )x + (h− (1− Cm−1)x)
n

)n

= Cmhn:

So (2.11) is proved. Combining (2.10) and(2.11), we obtain the desired (2.9).

It is easy to see that Theorem 4 is a generalization of Theorem 3. Since only for
m= 2 we can obtain the determinate extreme points of the problem, we indepedently
list Theorem 3 and its proof.
Similar to De�nition 2, we can de�ne the parallelotope-stack

⋃∞
i=1�i of in�nite par-

allelotopes and V (
⋃∞
i=1�i). For a given simplex 
, if

⋃∞
i=1�i⊂
, then

∑∞
i=1 V (�i)¡

+∞. It is easy to prove 0¡Cm61=n by induction for m. Hence from Theorem 4 it
follows that

m∑
i=1

V (�i)6
(n− 1)!
(n− 1)n−1V (
):
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Therefore
∞∑
i=1

V (�i)6
(n− 1)!
(n− 1)n−1V (
):

So we prove the following theorem.

Theorem 5. Suppose that
⋃∞
i=1�i is the parallelotope-stack of �i (i = 0; 1; : : :) in a

given n-simplex 
; and its in�nite coupled hyperplanes are all parallel to the same
one of the facets of 
: Then we have

V

(∞⋃
i=1

�i

)
6

(n− 1)!
(n− 1)n−1V (
)

and the upper bound can be attained.

Taking n = 3 in Theorem 5, we �nd an interesting fact that the sum of volumes
of such in�nite parallelepipeds in a given tetrahedron T has always an upper bound
1=2V (T ).

3. Spanning theorems and applications

De�nition 3. Let 
 = 〈A0; A1; : : : ; An〉 be an n-simplex in Rn. If an n-parallelotope
is spanned by n edge-vectors from vertex Ai of 
, then it is called the spanning
parallelotope of 
, denoted by �i(
).

Obviously, for a given simplex 
, there exist n+ 1 spanning parallelotopes of 
.
Let P be an interior point of n-simplex 
= 〈A0; : : : ; An〉, for every i ∈ {0; 1; : : : ; n},

let Bi be the intersection of the line AiP with the facet 
[i]=〈A0; : : : ; Ai−1; Ai+1; : : : ; An〉.
Then the simplex J with the points B0; : : : ; Bn as vertices is called the Ceva simplex
of P with respect to 
.

Theorem 6 (The spanning theorem for Ceva simplex). Let P be an interior point of
an n-simplex 
= 〈A0; : : : ; An〉; J the Ceva simplex of P with respect to 
: Then there
is k ∈ {0; 1; : : : ; n} such that �k(J )⊂
.

Since V (�k(J )) = n!V (J ), from Theorems 6 and 2, we immediately get

Corollary 1. Let P be an interior point of an n-simplex 
= 〈A0; : : : ; An〉; J the Ceva
simplex of P with respect to 
: Then

V (J )6
1
nn
V (
)

and equality holds if and only if P = G while G is the centroid of 
.
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The results of Corollary 1 are well known; they were proved by M.S. Klamkin (see
[9, Section XVIII. 2.46]. To prove Theorem 6, we need the following two lemmas.

Lemma 1. Let 
=〈A0; : : : ; An〉 be the coordinate simplex in Rn; let P and Q be points
in Rn with barycentric coordinates (�0; �1; : : : ; �n) and (�0; �1; : : : ; �n) respectively; and
let point M lie in the line PQ and satify

PM
MQ

= k:

If (0; 1; : : : ; n) is the barycentric coordintes of M; then

j =
�j + k�j
1 + k

; j = 0; 1; : : : ; n (3.1)

Proof. Lemma 1 immediately follows from the coordinate formulae for the point of
division in rectangular coordinates system.

Lemma 2. Let � be an m-dimensional parallelotope spanned by m vectors OAi ;
i = 1; 2; : : : ; m; OB the diagonal of �; � the (m− 1)-dimensional simplex with vertex
set {A1; A2; : : : ; Am}; M the intersection of OB with �: Then M must be the centroid
of � and satisfy

|OM |
|MB| =

1
m− 1 : (3.2)

Proof. By the following well-known facts

OB =
m∑
i=1

OAi ;

OG =
1
m

m∑
i=1

OAi ;

where G is the centroid of �, we have

OB = mOG : (3.3)

Hence, from (3.3), it follows that O; G and B are collinear. Therefore M = G. (3.2)
also follows from (3.3).

Proof of Theorem 6. Choose 
= 〈A0; A1; : : : ; An〉 as the coordinate simplex in Rn. Let
(�0; �1; : : : ; �n) be the barycentric coordinates of point P. Without loss of generality,
we may assume that �0 = min{�0; �1; : : : ; �n}. Since P is the interior point of 
, then
�0¿ 0. Thus, the barycentric coordinates of Bi are (�0=(1−�i); : : : ; �i−1=(1−�i); 0; �i+1=
(1 − �i); : : : ; �n=(1 − �i)); i = 0; 1; : : : ; n. Consider the spanning parallelotope �0(J )
of J . We can show �0(J )⊂
. Hence it is only necessary to prove that all vertices of
�0(J ) are either the interior points of 
 or boundary point of 
. Let B be the
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vertex of �0(J ) which is di�erent from Bi; i = 0; 1; : : : ; n, with barycentric coordi-
nates (�0; �1; : : : ; �n). Hence we need only to prove �i¿0; i = 0; 1; : : : ; n.
Indeed, since �0(J ) is parallelotope spanned by B0Bi ; i = 1; 2; : : : ; n,

there are {i1; i2; : : : ; im}⊂{1; 2; : : : ; n} (26m6n) such that B0B is the diagonal of the
m-dimensional parallelotope spanned by the m vectors B0Bi1 ;B0Bi2 ; : : : ;B0Bim .
Let M be the centroid of (m − 1)-dimensional simplex � = 〈Bi1 ; Bi2 ; : : : ; Bim〉 with

barycentric coordinates (�0; �1; : : : ; �n). Then

�j =




�j
m

m∑
k=1

1
1− �ik

for j 6= i1; i2; : : : ; im;

�it
m

m∑
k=1;k 6=t

1
1− �ik

for j = it ; t = 1; 2; : : : ; m:

On the other hand, the barycentric coordinate of B0 is

(0; �1=(1− �0); : : : ; �n=(1− �0)):
Noting (3.2) and using Lemma 1, we have

�0 = m�0 − (m− 1)0 = �0
m∑
k=1

1
1− �ik

¿ 0:

When j = it , we get

�it = m�it − (m− 1) �it
1− �0

= �it


 m∑
k=1;k 6=t

1
1− �ik

− m− 1
1− �0




¿ �it

(
m− 1
1− �0 −

m− 1
1− �0

)

= 0:

When j 6= it (t = 1; 2; : : : ; m) and j 6= 0, we have

�j = m�j − (m− 1) �j
1− �0

= �j
m∑
k=1

1
1− �ik

− (m− 1)�j
1− �0

¿ �j

(
m

1− �0 −
m− 1
1− �0

)

= �j
1

1− �0 ¿ 0:
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Hence, for all i ∈ {1; 2; : : : ; n}, we obtain �i¿0. Therefore, B ∈ 
. This complets the
proof.

Given an interior point P of n-simplex 
, drop perpendicular PHi from P to the
facet 
[i] at Hi (i = 0; 1; : : : ; n). Then the simplex 
[p] = 〈H0; H1; : : : ; Hn〉 is called the
pedal simplex of P with respect to 
. For the pedal simplex of an n-simplex in Rn, a
natural problem is whether one can get the result similar to Theorem 6. We study this
di�cult problem in the case R2, which is also nontrivial.

Theorem 7 (The spanning theorem for pedal triangles). Let P be an interior point
of a triangle 4(A1A2A3) and let Hi lie in the segment Ai−1Ai+1 (subscript module 3);
4[P] = 4H1H2H3 the pedal triangle of P with respect to 4(A1A2A3): Then there
is k ∈ {1; 2; 3} such that the parallelogram �k(4[P])⊂4(A1A2A3).

Proof. It is easy to see the following facts:
(a) “H2H1A3¿“H1H2H3 is equivalent to “A1A3A2 +“PA1H36�=2;
(b) If “H2H1A3¿“H1H2H3 and “H1H2A3¿“H2H1H3, then the parallelogram

�3(4[P])⊂4(A1A2A3).
Let O; I; H be the circumcenter, incenter and orthocentre of 4(A1A2A3); � the angle

between HA1 and A1A3, then A1O and A1H are symmetrical with respect to A1I and
0¡�¡ �=2.
Without loss of generality, we assume that P is the interior point of the triangle

4(A1OA2). Then we have
“A1A3A2 +“PA1H36“A1A3A2 +“OA1A2

= “A1A3A2 + �

= �=2:

By (a), we have

“H2H1A3¿“H1H2H3:

Similarly, we get

“H1H2A3¿“H2H1H3:

From (b), we derive that the parallelogram �3(4[P])⊂4(A1A2A3), as desired.

From Theorem 7, a well-known inequality follows:

Corollary 2 (Mitrinovic et al. [9]). Let P be an interior point of a triangle
4(A1A2A3); 4[P] the pedal triangle of P with respect to 4(A1A2A3): Then

Area(4[P])6 1
4Area(4(A1A2A3)): (3.4)

A generalization to several dimensions of (3.4) may be seen in [12].
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By modifying the method of the proof of Theorem 7, we can establish the spanning
theorem for general inscribed triangles. To state this result, we need other notations. Let
4(D1D2D3) be an inscribed triangle of a triangle 4(A1A2A3); li the perpendicular of
Ai−1Ai+1 passing point Di (subscript module 3); let l2∩l3=A′1; l1∩l3=A′2; l1∩l2=A′3.
Let O be circumcenter of 4(A1A2A3); ai = AiO(i = 1; 2; 3). For i 6= j, denote by
H (ai; Aj) the halfplane bounded by the line ai, which implies that Aj ∈ H (ai; Aj).

Theorem 8 (The spanning theorem for inscribed triangles). Let 4(D1D2D3) be an in-
scribed triangle of a triangle 4(A1A2A3) with Di in the segment Ai−1Ai+1 (subscript
module 3): Then; for k ∈ {1; 2; 3}; there is a parallelogram �k(4(D1D2D3))⊂
4(A1A2A3) if and only if A′i ∈ H (ai; Aj) and A′j ∈ H (aj; Ai) where {i; j} = {1; 2; 3} \
{k}:

Corollary 3. Let 4(D1D2D3) be an inscribed triangle of a triangle 4(A1A2A3) and
let Di lie in the segment Ai−1Ai+1: If there is {i; j}⊂{1; 2; 3} such that A′i ∈ H (ai; Aj)
and A′j ∈ H (aj; Ai); then

Area(4(D1D2D3))6 1
4Area(4(A1A2A3)):

For further reading

The following references are also of interest to the reader: [1,11].
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