
Developmental Cell

Short Article
Membrane-Localized Estrogen Receptor a
Is Required for Normal Organ Development
and Function
Ali Pedram,1 Mahnaz Razandi,2 Michael Lewis,3 Stephen Hammes,4 and Ellis R. Levin1,2,*
1Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, CA 92717, USA
2Department of Veterans Affairs Medical Center, Long Beach, Long Beach, CA 90822, USA
3Department of Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
4Department of Medicine, University of Rochester, Rochester, NY 14642, USA

*Correspondence: ellis.levin@va.gov

http://dx.doi.org/10.1016/j.devcel.2014.04.016
SUMMARY

Steroid receptors are found in discrete cellular loca-
tions, but it is unknown whether extranuclear pools
are necessary for normal organ development. To
assess this, we developed a point mutant estrogen
receptor a (ERa) knockin mouse (C451A) that pre-
cludes palmitoylation and membrane trafficking of
the steroid receptor in all organs. Homozygous
knockin female mice (nuclear-only ERa [NOER])
show loss of rapid signaling that occurs from mem-
brane ERa in wild-type mice. Multiple developmental
abnormalities were found, including infertility, rela-
tively hypoplastic uteri, abnormal ovaries, stunted
mammary gland ductal development, and abnormal
pituitary hormone regulation in NOER mice. These
abnormalities were rescued in heterozygous NOER
mice thatwerecomparable towild-typemice.mRNAs
implicated in organ development were often poorly
stimulated by estrogen only in homozygous NOER
mice. We conclude that many organs require mem-
braneERa and resulting signal transduction to collab-
orate with nuclear ERa for normal development and
function.

INTRODUCTION

Steroid receptors are found in discrete cellular locations in most

organs. In femalemammals, genetic deletion of estrogen receptor

a (ERa) produces phenotypes of abnormal development in multi-

ple organs (Lubahn et al., 1993). Deletion of only the nuclear ERa

pool simulates the total ERa knockout (KO)mouse (Pedram et al.,

2009), indicating the importance of nuclear ERa for normal organ

development and function. However, it is unknown as to whether

extranuclear receptor pools are also required. Palmitoylation

of ERa at cysteine 447 (human)/451 (mouse) is required for traf-

ficking of the endogenous receptor to the plasma membrane

(Acconcia et al., 2005; Pedram et al., 2007), and acylation is also

required formembrane localizationofprogesteroneandandrogen

receptors (Pedramet al., 2007, 2012). At themembrane, ERa acts

as a G protein-coupled receptor, enacting multiple signal trans-
482 Developmental Cell 29, 482–490, May 27, 2014 ª2014 Elsevier In
duction pathways that impact genomic and nongenomic func-

tions (Kumar et al., 2007). To assess importance, we developed

a point mutant ERa knockin (KI) mouse (C451A) that precludes

steroid receptor palmitoylation andmembrane trafficking in all or-

gans. Homozygous KI female mice (nuclear-only ERa [NOER])

show loss of rapid signaling that occurs from membrane ERa in

wild-type (WT) mice. Multiple developmental abnormalities were

seen in homozygous NOER mice, and these abnormalities were

rescued in heterozygous NOER mice that were comparable

to WT mice. Multiple mRNAs implicated in organ development

were poorly stimulated by estrogen (E2) only in homozygous

NOER mice. We conclude that many organs require membrane

ERa and resulting signal transduction to collaborate with nuclear

ERa for normal development and function.
RESULTS

Loss of Membrane ER Signaling Impacts Transcription
NOER KI mice that lack ERa palmitoylation were generated by

inserting a cysteine 451-to-alanine mutation into the esr1 locus

in embryonic stem (ES) cells by homologous recombination;

the cells were then used to generate mice. Expression of the

point mutant ERa transgene was found in all organs assessed

(Figure S1A available online). Mammary gland epithelial cells

and hepatocytes from intact WT and heterozygous KI mice

showed comparable nuclear ERa expression and presence of

membrane-localized steroid receptors (Figures 1A and 1B).

However, homozygous KI cells showed complete absence of

membrane-localized ERa but strong nuclear receptor expres-

sion that was comparable to WT mouse cells. The nuclear ERa

pool does not undergo palmitoylation (Pedram et al., 2009),

and hence, localization was not affected by the mutation (Fig-

ure 1B). Because �90% of total ERa protein is in the nucleus,

ER protein was similar in cells from all mice (Figure S1B).

Membrane ERs are solely responsible for rapid signal trans-

duction stimulated by 17-b-estradiol (E2) (Pedram et al., 2006,

2013). WT and heterozygous NOER hepatocytes responded

to E2 with rapid activation of AKT and extracellular mitogen-

responsive protein kinase (ERK) (Figure 1C). In contrast, there

was no significant signaling by E2 in homozygous NOER cells,

consistent with lack of membrane ERa. We determined pS2

mRNA expression that is regulated by nuclear ERa binding es-

trogen response elements (EREs) (Won Jeong et al., 2012) and
c.
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by membrane ER signaling through ERK and phosphatidylinosi-

tol 3-kinase (PI3K) (Björnström and Sjöberg, 2005; Madak-Erdo-

gan et al., 2008; La Rosa et al., 2012). E2 stimulated comparably

increased pS2 mRNA in WT and heterozygous NOER hepato-

cytes that depended upon ERK and AKT (Figure 1D). However,

pS2mRNA response to E2was substantially less in homozygous

NOER mouse hepatocytes, as was activation of an expressed

ERE33/luciferase reporter (Figure 1E). After cell exposure to

E2, nuclear ERa occupancy at an ERE within the pS2 gene pro-

moter was robust in WT and heterozygous NOER hepatocytes

but significantly less so in homozygous NOER cells (Figure 1F).

To determine whether decreased nuclear ERa recruitment to

the pS2 promoter resulted from loss of signaling by membrane

ERa, we expressed the E domain of ERa exclusively targeted to

the plasma membrane in homozygous NOER hepatocytes. This

portion of ERa is sufficient for numerous signaling pathways

(Pedram et al., 2009), and we used this construct to derive

the membrane ERa-only (MOER) mouse (Pedram et al., 2009,

2013). pEmem (E domain of ERa targeted exclusively to the

plasma membrane) enhanced cyan fluorescent protein (ECFP)-

transfected homozygousNOERhepatocytes showedmembrane

localization from the expressed ERa E domain, E2 activation of

ERK and PI3K-AKT, and restored E2 stimulation of pS2 mRNA

that was ERK dependent (Figures S1C–S1E). Importantly,

restoring E2 signaling from themembrane resulted in recruitment

of nuclear ERa to the pS2 promoter ERE (Figure 1G). Thus, the

C451A homozygous mutation prevents the collaboration be-

tweenmembrane and nuclear receptor pools from kinase activa-

tion by the membrane receptor. From Scatchard analysis of

competition binding (Figure 1H), association, and dissociation

studies (Figure S1F), labeled E2 binding to nuclear ER in WT

and homozygous NOER hepatocytes was very similar.

Reproductive Tract Phenotypes in the Homozygous
NOER Mice
The mating of proven breeder WT males with homozygous

NOER female mice produced no pregnancies (Table S1).

Breeding homozygous NOER male and female NOER mice

was similarly not fruitful. This contrasted to matings between

heterozygous male and female NOER mice (WT/KI) that were

comparably successful to matings betweenWTmale and female

mice (12–18 weeks). Thus, heterozygous expression of mem-

brane ERa rescues the infertility phenotype of homozygous

female NOER mice.

From vaginal smears, homozygous NOER female mice fail to

ovulate, whereas heterozygous mice show epithelial cell cornifi-

cation, indicating estrous cycling. To understand the basis for

infertility, we determined that uteri from intact homozygous

NOER mice were relatively hypoplastic compared to WT and

heterozygous NOER mouse uteri that were comparable (n = 5

each) (Figure 2A). Representative uterine tissue sections from

the three types of mice showed that the luminal epithelium in

particular was significantly thinner in the intact homozygous

NOER females compared to WT and heterozygous NOER mice

that were comparable (Figure 2B). This correlated to the com-

plete loss of membrane ERa in isolated endometrial epithelial

cells only from the homozygous KI mice (Figure S2A). WT, het-

erozygous, and homozygous NOER mice were ovariectomized,

and the responses to E2 for 21 dayswere determined (Figure 2C).
Deve
E2 replacement was from E2 pellets inserted under the skin, pro-

ducing physiological levels of this sex steroid in mouse serum

(Pedram et al., 2008). Homozygous NOER KI mice uterine

epithelium showed little effects from ovariectomy and insignifi-

cant epithelial response to E2 (Figure 2C), despite abundant nu-

clear ERa (Figure 1B). In contrast, ovariectomy caused a marked

loss of epithelial thickness in both WT and heterozygous NOER

mice that was restored from E2 exposure (Figure 2C).

Ovariectomized WT and homozygous NOER mice treated by

E2 pellet for 12 days were further compared. Three representa-

tive homozygous KI mice uteri are shown to have little prolifera-

tive response to E2 and no significant change in uterine weight

(Figure S2B). This is in contrast to the significant responses

seen in WT mice. We also found decreased Ki67 staining in

luminal epithelium of the homozygous NOER mice at 12 days’

exposure to the steroid, compared to WT mice (Figure S2C).

These results indicate that nuclear ERa alone is not sufficient to

maintain normal uterine epithelial proliferation and development.

We assessedmRNAs recognized as both important for uterine

development and that are regulated by ERa (Grümmer et al.,

1999; Fleming et al., 2006; Teng, 1999). Expression of connexin

43, oxytocin receptor, lactoferrin, and insulin-like growth factor-

1 (IGF-1) mRNAs was comparable in uteri from intact WT and

heterozygous NOERmice, but all except IGF-1were significantly

reduced in intact homozygous NOER mice (Figure 2D) despite

high-serum E2 levels (Table 1). The IGF-1 results from intact

mice suggest that nuclear ERa is sufficient for regulation of this

mRNA in the endometrium. OvariectomizedWTmice responded

to E2 pellets for 12 days with increases of all uterine mRNAs

(Figure S2D). However, in homozygous NOER mice, E2 failed

to significantly stimulate these mRNAs except for connexin 43.

Thus, loss of membrane ERa compromises E2-induced expres-

sion of some important developmental mRNA(s) in the uterus.

The reduced but present epithelial development in homozygous

NOER mice probably reflects signaling by the IGF-1 receptor to

transactivate nuclear ERa in an E2-independent fashion (Winu-

thayanon et al., 2010). Nevertheless, growth receptor crosstalk

to nuclear ERa is inadequate to fully compensate for the loss

of membrane ERa function.

Abnormalities of the ovary in homozygous NOER mice

included large hemorrhagic cystic (HC) areas and small, mal-

formed ovaries (Figure 2E). The ovaries lack corpora lutea

(CLs) that indicate anovulation, consistent with the vaginal

smears and a basis for infertility. In contrast, heterozygote

NOER and WT mice ovaries show normal development,

consistent with their comparable fertility. Expression of the

progesterone receptor (PR), transforming growth factor b, and

steroidogenic acute regulatory protein mRNAs was determined

from pooled ovaries and individual mice (n = 5; Figure S3A, bar

graph). For each, intact homozygous NOER mice showed

significantly diminished mRNAs compared to WT and heterozy-

gous NOER mice.

Hormone Regulation Is Abnormal in Homozygous NOER
Mice
We then determined sex steroid concentrations and impact

on the hypothalamic-pituitary axis. Serum progesterone was

measured without regard to estrous cycle phase because homo-

zygous NOER mice do not cycle. Progesterone in intact WT and
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Figure 1. NOER Mouse Characterization

(A) Cellular ERa location by immunofluorescent microscopy of representative WT, heterozygous, and homozygous NOER mice cells. Arrows identify membrane

receptors.

(B) ERa protein blots in nuclear and membrane cell fractions. Graph is mean ± SEM from five mice each. GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

(C) Representative kinase activity as AKT Ser473 phosphorylation (left) and ERK tyrosine 202/204 phosphorylation (right). Kinase total proteins are controls; graph

data are from two individual mice per genotype in each of three experiments combined. *p < 0.05 by ANOVA plus Scheffé’s test for control versus E2.

(legend continued on next page)
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heterozygous NOER mice was comparable and �200% higher

than homozygous NOER mice (Table 1). Very low progesterone

in the latter reflects lack of ovarian CLs, the source of postovula-

tory, circulating progesterone (Carr et al., 1981). Serum E2 was

�100% higher in homozygous NOER mice, compared to WT

and heterozygous NOER mice that were comparable. Despite

significantly higher E2 levels, serum luteinizing hormone (LH)

was not suppressed in homozygous NOER mice. This is consis-

tent with impaired negative feedback regulation of the hypotha-

lamic-pituitary-ovarian axis, as reported in ERa KO mice (Couse

and Korach, 1999), and indicates a role for membrane ERa

action. The higher E2 levels did not stimulate LH secretion

because, upon ovariectomy, serum LH was not diminished in

the homozygous NOERmice and increased in WT and heterozy-

gousNOERmice. IGF-1, growth hormone (GH), and follicle-stim-

ulating hormone (FSH) concentrations were not significantly

different between the mice types, but prolactin was significantly

reduced in the intact homozygous KI mice. Upon ovariectomy,

serum prolactin significantly decreased only inWT and heterozy-

gous NOER mice. In vitro, E2 signals to ERK activation from

undetermined ERs, and ERK stimulates prolactin mRNA levels

in cultured rodent pituitary cells (Watters et al., 2000). Our in vivo

findings are consistent with a role for membrane ERa signaling to

increased prolactin production through ERK.

Restricted Development of the Mammary Gland in
Homozygous NOER Mice
Mammary gland development is rudimentary in ERa KO mice,

mainly from loss of postpubertal E2 actions in the epithelium

(Bocchinfuso and Korach, 1997). Whether membrane ERa

signaling is required for glandular development is unknown.

The mammary glands of pubertal, virgin WT, and heterozygous

NOER mice (�12 weeks old) were fully developed. In contrast,

homozygous NOER female mice showed profoundly dimin-

ished ductal side branching and formation of blunted duct

termini (Figure 3A and insets). Progressive development of

postpubertal mammary gland ducts results initially from E2

action, followed by progesterone-induced ductal side branch-

ing through its epithelial receptor, PR-B (Lydon et al., 1995;

Brisken and O’Malley, 2010). The low-serum progesterone in

homozygous NOER mice therefore likely contributes to the

abnormal mammary phenotype. ER stimulates PR transcription

including in the mammary gland (Kastner et al., 1990; Chau-

chereau et al., 1992), and membrane ERa signaling is important

for PR expression in breast cancer epithelial cells (Pedram

et al., 2012). WT and heterozygote NOER mice showed compa-

rable mammary gland PR-B protein (left) and mRNA (right)

expression (Figure 3B), markedly diminished in homozygous

NOER glands.
(D) pS2 mRNA in hepatocytes and regulation from ERK and PI3K signaling in resp

as control. *p < 0.05 versus control; +p < 0.05 E2 versus E2 plus PD or LY.

(E) ERE-luciferase activity in hepatocytes from five mice each, in three separate

(F) Nuclear ERa occupancy of the pS2 promoter ERE. Graph is from cells of five

(G) Expression of the E domain of ERa targeted exclusively to the membrane pro

cells of five mice for three experiments. *p < 0.05 versus control in (F) and (G).

(H) Competition binding of increasing amounts of unlabeled E2 and H3-E2 to WT

experiment provides KD and Bmax from cells from five livers per mouse type; the

See Figure S1 for additional results.

Deve
Howmight membrane ERa collaborate with nuclear ERa to up-

regulate PR expression? Several possibilities may be relevant

(Björnström and Sjöberg, 2005), but others and we have recently

shown that membrane ERa rapidly signals to the epigenetic regu-

lation of genes in breast cancer cells (Bredfeldt et al., 2010; Pe-

dram et al., 2012). In WT and heterozygous NOER mammary

epithelial cells, E2 stimulated AKT-dependent phosphorylation

of the histonemethylase, EZH2, at an activity inhibitory site, serine

21 (Figure 3C). As a result, the H3K27me3-repressive mark at the

PR promoter was significantly reduced. This correlated to E2-

enhanced PR mRNA expression that was substantially reduced

upon inhibition of PI3K-AKT (LY294002), further supporting the

importance of rapid signaling from membrane ERa (Figure 3D).

In contrast, H3K27 trimethylation was strong, and PR mRNA

was not stimulated by E2 in homozygous NOER epithelial cells.

Amphiregulin is an important ligand for the epidermal growth

factor receptor (EGFR) to stimulate mammary gland duct and

terminal end bud development (Brisken and O’Malley, 2010;

Ciarloni et al., 2007). mRNA for this EGFR ligand is induced by

ERa, and the protein has been implicated in E2-stimulated mam-

mary epithelial proliferation and ductal elongation (Ciarloni et al.,

2007). Amphiregulin, EGFR, and ErbB2 mRNAs in mammary

glands from intact, homozygous NOER mice were significantly

reduced compared to WT and heterozygous NOER glands (Fig-

ure S3A). Additionally, E2 or propyl-pyrazole-triol (PPT; ERa

agonist) injection into ovariectomized mice resulted in stimula-

tion of these and PR mRNAs, only in WT and heterozygous

NOER mammary glands (Figure S3B). Thus, membrane ERa

signaling is required for amphiregulin, EGFR, and ErbB2 mRNA

expression, progesterone production, and mammary gland

PR mRNA expression, thereby contributing to mammary gland

ductal development. We also identify a potentially important

mechanism where membrane ER signaling to the epigenetic

regulation of PR mRNA impacts organ development.

Homozygous estrogen receptor a knockout (ERKO) and

MOER mice have comparable, rudimentary mammary develop-

ment (Pedram et al., 2009). Comparing 10-week-old, homozy-

gous ERKO, MOER, and NOER mice, the phenotype in NOER

mice is different. Homozygous NOER mice show greater exten-

sion of large ducts and filling in the mammary gland fat pad,

compared to ERKO and MOER mice (Figure S3C). However,

all three mice show the loss of ductal side branching and

blunt end budding. We conclude that primary ductal extension

through the mammary fat pad requires nuclear ERa action that

is missing in ERKO and MOER mice, and is not rescued by

only the membrane localization of expressed E domain of ERa

(MOER). However, completely normal ductal development after

puberty as seen inWT or heterozygousNOERmice requires both

functional membrane and nuclear ERa pools.
onse to 10 nM E2. RT-PCR results are from three experiments; GAPDH served

experiments. *p < 0.05 versus E2.

mice each, in three experiments. *p < 0.05 versus control.

motes E2 recruitment of nuclear ERa to the pS2 promoter ERE. Graph is from

and homozygous NOER hepatocytes. Scatchard analysis of a representative

study was done three times.
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Figure 2. Reproductive Tract Abnormalities in Homozygous NOER Mice

(A) Representative reproductive tract development.

(B) Cross-sections of uterine layers from WT, heterozygous, and homozygous NOER mice.

(legend continued on next page)
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Table 1. Adult Female Mouse Serum Hormone Levels

Mice LH (ng/ml) FSH (ng/ml) E2 (g/ml) Prolactin (ng/ml) IGF-1 (ng/ml) GH (ng/ml) Progesterone (ng/ml)

WT 0.7 ± 0.2a 6.7 ± 0.5 32.2 ± 4.8 49.1 ± 4.6a 115 ± 8.1 61 ± 6 3.4 ± 0.8a

WT (ovx) 5.3 ± 0.5 30.1 ± 2.4 0.4 ± 0.1 17 ± 2.6 112 ± 4.1 59 ± 2.8 1.1 ± 0.5

Hetero-NOER KI 1.2 ± 0.3 6.1 ± 0.6 37 ± 3.9 52.3 ± 4.7a 120 ± 9.3 59 ± 3.9 3.0 ± 0.5a

Hetero-NOER KI (ovx) 4.8 ± 1.0a 29 ± 2.1 0.8 ± 0.2 21 ± 2.6 109 ± 5.1 52 ± 2.8 0.8 ± 0.3

Homo-NOER KI 2.3 ± 0.5b 5.3 ± 0.3 69 ± 5.8b 32.6 ± 1.9b 110 ± 7.6 49 ± 6.1 0.9 ± 0.4b

Homo-NOER KI (ovx) 2.7 ± 0.8b 24 ± 1.5b 2.6 ± 1.3 28 ± 3.4 99 ± 4.6 50 ± 3.7 0.8 ± 0.2

Data are from six mice per group per condition.
ap < 0.05 by ANOVA plus Scheffé’s test for intact WT or Hetero-NOER KI versus same mice under ovariectomized conditions.
bp < 0.05 for intact Homo-NOER KI versus intact WT or Hetero-NOER KI or same comparisons under ovariectomized conditions.
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DISCUSSION

Important functional roles for extranuclear pools of ERa have

increasingly been shown, particularly for membrane-localized

receptors. In vivo, membrane ERa signaling through AMP kinase

suppresses key mRNAs and production of all lipids in liver, inde-

pendently of nuclear ERa (Pedram et al., 2013). Administration of

an estrogenic compound to mice that only binds membrane ERa

prevents several forms of arterial injury in vivo (Chambliss et al.,

2010).

Here, we provide evidence that membrane ERa is necessary

for organ development and function. The ERa palmitoylation

site mutant KI mouse shows nuclear ERa localization compara-

ble to WT mice, but E2-stimulated rapid signal transduction

is markedly deficient, consistent with absence of membrane

ERa. Importantly, loss of membrane ERa results in the markedly

reduced expression of multiple mRNAs in response to E2 in

several organs. Signaling from membrane ERa impacts tran-

scription in several ways (Björnström and Sjöberg, 2005), but

our results indicate that membrane ER signaling through

mitogen-activated protein kinase kinase-ERK is important to re-

cruit the nuclear receptor pool to the prototype pS2 promoter

that is regulated from a recognized ERE. We also find that

epigenetic regulation of PR-B mRNA in WT and heterozygous

NOER mammary epithelial cells results in part from membrane

ERa activation of AKT, causing an inhibitory phosphorylation of

EZH2 (Cha et al., 2005). Recently described, amouse expressing

inducible small hairpin RNA to EZH2 in the mammary epithelium

showed diminished ductal elongation and impaired duct termini

formation during puberty (Michalak et al., 2013), similar to the

phenotype in homozygous NOER mice. Both mechanisms we

describe provide a further understanding of how membrane

and nuclear ERs integrate their functions, but extensive investi-

gation should uncover additional aspects. Abnormal develop-

ment, mechanisms, and mRNA targets in homozygous NOER

endometrium, ovary, and mammary glands are rescued in het-

erozygote KI mice that are comparable to WT mice.

Despite high E2 levels in serum, NOER female mice fail to

show suppressed serum LH, indicating a necessary role ofmem-
(C) Epithelial uterine thickness in intact or ovariectomized (Ovx) mice with or with

(D) Expression of key E2-responsive mRNAs in uteri samples from intact WT, hete

WT or heterozygous NOER organs.

(E) Ovarian sections from WT and heterozygous NOER mice and three homozyg

See also Figures S2 and S3.

Deve
brane ERa to participate in negative feedback regulation of LH

by E2. Signaling by E2 and ERa to kisspeptin/neurokinin B/dy-

norphin-expressing neurons inhibits gonadotropin-releasing

hormone production in the hypothalamus and suppresses serum

LH (Rance, 2009; Navarro et al., 2009; Gottsch et al., 2009).

However, our female MOER mice that lack nuclear ERa show

nonsuppressed serum LH despite high-serum estradiol levels

(Pedram et al., 2009). We therefore conclude that both receptor

pools are involved.

While this paper was under revision, Adlanmerini et al. charac-

terized a newly developed mouse that also substituted alanine

for cysteine at position 451 of ERa (Adlanmerini et al., 2014).

These investigators described infertility and ovarian phenotypes

and loss of negative feedback regulation of LH that were very

similar to our findings. However, in contrast to our studies, these

investigators described similar uterine endometrial responses to

E2 in homozygous WT and C451A mutant mice and an 82%

overlap of expressed genes by DNA microarray. Importantly,

these investigators found that membrane ERa was only �55%

reduced in hepatocytes from their homozygous C451A mice

and did not characterizemembrane ERa abundance in the endo-

metrium. In contrast, we find the expected complete loss of

membrane ERa in luminal epithelial cells from the endometrium,

as well as mammary gland epithelium and hepatocytes of homo-

zygous NOER mice. Also, we find the rescue of the endometrial

and all phenotypes in heterozygous NOER mice. We thus pro-

pose that the presumed persistence of membrane ERa in the

endometrium of the C451A homozygous mice (Adlanmerini

et al., 2014) may account for the differences described.

Recently, arcuate nucleus kisspeptin/neurokinin B/dynorphin

neuronswere implicated to contribute to E2-suppressing gonad-

otropin secretion and abdominal visceral obesity (Mittelman-

Smith et al., 2012). In the latter regard, we found that intact

homozygous NOER female mice fed normal chow have exten-

sive visceral fat deposition at 10 weeks of age, compared

to WT and heterozygote NOER female mice (Figure S4B). Sup-

pression of fat by E2 is very complicated, involving food intake

and energy metabolism differentially mediated through ERa in

discrete hypothalamic nuclei (Xu et al., 2011) and direct or
out E2 pellets (21 days). *p < 0.05 versus intact, +p < 0.05 versus Ovx (n = 5).

ro-, and homozygous NOERmice (bar graphs, five mice each). *p < 0.05 versus

ous NOER mice (n = 5). HC, hemorrhagic cysts.
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Figure 3. Mammary Gland Development
(A) Representative sections (n = 5 mice per group) stained with carmine also show magnified insets. Terminal end bud formation is shown below.

(B) PR-B proteins (left) andmRNAs (right) frommammary glands. Bar graphs are fivemice each. *p < 0.05WT or heterozygous NOER versus homozygous NOER.

(C) AKT activation by E2 in mammary epithelial cells results in EZH2 serine 21 phosphorylation and diminished H3K27 methylation at the PR-B promoter,

correlating to increased PR-B mRNA expression (bottom). Bar graphs are individual mouse data combined (n = 5). *p < 0.05 versus control; +p < 0.05

versus E2.

(D) PR-B mRNA expression in dissociated mammary epithelial cells exposed in culture to medium alone (control), E2, or E2 with or without LY294002. *p < 0.05

versus control; +p < 0.05 versus E2. Combined data are from individual mouse cultures (n = 5).

See also Figure S3.
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indirect actions on adipocyte lipogenesis and differentiation

(Pedersen et al., 1992; Heine et al., 2000; Homma et al., 2000).

Our findings indicate that membrane ERa plays an important

role(s). In summary, we provide clear evidence that the mem-

brane ERa pool is required for normal organ development and

function in female mice, mainly acting in conjunction with the nu-

clear sex steroid receptor pool (Pedram et al., 2009).

EXPERIMENTAL PROCEDURES

Mouse Construction

A bacterial artificial chromosome with a cysteine 451-to-alanine mutation

in ERa was created to insert into the esr1 locus in ES cells. ES cells were

then injected into blastocysts from C57BL/6NTac mice, the chimeric male

mice positively selected by neo gene expression and chimeric males crossed

with Flpe-expressing females to delete the neo cassette. Detailed construction

methods are described in Supplemental Experimental Procedures. All mouse

experiments were approved by the Animal Research and Research and Devel-

opment Committees at the Department of Veterans Affairs Medical Center,

Long Beach.

ERa Localization

Hepatocytes and mammary epithelial cells from 8- to 10-week-old WT,

hetero-, and homozygous NOER female mice were acutely cultured for immu-

nofluorescence microscopy and western blot. First antibody to ERa from

Santa Cruz Biotechnology (C terminus, MC-20) and fluorescein isothiocyanate

(FITC)-conjugated second antibody (Vector Laboratories) were used.

Kinase Activities

Cell ERK activity was determined at 15 min as phosphorylation at the active

site, tyrosine 202/204 with phospho-antibodies to tyrosine 202/204 (Santa

Cruz). AKT activity at 15 min was determined as Ser473 phosphorylation using

phospho (and total) antibodies from Cell Signaling Technology.

Measurement of Plasma Hormone Levels

Blood samples were collected by cardiac puncture and centrifuged. Serum

was stored at �80�C until assayed using ELISA or RIA kits (Diagnostic Sys-

tems Laboratories; Cayman Chemical).

mRNA, Epigenetic, and ChIP Assays

mRNA expression by RT-PCR, epigenetic studies, and chromatin immuno-

precipitation (ChIP) assays are described in Supplemental Experimental

Procedures.

Fertility Studies

The 12- to 18-week-old male and female WT, heterozygous, and homozygous

NOER mice were used for multiple matings, and success rates and periods

were determined.

Histology, Histochemistry, and Serum Hormone Measurements

Whole organs were obtained under anesthesia/euthanasia for mounts and

thin-tissue sections (Pedram et al., 2009). Hematoxylin and eosin staining

(reproductive tract tissues) and carmine alum staining for mammary glands

were done. Ki67 staining of mouse uteri served as a proliferation marker using

ab15580 antibody (Abcam) with formaldehyde-fixed, paraffin-embedded

tissue sections. Sections were deparaffinized, rehydrated, then blocked with

4% serum (30 min, 25�C); antigen retrieval by heat mediation was done in

citrate buffer (pH 6.0). Incubation with primary antibody (5 mg/ml in blocking

buffer, 16 hr at 4�C) was followed by FITC-conjugated, goat/anti-rabbit IgG

polyclonal (1/100), secondary antibody (Vector Labs) incubation overnight.

Fluorescent microscopy ensued.

Uterine Response to E2

The 10- to 12-week-old female mice were ovariectomized and recovered for

1 week, and E2 pellets were then inserted under the skin for 12 or 21 days, pro-

ducing physiological serum E2 levels (Pedram et al., 2008). Uterine epithelial

thickness was measured. For mRNA, mice were exposed to E2 from pellets
Deve
for 12 days; the uteri were removed and processed for RT-PCR. Uterine weight

studies are described in Supplemental Experimental Procedures.

E-mem-ECFP Expression Studies

Hepatocytes from homozygous NOER mice were transfected with a plasmid

expressing only the E domain (ligand binding domain) of ERa, targeted exclu-

sively to the membrane by paired myristylation sequences (E-mem ECFP)

(Pedram et al., 2009). As control, some cells were transfected with empty vec-

tor (ECFP), and studies were performed.

Epigenetic Modulation Studies

Mammary gland epithelial cells from the three mice types were isolated and

cultured. Precipitated histone proteins were collected and resolved by SDS-

PAGE on a 10%–20% Tris-tricine gel (Bio-Rad), and changes in trimethylation

of histone 3 at lysine 27 relative to histone 3 at the PR promoter were investi-

gated (antibodies from Abcam). Total EZH2 and histone 3 proteins were

loading controls. PR-B expression was determined by RT-PCR at 24 hr of

E2 treatment.

Statistical Analysis

Mean ± SEM was calculated for ANOVA plus Scheffé’s test. p < 0.05 was

considered significantly different.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,
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